

-83-

8.3.1. Prompts

A prompt facility is sometimes used with menus to tell the user to proceed from his current
state. Prompting can also be done without menus. The definitions for the prompt facility are
found in [usr/include/suntool/ menu.h.

struct prompt {

struct rect pri_rect;
struct pixfont *prt_font;
char *prt_text;
B
#define PROMPT_FLEXIBLE -1

Prt_rect is the rectangle in which the text addressed by prt_test will be displayed using prt_font.
Only printable characters and blanks are currently properly dealt with, no carriage returns, line
feeds or tabs (yet) please. If any of prt_rect's fields are PROMPT_FLEXIBLE that dimension is
automatically chosen by the prompt mechanism to accommodate the number of characters that
fix using the given font.

menu_prompt(prompt, event, iowindowfd)

struct prompt *prompt,
struct inputevent *event;
int iowindowfd;

Menu_prompt displays the indicated prompt (prompt->prt_rect is sowindowfd relative), and
then waits for any input event other than mouse motion. It then removes the prompt, and
returns the event which ended the prompt’s existence in event. lowindowfd is the window from
which input is taken while the prompt is up. The fullscreen access method is used during
prompt display.

8.4. Selection Management

A common style of operation/operand command specification is a non-modal one in which the
operand is specified first. In the window system, the operand is called the selection since it usu-
ally requires that the user select something with the pointing device. A selection is highlighted
in some way and persists until an operation removes it programmatically or the user does some
action which causes the selection to be removed.

This section describes an interface to a selection manager that is used to coordinate access to a
single data entity called the current selection. The current selection is globally accessible by any
process, thus providing an inter-tool data exchange mechanism.

The header file /usr/include/suntool/selection.h contains the definition necessary for using selec-
tions:

-84-

struct selection {

int sel_type,

int sel_items,

int sel_itembytes,

int sel_pubflags;

caddr_t sel_privdata;
|5
ftdefine SELTYPE_NULL 0
#define SELTYPE_CHAR 1

is the object that describes a selection. Sel_type indicates the type of the selection. Currently,
SELTYPE_NULL (no selection) and SELTYPE_CHAR (ASCII characters) are the only selec-
tion types defined. Sel_stems is the number of items in the selection data. Sel_stembytes is the
number of bytes each item occupies in the selection data. Sel pubflags is used to contain pub-
licly understood flags that further describe the selection. Sel _privdata is used to contain
privately understood data (32 bits worth) that is only understood between implementations of a
particular selection type.

The selection structure is not to be confused with actual selection data itself, e.g. the characters
in a SELTYPE_CHAR selection.

selection_set(sel, sel_write, sel_clear, windowfd)

struct selection *sel
int (+sel_write)();
int (#sel_clear)X);
int window{d;

sel_write(sel, file)

struct selection #*sel;
FILE file;
sel_clear(sel, windowfd)
struct selection *sel;
int window{d;

Selection_set is used to change the current selection. Sel describes the selection. Sel_write is a
procedure that is called to store information into the selection. (Currently, only selection_set
calls sel_write, but in the future sel_write might be called at any time). The sel_write procedure
takes as arguments sel, the selection description handed to selection_set, and file, an stdio FILE
pointer. The stdio library is used to write the selection data to file. Windowfd is the window
that is making the selection.

Sel_clear is a procedure that the selection manager would call when it wanted the selection
currently being set to be dehighlighted. This could happen when another selection had been
made. (This clear feature is not currently implemented. When implemented this call could come
at any time after returning from selection_set). '

selection_clear(windowfd)
int windowfd;

is called when windowfd wants to clear the current selection. Ideally, there is only one selection
on the screen at a time so that the user doesn’t become confused about which operand will be
affected by his next command. (Since the sel_clear feature is not currently implemented [see

C

- 85-

above], it ia the selection maker’s decision as to when to dehslight his selection feedback. The only
ezisting use of the selection mechanism waits for the user to move his cursor out of the window
that made the selection before dehilighting it).

selection_get(sel_read, window{d)
int (*sel_read)();
int windowfd;

sel_read(sel, file)
struct selection #*sel;
FILE +file;

Selection_get is used to find out the current selection. Sel_read is a procedure that selection_get
calls to enable the client to retrieve the selection. Windowfd is the window that wants to find
out about the selection.

The sel_read procedure takes as arguments sel, the selection description of the current selection,
and file, a standard io FILE pointer. The standard io library is used to read the selection data
from file. Sel_read should check the type of the selection and make sure that it is a type with
which it can deal. :

8.5. Window Management

The following procedures implement common functions for adjusting window relationships.
They may be used to provide 2 window management user interface different from that provided
by tools. If a. series of calls are to be made to these procedures, the whole sequence should be
bracketed by win_lockdata / win_unlockdata, as described in section 4.4.

bool wmgr_changelevelonly{windowfd, parentfd, top)
int window{d, parentfd;
bool top;

moves a window to the top or bottom of the heap of windows that are descendants of its
parent. Windowfd identifies the window to be moved; parentfd is the file descriptor of that
window’s parent, and top controls whether the window goes to the top (TRUE) or bottom
(FALSE).

wmgr_completechangerect(
windowfd, rectnew, rectoriginal, parentprleft, parentprtop)

int window{d;
struct rect *rectnew, *rectoriginal;
int parentprleft, parentprtop;

does the work involved with changing the position or size of a window’s rect. This involves sav-
ing as many bits as possible (by copying them on the screen) so they don’t have to be recom-
puted. Windowfd is the window being changed. Rectnew is the window's new rectangle. Rec-
toriginal is the window's original rectangle. Parentprieft and parentprtop are the parent of
windowfd's upper-left screen coordinates of the

wmgr_changelevel(windowfd, parentfd, top)
int window{d, parentfd;
bool top;

- 86 - *

is like wmgr_changelevelonly, except that no optimization is performed to reduce the amount of
repainting. This is used in conjunction with other window rearrangements, which make repaint-
ing unlikely. For example, when the tool window manager makes a tool iconic, it puts it at the
bottom of the tool window stack after changing its state. '

wmgr_refreshwindow(windowfd)
int windowfd;

causes windowfd and all its descendant windows to repaint.

wimgr_changestate(windowfd, rootfd, closé)

int window({d;
int rootfd;
bool close;
#define WMGR_SETPOS -1
#define WMGR_ICONIC WUF_WMGRI1

changes the window identified by windowfd to be closed (iconic) or open, depending on whether
close is TRUE or FALSE. The user data of windowfd reflects the state of the window via the
WMGR_ICONIC flag (WUF_WMGRI1 is defined in [usr/include/sunwindow/win_soctl.h and
WMGR_ICONIC is defined in [usr/include/ suntool/ wmgr.h).

The following procedures are used to resolve position/size undefined situations for the window’s
new rectangle:

wmgr_figuretoolrect{rootfd, rect)

int rootfd;

struct rect *rect;
wmgr_figureiconrect(rootfd, rect)

int rootfd;

struct rect *rect;

The rootfd window maintains a "next slot” position for both normal tool windows and icon win-
dows. This allows windows to be assigned initial positions that don’t pile up on top of one
another. These procedures assign the next slot to the rect if rect->r_left or rect->r_top is
equal to WMGR_SETPOS. A new slot is chosen and is then available for the next window with
an undefined position. These procedures also assign a default width and height if
WMGR_SETPOS is given, again for both tool windows and icon windows.

