


















































































































































































- 82 -

struct menuitem { 
int mijmagetype; 
caddr_t mUmagedata; 
caddr_t mi_data; 

}; 

A menuitem consists of a display token/data pair. Mi_imagetype describes the data type of 
mi_imagedata. Mi_imagedata is a pointer to the data displayed in this item. 
MENU_IMAGESTRING is the only currently defined image data type and is a character 
pointer. Mi_data is private to the creator of the item. Typically, it is an 'identifier that 
differentiates this item from others. 

A client of the menu package constructs a stack of menus (or several, for different situations). 
This is done by allocating menu structures and menuitem arrays and initializing all the fields in 
them. This involves hooking up all the data structures by setting the various pointers. (An 
example of a menu set is found in Sample Tool, in the panetool program.) Then when a user 
action initiates menu processing (button-down on the right mouse button is the standard invo
cation), the client calls 

struct menuitem •menu_display(menuptr, event, iowindowfd) 
struct menu **menuptr; 
struct inputevent •event; 
int iowindowfd; 

Menuptr is the address of a menu pointer that points to the first (top) menu structure in a 
menu stack. This indirection allows the menu) package to leave the new top of the stack (if the 

0 
.. : 

user causes the stack order to be rearranged in *menuptr upon returning from menu_di,play. . 
The stack's m_nezt values are shuffled by the menu package to rearrange the stack order. This 
enables the menu stack to be redisplayed in the <fder it was left in the last invocation. 

Event is the inputevent which provoked the menu; the location information (event->ieJocz, 
event->ie_locy) in the event controls where the menus will be displayed. Event->ie_code is the 
event that is treated as the "menu button;" that is, the menu is displayed until this button goes 
up. (The right menu button is the usual menu button. The left mouse button is always used 
as the accelerator to bring rear menus forwards). If it wasn't an explicit user action that pro
voked the call to menu_di,play these three event fields must be loaded with the desired values 
beforehand. 

/owindowfd is the file descriptor for the window that is displaying the menu. It is also the_ win
dow that is read for user input. The event location values are relative to this window. 

Menu_diaplay currently uses the mechanism described in Full Screen Acee,,. Menu_di,play tem
porarily modifies iowindowfd's input mask to allow mouse motion and buttons to be placed on 
this window's input queue. All the menus in the stack are displayed and there can only be one 
stack on the screen at a time. The font used for strings is that returned from pw_p/ay,open. 

Menu_diaplay returns the menuitem which was under the cursor when the user released the 
mouse button, or NULL if the cursor was not over an item. 

0 



0 

0 

0 

- 83 -

8.3.1. Prompts 
A prompt facility is sometimes used with menus to tell the user to proceed from his current 
state. Prompting can also be done without menus. The definitions for the prompt facility are 
found in / uar/ include/ ,untool/ menu.h. 

struct prompt { 
struct rect prtJect; 
struct pixf ont •prtJont; 
char *prt_text; 

}; 

#define PROMPT_FLEXIBLE -1 

Prt_rect is the rectangle in which the text addressed by prt_tezt will be displayed using prtJont. 
Only printable characters and blanks are currently properly dealt with, no carriage returns, line 
feeds or tabs (yet) please. If any of prt_rect's fields are PROMPT_FLEXIBLE that dimension is 
automatically chosen by the prompt mechanism to accommodate the number of characters that 
fix using the given font. 

menu_prompt(prompt, event, iowindowfd) 
struct prompt •prompt, 
struct inputevent •event; 
int iowindowfd; 

MenuJJrompt displays the indicated prompt (prompt->prt_rect is iowindow/d relative), and 
then waits for any input event other than mouse motion. It then removes the prompt, and 
returns the event which ended the prompt's existence in event. lowindow/d is the window from 
which input is taken while the prompt is up. The /u/l,creen access method is used .during 
prompt display. 

8.4. Selection Management 
A common style of operation/operand command specification is a non-modal one in which the 
operand is specified first. In the window system, the operand is called the ,election since it usu
ally requires that the user select something with the pointing device. A selection is highlighted 
in some way and persists until an operation removes it programmatically or the user does some 
action which causes the selection to be removed. 

This section describes an interface to a ,election manager that is used to coordinate access to a 
single data entity called the current ,election. The current selection is globally accessible by any 
process, thus providing an inter-tool data exchange mechanism. 

The header file / u,r/ include/ 1untool/ 1election.h contains the definition necessary for using selec
tions: 



etruct selection { 
int sel_type, 
int seljtems, 
int seljtembytes, 
int selJubfl.ags; 
caddr_t selJrivdata; 

}; 

#define 
#define 

SELTYPEJ,IULL 
SEL TYPE_CHAR 

0 
1 

- 84 -

is the object that describes a selection. Sel_type indicates the type of the selection. Currently, 
SEL TYPE_NULL (no selection) and SELTYPE_CHAR (ASCII characters) are the only selec
tion types defined. Sel_itema is the number of items in the selection data. Sel_itembytea is the 
number of bytes each item occupies in the selection data. Sel_pubftaga is used to contain pub
licly understood flags that further describe the selection. Sel_privdata is used to... contain 
privately understood data (32 bits worth) that is only understood between implementations of a 
particular selection type. I 
The selection structure is not to be confused with actual selection data itself, e.g. the characters 
in a SEL TYPE_CHAR selection. 

selection_set(sel, sel_write, sel_clear, windowf d) 
atruct selection •sel 
int (•sel_write)(); 
int ( •sel_clearX); 
int windowfd; 

sel_write(sel, file) 
etruct selection •sel; 
FILE •file; 

sel_clear(sel, windowfd) 
etruct selection •sel; 
int windowfd; 

Selection_aet is used to change the current selection. Sel describes the selection. Sel_write is a 
procedure that is called to store information into the selection. (Currently, only aelection_aet 
calls ael_write, but in the future ael_write might be called at any time). The ael_write procedure 
takes as arguments ael, the selection description handed to aelection_aet, and file, an stdio FILE 
pointer. The stdio library is used to write the selection data to file. Windowfd is the window 
that is making the selection. 

Se(clear is a procedure that the selection manager would call when it wanted the selection 
currently being set tQ be dehighlighted. This could happen when another selection had been 
made. ( Thia clear feature ia not currently implemented. When implemented thia call could come 
at any time after returning from aelection_aet). 

selection_clear( windowf d) 
int windowfd; 

is called when windowfd wants to clear the current selection. Ideally, there is only one selection 0, 
on the screen at a time so that the user doesn't become confused about which operand will be 
affected by his next command. ( Since t/ae ael_clear feature i, not currently implemented faee 



0 

0 

0 

-------------------------------

a 85 • 

above/, it i, the ,election maker', deci,ion a, to when to dehilight hi, ,election feedback. The only 
eziating uae of the ,election mechaniam wait, /or the uaer to move M, cur,or out of the window 
that made the ,election before dehilighting it). 

selection_get( sel_read, windowed) 
int ( •sel_readX); 
int windowfd; 

sel..read(sel, file) 
struct selection •sel; 
FILE •file; 

Selection_get is used to find out the current selection. Se/Jead is a procedure that ,election_get 
calls to enable the client to retrieve the selection. Windowfd is the window that ·wants to find 
out about the selection. 

The ael_read procedure takes as arguments ael, the selection description of the current selection, 
and file, a standard io FILE pointer. The standard io library is used to read the selection data 
from file. Sel .... read should check the type of the selection and make sure that it is a type with 
which it can deal. 

