Trademarks
Sun Workstation® is a trademark of Sun Microsystems, Incorporated.
UNIX is a trademark of AT&T Bell Laboratories.
Multibus® is a registered trademark of Intel Corporation.
Contents

Chapter 1 Sun Floating-Point Options .. 3
 1.1. Hardware Floating-Point Options ... 3
 Sun-2 Systems .. 3
 Sun-3 Systems .. 3
 1.2. Compiler Code Generation Options ... 3
 Full Optimization (–O) ... 4
 Partial Optimization (–P) ... 4
 Optimization Side Effects ... 4
 Inline Expansion ... 4
 Floating-Point Code Generation Options 5
 Default Floating-Point Code Generation 5
 Mixing Floating-Point Code Generation Styles 5
 Libraries and Executable File Sizes .. 6
 Summary: Which Option When? .. 7
 1.3. Expression Evaluation Options .. 7
 FORTRAN Style ... 7
 Greatest Available Precision Style .. 7
 -fstore ... 7
 -fsingle and -fsingle2 .. 9
 Constant Expressions .. 9

Chapter 2 Floating-Point Numerics .. 13
 2.1. Rounding Errors and Different Numerical Results 13
 Rounding Errors .. 13
Different Numerical Results ... 13
Detecting Ill Condition and Instability .. 14
2.2. An Example - SPICE tdo .. 14
2.3. Floating-Point Programs ... 15
 Assembly Language ... 15
2.4. Precision in Decimal Digits .. 17
 Single Precision .. 17
 Double Precision .. 17
 Extended Precision .. 17
2.5. FCVS Tests ... 17
2.6. Floating-Point and Signal Handlers .. 19
 setjmp/longjmp ... 20
 Floating-Point Signals .. 20
 Signal #7 (SIGEMT) ... 20
 Signal #8 (SIGFPE) ... 20
 Why Not Signal by Default? ... 21
2.7. Debuggers and Floating Point .. 21
 Signals .. 21
 Disassembly ... 22
 Printing all MC68881 Registers .. 23
 Printing all FPA Registers .. 23
 Printing in Single-Precision ... 23
 Printing in Double-Precision ... 23
 Printing in Extended-Precision .. 23
 Modifying Floating-Point Registers or Memory Locations 23
2.8. FPA Recomputation ... 24
 Rounding Modes ... 25
 Exceptions ... 25
 Inexact Exceptions .. 25
 Traps ... 26
 Performance ... 26

Chapter 3 IEEE-Standard Conformance ... 31
3.1. Supported IEEE Standard Features .. 31
 Numeric Formats ... 31
 ASCII-to-Binary Conversion ... 31
 Rounding Direction Modes, Exceptions, and Traps ... 31
 Numerical Results ... 31
 MC68881 Rounding Precision Mode .. 32
 Ordered Comparisons ... 32
3.2. How to Use Special Features of the IEEE Standard 32
 Rounding Modes and Trap Enabling ... 33
 Trap Enabling .. 33
 Using Special Features From FORTRAN ... 33
 Exceptions, Condition Code, and Quotient Status ... 34
 Signalling NaNs ... 34
 Using _fpmode_ and _fpstatus_ from C .. 34
3.3. Special Library Entry Points .. 37

Chapter 4 Benchmarks .. 43
4.1. IEEE Test Vectors .. 43
 Software Test Vector Results .. 44
 Sky Test Vector Results .. 44
 MC68881 Test Vector Results ... 44
 A79J MC68881 Test Vector Results .. 45
 Sun FPA Test Vector Results ... 45
 Sun FPA Test Vector Results, fpamode(3) .. 45
4.2. Paranoia Test Program .. 45
 -ffpa Comments ... 46
 -f68881 Comments ... 46
 -fsky Comments ... 47
 Summaries ... 47
4.3. Elementary Function Accuracy Benchmarks ... 47
 Elefun Test Programs ... 47
 Test Programs of Liu .. 49
 Monotonicity ... 50
Appendix E SPICE Input Files

| E.1. tdo | 95 |
| E.2. mosamp2 | 96 |

Appendix F MC68881 Mask Differences

fmove[sd] fpm,<ea>	99
fmovex fpm,<ea>	99
flognt, flog2t, flog10t	100
fsqrnx fpm,fpn (m<>n)	100
fsqrtp <ea>,fpn	100

- Binary-to-Decimal Conversion: 100
- Decimal-to-Binary Conversion: 101

Appendix G Assembly-Level In-line Expansion

G.1. Introduction	105
Language-Specific Constructs	105
Access to Special Instructions	105
Special Instructions, Access to	105
Register Allocation	105
G.2. User Interface	106
Implementation	106
G.3. In-line Expansion Pass	108
G.4. Peephole Optimizations	110
G.5. Using Sun’s Predefined .i1 Files	112
Faster Execution	112
Smaller Executable Files	112

Appendix H System V Interface Compliance

H.1. SVID History	117
H.2. IEEE History	118
H.3. SVID Future Directions	118
H.4. Sun Implementation	118
SIGNAL Notes	119
Contents — Continued

libm.a Notes .. 119
Index .. 121
Tables

Table C-1 Other Instructions ... 82
Table C-2 Floating-Point Instructions .. 83
Sun Microsystems provides a variety of software and hardware floating-point options. Some options provide fast performance; most conform substantially, and all conform at least partially, to the requirements of the ANSI/IEEE Std 754-1985, the IEEE Standard for Binary Floating-Point Arithmetic.

This manual describes features of Sun Microsystems' various available floating-point implementations, including details of their use, performance, and conformance to the IEEE floating-point arithmetic standard.

Note:

All specific claims for conformance, accuracy, and speed are based on tests and measurements made using a preliminary version of Sun Software Release 3.2. Results obtained with the final Release 3.2 or with other releases may vary.

This manual is limited to information not easily obtainable elsewhere; you should be familiar with the ANSI/IEEE Standard 754-1985, with the MC68881 floating-point processor (if you have a Sun-3), and the Weitek WTL 1164/1165 chip set (if you have a Floating-Point Accelerator or FPA).

If you want or need more information than is contained in this manual, see one or more of the sources listed in the bibliography later in this preface.

The description of floating-point options on Sun Microsystems computers is divided into four chapters and eight appendices:

Chapter 1 describes the hardware and software options that can affect floating-point numeric operations on Sun Microsystems computers including hardware, compiler code generation, and expression evaluation.

Chapter 2 describes floating-point numerics as applied to Sun Microsystems hardware and software. This includes discussions of rounding errors and differing numerical results depending on different floating-point options, using floating-point operations from compiled and assembly language programs, and operational details of Sun Microsystems' floating-point implementations.

Chapter 4 describes benchmarks that have been and can be used to test the performance and conformance of floating-point numerics on Sun Microsystems computers.

Appendix A describes changes made to adb to support the FPA, examples of FPA disassembly, and FPA register use.

Appendix B describes changes made to dbx and dbxtol to support the FPA, examples of FPA disassembly, and FPA register use.

Appendix C describes the FPA assembly-language syntax supported by as in Release 3.1 and later.

Appendix D describes a number of IEEE floating-point functions that are not usually available in higher-level languages.

Appendix E describes the input files used by the SPICE benchmark program.

Appendix F describes the differences in function between the two different mask versions of the MC68881 coprocessor used by Sun's floating-point processors.

Appendix G describes assembly-level inline code expansions that let you integrate assembly-language routines into C, FORTRAN, and Pascal programs.

Appendix H describes aspects of the floating-point implementation affected by compliance with the UNIX System V interface.

The following provide more information about Sun's language processors:

The following provide more information about Sun's floating-point hardware:

The following provide more information about the IEEE Standard:

Stevenson et al., Cody, Hough, Coonen, various papers proposing and analyzing a draft standard for binary floating-point arithmetic, *IEEE Computer*, March 1981.

The following defines the UNIX™ System V Interface:

The following provide more information about testing and error analysis:

Test Program Information

For information on machine-readable source of the IEEE Test Vectors or the SPICE program, contact Cindy Manley, EECS/ERL Industrial Support Office, 461 Cory Hall, University of California, Berkeley, CA 94720.

For information on machine-readable source for the Paranoia test program, contact Richard Karpinski at ucbvax!ucsj!cca.ucsf!dick.

For information on Alex Liu's test programs, contact him at zliu@weyl.berkeley.edu.

† UNIX is a registered trademark of AT&T.
Netlib provides a numerical source code distribution service from which many popular benchmark programs can be obtained, including *paranoia*, *elefunt*, *linpack*, and *whetstone*, as well as the current version of Dongarra’s Argonne Technical Memorandum containing Linpack benchmark results. For netlib instructions, send a message "send netlib-paper from misc" to: research!netlib or netlib@anl-mcs.arpa.