Wmgr_figuretoolrect currently assigns tool window slots that march from near the top middle of
the screen towards the bottom left of the screen. It assigns a window size correct for an 80-
column by 34-row terminal emulator window. Wmgr_figuresconrect currently assigns icon slots
that march from the left bottom towards the right of the screen. It assigns icon sizes that are
64 by 64 pixels.

wmgr_forktool(programname, otherargs, rectnormal, recticon, iconic)

char +programname, *otherargs;
~struct rect *rectnormal, *recticon;
int icomic;

is used to fork a new tool that has its normal rectangle set to rectnormal and its icon rectangle
set to recticon (both of which may have undefined fields). If iconsc is not zero then the tool is
created normal size. Programname is the name of the file that is to be run (a path search is
done to locate the file) and otherargs is the command line that you -want to pass to the tool.

-

. 87-

Args that have embedded white space should be enclosed by double quotes.

wmgr_iswindowopen(windowfd)
int windowfd;

tests the WMGR_ICONIC flag (see above) and returns TRUE or FALSE as the window is open
or closed.

wmgr_winandchildrenexposed(pixwin, rl)
struct pixwin *pixwin;
struct rectlist *rl;

can be used with your own window management routines to compute the visible portion of
pizwin-> pw_clipdata.pwed_windowfd and its descendants and store it in rl. "

-88-

9. APPENDIX A: RECTS & RECTLISTS é\

This appendix describes the geometric structures used with sunwindow and a full description of
the operations on these structures. Throughout the sunwindow, images are dealt with in rec-
tangular chunks; where complex shapes are required, they are built up out of groups of rectan-
gles. A rect is a structure that defines a rectangle. A rectlist is a structure that defines a list of

rects.

The header files rect.h and rectlist.h are found in /usr/include/ sunwindow/. The library that
provides the implmentation of the functions of these data types are part of
Jusr/lib/ libsunwindow.a.

Although these structures are presented in terms of sunwindow usage with pixel units, they are
really separate and can be thought of as a rectangle algebra package. Any application that
needs such a facility should consider using rects and rectlists. .

8.1. Rects
The rect is the basic description of a rectangle, and there are macros and proceduress to per-
form common manipulations on a rect.

#define coord short;

struct rect { ,
coord r_left; o
coord r_top; @
short r_width; ;
short r_height;
&
The rectangle lies in a coordinate system whose origin is in the upper left-hand corner, and
whose dimensions are given in pixels.

9.1.1. Macros on Rects
The same header file defines some interesting macros on rectangles. To determine an edge not
given explicitly in the rect:

##define rect_right(rp)

#define rect_bottom(rp)
struct rect *rp;

return the coordinate of the last pixel within the rectangle on the right or bottom, respectively.

C

C

-89 -

Useful predicates (returning TRUE or FALSE) are:

#define bool unsigned;
#define TRUE 1
#define FALSE 0

rect_isnull(r) r's width or height is 0

rect_includespoint(r,x,y) (x,y) lies in r

rect_equal(rl, r2) r1 and r2 coincide exactly

rect_includesrect(r1, r2) every point in r2 lies in r1

rect_intersectsrect(rl, r2) at least one point lies in both rf and r2
struct rect *r, srl, *r2;

coord X, Y;

Macros which manipulate dimensions of rectangles:

rect_construct(r, x, y, w, h)
struct rect *r;

fills in r with the indicated origin and dimensions.

rect_marginadjust(r, m)
struct rect *r;

adds a margin of m pixels on each side of r; that is, r becomes 2+m larger in each dimension.

rect_passtoparent(x, Y, r)

rect_passtochild(x, y, r)
coord X, ¥;
struct rect *r;

sets the origin of the indicated rect to transform it to the coordinate system of a parent or child
rectangle, so that its points are now located relative to the parent or child’s origin. X and y are
the origin of the parent or child rectangle within sts parent; these values are added to (resp.
subtracted from) the origin of the rectangle pointed to by r, thus transforming the rectangle to
the new coordinate system.

9.1.2. Procedures and Extern Data
A null rectangle (one whose origin and dimensions are all 0) is defined for convenience:

extern struct rect rect_null;

| The following procedures are also defined in rect.h:

struct rect rect_bounding(rl, r2).
struct rect *rl, *r2; .

returns the minimal rect which encloses the union of r1 and r2. The returned value is a struct,
not a pointer.

rect_intersection(rl, r2, rd)
struct rect #rl, *r2, *rd;

-90 -

computes the intersection of the r1 and r2, and stores that rect into rd.

bool rect_clipvector(r, x0, y0, x1, y1)
struct rect *r;
coord *x0, *y0, *x1, *yl;

modifies the vector endpoints so they lie entirely within the rect, and returns FALSE if that
excludes the whole vector, else TRUE. Note: This procedure shouldn’t be used to clip a vector
to multiple abutting rectangles; it may not cross the boundaries smoothly.

bool rect_order(rl, r2, sortorder)
struct rect *rl, *r2;
int sortorder;

returns TRUE if r1 precedes or equals 2 in the indicated ordering:

#define RECTS_TOPTOBOTTOM 0

#define RECTS_BOTTOMTOTOP 1

#tdefine RECTS_LEFTTORIGHT 2

#define RECTS_RIGHTTOLEFT 3
Two related defined constants are:

#define RECTS_UNSORTED 4
indicating a ‘‘don’t-care” order, and

##define RECTS_SORTS 4

giving the number of sort orders available, for use in allocating arrays, ete.

9.2. Rectlists

A number of rectangles may be collected into a list which defines an interesting portion of a
larger rectangle. An equivalent way of looking at it is that a large rectangle may be fragmented
into a number of smaller rectangles, which together comprise all the larger rectangle’s interest-
ing portions. A typical application of such a list is to define the portions of one rectangle
remaining visible when it is partially obscured by others.

struct rectlist {

coord rl_x, rl_y;

struct rectnode *rl_head;
struct rectnode *ri_tail,
struct rect rl_bound;

b

struct rectnode {
struct rectnode *rn_next;
struct rect ro_rect;

b

Each node in the rectlist contains a rectangle which covers one part of the visible whole, along
with a pointer to the next node. RI_bound is the minimal bounding rectangle of the union of all

the rectangles in the node list. All rectangles in the rectlist are described in the same coordinate

@

-91-

system, which may be translated efficiently by modifying rl{_z and rl_y.

The routines that manipulate rectlists do their own memory management on rectnodes, creating
and freeing them as necessary to adjust the area described by the rectlist.