8.5. Window Management 
The following procedures implement common functions for adjusting window relationships. 
They may be used to provide a window management user interface different from that provided 
by tools. If a series of calls are to be made to these procedures, the whole sequence should be 
bracketed by winJockdata / win_unlockdata, as described in section 4 .4. 

bool wmgr_changelevelonly(windowed, parentfd, top) 
int windowed, parentfd; 
booltop; 

moves a window to the top or bottom of the heap of windows that are descendants of its 
parent. Window/d identifies the 'window to be moved; parent/d is the file descriptor of that 
window's parent, and top controls whether the window goes to the top (TRUE) or bottom 
(FALSE). 

wmgr_com pletechangerect( 
windowfd, rectnew, rectoriginal, parentprleft, parentprtop) 
int windowfd; 
struct rect •rectnew, •rectoriginal; 
int parentprleft, parentprtop; 

does the work involved with changing the position or size of a window's rect. This involves sav
ing as many bits as possible (by copying them on the screen) so they don't have to be recom
puted. Window/dis the window being changed. Rectnew is the window's new rectangle. Rec
toriginal is the window's original rectangle. Parentprle/t and parentprtop are the parent of 
window/tis upper-left screen coordinates of the 

wmgr_changelevel(windowfd, parentfd, top) 
int windowfd, parentf d; 
bool top; 



- 86 -

is like wmgr_changelevelonly, except that no optimization is performed to reduce the amount of 0 
repainting. This is used in conjunction with other window rearrangements, which make repaint-
ing unlikely. For example, when the tool window manager makes a tool iconic, it puts it at the 
bottom of the tool window stack after changing its state. 

wmgrJefreshwindow(windowfd) 
int windowfd; 

causes window/d and all its descendant windows to repaint. 

wmgr_changestate( windowfd, rootfd, close) 
int windowfd; 
int rootfd; 
bool close; 

#define 
#define 

WMGR_SETPOS 
WMGR_ICONIC 

-1 
WUF_WMGRl 

changes the window identified by window/d to be cl~sed (iconic) or open, depending on whether 
cloae is TRUE or FALSE. The user data of window/ti reflects the state of the window via the 
WMGR_ICONIC flag (WUF _WMGRl is defined in /uar/include/aunwindow/win_ioctl.h and 
WMGR_ICONIC is defined in /uar/include/auntool/wmgr.h). 

The following procedures are used to resolve position/size undefined situations for the window's 
new rectangle: 

wmgr_figuretoolrect(rootfdt rect) 
int rootfd; 
struct rect •rect; 

wmgr_figureiconrect(rootf d, rect) 
int rootfd; 
atruct rect •rect; 

The root/d window maintains a "next slot" position for both normal tool windows and icon win
dows. This allows windows to be assigned initial positions that don't pile up on top of one 
another. These procedures assign the next slot to the rect if rect->rJeft or rect->r_top is 
equal to WMGR_SETPOS. A new slot is chosen and is then available for the next window with 
an undefined position. These procedures also assign a default width and height if 
WMGR_SETPOS is given, again for both tool windows and icon windows. 

Wmgr_Jiguretoolrect currently assigns tool window slots that march from near the top middle of 
the screen towards the bottom left of the screen. It assigns a window size correct for an 80-
column by 34-row terminal emulator window. Wmgr_Jigureiconrect currently assigns icon slots 
that march from the left bottom towards the right of the screen. It assigns icon sizes that are 
64 by 64 pixels. 

wmgr_forktool(programname, otherargs, rectnormal, recticon, iconic) 
char •programname, •otherargs; 
atruct rect •rectnormal, •recticon; 
int iconic; 

is used to fork a new tool that has its normal rectangle set to rectnormal and its icon rectangle 

o; 

set to recticon (both of which may have undefined fields). If iconic is not zero then the tool is 0 
created normal size. Programname is the name of the file that is to be run (a path search is 
done to locate the file) and otherarg, is the command line that you .want to pass to the tool. 



0 

0 

0 

- 87 -

Args that have em bedded white space should be enclosed by double quotes. 

wmgr_iswindowopen( window(d) 
int window(d; 

tests the WMGR_ICONIC flag (see above) and returns TRUE or FALSE as the window is open 
or dosed. 

wmgr_winandchildrenexposed(pixwin, rl) 
struct pixwin •pixwin; 
struct rectlist •rl; 

can be used with your own window management routines to compute the visible portion or 
pizwin-> pw_clipdata.pwcd_window/d and its descendants and store it in rl. 



- 88 -

9. APPENDIX A: RECTS & RECTLISTS 
This appendix describes the geometric structures used with sunwindow and a full description of 
the operations on these structures. Throughout the sunwindow, images are dealt with in rec
tangular chunks; where complex shapes are required, they are built up out of groups of rectan
gles. A rect is a structure that defines a rectangle. A rectliat is a structure that defines a list of 
rects. 

The header files rect.h and rectliat.h are found in / uar / include/ ,unwind ow/. The library that 
provides the implmentation of the functions of these data types are part of 
/ uar/ lib/ libaunwindow. a. 
Although these structures are presented in terms of sunwindow usage with pixel units, they are 
really separate and can he thought of as a rectangle algebra package. Any application that 
needs such a facility should consider using rects and rectlists. 

9.1. Reeta 

The rect is the basic description of a rectangle, and there are macros and proceduress to per
form common manipulations on a rect. 

#define coord short; 

struct rect { 
coord 
coord 
short 
short 

}; 

rJeft; 
r_top; 
r_width; 
r_height; 

The rectangle lies in a coordinate system whose origin is in the upper left-hand corner, and 
whose dimensions are given in pixels. 

9.1.1. Macros on Reeta 

The same header file defines some interesting macros on rectangles. To determine an edge not 
given explicitly in the rect: 

#define rect_right( rp) 
#define rect_bottom( rp) 
struct rect •rp; 

return the coordinate of the last pixel within the rectangle on the right or bottom, respectively. 

0) 

0 



0 

0 

0 

- 89-

Useful predicates (returning TRUE or FALSE) are: 

#define boo) unsigned; 
#define TRUE 1 
#define FALSE O 

rect_isn ull( r) 
rect,jncludespoint(r ,x,y) 
rect_equal(rl, r2) 
rect_includesrect(rl, r2) 
rect_intersectsrect( r 1, r2) 

struct rect •r, •rl, •r2; 
coord x, y; 

r's width or height is 0 
(x,y) lies in r 
r1 and re coincide exactly 
every point in re lies in r 1 
at least one point lies in both r1 and re 

Macros which manipulate dimensions of rectangles: 

rect_construct(r, x, y, w, h) 
etruct rect •r; 

fills in r with the indicated origin and dimensions. 

rect_marginadjust(r, m) 
struct rect •r; 

adds a margin of m pixels on each side of r; that is, r becomes 2•m larger in each dimension. 

rect_passtoparent(x, y, r) 
rect_passtochild(x, y, r) 

coord x, y; 
atruct rect •r; 

sets the origin of the indicated rect to transform it to the coordinate system of a parent or child 
rectangle, so that its points are now located relative to the parent or child's origin. X and y are 
the origin of the parent or child rectangle within it, parent; these values are added to (resp. 
subtracted from) the origin of the rectangle pointed to by r, thus transforming the rectangle to 
the new coordinate system. 

9.1.2. Procedures and Extern Data 
A null rectangle (one whose origin and dimensions are all 0) is defined tor convenience: 

extern struct rect rect_null; 

The following procedures are also defined in rect.h: 

struct rect rect_bounding(rl, r2) 
etruct rect •rl, •r2; 

returns the minimal rect which encloses the union of r1 and re. The returned value is a struct, 
not a pointer. 

rect_intersection(rl, r2, rd) 
struct rect •rl, •r2, •rd; 



- 90-

computes the intersection of the r1 and re, and stores that rect into rd. 

bool rect_clipvector(r, xO, yO, xl, yl) 
atruct rect •r; 
coord •xO, •yO, •xi, •yl; 

modifies the vector endpoints so they lie entirely within the rect, and returns FALSE if that 
excludes the whole vector, else TRUE. Note: This procedure shouldn't be used to clip a vector 
to multiple abutting rectangles; it may not cross the boundaries smoothly. 

bool rect_order(rl, r2, sortorder) 
atruct rect •rl, •r2; 
int sortorder; 

returns TRUE if r 1 precedes or equals re in the indicated ordering: 

#define 
#define 
#define 
#define 

RECTS_TOPTOBOTTOM O 
RECTS_BOTTOMTOTOP . I 
RECTS_LEFTTORIGHT 2 
RECTS_RIGHTTOLEFT 3 

Two related defined constants are: 

#define RECTS_UNSORTED 4 

indicating a "don't-care" order, and 

#define RECTS_SORTS 4 

giving the number or sort orders available, for use in allocating arrays, etc. 