For information on the FCVS tests, write to Federal Software Testing Center, Suite 1100, 5203 Leesburg Pike, Falls Church, VA 22041.
Sun Floating-Point Options

Sun Floating-Point Options .. 3

1.1. Hardware Floating-Point Options .. 3
 Sun-2 Systems .. 3
 Sun-3 Systems .. 3

1.2. Compiler Code Generation Options ... 3
 Full Optimization (-O) ... 4
 Partial Optimization (-P) .. 4
 Optimization Side Effects .. 4
 Inline Expansion .. 4
 Floating-Point Code Generation Options ... 5
 Default Floating-Point Code Generation ... 5
 Mixing Floating-Point Code Generation Styles .. 5
 Libraries and Executable File Sizes .. 6
 Summary: Which Option When? ... 7

1.3. Expression Evaluation Options ... 7
 FORTRAN Style .. 7
 Greatest Available Precision Style ... 7
 -fstore ... 7
 -fsingle and -fsingle2 ... 9
 Constant Expressions .. 9
1.1. Hardware Floating-Point Options

Sun-2 Systems

Sun-2 systems use a 10 MHz MC68010 as their CPU and use either a Multibus or VME system bus. The Sky Fast Floating-Point Processor (FFP) board exists in both Multibus and VME versions for the Sun-2. Programs compiled for Sun-2's will usually run on Sun-3's as long as they do not exploit any specific features unique to Sun-2's, such as the Sky FFP.

Sun-3 Systems

Sun-3 systems use either a 15 or 16.7 MHz MC68020 as their CPU and use a VME system bus. An MC68881 floating-point coprocessor is standard on some models and optional on others. Sun-3's use MC68881's of either the mask set A79J, running at 12.5 MHz, or of the mask set A93N, running at 16.7 MHz. Also available on some Sun-3 models is the Sun Floating-Point Accelerator (FPA), which is an optional board based upon the Weitek 1164/1165 chip set. The FPA requires the presence of an MC6881.

Programs compiled for Sun-3's will not run on Sun-2's.

1.2. Compiler Code Generation Options

Sun's compilers for FORTRAN (f77), C (cc), and Pascal (pc) use the options described below in the same way. With each of these compilers, if you compile and link programs in separate steps, you should usually specify the same set of options at each step. For example, for FORTRAN:

```
f77 -pg -O -ffpa -c part1.f  
f77 -pg -O -ffpa -c part2.f  
f77 -pg -O -ffpa part1.o part2.o -o executable.out
```

Note:

None of Sun's compilers attempt extensive code optimization unless requested.
Full Optimization (-O)

The -O option is the usual way to request maximum code optimization. In Release 3.2 f77, -O invokes /usr/lib/iropt to perform the following global optimizations on the program:

- Invariant code removal from loops
- Induction variable strength reduction
- Common subexpression elimination
- Copy propagation
- Register allocation
- Dead code elimination

Note that iropt's global optimizations sometimes cause conformance problems with the IEEE floating-point standard.

Floating-point variable register allocation is discussed below under the -fstore option.

In Release 3.2 cc and pc, -O invokes a more limited set of global optimizations. In all three compilers, -O also invokes /lib/c2 to perform local optimizations on the compiled code before assembly.

Partial Optimization (-P)

Partial optimization (-P) generates smaller data structures but often produces code almost as good as -O.

Partial optimization is called for in cases where -O results in inordinately long compilation times: some modules generate huge internal data structures in the global optimizer iropt that can lead to enormous compilation times with -O. If you think that is happening you can investigate this by printing out the compiler's phases with the -v option; if compilation seems to hang up in iropt, use -P instead of -O.

Don't use -P as a general substitute for -O since -O usually produces more efficient code.

Optimization Side Effects

iropt's global optimizations sometimes cause problems with conformance to the IEEE floating-point standard. Floating-point variable allocation to registers is discussed with the -fstore option. Dead code elimination, common subexpression elimination, and copy propagation may cause source code statements to not be executed when expected, and consequently IEEE exceptions may not be raised or may be raised a different number of times or in different places than the source code suggests.

For examples, see the subroutine nextd in the section "How to Use Special Features of the IEEE Standard" in Chapter 3, and the results of the Paranoia benchmark for the MC68881 in Chapter 4.

Inline Expansion

Inline expansion of external calls is an optional third phase of optimization. You can select it independently of other optimization choices by specifying one or more .il files along with the source files in a compilation.

The inline subroutine expansion program /usr/lib/inline replaces subprocedure calls with equivalent code inline in the calling procedure, using...
Floating-Point Code Generation Options

templates contained in the .il files. User-defined .il files may be used in addition to or in place of Sun-provided standard .il files. See Appendix G for a discussion on using inline subroutine expansion.

Sun supports two approaches to floating-point code generation: switched and in-line. Switched code determines at runtime what the fastest available floating-point hardware is and selects from among available library routines to exploit that hardware. Thus switched code runs on any Sun, with any or no floating-point hardware, and takes advantage of whatever hardware is present. The results of floating-point computations may vary depending on the hardware that was used. Select switched floating-point code generation at compile time with the compiler option -fswitch.

Select software floating-point code generation with the compiler option -fsoft. Code so compiled runs on any Sun and always produces the same numerical result. Code compiled with -fsoft contains calls to floating-point libraries and is about as fast as switched floating point on machines without floating-point hardware.

In-line code generation puts floating-point instructions in line with CPU instructions; such code generated in-line for specific hardware, by avoiding the overhead of library calls, always runs faster than switched code running on the same hardware. Remember that in-line code only runs on machines with the specific hardware installed for which the code was compiled.

The available floating-point code generation hardware options are:

- `-fsky` Requires Sky FFP on Sun-2.
- `-f68881` Requires MC68881 on Sun-3.
- `-ffpa` Requires MC68881 and Sun FPA on Sun-3.

-fsoft is the default floating-point code generation mode, in the absence of other specifications. This was chosen so that programs that use floating point in a casual way will obtain the same numerical results on all Suns.

You may change your default by defining the environment variable FLOAT_OPTION with a .cshrc or .login command like

```
setenv FLOAT_OPTION f68881
```

Other legal choices are fswitch, fsoft, fsky, or ffpa.

Bear in mind when converting makefiles and shell scripts, that Sun releases before 3.0 made switched floating-Point the default, with -fsky the only option.

An executable program composed of several independently compiled modules can contain only one kind of in-line hardware floating-point. If this restriction is violated, one of the following error messages
Undefined: fsky_used
Undefined: f68881_used
Undefined: ffpa_used

will be issued by the compiler when it tries to link the modules together.

Although the practice is not recommended, you can link together modules compiled with -fsoft, -fswitch, and any one type of in-line hardware floating point.

The compilers defeat attempts to specify -fsky on a Sun-3 or -ffpa on a Sun-2.

For small and moderate sized programs, inline code generation creates the smallest executable files because the fewest library subroutines are required. -fsoft requires library subroutines for all operations, while switched floating-point (-fswitch) requires library subroutines for software floating-point and all the inline options and so is the largest of all. There are, however, some code generation technicalities that affect these generalizations:

Each compiler searches certain libraries by default:

<table>
<thead>
<tr>
<th>Libraries Searched</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compiler Normal</td>
</tr>
<tr>
<td>cc</td>
</tr>
<tr>
<td>f77</td>
</tr>
<tr>
<td>pc</td>
</tr>
</tbody>
</table>

In this table m, for instance, is shorthand for option -lm or the equivalent file name /usr/lib/libm.a, except for c, which corresponds to -lc or /usr/lib/libc.a. These libraries contain subroutines which are in turn called by code generated by the compilers. The compilers may generate code to call different subroutines, depending on the -f... option in effect at compiler time.

In general, libm.a and libc.a contain different subroutines corresponding to each -f... option. libpc.a, libF77.a, libI77.a, and libU77.a do not; the subroutines in these libraries are therefore created with -fswitch, and so if they are called, then much of switched floating point is linked into the final executable file.

This means that the executable file may be larger than expected. In some cases the switched floating point may be bypassed by using the inline subroutine expansion files described in Appendix G.

FORTRAN source-language constructs that generate calls to subroutines in libF77.a include, for real or double precision, x**y, mod, atan2, cabs, and nint; for complex or doublecomplex, almost all operators and functions. With the Sun-provided inline subroutine expansion files, switched floating-point subroutines are not linked in except for for complex and doublecomplex x/y.
Compile programs with
\[-f\text{soft}\] that use floating point in a casual way or not at all; this is the usual default anyway. Compile programs on a Sun-2 with \[-f\text{switch}\] that use floating point intensively but that are intended to be run on all possible Sun-2 and Sun-3 hardware configurations. Compile programs that are intended to use particular floating-point hardware intensively with in-line code for that hardware.