9.2.1. Macros and Constants Defined on Rectlists
Macros to perform common coordinate transformations are provided:
rl_rectoffset(rl, rs, rd)

struct rectlist #rl;
struct rect *rs, *rd;

copies ra into rd, and then adjusts rd's origin bj adding the offsets from rl.

rl_coordoffset(rl, x, y)
struct rectlist *rl;
coord X, ¥;

offsets z and y by the offsets in rl; e.g., it converts a point in one of the rects in the rectnode hst
of a rectlist to the coordinate system of the rectlist’s parent.

Parallel to the macros on rect’s, we have
rl_passtoparent(x, y, rl) and
rl_passtochild(x, y, ri)

coord X, Y;
struct rectlist *rl;

which add (subtract) the given coordinates from the rectlist’s rl_z and rl_y to convert the 5l into
its parent’s (child’s) coordinate system.

9.2.2. Procedures and Extern Data

An empty rectlist is defined, which should be used to initialize any rectlist before it is operated
on: _

extern struct rectlist rl_null;

Procedures are provided for useful predicates and manipulations. The following declaratnons
apply uniformly in the descriptions below:

struct rectlist *rl, *rll, *rl2,%ld;
struct rect *r;
coord X,Y;

Predicates return TRUE or FALSE. Refer to the following table for specifics.

-92-

Macro

Returns TRUE if

rl_empty(rl)
rl_equal(ril, ri2)

rl_includespoint(rl,x,y)
rl_equalrect(r, rl)

rl_boundintersectsrect(r, ri)

contains only null rects

the two rectlists describe the
same space identically — same
fragments in the same order

(2, y) lies within some rect of rl
rl has exactly one rect, which is
the same as r

some point lies both in r and in
rP's bounding rect

Manipulation procedures operate through side-effects, rather than returning a value. Note that
it is legitimate to use a rectlist as both a source and destination in one of these procedures (the

source node list will be freed and reallocated appropriately for the result).

-03.

Refer to the following table for speciﬁcs.}

Procedure

Effect

rl_intersection(rl1, ri2, rld)

rl_union(rll, ri2, rid)

_ rl_difference(rll, rl2, rid)

rl_coalesce(rl)

rl_sort(rl, rid, sort)
int sort;

rl_rectintersection(r, rl, rid)

rl_rectunion(r, rl, rid)

rl_rectdifference(r, rl, rld)

rl_initwithrect{r, rl)

rl_copy(rl, rid)
rl_free(rl)
rl_normalize(rl)

stores into rld a rectlist which
covers the intersection of rli
and rl2.

stores into rld a rectlist which
covers the union of rif and r{2.
stores into rld a rectlist which
covers the area of rlf not
covered by ri2

An attempt is made to shorten
rl by coalescing some of its
fragments. An r! whose bound-
ing rect is completely covered
by the union of its node rects
will be collapsed to a single
node; other simple reductions
will be found; but the general
solution to the problem is not
attempted.

rl is copied into rld, with the
node rects arranged in sort
order.

rld is filled w‘ith a rectlist that
covers the intersection of r and
rl.

rid is filled with a rectlist that
covers the union of r and rl

rld is filled with a rectlist that
covers the portion of r{ which is
not in r.

fills in sl so that it covers the
rect r

fills in rld with a copy of rl.
frees the storage allocated to rl
resets rl's offsets (rl_z, rl_y) to
be 0 after adjusting the origins
of all rects in rl accordingly.

- 94 - » *

10. APPENDIX B: SAMPLE TOOLS @\

These are sample tools that can be used as starting points for tools of your own. The source
files for these and other tools are found on [usr/suntoolfsrc/ *tool.c.

10.1. gfxtool.c Code

-95.

#ifndef lint
static char sccsid[] = " @(#)gfxtool.c 1.6 83/10/18 Sun Micro”;
#endif

/ *

*+ Sun Microsystems, Inc.

+/

/ *

* Overview: Graphics Window: A shell subwindow and an empty
* subwindow inwhich graphics programs can run.

+f

#include <sys/typesh>

#include <signal.h>

#include " pixrect/pixrect.h”
#include " pixrect/pixfont.h”
#include " pixrect/pr_util.h”
#include " pixrect/memvar.h”
#include "sunwindow /rect.h”
#include "sunwindow /rectlist.h”
#include "sunwindow /pixwin.h”
#include "sunwindow /win_struct.h”
#include "sunwindow /win_environ.h”
#include ”suntool/icon.h”

#include "suntool/tool.h”

#include "suntool/emptysw.h”
#include "suntool /ttysw.h”

static short ic_image[256]={
ftinclude " gfxtool.icon”
b

mpr_static(gfxic_mpr, 64, 64, 1, ic_image);

static struct icon icon = {64, 84, (struct pixrect *)0, 0, 0, 64, 64,
&gfxic_mpr, 0, 0, 0, 0, (char *)0, (struct pixfont *)0,
ICON_BKGRDGRY};

static int sigwinchcatcher(), sigchldcatcher();
static struct tool *tool;
gfxtool_main(arge, argv)

int argc;

char **argv;

char *toolname = " Graphics Tool 1.07;

struct toolsw *ttysw, *emptysw;
char name[WIN_NAMESIZE};

}

static

/ *
* Create tool window
+/
tool = tool_create(toolname, TOOL_NAMESTRIPE|TOOL_BOUNDARYMGR,
(struct rect)0, &icon);
/*

+ Create subwindows
+/
ttysw = ttysw_createtoolsubwindow(tool, "ttysw”,
TOOL_SWEXTENDTOEDGE, 200);
emptysw == esw__createtoolsubwin&ow(tool, "emptysw”,
TOOL_SWEXTENDTOEDGE, TOOL_SWEXTENDTOEDGE);
/+ |

* Setup gfx window environment value.
+/
win_fdtoname({emptysw- >ts_windowfd, name);
we_setgfxwindow(name);
/ *
* Install tool in tree of windows
s/
signal(SIGWINCH, sigwinchcatcher);
signal(SIGCHLD, sigchldcatcher);
tool_instali(tool);
/ *
* Start tty process
of
if (ttysw_fork(ttysw->ts_data, + + argv, &ttysw->ts_jo.tio_inputmask,
&ttysw->ts_jo.tio_outputmask, &ttysw- >ts_jo.tio_exceptmask) == -1) {
perror(” gfxtool");
exit(1);

/t

* Handle input

o

tool_select(tool, 1 /+ means wait for child process to die+/);
&5
* Cleanup
*
tool_destroy(tool);
exit({0});

zi'gchklcatchet()

static

tool_sigchld(tool);

sigwinchcatcher()

tool_sigwinch(tool);

- 97 -

10.2. panetool.c Code

- 98 -

ftifndef lint
static char scesid[] = " @(#)panetool.c 1.8 83/10/18 Sun Micro”;
#endif

[+
+ Sun Microsystems, Inc.

¢/

/*

* Overview: Pane Tool: Sample program to illustrate multlple
* subwindows.