8.2. Rectlista 
A number of rectangles may be collected into a list which defines an interesting portion of a 
larger rectangle. An equivalent way of looking at it is that a larg_e rectangle may be fragmented 
into a number of smaller rectangles, which together comprise all the larger rectangle's interest
ing portions. A typical application of such a list is to define the portions of one rectangle 
remaining visible when it is partially obscured by others. 

atruct rectlist { 
coord rl_x, rl_y; 
atruct rectnode •rl_liead; 
atruct rectnode •rl_tailt 
atruct rect rl_bound; 

}; 

atruct rectnode { 

}; 

atruct rectnode •rn_next; 
atruct rect m_rect; 

0) 

Each node in the :rectlist contains a rectangle which covers one part or the visible whole, along o-,, 
with a pointer to the next node. Rl_6ountl is the minimal bounding rectangle of the union of all 
the rectangles in the node list. All rectangles in the rectlist are described in the same coordinate · 



• 
- 91 -

0 system, which may be translated efficiently by modifying rl_z and rl.JJ. 

0 

0 

The routines that manipulate rectlists do their own memory management on rectnodes, creating 
and freeing them as necessary to adjust the area described by the rectlist. 

9.2.1. Macros and Constants Defined on Rectlists 
Macros to perform common coordinate transformations are provided: 

rl_rectoffset(rl, rs, rd) 
struct rectlist •rl; 
struct rect •rs, •rd; 

copies r, into rd, and then adjusts rtl's origin by adding the offsets from rl. 

rl_coordoffset(rl, x, y) 
struct rectlist •rl; 
coord x, y; 

offsets z and 1/ by the offsets in rl; e.g., it converts a point in one of the rects in the rectnode list 
of a rectlist to the coordinate system of the rectlist's parent. 

Parallel to the macros on rect 's, we have 

rl_passtoparent(x, y, rl) and 
rl_passtochild(x, y, rl) 

coord x, y; 
struct rectlist •rl; 

which add (subtract) the given coordinates from the rectlist's rl_z and rl_JJ to convert the ·rl into 
its parent's (child's) coordinate system. 

9.2.2. Procedures and Extern Data 
An empty rectlist is defined, which should be used to initialize any rectlist before it is operated 
on: 

extern struct rectlist rl_null; 

Procedures are provided for useful predicates and manipulations. The following declarations 
apply uniformly in the descriptions below: 

struct 
struct 
coord 

rectlist •rl, •rll, •rl2,lltld; 
rect •r; 
x, y; 

Predicates return TRUE or FALSE. Refer to the following table for specifics. 



Macro 
rl_empty( rl) 
rl_equal( rll, rl2) 

rljncludespoint(rl,x,y) 
rl_equalrect(r, rl) 

rl_boundintersectsrect(r, rl) 

- 92 -

Returns TRUE if 
contains only null rects 
the two rectlists describe the 
same space identically - same 
fragments in the same order 
( z, y) lies within some rect or rl 
rl ha., exactly one rect, which is 
the same a., r 
some point lies both in r and in 
rfs boundin,t rect 

Manipulation procedures operate through side-effects, rather than returning a value. Note that 
it is legitimate to use a rectlist as both a source and destination in one of these procedures (the 
source node list will be freed and reallocated appropriately for the result). 

w 

0 \ 
/ 

Q) 



0 Ref er to the following table for specifics. 

0 

0 

Procedure 
rljntersection(rll, rl2, rid) 

rl_union(rll, rl2, rid) 

rl_difference(rll, rl2, rid) 

rl_coalesce(rl) 

rl_sort(rl, rid, sort) 
int sort; . 

rl_..rectintersection(r, rl, rid) 

rlJectunion(r, rl, rid) 

rlJectdifference(r, rl, rid) 

rljnitwithrect(r, rl) 

rl_copy(rl, rid) 
rlJree(rl) 
rl_normalize(rl) 

- 93 -

Effect 
stores into rid a rectlist which 
covers the intersection of rll 
and rlJ!. 
stores into rid a rectlist which 
covers the union of rll and rlJ!. 
stores into rid a rectlist which 
covers the area of rll not 
covered by rlJ! 
An attempt is made to shorten 
rl by coalescing some of its 
fragments. An rl whose bound
ing rect is completely covered 
by the union of its node rects 
will be collapsed to a single 
node; other simple reductions 
will be found; but the general 
solution to the problem is not 
attempted. 

rl is copied into rid, with the 
node rects arranged in aort 
order. 
rid is filled with a rectlist that 
covers the intersection of r and 
rl. 
rid is fiHed with a rectlist that 
covers the union of r and rl. 
rid is fiHed with a rectlist that 
covers the portion of rl which is 
not in r. 
fiHs in rl so that it covers the 
rect r 
fi.Hs in rid with a copy of rl. 
frees the storage aHocated to rL 
resets rf s offsets ( rl_z, rlJ) to 
be O after adjusting the origins 
of an rects in rl accordingly. -



- 94-

10. APPENDIX B: SAMPLE TOOLS 

These are sample tools that can be used as starting points for tools of your own. The source 
files for these and other tools are found on /uar/ auntool/ arc/ -tool.c. 

10.1. gfxtooLc Code 

0 



0 

0 

0 

- 95 -

#ifnder lint 
static char sccsidU = "@( # )gfxtool.c 1.6 83/10/18 Sun Micro"; 
#endif 

I* 
* Sun Microsystems, Inc. 

*I 

/• 
* 
* 
*/ 

Overview: Graphics Window: A shell subwindow and an empty 
subwindow inw hich graphics programs can run. 

#include <sys/types.h> 
#include <signal.h> 
#include "pixrect/pixrect.h" 
#include "pixrect/pixfont.h" 
#include "pixrect/pr_util.h" 
#include "pixrect/memvar.h" 
#include "sunwindow /rect.h" 
#include "sunwindow /rectlist.h" 
#include "sunwindow /pixwin.h" 
#include "sunwindow /win_struct.h" 
#include "sunwindow /win_environ.h" 
#include "suntool/icon.h" 
#include "suntool/tool.h" 
#include "suntool/emptysw.h" 
#include "suntool/ttysw .h" 

static short icjmage(256)={ 
#include "gfxtool.icon" 
}; 
mpr_static(gfxic_mpr, 64, 64, 1, icjmage); 

static struct icon icon= {64, 64, (struct pixrect •)O, 0, 0, 64, 64, 
&g(xic_mpr, 0, 0, O, 0, (char •)O, (struct pixfont •)O, 
ICON_BKGRDGRY}; 

static int sigwinchcatcher(), sigchldcatcher(); 

static struct tool •tool; 

gfxtool_main( argc, argv) 

{ 

int argc; 
char **argv; 

char •toolname = "Graphics Tool LO"; 
struct toolsw •ttysw, •emptysw; 
char name(WIN....NAMESIZE); 



- 96 -

/• 0\ 
• Create tool window 
•! 

tool= tool_create(toolname, TOOL_NAMESTRIPEITOOL_BOUNDARYMGR, 
(struct rect • )0, &icon); 

!• 
• Create subwindows 
•/ 

ttysw = ttysw_createtoolsubwindow(tool, "ttysw", 
TOOL_SWEXTENDTOEDGE 200); 

emptysw = esw_createtoolsubwin~ow(tool, "emptysw", 
TOOL_SWEXTENDTOEDGE, TOOL_SWEXTENDTOEDGE}; 