Remember that the Sun FPA can only support 32 simultaneous processes. Consequently, on systems with a Sun FPA, \[-f\text{fpa}\] and \[-f\text{switch}\] should not be used for programs that use floating point casually, reserving floating-point contexts for intensive floating-point programs.

Programs that exploit certain details of the IEEE Standard may require \[-f\text{soft}\], \[-f\text{68881}\], or \[-f\text{fpa}\]; see Chapter 3.

Some languages prescribe precise evaluation rules for expressions like these:

\[
\begin{align*}
\frac{a + b}{c * (d + e)}
\end{align*}
\]

Others do not. Different kinds of floating-point hardware also lend themselves to different methods.

The traditional method of expression evaluation in FORTRAN is that operations are performed in the precision of the most precise operand. Thus, \(a + b\) is evaluated in single precision if \(a\) and \(b\) are both single-precision, and in double precision if either \(a\) or \(b\) is double-precision.

Since floating-point expressions usually suffer rounding errors when evaluated, these errors may be minimized if expressions are evaluated in the highest available precision. Thus many C compilers evaluate \(a + b\) in double precision even if \(a\) and \(b\) are both single-precision.

Sun’s FORTRAN and Pascal compilers generally perform FORTRAN style expression evaluation. An exception is when the \[-f\text{68881}\] option is specified; then expressions are evaluated in the extended-precision registers of the MC68881. Sun’s C compiler generally performs double-precision expression evaluation; if \[-f\text{68881}\] is specified, evaluation is in extended precision. The \[-f\text{store}\], \[-f\text{single}\], and \[-f\text{single2}\] options, described below, provide alternate methods.

When the \[-f\text{68881}\] option is used in conjunction with \(-O\) or \(-P\), the compilers allocate floating-point variables to the MC68881’s internal extended-precision registers, which are more precise than the single- or double-precision variables declared in FORTRAN, C, or Pascal. This means that, for instance,
may execute differently depending on whether X is allocated to an extended-precision register. If not, then the value of "expression" is rounded to the declared precision of X prior to the comparison, possibly changing its value; if X were so allocated, the rounding would not occur, affecting the subsequent comparison.

This optimization may adversely affect some programs that depend on the store to force rounding to storage precision. Those programs can be compiled without optimization, or with optimization and the additional option -fstore, which insures that rounding to storage precision occurs when specified by a source language assignment.

-fstore is implemented in Release 3.2 by not allocating floating-point variables to extended-precision registers. -fstore only has effect when -f68881 and -O or -p are specified.

The combination -fstore -O is safer than -O in that a few programs either won't work or work poorly with just -O. -O is usually slightly more accurate; the difference in speed varies considerably among programs.

The -fstore option is not intended to affect anonymous temporary expressions. Thus the statement

\[x = (x + y) - y \]

may still be evaluated in extended precision until the final store to x, even if -fstore is specified. This may cause problems with some artful programs, such as some in the Elefun test suite of Cody and Waite. The Elefun programs test elementary functions by computing various identities involving those functions; inaccuracies in the elementary function implementations are reflected by the extent to which the identities fail to be satisfied. To be meaningful, the arguments of the functions must be correctly related. That is, if x and x+k are both arguments to functions in the identity, then x must be such that x+k is computed exactly. Any error in x+k prior to evaluating the function under test will likely contaminate the results to such an extent that they are meaningless for measuring the errors in the function under test. x is purified by perturbing it slightly until x+k can be computed exactly.

A specific example in the Elefun test of alog is an identity wherein x and y=(17/16)*x are both required. To compute y exactly on binary, decimal, and hexadecimal machines, over the limited range sqrt(1/2) <= x <= 15/16, it suffices that x's least significant four bits be zero; this is accomplished by the following code:

```
eight = 8.0
x = (x + eight) - eight
y = x + x / 16.0
```

This code works correctly unless the expression (x + eight) - eight is evaluated in higher precision than the storage precision of x. If the latter occurs, then the rounding of (x + eight) will not occur where intended and x will
not be purified. Since it is the intermediate expression \((x + \text{eight})\) that is of interest, \(-fstore\) will not affect the result. You must change the source code to

\[
\begin{align*}
eight &= 8.0 \\
x &= x + \eight \\
x &= x - \eight \\
y &= x + x / 16.0
\end{align*}
\]

Then \(-fstore\) will force rounding to storage precision after \((x + \eight)\), and \(y\) will be ultimately computed without any rounding error.

Extended-precision expression evaluation is usually desirable because it minimizes rounding error, and it is good practice to write out expressions with minimal stores of intermediate results. But programs which intend to force rounding errors to occur at certain times must sometimes be rewritten in this way when using extended precision.

In C, floating-point expression evaluation and parameter passing are defined to occur in double precision, even if all operands are single-precision. cc's \(-fsingle\) and \(-fsingle2\) options permit more FORTRAN-like floating-point expression evaluation.

-\(fsingle\) causes floating-point operations to be performed in single precision when operands are single-precision. \(-fsingle2\) causes single-precision procedure parameters to be passed as single-precision rather than double-precision. Do not mix C modules compiled with \(-fsingle2\) with modules compiled without it.

In particular, the following will not work if compiled with \(-fsingle2\):

\[
\begin{align*}
\text{#include } &<\text{math.h}> \\
n\text{float } &x, y; \\
y &= \sqrt{y}(x);
\end{align*}
\]

Standard C libraries expect double-precision floating-point arguments.

Constant expressions may be evaluated at compile time or at run time. From the point of view of the IEEE Standard, run-time evaluation of constant expressions is desirable in order to observe the rounding modes in effect at runtime and to preserve the IEEE exceptions.

Sun's FORTRAN compiler (\(f77\)) doesn't evaluate floating-point constant expressions at runtime, while \(cc\) and \(pc\) both do, using the default round to nearest mode. All three compilers evaluate integer constant expressions at runtime.
Floating-Point Numerics

2.1. Rounding Errors and Different Numerical Results ... 13
 Rounding Errors .. 13
 Different Numerical Results ... 13
 Detecting Ill Condition and Instability ... 14

2.2. An Example - SPICE tdo ... 14

2.3. Floating-Point Programs .. 15
 Assembly Language ... 15

2.4. Precision in Decimal Digits ... 17
 Single Precision .. 17
 Double Precision .. 17
 Extended Precision .. 17

2.5. FCVS Tests ... 17

2.6. Floating-Point and Signal Handlers .. 19
 set jmp/long jmp ... 20
 Floating-Point Signals ... 20
 Signal #7 (SIGEMT) ... 20
 Signal #8 (SIGFPE) ... 20
 Why Not Signal by Default? .. 21

2.7. Debuggers and Floating Point .. 21
 Signals ... 21
 Disassembly ... 22
 Printing all MC68881 Registers ... 23
Printing all FPA Registers ... 23
Printing in Single-Precision ... 23
Printing in Double-Precision ... 23
Printing in Extended-Precision ... 23
Modifying Floating-Point Registers or Memory Locations 23

2.8. FPA Recomputation ... 24
Rounding Modes ... 25
Exceptions .. 25
Inexact Exceptions .. 25
Traps .. 26
Performance .. 26
2.1. Rounding Errors and Different Numerical Results

Expression evaluation and precision are important because floating-point calculations are usually inexact. The set of numbers representable in a particular finite-precision format is not closed under the usual arithmetic operations. When the computed result differs from the exact infinite-precision result, we say that roundoff or a rounding error has occurred. Correctly implemented floating point delivers the exact result if it is representable, or one of at most two nearest representable numbers otherwise. Computers vary as to the rule used for choosing between the two nearest neighbors; some computers with defective arithmetic do not guarantee to produce representable results correctly or to produce one of the nearest neighbors for unrepresentable results.

Sun's computers generally follow the IEEE Standard for Binary Floating-Point Arithmetic, which specifies that, by default, inexact results return the closer of the two nearest neighbors, and if they are equally close, the one with the least significant bit 0. This rule is the default "round to nearest" rounding direction mode. Rounding errors caused by the correct application of the rounding rule to inexact results are inevitable consequences of finite-precision arithmetic, rather than defects in the machine.

Different floating-point implementations produce different results. Even when all floating-point operations conform to the IEEE Standard, elementary transcendental functions will usually vary depending on the hardware. Unlike the rational operations (+, -, *, and /) and the algebraic function sqrt, it is not economical to produce correctly rounded results for the elementary exponential, logarithmic, and trigonometric transcendental functions. Consequently different implementations make different trade-offs between speed and accuracy.