+/

#include <sys/types.h>

#include <sys/time.h>

#include <signal.h>

#tinclude " pixrect/pixrect.h”
#include " pixrect/pixfont.h”
#include "sunwindow [rect.h”
#include "sunwindow [rectlist.h”
#include "sunwindow /pixwin.h”
#include "sunwindow /win_input.h”
#include "sunwindow /win_struct.h”
#include "suntool/icon.h”

#include "suntool/tool.h”

#include "suntool/msgsw.h”
#include "suntool/menu.h”

static int sigwinchcatcher();
static struct tool *tool;
static char charbuf[4];

struct menuitem m3_jtems[] = { MENU_IMAGESTRING, "Menu Item” , 0};
struct menu m3_menubody = {
MENU_IMAGESTRING, "M3", slzeof(m3_Jtems) | sizeof(struct menmtem), m3_jtes)
struct menuitem m2_jtems[] = { MENU_IMAGESTRING, "Menu Item”, 0};
struct menu m2_menubody = {
MENU_IMAGESTRING, "M2”, sizeof(m2 _;tems) [sizeof(struct menuitem),
m2_jtems, £m3_menubody, 0};
struct menuitem m1_jtems]] = { MENU_IMAGESTRING, "Menu Item”, 0};
struct menu ml_menubody = {
MENU_IMAGESTRING, "M1”, sizeof(m1 xtems) / sizeof(struct menuitem),
mi_items, &m2 menubody, 0};
struct menu *stacklmenutop = &ml_menubody;

struct menuitem m4_items[] = { MENU_IMAGESTRING, "Menu Item”, 0};
struct menu m4_menubody = {
MENU_IMAGESTRING, "M4”, sizeof(m4_items) / slzeof(struct menuitem),

struct
struct

struct
struct

struct
int

- 100 -

m4_items, 0, 0 }; @
menuitem m5_items[] = { MENU_IMAGESTRING, "Menu Item”, 0}; S
menu m5_menubody = {

MENU_IMAGESTRING, "M5”, sizeof(m5_items) / sizeof(struct menuitem),

m5_jtems, &m4_menubody, 0};
menuitem m6_jtems[] = { MENU_IMAGESTRING, "Menu Item” ,0};
menu m6_menubody = {

MENU_IMAGESTRING, "M8", sizeof(m6_items) / sizeof(struct menuitem),

m6_items, £m5_menubody, 0};
menu *stack2menutop = &m6_menubody;
menutoggle;

main(arge, argv)

int argc;
char **argv;

char *toolname = "Pane Tool 1.0 (A sample tool)”;
struct toolsw *paneNW, *paneNE, *paneSW, *paneSE;
extern struct pixfont *pf_sys;

/*

+ Create tool window

J) .
tool = tool_create(toolname, TOOL_NAMESTRIPE|TOOL_BOUNDARYMGR, ey

(struct rect *) 0, (struct icon #) 0); @

/* ‘

+ Create msg subwindows

+/

paneNW = msgsw_createtoolsubwindow(tool, " paneNW”,
100, 100, "Raw keyboard input”, pf_sys);
paneNE = msgsw_createtoolsubwindow(tool, " paneNE",
TOOL_SWEXTENDTOEDGE, 100,
"Key input here redirected to NW subwindow”, pf_sys);
paneSW = msgsw_createtoolsubwindow(tool, " paneSW”,
100, TOOL_SWEXTENDTOEDGE, "Display alternating menu stacks”,pf_sys);
paneSE = msgsw_createtoolsubwindow(tool, ” paneSE”,
TOOL_SWEXTENDTOEDGE, TOOL_SWEXTENDTOEDGE,
”Try moving subwindow boundaries”, pf_sys);
/*
+ Raw input and flushing
+/
{

struct inputmask im;

int paneNW_selected();

input_imnull(&im);

im.im_flags |= IM_UNENCODED; -
win_setinputmask(paneNW->ts_windowfd, &im, &im, WIN_NULLLINK); ;
paneNW->ts_jo.tio_selected = paneNW_selected; @

}

- 101 -

/*

*+ Input redirection
+/

{

struct inputmask im;

win_getinputmask(paneNE- >ts_windowfd, &im, 0);
win_setinputmask(paneNE- >ts_windowfd, &im, (struct inputmask +) 0,
win_fdtonumber(paneNW->ts_windowfd));

/*

*+ Multi menu stacks

+/

{ .

struct inputmask im;

int paneSW_selected();

input_imnull(&im);

win_setinputcodebit(&im, MENU_BUT);
win_setinputmask(paneSW->ts_windowfd, &im, &im, WIN_NULLLINK);
paneSW->ts_jo.tio_selected = paneSW_selected;

}
/ *
* Install tool in tree of windows
+/
signal(SIGWINCH, sigwinchcatcher);
tool_install(tool);
*

+ Handle input
+/
tool_select(tool, 0);
/ *
* Cleanup
+/
tool_destroy(tool);
exit(0);

}

paneNW _selected(msgsw, ibits, obits, ebits, timer)
struct msgsubwindow *msgsw;
int *ibits, *obits, *ebits;
struct timeval *+timer;

struct inputevent event;
int error;

error = input_readevent(msgsw- >msg_windowfd, &event);
if (error < 0) { ‘
perror(” panetool”);
return;

}

- 102 -

charbuf[0] = 'c’; .

charbufl] = ":;

charbuf[2] = (char) event.ie_code&0X7f;
charbuff3] ="' B
msgsw_setstring(msgsw, charbuf);

*ibits = *obits + #*ebits + 0;

paneSW_selected(msgsw, ibits, obits, ebits, timer)

}

static

struct msgsubwindow *msgsw;
int *ibits, *obits, *ebits;
struct timeval **timer;

struct inputevent event;
int error;
extern struct menuitem *menu_display();

error = input_readevent(msgsw- >msg_window{d, &event);
if (error < 0) {
perror(” panetool”);
return;
)
(void) menu_display((menutoggle)? &stacklmenutop: &stack2menutop,
&event, msgsw->msg_windowfd);
menutoggle = !menutoggle;
*ibits = *obits + #*ebits + 0;

sigwinchcatcher()

tool_sigwinch(tool);

- 103 -

11. APPENDIX C: SAMPLE GRAPHICS PROGRAMS

These are sample graphics programs that can be used as starting points for graphics programs
of your own. The source files for these and other graphics demos are found on
[usr/suntoolf src/ +demo.c.

11.1. bouncedemo.c Code

- 104 -

#ifndef lint
static char sccsid[] = " G(#)bouncedemo.c 1.5 83/08/26 Sun Micro”;

#endif

/* /

+ Sun Microsystems, Inc.