I• 
• Setup gfx window environment value . . , 

win_fdtoname(emptysw->ts_windowfd, name); 
we_setgfxwindow(name ); 
/• 
• Install tool in tree of windows 
•! 

signal(SIGWINCH, sigwinchcatcher); 
signal(SIGCHLD, sigchldcatcher); 
tooljnstall(tool); 
I• 
• Start tty proce• 0 
•I 

} 

if (ttyswJork{ttysw->ts_data, + + argv, &ttysw->tsjo.tiojnputmask, 

} ,. 
&ttysw->tsjo.tio_outputmask, &ttysw->tsjo.tio_exceptmask) ==== -1) { 

perror(" gf xtool" ); 
exit(l); 

• Handle input 
•I 

tool_select(tool, 1 / * means wait for child process to die•/); 
I• 
• Cleanup 
•/ 

tool_destroy(tool}; 
exit(O); 

static 
sigchldc:atcher() 
{. 

tool_sigchld(tool); 
} 

static 
sipinchcatcher() 

0 



0 

0 

{ 

} 

• 97 • 

tool_sigw inch( tool); 



- 98-

10.2. panetool.c Code 0: 

0 



0 

0 

- 99-

#ifndef lint 
static char sccsidll = "@(#)panetool.c 1.8 83/10/18 Sun Micro"; 
#endif 

!• 
• Sun Microsystems, Inc. 
•/ 

!• 
• 
• 
•/ 

Overview: Pane Tool: Sample program to illustrate multiple 
sub windows . 

#include <sys/types.h> 
#include <sys/time.h> 
#include <signal.h> 
#include "pixrect/pixrect.h" 
#include "pixrect/pixfont.h" 
#include "sunwindow/rect.h" 
#include "sunwindow /rectlist.h" 
#include "sunwindow /pixwin.h" 
#include "sunwindow /winjnput.h" 
#include "sunwindow /win_struct.h" 
#include "suntool/icon.h" 
#include "suntool/tool.h" 
#include "suntool/msgsw .h" 
#include "suntool/menu.h" 

static int sigwinchcatcher(); 

static struct tool •tool; 

static char charbuf(4); 

struct menuitem m3_items0 == { MENUJMAGESTRING, "Menu Item", O}; 
struct menu m3_menubody == { 

MENU_IMAGESTRING, "M3", sizeof(m3jtems) / sizeof(struct menuitem), m3_iteaf 
struct menuitem m2_items0 == { MENUJMAGESTRING, "Menu Item", O}; 
struct menu m2_menubody == { 

MENUJMAGESTRING, "M2", sizeof(m2jtems) / sizeof(struct menuitem), 
m2jtems, &m3_menubody, O}; 

struct menuitem ml_itemsO == { MENU_IMAGESTRING, "Menu Item", O}; 
struct menu ml_menubody == { 

MENU_IMAGESTRING, "Ml", sizeof(mljtems) / sizeof(struct menuitem), 
mljtems, &m2_menubody, O}; 

struct menu •stacklmenutop == &ml_menubody; 

struct menuitem m4_items0 == { MENU_IMAGESTRING, "Menu Item", O}; 
struct menu m4_menubody == { 

MENU_IMAGESTRING, "M4", sizeof(m4jtems) / sizeof(struct menuitem), 



- 100 -

m4jtems, 0, 0 } ; 
struct menuitem m6_itemsD = { MENUJMAGESTRING, "Menu Item", O}; 
struct menu mS_menuhody = { 

MENUJMAGESTRING, "MS", sizeof(mSjtems) / sizeof(struct menuitem), 
m5jtems, &m4_menuhody, O}; 

struct menuitem m6_items0 = { MENUJMAGESTRING, "Menu Item" ,O}; 
struct menu m6_menuhody = { 

MENUJMAGESTRING, "M6", sizeof(m6jtems) / sizeof(struct menuitem), 
m6jtems, &mS_menubody, O}; 

struct menu •stack2menutop = &m6_menuhody; 
int menutoggle; 

main(argc, argv) 

{ 

int argc; 
char **argv; 

char •toolname = "Pane Tool 1.0 (A sample tool)"; 
struct toolsw •paneNW, •paneNE, *paneSW, •paneSE; 
extern struct pixf ont •pf_sys; 

!• 
• Create tool window 
•I 

" 

O·: 

tool = tool_create(toolname, TOOL_NAMESTRIPEITOOL_BOUNDARYMGR, 
(struct rect *) O, (struct icon •) O); Q: 

I* J 

* Create msg suhwindows 
•I 

paneNW = msgsw_createtoolsubwindow(tool, "paneNW", 
100, 100, "Raw keyboard input", pf_sys); 

paneNE = msgsw _createtoolsuhwindow( tool, "paneNE", 
TOOL...$WEXTENDTOEDGE, 100, 
"Key input here redirected to NW subwindow", pf_sys); 

paneSW = msgsw_createtoolsubwindow(tool, "paneSW", 
100, TOOL_SWEXTENDTOEDGE, "Display alternating menu stacks" ,pf_sys); 

paneSE = msgsw_createtoolsubwindow(tool, "paneSE", 
TOOL_SWEXTENDTOEDGE, TOOL_SWEXTENDTOEDGE, 
"Try moving suhwindow boundaries", pf_sys); 

I• 
• Raw input and flushing 
•/ 

{ 
struct inputmask im; 
int paneNW _selected(); 

inputjmnull(&im); 
im.im_flags I= IM_UNENCODED; 
win_setinputmask(paneNW->ts_windowfd, &im, &im, WIN_NULLLINK); 
paneNW->tsjo.tio_selected == paneNW Jelected; 
} 

0 



0 

0 

0 

} 

- 101 -

I• 
* Input redirection 
•I 

{ 
struct inputmask im; 

win_getinputmask(paneNE->ts_windowfd, &im, O}; 
win_setinputmask(paneNE->ts_windowfd, &im, (struct inputmask •) 0, 

winJdtonumber(paneNW- >ts_windowfd)); 
} 
I• 
• Multi menu stacks 
•! 

{ 
struct inputmask im; 
int paneSW _selected(); 

input_imnull( &im); 
win_setinputcodebit( &im, MENU _BUT); 
win_setinputmask(paneSW->ts_windowfd, &im, &im, WIN_NULLLINK); 
paneSW->tsjo.tio_selected - paneSW_selected; 
} 
/• 
• Install tool in tree of windows 
•I 

signal(SIGWINCH, sigwinchcatcher); 
tool_install( tool); 
I• 
• Handle input 
•/ 

tool_select(tool, O); 
/• 
• Cleanup 
•I 

tool_destroy( tool); 
exit(O); 

paneNW _selected(msgsw, ibits, obits, ebits, timer) 
struct msgsubwindow •msgsw; 

{ 

int •ibits, •obits, •ebits; 
struct timeval * •timer; 

struct inputevent event; 
int error; 

error - input_readevent(msgsw->msg_windowfd, &event); 
if (error < 0) { 

perror(" panetool" ); 
return; 



} 

} 
charbuf(O) = 'c '; 
charbuf(l] = ':'; 

• 102 • 

charbuf(2] = (char) event.ie_code&OX7f; 
charbuf(3) = ' '; 
msgsw _setstring( msgsw, charbuf); 
•ibits = •obits+ •ebits + O; 

paneSW _selected(msgsw, ibits, obits, ebits, timer) 
struct msgsubwindow •msgsw; 

{ 

} 

int •ibits, •obits, •ebits; 
struct timeval * •timer; 

struct inputevent event; 
int error; 
extern struct menuitem •menu_display(); 

error= input_readevent(msgsw->msg_windowfd, &event); 
if (error < 0) { 

} 

perror(" panetool" ); 
return; 

(void) menu_display((menutoggle)? &stacklmenutop: &stack2menutop, 
&event, msgsw- >msg_windowfd); 

menutoggle == !menutoggle; 
•ibits = •obits + •ebits + O; 

static 
sigwinchcatcher() 
{ 

tool_sigw inch( tool); 
} 

Q: 

0 



0 

0 

0 

- 103 -

11. APPENDIX C: SAMPLE µRAPIDCS PROGRAMS 

These are sample graphics programs that can be used as starting points for graphics programs 
o( your own. The source files for these and other graphics demos are found on 
/ uar/ auntool/ arc/ •demo.c. 