Differences arise even if no transcendental functions are involved. The MC68881 and Sun FPA both conform to the IEEE Standard, yet they produce different results because the MC68881 uses extended-precision registers, which are not present on the FPA. The MC68881's results are usually more accurate. The MC68881's results can vary depending on which of the -0, -f, or -fstore flags are used, since these affect how often results are rounded from extended precision to storage precision. Finally, results computed with the A79J
Detecting Ill Condition and Instability

Sun's software floating-point conforms to the IEEE Standard's default modes and agrees with the Sun FPA on operations specified by the Standard in the default modes.

Due to performance requirements and the fact that its microcode space is completely full, the Sky FFP does not always produce the results specified in the IEEE Standard, even for the rational operations +, -, *, and /. For these operations and sqrt, computed results sometimes differ by one bit from the standard results; at other times the signs of zero results vary from the Standard.

If you specify cc's -fsingle or -fsingle2 options, results may be different from what they would have been otherwise.

When the answer to a problem is inordinately sensitive to changes in the input data, it is said to be ill-conditioned. Ill condition is a property of a problem and input data and is not affected by changing the algorithm used to obtain the result.

Even for well-conditioned problems, some numerical algorithms are much more sensitive to roundoff than others. The sensitive algorithms are said to be unstable. Instability can sometimes be cured by changing algorithms.

The distinction between ill-condition and instability is often academic in large realistic applications too complicated to be analyzed. The symptoms are the same: a computation previously believed to be correct on another machine, or with a different compiler or operating system, or even with different compiler options, now gives drastically different results with the same input data. Naturally, such results suggest that the new hardware, compiler, or operating system is defective. How can that possibility be separated from the effects of ill condition or instability?

One way to investigate sensitive results is to introduce random small changes in the input data and observe the effect on the results. But the right random changes may be difficult to determine or awkward to insert. The four rounding direction modes specified in the IEEE Standard allow one to obtain similar effects.

On Sun-3's with an MC68881 installed, you can vary the IEEE rounding modes with the assembly-language function, _fpmode_, mentioned in "How to Use Special Features of the IEEE Standard" in Chapter 3. Run a program first in the default round-to-nearest mode, then in another mode such as round-toward-zero. Compare the results, and if numerical results vary enough to bother you, then you are either trying to solve an ill-conditioned problem or using an unstable algorithm.

2.2. An Example - SPICE
tdo

SPICE is an integrated circuit emulation program. One of the SPICE 2G.6 input files listed in Appendix E, tdo, models a tunnel diode oscillator. In the transient analysis section of the program's output, a voltage v1 is monitored as a function of time. The computed behavior is that the voltage is initially a constant 0.12 v, then either declines abruptly to about 0.02 v or else jumps equally abruptly to about 0.48 v. Which behavior is computed seems to depend on random factors of code generation causing slight variations in rounding errors. For
instance, the abrupt decline is obtained with \(-f\text{soft} -O\) and \(-f\text{fpa} -O\), while the abrupt rise is obtained with \(-f\text{sky} -O\) and \(-f68881 -O\), in all cases compiling with software Release 3.1 and default roundings. Experiments with \(-f68881 -O\) show that changing the rounding direction mode from round to nearest to round toward zero, or changing the rounding precision mode from extended to double, is sufficient to change the computed behavior. Since oscillators usually exhibit positive-feedback physical characteristics, it seems likely that computing the transient behavior is an inherently ill-conditioned problem. On the other hand, determining the steady-state oscillation frequency might be well-conditioned.

Sun recommends that you write programs using floating-point in higher-level languages whenever possible.

FORTRAN is the best-suited compiled language that Sun supports for those parts of large applications where floating-point usage is substantial, and data structures, control structures, and input and output are simple. FORTRAN has more intrinsic types, operators, and functions designed to support floating-point computations and ease writing correct, compact, easily optimized numerical procedures.

Many other desirable language features are poorly designed in FORTRAN or lacking altogether, so Sun makes it relatively easy to call FORTRAN computational modules from programs written in C or Pascal.

In Pascal, you just declare such modules to be "external fortran".

In C, remember that a FORTRAN declaration like

```c
xtype function x ( y )
ytype y
```

usually corresponds to a C declaration like

```c
xtype x ( y )
ytype *y;
```

For more about programming on Sun's computers in FORTRAN and Pascal, see the Sun FORTRAN Programmer's Guide and the Sun Pascal Programmer's Guide.

The assembly language interfaces to \(-f\text{switch}\), \(-f\text{soft}\), and \(-f\text{sky}\) floating point are not documented and vary in different software releases. If necessary, you can examine compiled code generated by the \(-S\) option to infer the interface conventions in effect for a particular release.

For \(-f68881\) and \(-f\text{fpa}\), the interface is more permanent since specific features have been added to the Sun-3 assembler to accommodate these floating-point units. The following lines of code are comparable:
Source:

\[x(i) = x(i) + c \times y(i) \]

MC68881 assembly code:

```
fmoved c,fp0
fmuld ay@+,fp0
fadd d ax@,fp0
fmoved fp0,ax@+
```

FPA code:

```
fpmoved c,fpa0
fpmul d ay@+,fpa0
fpadd d ax@,fpa0
fpmoved fpa0,ax@+
```

In both examples, \(ax \) and \(ay \) are pointers to \(x(i) \) and \(y(i) \), respectively.

The syntax of MC6881 instructions generally follows that of Motorola’s MC68881 manual, with the following exceptions:

- Instructions are lower case
- No dot separates the opcode from the operand type
- CPU address mode notations are different

Furthermore, unlike examples in the MC68881 manual, dyadic operations

\[fopt \quad fpn,fpn \]

may not be abbreviated to the single-operand form

\[fopt \quad fpn \]

FPA instruction syntax is designed to parallel that of MC68881 instructions where it makes sense to do so. Op codes begin with "fp" rather than "f" and register names are \(fpa0..fpa31 \) rather than \(fp0..fp7 \). Register-to-register operations have type \(s \) or \(d \) rather than \(x \).
2.4. Precision in Decimal Digits

The relationship between binary floating point and decimal floating point is one of the most widely misunderstood aspects of floating-point arithmetic. No binary floating-point format has an exactly equivalent number of decimal digits, since the relative spacing of representable floating-point numbers varies in different places for different bases. The following describe the IEEE formats:

Single Precision

IEEE single precision is always more precise than 6 decimal digits and always less precise than 9 decimal digits. Seven decimal digits are often less precise but sometimes more; eight decimal digits are often more precise but sometimes less.

Double Precision

IEEE double precision is always more precise than 15 decimal digits and always less precise than 17 decimal digits. Sixteen decimal digits are sometimes less precise and sometimes more.

Extended Precision

MC68881 extended precision is always more precise than 18 decimal digits and always less precise than 21 decimal digits. Nineteen decimal digits are often less precise but sometimes more; 20 decimal digits are often more precise but sometimes less.

2.5. FCVS Tests

The following examples illustrate the confusion surrounding precision issues. The Federal Compiler Validation Service (FCVS) has a series of programs intended to measure conformance of implementations to the FORTRAN standard, ANSI X3.9-1978. While investigating why certain test programs failed on Suns in mysterious ways that depended on the setting of the -£... and -0 options, it became apparent that the programs were setting standards that could only be passed by luck. Here are two examples taken from the FCVS78 Version 2.0; official FCVS versions since 1983 have been modified to display the message "INFORMATIVE - UNDER REVIEW BY FSTC" for certain tests in programs 371..374, 818, and 820.

The following fragment is from test 10 of FCVS program 374, intended to test single-precision tangent:

```
PIVS = 3.1415926535897932384626434
AVS = TAN((3.0 * PIVS / 2.0) - 1.0 / 1024.0)
IF (AVS - 1023.9) fail, pass, 40100
IF (AVS - 1024.1) pass, pass, fail
```

This fragment is intended to be a test of tan, to see if

```
AVS = TAN(1.5 * π - 2**-10) = 1/TAN(2**-10)
```

which is approximately 1024 -.0003. So the passing criterion seems rather generous:

```
if (abs(avs-1024) < 0.1) then pass.
```

But whether this test passes or fails is a matter of random luck for single precision. Suppose that the only error is the error in the value assigned to PIVS; it was intended to be π, but since π is not representable, the actual value contained
But binary floating-point arithmetic of p significant bits cannot in general approximate a number to better than half a unit in the last place, or $2^{*(1-p)}$ for numbers between 2 and 4; IEEE single precision has 24 significant bits, so arbitrary numbers between 2 and 4 would not be expected to be approximated to better than $\varepsilon = 1.2e-7$, and in particular, the IEEE single-precision number closest to π differs from π by $\varepsilon = 8.7e-8$. Thus there is no hope of passing unless additional rounding errors are made in the multiplication or tangent; these additional rounding errors must be aptly chosen to cause the final result to be acceptable!