+/
/ *

* Overview: Bouncing ball demo in window

*/

#include <sys/types.h>
#include " pixrect/pixrect.h”
#include "sunwindow /rect.h”
#include "sunwindow /rectlist.h”
#include "sunwindow /pixwin.h”
#include "suntool /gfxsw.h”

main(arge, argv)
int arge;
char *+argv;

short x, y, vx, vy, z, ylastcount, ylast;

short Xmax, Ymax, size;

struct rect rect;

struct gfxsubwindow *gfx = gfxsw_init(0, argv);

Restart:
win_getsize{gfx->gfx_windowfd, &rect);
Xmax = rect_right(&rect);
Ymax == rect_bottom(&rect);
if (Xmax < Ymax)
size = Xmax/29+ I;
else : '
size = Ymax/29+ 1;
x=rect.r_left;
y=rect.r_top;
vx==4;
vy==0;
ylast=0;
ylastcount=0;
pw_writebackground(gfx- > gfx_pixwin, 0, 0, rect.r_width, rect.r_height,
PIX_SRC);
while (gfx->gfx_reps) {
if (gfx->gfx_flags& GFX_DAMAGED)
gfxsw_handlesigwinch(gfx);
if (gfx->gfx_flags& GFX_RESTART) {
gfx->gfx_flags &= "GFX_RESTART;
goto Restart;

Reset:

- 105 -

if (y==ylast) {

if (ylastcount+ + > 5)

goto Reset;

} else {

ylast =y;

ylastcount = 0;
} :
pw_writebackground(gfx->gfx_pixwin, x, y, size, size,

PIX_NOT(PIX_DST));
x=x+ vX;
if (x>(Xmax-size)) {
&

*+ Bounce off the right edge
+/
x=2#(Xmax-size)-x;
VX= -VX;
} else if (x <rect.r_Jeft) {
/*

*+ bounce off the left edge
+/
X== -X;
vX==-vX;
}
vy=vy+1l;
y=y-+ vy;
if (y>=(Ymax-size)) {
/*

*+ bounce off the bottom edge
s/ »
y=Ymax-size;
if (vy <size)
vy=l-vy;
else
vy=vy [size - vy;
if (vy==0)
goto Reset;
} .
for (2==0; 2<=1000; z+ +);
continue;

if (—gfx->gfx_reps <= 0)
break;

x==rect.r_left;

Y=rect.r_top;

vx==4;

ylast=0;
ylastcount=0;

gfxsw_done(gfx);

- 106 -

- 107 -

11.2. framedemo.c Code

©

- 108 -

#ifndef lint
static char sccsid[] = "@(#)framedemo.c 1.7 83/09/30 Sun Micro”;

#endif

*

/* Sun Microsystems, Inc.

+/
/*

* Overview: Frame displayer in windows. Reads in all the
files of form "frame.xxx” in working directory &
displays them like a movie.

* See constants below for limits.

+/

#include <stdio.h>

* ffinclude <sys/types.h>

#include <sys/fileh>

#include <sys/time.h>

#tinclude " pixrect/pixrect.h”
#include " pixrect/pr_util.h”
#include " pixrect/bwlvar.h”
#include " pixrect/memvar.h”
#include "sunwindow /rect.h”
#include "sunwindow [rectlist.h”
#include "sunwindow /pixwin.h”
#include "sunwindow /win_input.h”
#include "sunwindow /win_struct.h”
#include "suntool/gfxsw.h”

#define MAXFRAMES 1000
#tdefine FRAMEWIDTH 256
##define FRAMEHEIGHT 256
##define USEC_INC 50000
#fdefine SEC_INC 1

static struct pixrect *mpr{MAXFRAMES];

static struct timeval timeout = {SEC_INC,USEC_INC}, timeleft;
static char s[] = "frame.xxx”;

static struct gfxsubwindow #gfx;

static int frames, framenum, ximage, yimage;

static struct rect rect;

main(arge, argv)
int arge;
char *sargv;

int fd, framedemo_selected();
struct inputmask im;

}

-109 -

for (frames = 0; frames < MAXFRAMES; frames+ +) {
sprintf(&s[6], "%d”, frames + 1);
fd = open(s, O_RDONLY, 0);
if (fd ==-1) {
break;

}
mpr{frames] = mem_create{(FRAMEWIDTH, FRAMEHEIGHT,

read(fd, mpr_d(mpr{frames]} >md_jmage,
FRAMEWIDTH+FRAMEHEIGHT/8);
close(fd);

if (frames == 0) {
printf(” Couldn't find any 'frame.xx’ files in working directory0); -
return; .

}
/*

+ Initialize gfxsw ("take over” kind)

+/
gfx = gfxsw_init{0, argv);
/ *

* Set up input mask

+/
input_imnull(&im);
im.im_flags |= IM_ASCII;
win_setinputmask(gfx->gfx_windowfd, &£im, &im, WIN_NULLLINK);
/ *

* Main loop

+/
framedemo_nextframe(1);

timeleft = timeout;

gfxsw_select(gfx, framedemo_selected, 0, 0, 0, &timeleft);

/*

* Cleanup

s/
gfxsw_done(gfx);

framedemo_selected(gfx, ibits, obits, ebits, timer)

struct gfxsubwindow *gfx;
int +ibits, *obits, sebits;
struct timeval **timer;

if ((*timer && ((*timer)->tv_sec == 0) &£& ((+timer)} >tv_usec ==
(gfx->gfx_flags & GFX_RESTART)) {
%

* Our timer expired or restart is true so show next frame
*
if (gfx->gfx_reps)
framedemo_nextframe(0);
else

1);

oyl

-110 -

gfxsw_selectdone(gfx);

} ,
if (*ibits & (1 < < gfx->gfx_windowfd)) {
struct inputevent event;

* f
*+ Read input from window
*
if (input_readevent(gfx->gfx_windowfd, &event)) {
perror(”framedemo”);
return;

switch (event.ie_code) {
case 'f": [+ faster usec timeout */
if (timeout.tv_usec >= USEC_INC)
timeout.tv_usec -= USEC_INC;
else {
if (timeout.tv_sec >= SEC_INC) {
timeout.tv_sec -=— SEC_INC;
timeout.tv_usec = 1000000-USEC_INC;

}
break;

case 's’: [+ slower usec timeout */ ‘ @ ;
if (timeout.tv_usec < 1000000-USEC_INC)
timeout.tv_usec + = USEC_INC;
else {
timeout.tv_usec = 0;
timeout.tv_sec + == 1;
}
break;
case 'F’: [+ faster sec timeout */
if (timeout.tv_sec >= SEC_INC)
timeout.tv_sec -= SEC_INC;
break;
case 'S’: [+ slower sec timeout */
timeout.tv_sec + = SEC_INC;
break; !
case '?": [+ Help */
printf(”’s’ slower usec timeoutOf’ faster usec timeout0S’ slower sec timeotf
/*
* Don't reset timeout
+/
return;

default: {}

*ibits = *obits = #ebits = 0; ' @
timeleft = timeout;
*timer = &timeleft;

- 111 -

}

framedemo_nextframe(firsttime)
int firsttime;

int restarting = gfx->gfx_flags& GFX_RESTART;

if (firsttime || restarting) {
gfx->gfx_flags &= "GFX_RESTART;
win_getsize(gfx->gfx_windowfd, &rect);
ximage = rect.r_width/2-FRAMEWIDTH/?2;
yimage = rect.r_height/2-FRAMEHEIGHT/?2;
pw_writebackground(gfx->gfx_pixwin, 0, 0,

rect.r_width, rect.r_height, PIX_CLR);

)

if (framenum >= frames) {
framenum = 0;

. gfx->gfx_reps—;

pw_write(gfx->gfx_pixwin, ximage, yimage, FRAMEWIDTH, FRAMEHEIGHT,
PIX_SRC, mpr{framenum)], 0, 0);
if ('restarting)
framenum+ + ;

-112 -

12. APPENDIX D: PROGRAMMING NOTES

Here are useful hints for programmers that use any of the pixrect, sunwindow or suntool
libraries.