11.1. bouncedemo.c Code 



- 104 -

#if ndef lint 
static char sccsidD = "@( :/I= )bouncedemo.c 1.6 83/08/26 Sun Micro"; 
#endif 

!• 
• Sun Microsystems, Inc. 
•! 

/• 
• Overview: Bouncing ball demo in window 
•/ 

#include <sys/types.h> 
#include "pixrect/pixrect.h" 
#include "sunwindow /rect.h" 
#include "sunwindow /rectlist.h" 
#include "sunwindow /pixwin.h" 
#include "suntool/ gfxsw .h" 

main(argc, argv) 

{ 

int argc; 
char **argv; 

short x, y, vx, vy, z, ylastcount, ylast; 
short Xmax, Ymax, size; 
struct rect rect; 
struct gfxsubwindow •gfx = gfxswjnit(O, argv); 

Restart: 
win_getsize(gfx- > gfx_windowfd, &rect ); 
Xmax = rect_right(&rect); 
Ymax = rect_bottom(&rect); 
if (Xmax < Y max) 

size= Xmax/29+ l; 
else 

size = Ymax/29+ 1; 
x =rect.rJeft; 
y=rect.r_top; 
vx=4; 
vy.:._O; 
ylast=O; 
ylastcount=O; 
pw _writebackground(gfx-> gfx_pixwin, O, 0, rect.r_width, rect.r_height, 

PIX_SRC); 
while (gfx->gfx_reps) { 

if (gfx->gfx_flags&GFX_DAMAGED) 
gfxsw _handlesigwinch(gfx ); 

if (gfx->gfx_flags&GFX_RESTART) { 
gfx->gfx_flags &= -GFX_RESTART; 
goto Restart; 

0 



0 

0 

Reset: 

0 
} 

- 105 -

} 
if (y== ylast) { 

if (ylastcount+ + > 5) 
goto Reset; 

} else { 

} 

ylast == y; 
ylastcount == O; 

pw_writebackground(g(x->g(x_pixwin, x, y, size, size, 
PIX_NOT(PIXJ)ST)); 

x==x+vx; 
if (x>(Xmax-size)) { 

I• 
• Bounce ol the right edge 
•! 

x==2•(Xmax-size)-x; 
vx== -vx; 

} else if (x <rect.rJeft} { 
I• 

} 

• bounce o• the left edge ., 
x=-x; 
vx= -vx; 

vy==vy+ l; 
y==y+vy; 
if (y>==(Ymax-size)) { ,. 

• bounce ol the bottom edge ., 
y= Y max-size; 
if (vy <size) 

vy==l-vy; 
else 

vy=Ty / size - vy; 
if(vy==O) 

goto Reset; 
} 
for (z=O; z<=IOOO; z+ + ); 
continue; 

if (-gfx->g(x_reps <== 0) 
break; 

x ==rect.rJeft; 
y==rect.r_top; 
vx==4; 
Ty==O; 
ylast==O; 
ylastcount==O; 



- 106 -

gfxsw _done{gfx ); 
} 

o} 

0 



• 

• 107 -

0 
11.2. rramedemo.c Code 

0 

Q 



- 108 -

#if ndef lint 
static char secsidO = "@(#)framedemo.e 1.7 83/09/30 Sun Micro"; 
#endif 

/• 
• Sun Microsystems, Inc. 
•I 

/• 
• 
• 
• 
• 

Overview: Frame displayer in windows. Reads in all the 
files of form "frame.xxx" in working directory 6t 
displays them like a movie . 
See constants below for limits . 

•/ 

#include <stdio.h> 
#include <sys/types.h> 
#include <sys/file.h> 
#include <sys/time.h> 
#include "pixrect/pixrect.h" 
#include "pixrect/pr_util.h" 
#include "pixrect/bwlvar.h" 
#include "pixrect/memv81'.h" 
#include "sunwindow /rect.h" 
#include "sunwindow /rectlist.h" 
#include "sunwindow /pixwin.h" 
#include "sunwindow /winjnput.h" 
#include "sunwindow /win_struct.h" 
#include "suntool/gfxsw .h" 

#define 
#define 
#define 
#define 
#define 

MAXFRAMES 
FRAMEWIDTH 
FRAMEHEIGHT 
USECJNC 50000 
SECJNC 

1000 
256 
256 

1 

static struct pixrect •mpr(MAXFRAMES); 
static struct timeval timeout = {SEC_INC,USEC_INC}, timeleft; 
static char sO = "frame.xxx"; 
static struct gfxsuhwindow •gfx; 
static int frames, framenum, ximage, yimage; 
static struct rect rect; 

main(argc, argv) 

{ 

int argc; 
char uargv; 

int fd, framedemoJelected(); 
struct inputmask im; 

,. 

0) 

0 



C 

0 

0 

0 

} 

- 109 -

for (frames= O; frames < MAXFRAMES; frames++} { 
sprint(( &sf6J, "o/od", frames + 1 ); 
fd = open(s, O_RDONL Y, O); 
if (fd == -1) { 

break; 
} 
mpr[framesJ = mem_create(FRAMEWIDTH, FRAMEHEIGHT, 1); 
read(fd, mpr_d(mpr(frames])->md_image, 

FRAMEWIDTH •FRAMEHEIGHT /8}; 
close(fd); 
} 

if (frames=== O} { 

} 
I• 

printf("Couldn't find any 'frame.xx' files in working directoryO); · 
return; 

• Initialize g(xsw ("take over" kind) 
•! . 

g(x == g(xswjnit(O, argv); ,. 
• Set up input mask 
•/ 

inputJmnull(&im}; 
im.im_flags I== IM_.ASCII; 
win_setinputmask(g(x->g(x_windowfd, &im, &im, WIN_NULLLINK); ,. 
• Main loop ., 

framedemo_nextframe(l); 
timeleft == timeout; 
g(xsw_select(g(x, framedemo_selected, O, 0, 0, &timeleft); 
I• 
• Cleanup ., 

g(xsw _done(g(x ); 

framedemo_selected(g(x, ibits, obits, ebits, timer) 
struct g(xsubwindow •g(x; 

{ 

int •ibits, •obits, •ebits; 
struct timeval • •timer; 

if ((•timer && ((•timer)->tv_sec ==== 0) && ((•timer)->tv_usec == 0)) II 
(g(x->g(x_flags & GFX_RESTART)) { ,. 

• Our timer expired or restart is true so show next frame ., 
if (g(x->g(x_reps) 

framedemo_nextframe( 0 ); 
else 



- 110-

gfxsw _selectdone(gfx ); 
} 
if (•ibits & (1 < < gfx->gfx_windowfd)) { 

struct inputevent event; 

/• 
* Read input from window 

*I 
if (input_readevent(gfx->gfx_windowfd, &event)) { 

perror(" framedemo" ); 
return; 

} 
switch (event.ie_code) { 
case 'f': /• faster usec timeout •/ 

if (timeout.tv_usec >= USEC_INC) 
timeout.tv_usec -= USEC_INC; 

else { 

} 
break; 

if (timeout.tv_sec >== SEC_INC) { 
timeout.tv_sec -== SEC_INC; 
timeout.tv_usec == 1000000-:USEC_INC; 

} 

case's':/• slower usec timeout*/ 
if (timeout.tv_usec < 1000000-USECJNC) 

timeout.tv_usec + == USEC_INC; 
else { 

} 
break; 

timeout.tv _usec == O; 
timeout.tv _:iec + == 1; 

case 'F': /• faster sec timeout •/ 
if (timeout.tv_sec >== SECJNC) 

timeout.tv_sec -== SEC_INC; 
break; 

case 'S': /• slower sec timeout •/ 
timeout.tv_sec + ==; SECJNC; 
break; 1 

case'!':/• Help •/ 
printf('"s' slower usec timeoutor faster usec timeoutOS' slower sec timeou 
/• 
* Don't reset timeout 
•/ 

return; 
default: {} 
} 

} 
•ibits == •obits == •ebits == O; 
timeleft == timeout; 
•timer == &timeleft; 