The following fragment is from test 12 of FCVS program 820, intended to test complex cosine:

```plaintext
COMPLEX AVC, BVC
REAL R2E (2)
EQUIVALENCE (AVC, R2E)
AVC = CCOS((3.1416, 0.0) * (-10000.0, 0.0))
IF (R2E(1) - 0.99725E+00) fail, 40122, 40121
40121 IF (R2E(1) - 0.99736E+00) 40122, 40122, fail
40122 IF (R2E(2) + 0.50000E-04) fail, pass, 40120
40120 IF (R2E(2) - 0.50000E-04) pass, pass, fail
```

This is intended to test whether

$$\text{ABS}(\cos(1.4 \times 3.1416) - 0.997305) < 5.5e-5$$

The correct result $\cos(31416.0)$ is .9973027. But once again, passing is a matter of random luck on binary computers. Suppose the only error is the conversion of 3.1416 to a machine-representable value 3.1416+ε. Error analysis shows that the passing criterion is equivalent to

$$-8.0e-8 < \varepsilon < 7.0e-8$$

but as before, the best general bound for the approximation error is $1.2e-7$, and in particular the closest IEEE single-precision number to 3.1416 differs from it by $1.1e-7$. Machines with 24 significant bits or less can only pass the indicated criterion by lucky rounding in the multiplication and cosine.

Oddly enough, this same test program considers acceptable a nonzero imaginary part of a complex cosine of a real argument.
2.6. Floating-Point and Signal Handlers

UNIX signals are asynchronous events, and when a signal handler uses the same floating-point device as the process it interrupted, confusion can ensue. Consequently part of Sun's signal handling protocol is designed to save and restore the state of the floating-point device currently in use, but it is good practice to design signal handling routines to be as short as possible and to avoid inessential floating-point computations.

Signals, once generated, are passed by UNIX to the interrupted process through a routine named _sigtramp which calls a signal handler defined by the user with sigvec(2), signal(2), or signal(3f).

Before calling the user handler, _sigtramp saves certain CPU and floating-point state on the stack; if the signal handler terminates normally by returning to _sigtramp, the CPU and floating-point state are restored from the saved state. The CPU state includes the contents of the program counter (pc), stack pointer, status register, signal stack and mask information, and registers a0-a1 and d0-d1. The floating-point state depends on which signal occurred and what kind of floating-point hardware is in use. In the case of signal #8, SIGFPE, no floating-point state is saved or restored; for all other signals, the hardware state of the Sky FFP, MC68881, or Sun FPA is saved when the signal occurs and restored when the signal handler returns.

Note that just as the signal handler is expected to follow the C compiler's conventions and restore CPU registers a2-a7 and d2-d7 if it uses them, it is also expected to restore certain floating-point registers, as described below.

In the case of the Sky FFP, the complete state is saved, consisting of the contents of the program counter of the Sky FFP and the contents of the four double-precision floating-point data registers. Before starting the signal handler, the Sky FFP is reset to accept new instructions. The contents of the data registers are unchanged. On return from the signal handler, the Sky FFP program counter and data registers are restored to their state prior to interruption.

In the case of the MC68881, the registers saved and restored include fp0-fp1 and fpcr/fpsr/fpiar. The signal handler is responsible for saving and restoring fp2-fp7 if it uses them.

In the case of the Sun FPA, the registers saved and restored include the MC68881's fp0-fp1 and fpcr/fpsr/fpiar and the FPA's instruction pipe, fpastatus, fpamode, imask, load_ptr, ierr, and fpa0-fpa3. Before calling the signal handler, imask is set to 0, fpamode is set to 2 (the default), and fpsr and fpcr are set to 0. The signal handler is responsible for saving and restoring fpa4-fpa31 if used. Upon returning from the signal handler, all the control and data registers are restored to their values at the time of the signal.

The exact format of the saved floating-point state is subject to change and should not be relied upon. Programs that use nonstandard returns from signal handlers may not work under new software releases.

† UNIX is a registered trademark of AT&T.
set jmp/longjmp

The code implementing set jmp and longjmp does not save or restore any floating-point state. Use great care in creating programs that involve these functions and floating-point arithmetic.

Floating-Point Signals

Two floating-point signals, SIGEMT and SIGFPE, are used by software to test for the presence of an MC68881 and as signals for some error or exception conditions.

Signal #7 (SIGEMT)

Programs compiled with -fswitch, -f68881, and -ffpa test for the presence of an MC68881 by performing an MC68881 instruction that initializes the fpcr and fpsr registers to their proper IEEE defaults. If an MC68881 is present, the instruction executes uneventfully. If no MC68881 is present, a SIGEMT signal is generated and handled by a signal handler installed for the duration of this test. The SIGEMT signal also affects use of the debuggers adb, dbx and dbxtool; see "Debuggers and Floating Point" below.

Signal #8 (SIGFPE)

SIGFPE signals certain conditions that might be errors, exceptions, or opportunities. Generally these conditions arise synchronously during arithmetic operations in the underlying process, but they are infrequent enough that they are most efficiently treated as if they were asynchronous events. Since they usually tell something about the state of the floating-point computation, the floating-point status is not saved, reset, and restored as it is for all other signals.

Not all SIGFPE signals have to do with floating point. This is a complete list of defined SIGFPE codes:

```c
#define FPE_INTDIV_TRAP 0x14 /* integer divide by zero */
#define FPE_CHKINST_TRAP 0x18 /* CHK [CHK2] instruction */
#define FPE_TRAPV_TRAP 0x1c /* TRAPV [cpTRAPcc TRAPcc] instr */
#define FPE_FLTBUN_TRAP 0xc0 /* [floating branch | set on unordered ] */
#define FPE_FLTINEX_TRAP 0xc4 /* [floating inexact result] */
#define FPE_FLTDIV_TRAP 0xc8 /* [floating divide by zero] */
#define FPE_FLTUND_TRAP 0xcc /* [floating underflow] */
#define FPE_FLOPERERR_TRAP 0xd0 /* [floating operand error] */
#define FPE_FLTOVF_TRAP 0xdd /* [floating overflow] */
#define FPE_FLTNAN_TRAP 0xda /* [floating Not-A-Number] */
#define FPE_FPA_ENABLE 0x400 /* [FPA enable reg not set] */
#define FPE_FPA_ERROR 0x404 /* [FPA bus error] */
```

Of these, INTDIV, CHKINST, and TRAPV are related to integer arithmetic or non-arithmetic instructions. FLTBUN...FLTNAN are generated by the MC68881 and can be indirectly generated by the FPA. FPA_ENABLE and FPA_ERROR can only be generated by the FPA.

The FPE_FPA_ERROR code is used by the FPA to indicate that it cannot perform a particular operation; this may be because the operation is not a valid FPA instruction or the data is outside the domain accepted by the Weitek chips or the FPA microcode. The latter exceptions are part of normal FPA operation.

SIGFPE must be enabled and assigned to a signal handler that recognizes the FPE_FPA_ERROR code and handles it properly when an FPA is to be used. (This is done automatically by -ffpa). If SIGFPE is subsequently totally disabled, an FPE_FPA_ERROR signal will cause an infinite loop because the
FPA is never reset and cannot progress past the troublesome instruction.

Floating-point SIGFPE codes do not arise for programs compiled with -fsoft or -fsky. They do not arise for programs compiled with -f68881 unless IEEE traps are enabled on the MC68881 by setting bits in the Exception Enabled byte of the fpcr register. The MC68881 exception enabled bits also affect FPA results during recomputation; see "FPA Recomputation" below.

Users new to the IEEE Standard often wonder why seemingly catastrophic events such as division by zero or overflow do not cause immediate error termination of the program. They have been conditioned to expect the latter by various systems of arithmetic that were unable to provide any reasonable response for exceptional conditions.

The IEEE Standard, however, provides default responses for floating-point operations that are meaningful and adequate for many purposes: Infinities and NaNs are the usual results of overflow and division by zero. Sun's floating point meets the standard by silently providing the correct default result. This is usually satisfactory when the result of an operation is a floating-point quantity; other cases, sometimes troublesome, include comparisons, conversion to integer format, and conversion from binary to ASCII. Programmers who haven't considered the possibility of floating-point operands that might be infinities or NaNs sometimes get surprising results in these cases.