12.1. What Is Supported?

The code is the ultimate description of what programs actually do, but the documentation is
the description of what is supported. Client programmers who use facilities discovered in
header files or through the grapevine may have useful applications running much sconer than it
they operated by the book; but they do so at the risk of having their work invalidated™™

In early releases such as this, there may be significant discrepancies between the design (and the
documentation derived from it), and what is act\ially implemented. In general, we have tried to
indicate where features are only partially implemented, and in which directions future exten-
'sions may be expected.

Even in completed portions of the system, the possibility remains that even defined interfaces
will change in response to new requirements or newly-discovered constraints. Such
modifications will not be undertaken lightly, and should generally be accompanied by a descrip-
tion of the nature of the changes, and appropriate responses to them.

12.2. Program By Example

We recommend that you try to program by example whenever possible. Take an existing pro-
gram similar to what you need and modify it. Appendix B contains some sample tools and
Appendix C contains some sample graphics programs. The source for these and other sample
tools and graphics programs are available on [usr/suntoolfsrc/ .c.

12.3. Header Files Needed

It can sometimes be hard to find the header files needed to compile your program. This can be
particularly hard in the window system because of the multiple layers of software and the large
numbers of header files. Programming by example helps in some respects because a lot of

header files are included already.

To alleviate the problem a bit, certain header files exist that include most of the header files
necessary for working at a certain level. These header files are:

o [usr/include/ pizrect/pizrect_hs.h - include this header file if you are working at the
pixrect display primitives layer. 7

o [usr/include/ sunwindow/ window_hs.h - include this header file if you are working at
the sunwindow basic window facilities layer. This will include headers needed to
work at the pixrect layer as well.

e [usr/include/ suntool/tool_hs.h - include this header file if you are working with the
suntool tool building facilities. This will include headers needed to work at the more
primitive layers as well.

-

©

- 113 -

o [usr/include/ suntool gfz_hs.h - include this header file if you are working with the
suntool (standalone or "take over”) graphics subwindow facilities. This will include
headers needed to work at the more primitive layers as well.

The idea is to include only one of the above header files plus whatever extra header files you
need. In particular, you'll need to add the header file for each subwindow type that you use,
the menu header file if you use menus, the selection header file if you are going to use selections,
etc. However, you'll probably only have to add a single header file for each additional incre-
ment of high level functionality.

12.4. Lint Libraries

You can do better type-checking than the C compiler and catch argument mismatches in your
program by running lint over your program source. The Sun window system provides lint
libraries to allow you to do this. Llib-Ipszrect, lUsb-lsunwindow, and {lib-lsuntool are the source
files to make the actual binary lint libraries: Uib-Ipizrect.in, lhb-launwmdow in, and Usb-
lsuntool.ln. These files are found on [usr/lib/lint/.

12.5. Library Loading Order
When loading programs remember to load higher level libraries ﬁrst i.e. -lsuntool -lsunwindow

“-Iptzrect.

12.6. Shared Text

The tools released with suntools rely on text sharing to reduce the memory working set. This is
accomplished by placing the entire collection of tools in a single object file. This has the effect
of letting each separate process share the same object code in memory. With many windows
active at once this can achieve significant memory savings.

There are trade-offs using this approach. The main one is that the maximum number of per-
process (non-sharable) initial data pages tends to be larger. However, the paged virtual memory
tends to reduce the effect of this by only having the working set paged in.

The upshot of this discussion is that you may want to either add the tools that you create to
the released shared object file or to bundle a few tools together into their own object file.

12.7. Error Message Decoding

The default error reporting scheme described at the end of Window Manspulation prints out a
long hex number which is the soctl number associated with the error. You can turn this number
into a more meaningful operation name by:

e turning the two least significant digits into a decimal number;
e searching /usr/include/ sunwindow/ win_soctl.k for occurrences of this number; and

-114 -

e noting the ioctl operation associated with this number.

Doing this can give you a quick hmt as to what is being complained about without resorting to
a debugger.

12.8. Debugging Hints

When debugging non-terminal oriented programs in the window system there are some things
that you should know to make things easier.

First, the program being debugged breaks to adb when a signal is received. This can be annoy-
ing with window programs because SIGWINCH is used to notify windows of certain changes in
its state. Adb, however, has a way of disabling breaking to the debugger when a particular sig-
nal is received. To disable this, type " 1c:i” followed by RETURN. 1c is the hex number for 28
which is SIGWINCH's number. Re-enable sngnal breakmg by typing "1c:t” followed by return.

Another window system specific situation is that various forms of locking are done that can get
in the way of smooth debugging while working at low levels of the system. There are variables
in the sunwindow library that disable actual locking; these can be turned on from a debugger:

o int pszwindebug - When not zero will immediately release the display lock after locking
so that the debugger is not continually getting hung by being blocked on writes to
screen. Display garbage can result because of this action.

e int win_lockdatadebug - When not zero will not acquire data lock so that the debugger
is not continually getting hung by being blocked on writes to screen. Unpredictable
things can result because of this action that can’t properly be described in this con-
text. However, this is unlikely.

o int win_grabiodebug - When not zero will not actually acquire exclusive io access
rights so that the debugger wouldn't get hung by being blocked on writes to screen
and not able to receive input. The debugged process will only be able to do normal
display locking and be able to only get input in the normal way.

Change these variables only during debugging, when not changing them becomes a problem and
when you know what you're doing!

12.9. Sufficient User Memory

To use the suntool environment comfortably with the released set of tools requlres about 600K
of user memory after booting UNIX. Comfort means acceptable response from vi while make is
running a compilation in another window for example. This is achievable in the current 0.9
release on model 100U’s with 1 megabyte of memory. You have to reconfigure your own kernel,
deleting unused device drivers. The procedure is documented in the System Manager’s Manual.
For a workstation on the network with a single disk drive you will be able to reclaim about 60K
of usable memory.

The recommended amount of memory is 2 megabytes. This gives excellent performance with

room to accommodate future releases.

%
|

13. INDEX

- 115 -

The following index provides references to
programming variables, constants, types,
macros, programs, and function and pro-
cedure names used in the Sun window sys-
tem. It gives section numbers where the
best documentation of the term may be

found.

adb

ASCII_FIRST
ASCII_LAST

batchitem

bool

bouncedemo.c

BUT(i)

BUT_#

coord

cursor
CUR_MAXIMAGEWORDS
emacs

emptysubwindow

errors
esw_createtoolsubwindow
esw_done
esw_handlesigwinch
esw_init
EWOULDBLOCK
FALSE
FBTYPE_SUN1BW
FBTYPE_SUN2BW
foosubwindow
foosw_createtoolsubwindow
foosw_done
foosw_handlesigwinch
foosw_init
foosw_selected
framedemo.c

fsglobal

fullscreen
fullscreen_destroy
fullscreen_init
gfxsw_createtoolsubwindow
gfxsw_done
gfxsw_getretained
gfxsw_handlesigwinch
gfxsw_init
gfxsw_interpretesigwinch
gixsw_select

12.8.
5.1.2.1.
5.1.2.1.
2.2.4.
9.1.1.
11.1
5.1.2.2.
5.4.
9.1.
48.1.
48.1.
7.6.1.
7.2.
12.7.
7.2.
7.2.
7.2.
7.2.
5.2.
9.1.1.
47

47
7.1.
7.1.
7.1.
7.1.
7.1.
7.1.
11.2

.8.1.