0 



« • 

0 

0 

- 111 -

} 

framedemo_nextframe( first time) 

{ 

} 

int first time; 

int restarting= gf'x->gf'x_flags&GFX_RESTART; 

if (firsttime II restarting) { 

} 

gfx->gf'x_flags &= -GFX_RESTART; 
win_getsize(gf'x->gf'x_windowfd, &rect); 
ximage = rect.r_width/2-FRAMEWIDTH/2; 
yimage = rect.r_height/2-FRAMEHEIGHT /2; 
pw _writehackground(gf'x->gfx_pixwin, 0, 0, 

rect.r_width, rect.r_height, PIX_CLR ); 

if (framenum >= frames) { 
framenum == O; 

· gfx- >gf'x_reps-; 
} 
pw_write(gfx->gfx_pixwin, ximage, yimage, FRAMEWIDTH, FRAMEHEIGHT, 

PIX_SRC, mpr(framenum), 0, O); 
if (!restarting) 

framenum+ + ; 



- 112 -

12. APPENDIX D: PROGRAMMING NOTES 
Here are useful hints for programmers that use any or the pixrect, sun window or suntool 
libraries. 

12.1. What Is Supported? 
The code is the ultimate description of what programs actually do, but the documentation is 
the description or what is supported. Client programmers who use facilities discovered in 
header files or through the grapevine may have useful applications running much sooner than it 
they operated by the book; but they do so at the risk of having their work invalidated:-

In early releases such as this, there may be significant discrepancies between the design ( and the 
documentation derived from it), and what is act~ally implemented. In general, we have tried to 
indicate where features are only partially implemented, and in which directions future exten
sions may be expected. 
Even in completed portions of the system, the possibility remains that even defined interfaces 
will change in response to new requirements or newly-discovered constraints. Such 
modifications will not be undertaken lightly, and should generally be accompanied by a descrip
tion of the nature of the changes, and appropriate responses to them. 

12.2. Program By Example 
We recommend that you try to program by example whenever possible. Take an existing pro
gram similar to what you need and modify it. Appendix B contains some sample tools and 
Appendix C contains some sample graphics programs. The source for these and other sample 
tools and graphics programs are available on / u,r f ,untool/ ,rc / *· c. 

12.3. Header Files Needed 
It can sometimes be hard to find the header files needed to compile your program. This can be 
particularly hard in the window system because of the multiple layers of software and the large 
numbers of header files. Programming by example helps in some respects because a lot of 
header files are included already. 

To alleviate the problem a bit, certain header files exist that include most of the header files 
necessary for working at a certain level. These header files are: 

• / u,r / include/ pi-zrect/ pi-zrect_h,./a - include this header file if you are working at the 
pixrect display primitives layer. 

• / u,r / include/ ,unwind ow/ UJindow_h,./a - include this header file if you are working at 
the sunwindow basic window facilities layer. This will include headers needed to 
work at the pixrect layer as well. 

• / u,r / include/ ,untool/ tool_/a,./a - include this header file if you are working with the 
suntool tool building facilities. This will include headers needed to work at the more 
primitive layers as well. 

0 
\ 

0 



0 

Q 

0 

~ 113 ° 

• /uar/include/auntool/g/z_h,./a • include this header file if you are working with the 
suntool (standalone or "take over") graphics subwindow facilities. This will include 
headers needed to work at the more primitive layers as well. 

The idea is to include only one of the above header files plus whatever extra header files you 
need. In particular, you'll need to add the header file for each subwindow type that you use, 
the menu header file if you use menus, the selection header file if you are going to use selections, 
etc. However, you'll probably only have to add a single header file for each additional incre
ment of high level functionality. 

12.4. Lint Libraries 
You can do better type-checking than the C compiler and catch argument mismatches in your 
program by running lint over your program source. The Sun window system provides lint 
librarie, to allow you to do this. Llib-lpizrect, Uib-1,unwindow, and llib-1,untool are the source 
files to make the actual binary lint libraries: Uib-lpizrect.ln, llib-1,unwindow.ln, and Uib-
1,untool.ln. These files are found on f u,r/lib/lint/. 

12.5. Libraey Loading Order 

When loading programs remember to load higher level libraries first, i.e. -launtool -uunwindow 
-lpizrect. 

12.8. Shared Text 
The tools released with ,untool, rely on text sharing to reduce the memory working set. This is 
accomplished by placing the entire collection of tools in a single object file. This has the effect 
of letting each separate process share the same object code in memory. With many windows 
active at once this can achieve significant memory savings. 

There are trade-offs using this approach. The main one is that the maxim um number of per
process (non-sharable) initial data pages tends to be larger. However, the paged virtual memory 
tends to reduce the effect of this by only having the working set paged in. 

The upshot of this discussion is that you may want to either add the tools that you create to 
the released shared object file or to bundle a few tools together into their own object file. 

12.7. Error Menage Decoding 

The default error reporting scheme described at the end of Window Manipulation prints out a 
long hex number which is the ioctl number associated with the error. You can tum this number 
into a more meaningful operation name by: 

• turning the two least significant digits into a decimal number; 

• searching /u,r/include/1unwindow/win_ioctl.h for occurrences of this number; and 



- 114 -

• noting the ioctl operation associated with this number . 

Doing this can give you a quick hint as to what is being complained about without resorting to 
a debugger. 

12.8. Debugging Hints 

When debugging non-terminal oriented programs in the window system there are some things 
that you should know to make thing:, easier. 

First, the program being debugged breaks to adb when a signal is received. This can be annoy
ing with window programs because SIGWINCH is used to notify windows of certain changes in 
its state. A db, however, has a way of disabling breaking to the debugger when a particular sig
nal is received. To disable this, type" lc:i" followed by RETURN. le is the hex number for 28 
which is SIGWINCH's number. Re-enable signal breaking by typing "lc:t" followed by return. 

Another window system specific situation is that various forms of locking are done that can get 
in the way of smooth debugging w bile working at low levels of the system. There are variables 
in the sunwindow library that disable actual locking; these can be turned on from a debugger: 

• int pixwindebug - When not zero will immediately release the display lock after locking 
so that the debugger is not continually getting hung by being blocked on writes to 
screen. Display garbage can result because of this action. 

• 

• 

int win_lockdatadebug - When not zero will not acquire data lock so that the debugger 
is not continually getting hung by being blocked on writes to screen. Unpredictable 
things can result because of this action that can't properly be described in this con
text. However, this is unlikely. 

int win_grabiodebug - When not zero will not actually acquire exclusive io access 
rights so that the debugger wouldn't get hung by being blocked on writes to screen 
and not able to receive input. The debugged process will only be able to do normal 
display locking and be able to only get input in the normal way. 

Change these variables only during debugging, when not changing them becomes a problem and 
when you know what you 're doing! 

12.9. Sufficient User Memor7 

To use the suntool environment comfortably with the released set of tools requires about 600K 
of user memory after booting UNIX. Comfort means acceptable response from vi while make is 
running a compilation in another window for example. This is achievable in the current 0.9 
release on model IOOU's with 1 megabyte of memory. You have to reconfigure your own kernel, 
deleting unused device drivers. The procedure is documented in the Syatem Manager', Manual. 
For a workstation on the network with a single disk drive you will be able to reclaim about 60K 
of usable memory. 

The recommended amount of memory is 2 megabytes. This gives excellent performance with. 
room to accommodate future releases. 