When an MC68881 is available, the SIGFPE signals FPE_FLTBSUN_TRAP through FPE_FLTNAN_TRAP can be enabled to occur when specified floating-point exceptions arise. For instance, to cause FPE_FLTOPERR_TRAP to be signalled whenever an invalid operation occurs such as converting a NaN, infinity, or too-large value to an integer, it is necessary to set the OPERR bit in the Exception Enable Byte in the MC68881's fpcr register, described in Motorola's MC68881 User's Manual. This can be done either in assembly language, or by using the _fpmode_subroutine described in the section "How to Use Special Features of the IEEE Standard" in Chapter 3.

Floating-point hardware or software use will affect the way that you work with debuggers on Sun systems. Signal handling and disassembly operations are particularly affected. For more information about debuggers and floating-point, see Appendices B and C in this manual.

When using the debuggers adb, dbx, and dbxtool, be aware that certain signals occur in the normal course of floating-point operations. As mentioned above, a MC68881 instruction is attempted to determine if an MC68881 is present. If no MC68881 is present, SIGEMT is signalled and is caught by the debuggers, stopping the process being debugged. You can then either continue or, if you prefer, instruct the debugger in advance to ignore the signal by issuing the command 7:i in adb or ignore 7 in dbx. This command passes the signal directly to the debugged process, bypassing the debugger.

When an FPA is installed, SIGFPE is signalled each time FPA recomputation is required, as discussed below. When these signals occur, you may either continue, or issue 8:i or ignore 8 to ignore them. Almost every process that uses the FPA requires recomputation for at least the first inexact result.
Disassembly

MC68881 instructions can always be disassembled using MC68881 assembly language mnemonics. FPA instructions, however, are simply movel instructions to particular addresses, and consequently cannot be positively distinguished from other movel instructions. To allow control over this disassembly, adb and dbx provide ways to specify whether or not movel instructions should be considered as potential FPA instructions.

Sun's compilers generate FPA instructions using movel's with "long absolute" and "address register with displacement" effective address modes. For example:

```
fpadss <eadatal>,fpa0
fpmoves@1 fpa0, <eadata2>
```

generates exactly the same code as

```
movel <eadatal>, 0xe0000380
movel a1(0xc00), <eadata2>
```

The debuggers can recognize two patterns of move instructions as FPA instructions. First, instructions that access the FPA using absolute addressing may be recognized simply by examining the address; second, instructions that access the FPA using base + 16-bit displacement addressing may be recognized if the base register used has been designated as a pointer to the FPA's virtual address.

Note that you can make this designation at runtime, independent of the actual register contents. The default is to recognize absolute-mode FPA instructions only if an FPA is present. Base-mode FPA instructions are assumed to be moves by default, since no register is assumed to be an FPA base register.

FPA disassembly is enabled in adb by the command 1>F and disabled with 0>F. 1>B designates a1 as an FPA base register, while -1>B indicates that no register is being used as an FPA base register. The first example above would be disassembled as an FPA instruction if F were 1; the second if F were 1 and B were 1. Otherwise they would be disassembled as movel's.

In dbx,

```
dbxenv fpaasm on
```

enables FPA disassembly, while

```
dbxenv fpaasm off
```

disables it. An FPA base register may be specified using

```
dbxenv fpabase <register>
```

while

Revision A of 19 September 1986
Printing all MC68881 Registers

In adb, $R displays MC68881 registers fp0-fp7 in hexadecimal (hex) and extended-precision decimal, and fpcr, fpsr, and fpiar in hex.

In dbx, the command &$fp0/nE displays n MC68881 registers starting with fp0, in hex and extended-precision decimal.

Printing all FPA Registers

In adb, $x displays FPA registers fpa0-fpa15 in hexadecimal, single-precision decimal, and double-precision decimal. It displays fpamode, fpastatus, state, imask, ldptr, ierr, and instruction pipe registers in hex. $X displays FPA registers fpa16-fpa31 in hex, single decimal, and double decimal, and fpamode, fpastatus, state, imask, ldptr, ierr, and instruction pipe registers in hex.

In dbx, the command &$fpa0/nF displays n FPA registers starting with fpa0, in hex and double-precision decimal. To display FPA registers in hex and single-precision decimal, use &$fpa0s/nf.

Printing in Single-Precision

In adb, a 4-byte memory location, fpan, or a register dn can be displayed in single-precision decimal; use addr/f or <fpan=f or <dn=f in adb.

In dbx, use addr/f to print a single location in hexadecimal and single-precision decimal, addr/nf to print n locations. The notation &$regname can be used as a handle for printing registers; note that registers do not actually have addresses.

Printing in Double-Precision

In adb, an 8-byte memory location, fpan, or a register pair dn:dn+1 can be displayed in double-precision decimal; use addr/F or <fpan=F or <dn=F.

In dbx, use addr/F to print a memory location or register in hexadecimal and double-precision decimal, addr/nF to print n registers or memory locations.

Printing in Extended-Precision

A 12-byte memory location or fpn can be displayed in extended-precision decimal: In adb, use addr/e or <fpn=e.

In dbx, use addr/E or &$fpn/E.

Modifying Floating-Point Registers or Memory Locations

In adb you cannot load memory or registers with data in an ASCII floating-point representation. Hexadecimal data can be used to load one 32-bit word at a time. The words of a register can be designated separately, to make loading MC68881 and FPA registers easier. Thus the most significant, middle, and least significant words of fp1 can be referred to as fp1, fp1, and fp1. The more significant and less significant words of the FPA register fpal can be referred to as fpal and fpal.

In dbx you can set a register or memory location with a value expressed in floating-point decimal notation.

dbx converts data into extended-precision format for an MC68881 register, and into double- or single-precision format for an FPA register, depending on whether a name in $fpa0..$fpa0 or $fpa0s..$fpa31s is used. The
data is converted according to the declared type of the variable for variables defined in a compiled language.

```
set81 <fpreg> = xyz
```

to set an MC68881 register to an arbitrary 3-word bit pattern, formed by concatenating the 32-bit values x, y, and z. No such command exists for FPA registers in Release 3.2.

2.8. FPA Recomputation

The Sun FPA relies on the Sun-3 CPU’s MC68881 to perform many operations that would be difficult or inefficient to perform with the Weitek 1164/1165 chip set. These operations include any in which IEEE arithmetic exceptions arise. When one of these exceptions is detected in the Weitek chips, the operation is terminated and a bus error notifies the CPU that recomputation on the MC68881 is required.

The operating system intercepts the bus error, diagnoses it as coming from the FPA, and sends a SIGFPE to the process in question. That process is responsible for having a correct SIGFPE signal handler installed that determines if the SIGFPE is due to an FPA request for recomputation and handles it accordingly. When `-ffpa` is requested, such a signal handler is installed by default; the following is a simplified version of that default handler:

```
#include <signal.h>

int
sigfpe_handler(sig, code, scp)
int sig, code;
struct sigcontext *scp;
{
    if (code == FPE_FPA_ERROR) {
        if (fpa_handler(scp))
            return;
    } else {
        fprintf(stderr, "SIGFPE Handler pc %X code %X \n", scp->sc_pc, code);
        fflush(stderr);
    }
    abort();
}
```

`fpa_handler()` is the standard FPA recomputation routine contained in libc. It returns 1 if the FPA error was fixed by recomputation and 0 otherwise, as in the cases that the FPA error was caused by hardware failure or incorrect software. `fpa_handler()` is used to support the IEEE Standard arithmetic features pertaining to rounding modes, exceptions, and traps.
Rounding modes are supported directly by the Weitek 1164/1165 for simple instructions; the elementary transcendental functions, however, are microcoded. When an elementary transcendental function is called with a rounding mode other than the default (round to nearest) recomputation is invoked in order to compute the function on the MC68881.

Exceptions

Exceptions are reported by the Weitek chips after each operation, but those chips do not accumulate exceptions or allow optional trapping on them. Consequently, whenever the Weitek chips report one of the exceptions other than inexact, the FPA hardware signals that recomputation is required. The CPU receives that signal when it attempts to perform a subsequent FPA instruction; the CPU's program counter points to the subsequent instruction rather than to the instruction which suffered the exception; the latter's address is lost. When an exception is signalled, the result delivered by the Weitek chips is not written to the destination FPA register specified by the FPA instruction, since in many cases that would destroy input data required to recompute the correct result.

The recomputation routines examine the FPA's instruction pipe, clear it, and recompute the first instruction in the pipe, which is the one that generated the exception. The recomputed result is placed in the FPA register that was the instruction's intended destination, and any IEEE exception flags raised during the course of the computation are OR'ed into the MC68881's Accrued Exception byte in the fpsr register.

After recomputation occurs, the contents of the FPA's fpstatus register and the MC68881's Condition Code, Quotient, and Exception Status bytes are undefined, except that after recomputation of an FPA comparison instruction (which happens when one or both operands are NaNs), fpstatus is properly defined so it can be read and then written into the MC68020's status register.