8.1.

8.1.

8.1.

7.3.1.
7.3.1.
73.1.
7.3.1.
7.3.2.
73.1.
7.3.2.

gixsw_selectdone
gfxtool.c
GFX_DAMAGED
GFX_RESTART
graphicssubwindow
icon
ICON_BKGRDCLR
ICON_BKGRDGRY
ICON_BKGRDPAT
ICON_BKGRDSET
icon_display
IE_NEGEVENT
IM_ANSI

IM_ASCII
IM_CODEARRAYSIZE
IM_META
IM_NEGEVENT
IM_POSASCI
IM_SHIFTARRAYSIZE
IM_TEXT
IM_TEXTVEC
IM_UNENCODED
IM_UNKNOWN
inputevent
inputmask
input_imnull
input_readevent
KEY_»

Id

lint

LOC_ s
LOC_MOVE
LOC_STILL

.LOC_WINENTER

LOC_WINEXIT
max

memory
mem_ops

menu
menuitem
menu_display
MENU_IMAGESTRING
menu_prompt
META_FIRST
META_LAST
min

more

mpr_data
mpr_static

7.3.2.
10.1
7.3.
7.3.
7.3.
8.2.
8.2.
8.2.
8.2.
8.2.
8.2.
5.1.3.
5.3.1.
5.3.1.
5.3.1.
5.3.1.
5.3.1.
5.3.1.
5.3.1.
7.5.
7.5.
5.3.1.
7.5.
5.1.1.
5.3.1.
5.3.1.
5.2.
5.4.
12.5.
12.4.
5.4.
5.1.2.3.
5.1.2.3.
5.1.2.3.
5.1.2.3.
9.1.1.
12.9.
24.1.
8.3.
83.
8.3.
8.3.
8.3.1.
5.1.2.1.
5.1.2.1.
9.1.1.
7.6.1.
2.4.2.
2.4.3.

msgsubwindow
msgsw_createtoolsubwindow
'msgsw_display
msgsw_done
msgsw_handlesigwinch
msgsw_init
msgsw_setstring
MS_LEFT
MS_MIDDLE
MS_RIGHT
optsw_bool
optsw_coltox
optsw_command
optsw_createtoolsubwindow
optsw_done
optsw_dumpitem
optsw_dumpsw
optsw_enum
optsw_getvalue
optsw_handlesigwinch
optsw_init
optsw_linetoy
optsw_selected
optsw_setplace
optsw_setvalue
opt_item

panetool.c

pf_default

pf_open

pf_text

pf_textbatch
pf_textwidth

pixchar

pixfont

pixrect

pixrectops
pixrect_hs.h

pixwin

pixwindebug
pixwin_clipdata

- pixwin_clipops
pixwin_prlist
PIX_CLR
PIX_DONTCLIP
PIX_DST

PIX_NOT

PIX_SET

PIX_SRC

prompt
PROMPT_FLEXIBLE

7.4.
74.
74.
74.
74.
7.4.
74.
5.4.
5.4.
5.4.
7.5.2.1.
7.5.3.
75.2.2.
7.5.1.
7.5.1.
7.5.6.
7.5.6.
7.5.2.3.
7.5.5.

7581

7.5.1.
7.5.3.
7.561 .
7.5.3.
7.5.5. .
7.5.
10.1
2.5.2.
2.5.2.
2.5.3.
2.53.
2.5.3.
2.5.1.
2.5.1.
2.1.3.
2.2.
12.3.
3.2.2.
12.8.
3.2.3.
3.2.4.
3.2.3.

2.2.5.1.
2.2.5.2.
2.25.1.
2.2.5.1.
2.2.5.1.
2.2.5.1.

8.3.1.
8.3.1.

-116 -

prs_batchrop
prs_close
prs_create
prs_destroy
prs_get

prs_open
prs_put
prs_region
prs_rop
pr_batchrop
pr_create
pr_destroy
pr_get

pr_height

pr_pos

pr_prpos

pr_put

pr_region
pr_replrop
pr_reversedst
pr_reversesrc
pr_rop

pr_size
pr_subregion
pr_vector
pr_vyector
pr_width
PWCD_MULTIRECTS
PWCD_NULL
PWCD_SINGLERECT
PWCD_USERDEFINE
pw_char
pw_close
pw_copy
pw_damaged
pw_donedamaged
pw_exposed
pw_lock
pw_open

pw_put

pw_read
pw_replrop
pw_reset
pw_text
pw_unlock
pw_vector
pw_write
pw_writebackground
rect

rectlist

2.2.4.
2.2.2

2.2.1.
2.2.2.
2.2.6.
221

2.2.7.
2.2.9.
2.2.3.
2.24.
2.2.1.
2.2.2.

© 2.2.8.

2.1.3.
2.1.2. -
2.1.2.
2.2.79.
2.2.9.
2.3.1.
2.2.5.3.
2.253.
2.2.3.
2.1.2.
2.1.2.
2.2.8.
2.2.8.
2.13.
3.2.3.

- 3.2.3.

3.2.3.
3.23.
3.0.1.
3.3.

3.5.2
3.8.1.
3.8.1.
3.4.2.
34.1.
3.3.

3.5.1.
3.5.2.
3.5.1.
3.4.1.
3.5.1.
3.4.1.
3.5.1.
3.5.1.
3.5.1.
9.1.

9.2.

rectnode
RECTS_BOTTOMTOTOP
RECTS_LEFTTORIGHT
RECTS_RIGHTTOLEFT
RECTS_SORTS
RECTS_TOPTOBOTTOM
RECTS_UNSORTED
rect_bottom
rect_bounding
rect_clipvector
rect_construct
rect_equal
rect_includespoint
rect_includesrect
rect_intersection
rect_intersectsrect
rect_isnull
rect_marginadjust
rect_null

rect_order
rect_passtochild
rect_passtoparent
rect_right
rl_boundintersectsrect
rl_coalesce
rl_coordoffest

rl_copy

rl_difference

rl_empty

rl_equal

rl_equalrect

rl_free
rl_includespoint
rl_initwithrect
rl_intersection
rl_normalize

rl_null

rl_passtochild
rl_passtoparent
ri_rectdifference
rl_rectintersection
rl_rectoffset
rl_rectunion

rl_sort

rl_union

screen

SCR_EAST
SCR_NAMESIZE
SCR_NORTH
SCR_POSITIONS

9.2,

9.1.2.
9.1.2.
9.1.2.
9.1.2.
9.1.2.
9.1.2.
9.1.1.
9.1.2.
9.1.2.
9.1.1.
9.1.1.
9.1.1.
9.1.1.
9.1.2.
9.1.1.
9.1.1.
9.1.1.
9.1.2.
9.1.2.
9.1.1.
9.1.1.
9.1.1.
9.2.2.
9.2.2.
9.2.1.
9.2.2.
9.2.2.
9.2.2.
9.2.2.
9.2.2.
9.2.2.
9.2.2.
9.2.2.
9.2.2.
9.2.2.
9.2.2.
9.2.1.
9.2.1.
9.2.2.
9.2.2.
9.2.1.
9.2.2.
9.2.2.
9.2.2.