• 

0) 



• 

0 

0 

0 

- 115 -

13. INDEX 
The following index provides references to 
programming variables, constants, types, 
macros, programs, and function and pro
cedure names used in the Sun window sys
tem. It gives section numbers where the 
best documentation of the term may be 
round. 

adb 
ASCII_f'IRST 
ASCII_LAST 
batchitem 
bool 
bouncedemo.c 
BUT(i) 
BUT_• 
coord 
cursor 
CUR_MAXIMAGEWORDS 
emacs 
emptysubwindow 
errors 
esw _createtoolsubwindow 
esw_done 
esw _handlesigwinch 
esw_init 
EWOULDBLOCK 
FALSE 
FBTYPE_SUN1BW 
FBTYPE_SUN2BW 
f oosubwindow 
Coosw _createtoolsubwindow 
Coosw_done 
f oosw _handlesigw inch 
foosw_init 
f oosw _selected 
framedemo.c 
fsglobal 
fullscreen 
f ullscreen_destroy 
f ullscreenjnit 
gfxsw _createtoolsubwindow 
gfxsw_done 
gfxsw _getretained 
gfxsw _handlesigwinch 
gfxswjnit 
gfxsw _interpretesigwinch 
gfxsw _select 

12.8. 
5.1.2.1. 
5.1.2.1. 
2.2.4. 
9.1.1. 
11.1 
5.1.2.2. 
5.4. 
9.1. 
4.8.1. 
4.8.1. 
7.6.1. 
7.2. 
12.7. 
7.2. 
7.2. 
7.2. 
7.2. 
5.2. 
9.1.1.. 
4.7 
4.7 
7.1. 
7.1. 
7.1. 
7.1. 
7.1. 
7.1. 
11.2 

. 8.1. 
8.1. 
8.1. 
8.1. 
7.3.1. 
7.3.1. 
7.3.1. 
7.3.1. 
7.3.2. 
7.3.1. 
7.3.2. 

gfxsw _selectdone 
gfxtool.c 
GFX_DAMAGED 
GFX_RESTART 
graphicssubwindow 
icon 
ICON_J3KGRDCLR 
ICON_BKGRDGRY 
ICON_J3KGRDPAT 
ICON_BKGRDSET 
icon_display 
IE_NEGEVENT 
IM_ANSI 
IM_ASCII 
IM_CODEARRA YSIZE 
IM_META 
IM_NEGEVENT 
IM_POSASCII 
IM_SHIFTARRAYSIZE 
IM_TEXT 
IM_TEXTVEC 
IM ..... UNENCODED 
IM_UNKNOWN 
inputevent 
inputmask 
inputjmnull 
input_readevent 
KEY_• 
Id 
lint 
LOC_• 
LOC_MOVE 
LOC_STILL 
LOC_WINENTER 
LOC_WINEXIT 
max 
memory 
mem_ops 
menu 
menuitem 
menu_display 
MENU _IMAGESTRING 
menu_prompt 
META_FIRST 
META_LAST 
min 
more 
mpr_data 
mpr_static 

7.3.2. 
10.1 
7.3. 
7.3. 
7.3. 
8.2. 
8.2. 
8.2. 
8.2. 
8.2. 
8.2. 
5.1.3. 
5.3.1. 
5.3.1. 
5.3.1. 
5.3.1. 
5.3.1. 
5.3.1. 
5.3.1. 
7.5. 
7.5. 
5.3.1. 
7.5. 
5.1.1. 
5.3.1. 
5.3.l; 
5.2. 
5.4. 
12.5. 
12.4. 
5.4. 
5.1.2.3. 
5.1.2.3. 
5.1.2.3. 
5.1.2.3. 
9.1.1. 
12.9. 
2.4.1. 
8.3. 
8.3. 
8.3. 
8.3. 
8.3.1. 
5.1.2.1. 
5.1.2.1. 
9.1.1. 
7.6.1. 
2.4.2. 
2.4.3. 



" 
- 116 -

0\ 
msgsubwindow 7.4. prs_batchrop 2.2.4. ' 

msgsw _createtoolsu bwindow 7.4. prs_close 2.2.2 
· msgsw _display 7.4. prs_create 2.2.1. 
msgsw_done 7.4. prs_destroy 2.2.2. 
msgsw _handlesigwinch 7.4. prs_get 2.2.6. 
msgswjnit 7.4. prs_open 2.2.1 
msgsw Jetstring 7.4. prs_put 2.2.7. 
MS_LEFT 5.4. prsJegion 2.2.9. 
MS_MIDDLE 5.4. p?S.JOP 2.2.3. 
MS_RIGHT 5.4. pr_batchrop 2.2.4. 
optsw_bool 7.5.2.1. pr_create 2.2.1. 
optsw _coltox 7.5.3. pr_destroy 2.2.2. 
optsw _command 7.5.2.2. pr_get · 2.2.6. 
optsw _createtoolsubwindow 7.5.1. pr_height 2.1.3. 
optsw_done 7.5.1. pr_pos 2.1.2. 
optsw _dum pitem 7.5.6. pr_prpos 2.1.2. 
optsw _dumpsw 7.5.6. pr_put 2.2.7. 
optsw _enum 7.5.2.3. pr_region 2.2.9. 
optsw _get value 7.5.5. pr_replrop 2.3.1. 
optsw _handlesigwinch 7.5.1. pr_reversedst 2.2.5.3. 
optswjnit 7.5.1. pr_reversesrc 2.2.5.3. 
optsw _Jinetoy 7.5.3. pr_rop 2.2.3. 
optsw _selected 7.5.1. pr_s1ze 2.1.2. 0:1 optsw Jet place 7.5.3. pr_subregion 2.1.2. 
optsw _setvalue 7.5.5. pr_vector 2.2.8. 
optjtem 7.5. pr_vector 2.2.8. 
panetool.c 10.1 pr_width 2.1.3. 
p(_default 2.5.2. PWCD _MUL TIRECTS 3.2.3. 
p(_open. 2.5.2. PWCD_NULL · 3.2.3. 
p(_text 2.5.3. PWCD_SINGLERECT 3.2.3. 
p(_textbatch 2.5.3. PWCD_USERDEFINE 3.2.3. 
p(_textwidth 2.5.3. pw_char 3.5.1. 
pixchar 2.5.1. pw_close 3.3. 
pixfont 2.5.1. pw_copy 3.5.2. 
pixrect 2.1.3. pw_damaged 3.6.1. 
pixrectops 2.2. pw _donedamaged 3.6.1. 
pixrect_hs.h 12.3. pw_exposed 3.4.2. 
plXWIIl 3.2.2. pw_Jock 3.4.1. 
pixwindebug 12.8. pw_open 3.3. 
pixwin_clipdata 3.2.3. pw_put 3.5.1. 
pixwin_clipops 3.2.4. pw_read 3.5.2. 
pixwin_prlist 3.2.3. pw_replrop 3.5.1. 
PIX_CLR 2.2.5.1. pw_reset 3.4.1. 
PIX_pONTCLIP 2.2.5.2. pw_text 3.5.1. 
PIX_DST 2.2.5.1. pw_unlock 3.4.1. 
PIX_NOT 2.2.5.1. pw_vector 3.5.1. 
PIX_SET 2.2.5.1. pw_write 3.5.1. 