Inexact exceptions arise more often than not during floating-point operations. If inexact is the only exception that arose, the Weitek-computed numerical result is correct. Causing a recomputation on each such exception would unacceptably degrade performance. Consequently the FPA has a register called imask that allows software to control whether inexact exceptions invoke recomputation. Sun-supplied software uses imask in conjunction with the MC68881's status and control registers to maintain an accurate record of inexact exception occurrences without recomputing for each one. Sun's software conventions for imask use may be defeated if users alter imask other than indirectly through the function _fpmode_ described below.

When a -ffpa program begins execution, imask is set to 1 so that the FIRST inexact exception detected by the FPA causes a recomputation. After the recomputation, the inexact Accrued Exception bit in the MC68881's fpsr is turned
on and `imask` is cleared UNLESS the inexact operation Exception Enable bit is set in the MC68881's `fpcr`. The latter bit, normally cleared, may be set by the user to indicate that EVERY inexact FPA operation should cause recomputation by the MC68881, with a trap occurring if the MC68881 recomputation is also inexact.

If you use either the function `_fpstatus_` to clear the MC68881 `fpsr`'s inexact Exception Accrued bit, or `_fpmode_` to set the `fpcr`'s inexact operation Exception Enabled bit, then the FPA's `imask` will be set so that the next inexact operation will cause recomputation.

Traps on FPA instructions can be obtained by setting bits in the MC68881's Exception Enable byte in the `fpcr` register. When an exception is detected by a Weitek chip the FPA calls for recomputation; if that recomputation causes a MC68881 exception corresponding to a set Exception Enable bit then a MC68881 trap occurs, manifested as a `SIGFPE` with a code equal to one of

```
FPE_FLT{BSUN, INEX, DIV, UND, OPErr, OVF, NAN}_TRAP
```

The MC68881 trap occurs after the FPA recomputation takes place; the `pc` in the `SIGFPE` handler parameter `scp` will point to an FPA instruction in the user's code, the same one pointed to by the original recomputation request. The address of the last MC68881 instruction executed in `fpa_handler()` is in the MC68881's `fp iar` register.

Writing a `SIGFPE` trap handler for an MC68881 trap generated indirectly by the FPA requires considerable care. The same trap handler must handle both the FPA's request for recomputation and the MC68881's trap signal.

Sun does not support user-written replacements for `fpa_handler()`. If you choose to write one, be sure to meet all hardware error-handling requirements; in particular, clear the FPA's pipe before attempting any other FPA instructions. Otherwise an infinite loop of `SIGFPE`'s is likely to result.

Because the treatment of floating-point exceptions is so variable, most floating-point programs that run reliably on machines with different types of arithmetic do not cause any floating-point exceptions to occur other than inexact. Consequently Sun's FPA recomputation scheme was designed without consideration of efficiency other than in the inexact case.

Programs that generate many exceptions may run more slowly than software floating point due to the intervention of the operating system to handle bus errors and signalling. The most likely cases where this might arise are computations which frequently underflow or which handle many NaNs. If recomputation performance is an issue, it may be partially ameliorated by using the Weitek chips in "fast" mode. "Fast" mode, although inconsistent with the IEEE Standard, causes no ill effects on programs that work correctly on a variety of non-IEEE machines, since those machines probably underflow abruptly to zero without creating subnormal (denormalized) numbers as IEEE machines do. In the Weitek chips' normal "IEEE" mode, recomputation is invoked if either operand
or the result is a subnormal number. In the Weitek chips' "fast" mode, recomputation is only invoked if the result would be a subnormal number; subnormal operands are treated as zero without generating any exception.

The Weitek fpamode register is intended for use by Sun software. If you alter it directly using an assembly language instruction

\[
\text{fpmove} \ #0x3,\text{fpamode} \ | \text{Set "FAST" mode+standard rounding.}
\]

or by an equivalent FORTRAN call

\[
\text{call fpamode}(3)
\]

be careful to preserve the values of mode bits that you do not intend to change.

The default value of \text{fpamode} is 2, corresponding to rounding to nearest mode, treating subnormal operands in "IEEE" mode, and converting floating to integer in round-toward-zero mode.

The following program illustrates performance aspects in the face of underflows — a few (c = 0.49) or a lot (c = 0.51).

\[
c \quad \text{call fpamode}(3)
\]
\[
x = 1
\]
\[
c = 0.49
\]
\[
c \quad \text{or 0.51 for a lot}
\]
\[
c \quad \text{do 1 i= 1, 10 000 000}
\]
\[
1 \quad x = c \times x
\]
\[
\text{print *, c, x}
\]
\[
\text{end}
\]

The execution time in seconds for various compilation options is as follows:

\[
\begin{array}{ccc}
\text{c=0.49} & \text{c=0.51} & \text{Options} \\
112 & 491 & -0 -fsoft \\
100 & 162 & -0 -f68881 -fstore \\
20 & 70 & -0 -f68881 \\
15 & 13800 & -0 -ffpa \\
15 & 15 & -0 -ffpa (call fpamode(3) uncommented)
\end{array}
\]
IEEE-Standard Conformance

3.1. Supported IEEE Standard Features
 Numeric Formats
 ASCII-to-Binary Conversion
 Rounding Direction Modes, Exceptions, and Traps
 Numerical Results
 MC68881 Rounding Precision Mode
 Ordered Comparisons

3.2. How to Use Special Features of the IEEE Standard
 Rounding Modes and Trap Enabling
 Trap Enabling
 Using Special Features From FORTRAN
 Exceptions, Condition Code, and Quotient Status
 Signalling NaNs
 Using _fpmode_and _fpstatus_from C

3.3. Special Library Entry Points
The conformance of Sun software to the IEEE Standard varies depending on what compiler code generation options are chosen. The description in this chapter refers to the underlying arithmetic of Release 3.2 FORTRAN, Pascal, and C. Some of the features of the IEEE Standard that are unsupported in higher-level languages must be accessed through constructed subroutines, generally in assembly language; examples of these are listed later.

3.1. Supported IEEE Standard Features

- **Numeric Formats**
 All Sun floating-point options support single and double precision. Extended precision is supported only in assembly language for the MC68881, as are rounding precision modes. Signalling NaNs are only recognized with -f68881 and -ffpa.

- **ASCII-to-Binary Conversion**
 Sun's current software does not support IEEE-standard conversion from ASCII strings representing decimal numbers to binary floating point or the reverse. Such conversion is always performed in the default rounding mode, signals no exceptions, and errors may be slightly larger than prescribed by the Standard, particularly in double precision. Assembly language programmers can obtain standard conversion using an A93N MC68881, if one is present.

- **Rounding Direction Modes, Exceptions, and Traps**
 Rounding mode, exception, and trap support are handled differently by the various floating-point options:
 - `-fsoft` and `-fsky` don't support rounding modes, exceptions, or traps
 - `-f68881` supports rounding direction and precision modes, exceptions, and traps
 - `-ffpa` supports rounding direction modes and exceptions but not the full trapping mechanism recommended by the IEEE Standard

- **Numerical Results**
 Correct single- and double-precision numerical results are obtained for all operations (except conversion between ASCII and binary) in the following cases:
 - `-fsoft` in round-to-nearest mode
 - `-ffpa`, provided the MC68881's version is A93N
 - `-f68881`, if the MC68881 is A93N and MC68881 rounding precision is set to double
Ordered Comparisons

3.2. How to Use Special Features of the IEEE Standard

- The FORTRAN logical operators .eq., .lt., .le., .gt., .ge., and their analogs in C and Pascal return false if either operand is a NaN. With -f68881 and -ffpa, all except .eq. and .ne. also cause an exception if either operand is a NaN.

Correct results for -ffpa and -f68881 depend on the presence of an A93N mask version MC68881.

The default MC68881 rounding precision mode is extended. This means that extended-precision operations upon extended-precision operands produce extended-precision results and exceptions that conform completely to the Standard. The design of the MC68881 makes this mode substantially more efficient than single or double rounding precision modes.

However, a double-precision operation that computes a double-precision result from double-precision operands will then be computed on the MC68881 with two roundings:

```
fmoved x,fp0  | This operation is exact.
fmuld y,fp0   | Round extended-precision fp0 here.
fmoved fp0,z  | Round double-precision z here.
```

From the point of view of verifying double-precision conformance to the IEEE Standard, multiple roundings on a single arithmetic operation cause incorrect results to be generated occasionally, even though default extended-precision accumulation is generally faster and more accurate. The double rounding precision mode can be used to insure that only one rounding occurs (in fmuld in the example above), mainly for the purpose of verifying conformance with the IEEE test vectors and the Paranoia program discussed later.

Programs should not generally use double rounding precision mode unless they require, on an operation-by-operation basis, the same results as would be obtained without extended precision.