4.7.
4.7.
4.7.
4.7.
4.7.

- 117 -

SCR_SOUTH
SCR_SUNI1BW
SCR_WEST

selection

selection_clear
selection_get
selection_set
SELTYPE_CHAR
SELTYPE_NULL
sel_clear

sel_read

sel_write

sharedtext

SHIFT

SIGCHLD

SIGXCPU

termcap

TIOCGSIZE
TIOCSSIZE
tio_handlesigwinch
tio_selected

tool

toolio

toolsw
tool_borderwidth
TOOL_BOUNDARYMGR
tool_create
tool_createsubwindow
tool_destroy
tool_destroysubwindow
tool_display
TOOL_DONE
tool_done

tool_hs.h
TOOL_ICON+
TOOL_ICONIC
tool_install
TOOL_NAMESTRIPE
tool_select
TOOL_SIGCHLD
tool_sigchld
tool_sigwinch
TOOL_SIGWINCHPENDING
tool_stripeheight
tool_subwindowspacing
TOOL_SWEXTENDTOEDGE
TRUE

ttysubwindow
ttysw_becomeconsole
ttysw_createtoolsubwindow

4.7.
4.7.
4.7.
8.4.
8.4.
8.4.
8.4.
8.4.
8.4.
8.4.
8.4.
8.4.
12.6.
5.4.
6.2.2.
4.4.3.
76.1.
7.6.1.
7.6.1.
6.3.1.
6.3.1.
6.2.4.
6.3.1.
6.2.5.
6.2.6.
6.2.3.
6.2.3.
6.2.5.
6.2.9.
6.2.9.
6.3.5.
6.2.4.
6.3.6.
12.3.
8.2.
6.2.4.
6.2.8.
6.2.3.
6.3.
8.2.4.
6.3.4.
6.3.3.
6.2.4.
6.2.6.
6.2.6.
6.2.5.
9.1.1.
7.6.
7.8.
7.6.

ttysw_done
ttysw_fork
ttysw_handlesigwinch
ttysw_init
ttysw_selected
typed_pair

vi

VKEY_x
VKEY_CODES
VKEY_FIRST
VKEY_FIRSTPSEUDO
VKEY_LAST
VKEY_LASTFUNC
VKEY_LASTPSEUDO
we_clearinitdata
we_getgfxwindow
we_getinitdata
we_getparentwindow
we_setgfxwindow
we_setinitdata
we_setmywindow
we_setparentwindow
WINDOW_GFX
window_hs.h
WINDOW_INITIALDATA
WINDOW_ME
WINDOW_PARENT
win_computeclipping
win_error
win_errorhandler
win_fdtoname
win_fdtonumber
win_findintersect
win_getcursor
win_getheight
win_getinputmask
win_getlink
win_getnewwindow
win_getowner
win_getrect
win_getsavedrect
win_getsize
win_getuserflags
win_getwidth
win_grabio
win_grabiodebug
win_inputcodebit
win_inputnegevent
win_inputposevent
win_insert

7.6.
7.8.
7.6.
7.6.
7.6.
7.5.
76.1.
5.4.
5.1.2.
5.1.2.
5.1.2.3.
5.1.2.
5.1.2.2.
5.1.2.3.
6.2.1.
4.9.1.
6.2.1.
6.2.1.
4.9.1.
6.2.1.
7.6.1.
6.2.1.
4.9.1.
12.3.
6.2.1.
7.8.1.
6.2.1.
4.6.
4.10.
4.10.
4.2.3.
4.2.3.
4.8.2.
4.8.1.
4.3.
5.3.1.
4.4.1.
4.2.1.
4.9.2.
4.3.
4.3.
4.3.
4.5.
4.3.
5.3.2.
12.8.
5.3.1.
5.1.3.
5.1.3.
4.4.2.

-118 -

win_lockdata
win_Jockdatadebug
WIN_NAMESIZE
win_nametonumber
win_nextfree
WIN_NULLLINK
win_numbertoname
win_partialrepair
win_releaseio
win_remove
win_screendestroy
win_screenget
win_screennew
win_screenpositions
win_setcursor
win_setinputcodebit
win_setinputmask
win_setlink
win_setmouseposition
win_setowner
win_setrect
win_setsavedrect
win_setuserflag
win_setuserflags
win_unlockdata
WL_BOTTOMCHILD
WL_COVERED
WL_COVERING
WL_ENCLOSING
WL_OLDERSIB
WL_OLDESTCHILD
WL_PARENT
WL_TOPCHILD
WL_YOUNGERSIB
WL _YOUNGERSIB
WL_YOUNGEST
wmgr_changelevel
wmgr_changelevelonly
wmgr_changestate
wmgr_completechangerect
wmgr_figureiconrect
wmgr_figuretoolrect
wmgr_forktool
WMGR _ICONIC
wmgr_iswindowopen
wmgr_refreshwindow
WMGR_SETPOS
wmgr_winandchildrenexposed
WUF_WMGRI1

4.4.3.

12.8.
4.2.3.
4.2.3.
4.2.1.
4.2.1.
4.2.3.
4.6.
5.3.2.
4.43.
4.7.

- 4.7.

47.
47.
48.1.
5.3.1.
5.3.1.
44.1.
4.8.2.
49.2.
43.
43.
4.5.
4.5.
4.43.
4.4.1.
4.4.1.
441.
44.1.
44.1.
4.4.1.
4.4.1.
44.1.
44.1.
4.4.1.
44.1.
8.5.
8.5.
8.5.
8.5.
8.5.
8.5.
8.5.
8.5.
8.5.
8.5.
8.5.
8.5.
8.5.

READER COMMENT SHEET

Dear Customer,

We who work here at Sun Microsystems wish to provide the best possible documentation for our
products. To this end, we solicit your comments on this manual. We would appreciate your tel-
ling us about errors in the content of the manual, and about any material which you feel should
be there but isn’t.

Typographical Errors:
Please list typographical Errors by page number and actual text of the error.

Technical Errors:
Please list errors of fact by page number and actual text of the error.

Content: :
Did this guide meet your needs? If not, please indicate what you think should be added
or deleted in order to do so. Please comment on any material which you feel should be
present but is not. Is there material which is in other manuals, but would be more con-
venient if it were in this manual?

Layout and Style:
Did you find the organization of this guide useful? If not, how would you rearrange
things? Do you find the style of this manual pleasing or irritating? What would you like
to see different? .