0 PIX_SRC 2.2.5.1. pw _writebackground 3.5.1. 
prompt 8.3.1. rect 9.1. 
PROMPT_FLEXIBLE 8.3.1. rectlist 9.2. 



'• - 117 -

0 rectnode 9.2. SCR_SOUTH 4.7. 
RECTS_BOTTOMTOTOP 9.1.2. SCR_SUN1BW 4.7. 
RECTS_LEFTTORIGHT 9.1.2. SCR_WEST 4.7. 
RECTS_RIGHTTOLEFT 9.1.2. selection 8.4. 
RECTS_SORTS 9.1.2. selection_clear 8.4. 
RECTS_TOPTOBOTTOM 9.l.2. selection~et 8.4. 
RECTS_UNSORTED 9.1.2. selection.,JJet 8.4. 
rect_bottom 9.1.1. SEL TYPE_CHAR 8.4. 
rect_bounding 9.1.2. SEL TYPE_NULL 8.4. 
rect_clipvector 9.1.2. sel_clear 8.4. 
rect_construct 9.1.1. selJead 8.4. 
rect_equal 9.1.1. sel_write 8.4. 
rect_includespoint 9.1.1. sharedtext 12.6. 
rect_includesrect 9.1.1. SHIFT_• 5.4. 
rectjntersection 9.1.2. SIGCHLD 6.2.2. 
rect_intersectsrect 9.1.1. SIGXCPU 4.4.3. 
rect_isnull 9.1.1. termcap 7.6.1. 
rect_marginadjust 9.1.1. TIOCGSIZE 7.6.1. 
rect_null 9.1.2. TIOCSSIZE 7.6.1. 
rect_order 9.1.2. tio_handlesigwinch 6.3.1. 
rect_passtochild 9.1.1. tio_selected 6.3.1. 
rect_passtoparent 9.1.1. tool 6.2.4. 
rect_right 9.1.1. toolio 6.3.1. 
rl_boundintersectsrect 9.2.2. toolsw 6.2.5. 

0 rl_coalesce 9.2.2. tool_borderwidth 6.2.6. 
rl_coordoffest 9.2.1. TOOL_BOUNDARYMGR 6.2.3. 
rl_copy 9.2.2. tool_create 6.2.3. 
rl_difference 9.2.2. tool_createsubwindow 6.2.5. 
rl_empty 9.2.2. tool_destroy 6.2.9. 
rl_equal 9.2.2. tool_destroysu bwindow 6.2.9. 
rl_equalrect 9.2.2. tool_display 6.3.5. 
rl_free 9.2.2. TOOL_DONE 6.2.4. 
rUncludespoint 9.2.2. tool_done 6.3.6. 
rljnitw ithrect 9.2.2. tool_hs.h 12.3. 
rljntersection 9.2.2. TOOL_ICON• 8.2. 
rl_normalize 9.2.2. TOOL_ICONIC 6.2.4. 
rl_null 9.2.2. tooljnstall 6.2.8. 
rl_passtochild 9.2.1. TOOL_NAMESTRIPE 6.2.3. 
rl_passtoparent 9.2.1. tool_select 6.3. 
rl_rectdifference 9.2.2. TOOL_SIGCHLD 6.2.4. 
rl_rectintersection 9.2.2. tool_sigchld 6.3.4. 
rl_rectoffset 9.2.1. tool_sigwinch 6.3.3. 
rl_rectunion 9.2.2. TOOL_SIGWINCHPENDING 6.2.4. 
rl_sort 9.2.2. tool_stripeheight 6.2.6. 
rl_union 9.2.2. tool_subwindowspacing 6.2.6. 
screen 4.7. TOOL_SWEXTENDTOEDGE 6.2.5. 
SCR_EAST 4.7. TRUE 9.1.1. 

0 
SCR_NAMESIZE 4.7. ttysubwindow 7.6. 
SCR~ORTH 4.7. ttysw _becomeconsole 7.6. 
SCR_POSITIONS 4.7. ttysw _createtoolsu bwindow 7.6. 



"i • 
- 118 -

ttysw_done 7.6. winJockdata 4.4.3. 0 
ttyswJork 7.6. winJockdatadebug 12.8. 
ttysw _handlesigwinch 7.6. WIN_NAMESIZE 4.2.3. 
ttyswjnit 7.6. win_nametonumber 4.2.3. 
ttysw _selected 7.6. win_nextfree 4.2.1. 
typed_pair 7.5. WIN_NULLLINK 4.2.1. 
VI 7.6.1. win_numbertoname 4.2.3. 
VKEY_* 5.4. win_partialrepair 4.6. 
VKEY_CODES 5.1.2. win_releaseio 5.3.2. 
VKEY_FIRST 5.1.2. winJemove 4.4.3. 
VKEY _FIR STPSEUDO 5.1.2.3. win:_screendestroy 4.7. 
VKEY_LAST 5.1.2. win_screenget 4.7. 
VKEY _LASTFUNC 5.1.2.2. win_screennew 4.7. 
VKEY _LASTPSEUDO 5.1.2.3. win_screenpositions 4.7. 
we_clearinitdata 6.2.1. win_setcursor 4.8.1. 
we_getgfxwindow 4.9.1. win_setinputcodebit 5.3.1. 
we_getinitdata 6.2.1. winJetinputmask 5.3.1. 
we_getparentwindow 6.2.1. win_setlink 4.4.1. 
we_setgfxwindow 4.9.1. win_setmouseposition 4.8.2. 
we_setinitdata 6.2.1. win_setowner 4.9.2. 
we_setmywindow 7.6.1. win_setrect 4.3. 
we_setparentwindow 6.2.1. win_setsavedrect 4.3. 
WINDOW_GFX 4.9.1. win_setuserflag 4.5. 
window _hs.h 12.3. win_setuserflags 4.5. 0 WINDOW _INITIALDATA 6.2.1. win_unlockdata 4.4.3. 
WINDOW .).fE 7.6.1. WL_BOTTOMCHILD 4.4.1. 
WINDOW J> ARENT 6.2.1. WL_COVERED 4.4.1. 
win_com puteclipping 4.6. WL_COVERING 4.4.1. 
wm_error 4.10. WL_ENCLOSING 4.4.1. 
w in_errorhandler 4.10. WL_OLDERSIB 4.4.1. 
win_fdtoname 4.2.3. WL_OLDESTCHILD 4.4.1. 
win_fdtonumber 4.2.3. WL_PARENT 4.4.1. 
win_findintersect 4.8.2. WL_TOPCHILD 4.4.1. 
win_getcursor 4.8.1. WL_YOUNGERSIB 4.4.1. 
win_getheight 4.3. WL_YOUNGERSIB 4.4;1. 
w in_getinputmask 5.3.1. WL_YOUNGEST 4.4.1. 
win_getlink 4.4.1. wmgr_changelevel 8.5. 
win_getnewwindow 4 .. 2.1. wmgr_changelevelonly 8.5. 
win_getow ner 4.9.2. wmgr_changestate 8.5. 
win_getrect 4.3. wmgr_com pletechangerect 8.5. 
w in_getsavedrect 4.3. wmgr_figureiconrect 8.5. 
win_getsize 4.3. wmgr_figuretoolrect 8.5. 
w in_get userflags 4.5. wmgrJorktool 8.5. 
win_getwidth 4.3. WMGR_ICONIC 8.5. 
win_grabio 5.3.2. wmgr_iswindowopen 8.5. 
win_grabiodebug 12.8. wmgrJefreshwindow 8.5. 
win_inputcodebit 5.3.1. WMGR_SETPOS 8.5. 
win_inputnegevent 5.1.3. wmgr_winandchildrenexposed 8.5. 0 win_inputposevent 5.1.3. WUF_WMGRl 8.5. 
win_insert 4.4.2. 

----~--



0 

Q 

0 

READER COMMENT SHEET 

Dear Customer, 
We who work here at Sun Microsystems wish to provide the best possible documentation for our 
products. To this end, we solicit your comments on this manual. We would appreciate your tel
ling us about errors in the content or the manual, and about any material which you feel should 
be there but isn't. 

Typographical Errora: 
Please list typographical Errors by page number and actual text or the error. 

Technical Errora: 
Please list errors or fact by page number and actual text of the error. 

Content: 
Did this guide meet your needs? Ir not, please indicate what you think should be added 
or deleted in order to do so. Please comment on any material which you reel should be 
present but is not. Is there material which is in other manuals, but would be more con
venient if it were in this manual? 

Layout and Style: 
Did you find the organization of this guide useful? Ir not, how would you rearrange 
things? Do you find the style or this manual pleasing or irritating? What would you like 
to see different? 



~· ... 

0 



• • ,1 .. 

0 

0 

0 



0 

0 