Certain features of the IEEE Standard are not readily available from higher-level languages. Standard language or library extensions will eventually be developed to allow machine-independent access to these features. Sun supports such standardization efforts and, in the meantime, provides some provisional assembly language methods for accessing the special features. Since these provisional methods are nonstandard and probably transitory, limit their use to situations in which there is no other way to achieve the intended effect.
Rounding modes and trap enabling are available with `-f68881` and `-ffpa`. These fields are contained in the MC68881's `fpcr` register; see the MC68881 User's Manual. The following `libc` routine exchanges a new 32-bit mode control word with the existing one:

```
.globl _fpmode_
_fpmode_: 
  | On entry, sp@(4) contains the address of the
  | new 32-bit value to be placed in fpcr.
  | On exit, d0 contains the previous fpcr value.
```

F77:

```
integer function fpmode( new )
integer new

fpmode( new ) =
```

CC:

```
int fpmode_(new)
int *new ;
```

PC:

```
function fpmode( new : integer ) : integer ;
external fortran ;
```

Rounding direction modes are effective with `-f68881` and `-ffpa`. Rounding precision modes are only effective with `-f68881`.

Trap enabling with `_fpmode_` will cause `SIGFPE` signals when the MC68881 detects an exception whose trap is enabled. The `SIGFPE` code indicates the specific exception; the MC68881's `fpiar` register contains the address of the MC68881 instruction which caused the exception (the `pc` is usually advanced beyond that point before the exception is recognized).

C Set rounding direction mode to round toward zero:
```
integer oldmode, fpmode
oldmode = fpmode(16)
```

C Set rounding precision mode to double precision:
```
integer oldmode, fpmode
oldmode = fpmode(128)
```
Enable signalling SIGFPE on overflow, division by zero, or invalid operation:

```
integer oldmode, fpmode
oldmode = fpmode(62464)
```

Exceptions, Condition Code, and Quotient Status

```
.globl _fpstatus_
_fpstatus_:
  On entry, sp@8(4) contains the address of the
  new 32-bit value to be placed in fpsr.
  On exit, d0 contains the previous fpsr value.
```

Only the Accrued Exception byte of fpsr is defined with -ffpa. Here is an example of testing the Accrued Exception byte from FORTRAN:

```
c Test accrued exception bits to determine if overflow,
c division by zero, or invalid operation has occurred;
c also clear status bits:

integer oldstatus, fpstatus
oldstatus = fpstatus(0)
if (and(oldstatus,128) .ne. 0) print *, ' invalid operation occurred'
if (and(oldstatus,16) .ne. 0) print *, ' division by zero occurred'
if (and(oldstatus,64) .ne. 0) print *, ' overflow occurred'
```

Signalling NaNs

Signalling NaNs are detected by the MC68881 as NaNs containing a cleared leading fraction bit. When detected, SIGFPE is signalled with the FPE_FLTNAN_TRAP code. The FPA always causes recomputation when a NaN is encountered; the MC6881 distinguishes quiet from signalling during recomputation. -fsoft and -fsky treat all NaNs as quiet.

Using _fpmode_ and _fpstatus_ from C

```
enum fp_rounding_direction /* rounding direction type */
{
  fp_rd_nearest  = 0,
  fp_rd_zero    = 1,
  fp_rd_plus    = 2,
  fp_rd_minus   = 3
};
```

Revision A of 19 September 1986
enum fp_rounding_precision /* extended rounding precision type */
{
 fp_rp_extended = 0,
 fp_rp_single = 1,
 fp_rp_double = 2,
 fp_rp_3 = 3
};

enum fp_accrued_type /* accrued exceptions according to fpsr bit number */
{
 fp_inexact = 3,
 fp_divide = 4,
 fp_underflow = 5,
 fp_overflow = 6,
 fp_invalid = 7
};

enum fp_exception_type /* exceptions according to fpcx/fpsr bit number */
{
 fp_inex1 = 8,
 fp_inex2 = 9,
 fp_dz = 10,
 fp_unfl = 11,
 fp_ovfl = 12,
 fp_operr = 13,
 fp_snan = 14,
 fp_bsun = 15
};

unsigned
print_81_mode(newmode) /* Exchanges floating-point mode and prints out new mode settings. */
unsigned newmode;
{
 unsigned oldmode, fpmode_();

 oldmode = fpmode_(&newmode);
 printf(" New floating-point mode: \n");
 printf(" Rounding direction toward ");
 switch ((newmode >> 4) & 3) {
 case fp_rd_nearest:
 printf(" nearest ");
 break;
 case fp_rd_zero:
 printf(" zero ");
 break;
 case fp_rd_minus:
 printf(" minus infinity ");
 break;
 case fp_rd_plus:
 printf(" plus infinity ");
 break;
 }
printf("\n");
printf(" Extended rounding precision ");
switch ((newmode >> 6) & 3)
{
case fp_rp_extended:
 printf(" extended ");
 break;
case fp_rp_single:
 printf(" single ");
 break;
case fp_rp_double:
 printf(" double ");
 break;
}
printf("\n");
printf(" Enabled exceptions: ");
if ((newmode >> (unsigned) fp_inex1) & 1)
 printf(" inex1 ");
if ((newmode >> (unsigned) fp_inex2) & 1)
 printf(" inex2 ");
if ((newmode >> (unsigned) fp_dz) & 1)
 printf(" dz ");
if ((newmode >> (unsigned) fp_unfl) & 1)
 printf(" unfl ");
if ((newmode >> (unsigned) fp_ovfl) & 1)
 printf(" ovfl ");
if ((newmode >> (unsigned) fp_operr) & 1)
 printf(" operr ");
if ((newmode >> (unsigned) fp_snan) & 1)
 printf(" snan ");
if ((newmode >> (unsigned) fp_bsun) & 1)
 printf(" bsun ");
printf("\n");
return (oldmode);
}

unsigned
print_81_status(newstatus) /* Exchanges floating-point status and
 prints out old status settings. */
{
 unsigned newstatus;
 unsigned oldstatus, fpstatus_();

 printf(" Old floating-point status: \n");
 oldstatus = fpstatus_(&newstatus);
 printf(" Current exceptions: ");
 if ((oldstatus >> (unsigned) fp_inex1) & 1)
 printf(" inex1 ");
 if ((oldstatus >> (unsigned) fp_inex2) & 1)
 printf(" inex2 ");
 if ((oldstatus >> (unsigned) fp_dz) & 1)
 printf(" dz ");
 if ((oldstatus >> (unsigned) fp_unfl) & 1)
 printf(" unfl ");
 if ((oldstatus >> (unsigned) fp_ovfl) & 1)
 printf(" ovfl ");
 if ((oldstatus >> (unsigned) fp_operr) & 1)
 printf(" operr ");
 if ((oldstatus >> (unsigned) fp_snan) & 1)
 printf(" snan ");
 if ((oldstatus >> (unsigned) fp_bsun) & 1)
 printf(" bsun ");
 printf("\n");
 return (oldstatus);
}
if ((oldstatus >> (unsigned) fp_ovfl) & 1)
 printf(" ovfl ");
if ((oldstatus >> (unsigned) fp_operr) & 1)
 printf(" operr ");
if ((oldstatus >> (unsigned) fp_snan) & 1)
 printf(" snan ");
if ((oldstatus >> (unsigned) fp_bsun) & 1)
 printf(" bsun ");
printf(" Accrued exceptions: ");
if ((oldstatus >> (unsigned) fp_inexact) & 1)
 printf(" inexact "); /* inx1 + inx2 */
if ((oldstatus >> (unsigned) fp_divide) & 1)
 printf(" divide "); /* dz */
if ((oldstatus >> (unsigned) fp_underflow) & 1)
 printf(" underflow "); /* unfl */
if ((oldstatus >> (unsigned) fp_overflow) & 1)
 printf(" overflow "); /* ovfl */
if ((oldstatus >> (unsigned) fp_invalid) & 1)
 printf(" invalid "); /* operr + snan + bsun */
printf("\n");
return (oldstatus);
}

main()
{
 /* Demonstration program */
 double x;
 double zero = 0.0, one = 1.0, three = 3.0, big = 1.0e+300,
 small = 1.0e-300;

 print_81_mode(0); /* Default modes. */
 x = one / three; /* Inexact. */
 print_81_status(0); /* Inexact message; clear status. */
 x = one / zero; /* Divide by zero. */
 print_81_status(0); /* Divide by zero message; clear status. */
 print_81_mode(0x50); /* Round toward zero, round extended to */
 /* single precision. */
 x = zero / zero; /* Invalid operation. */
 x = big * big; /* Overflow, inexact. */
 x = small * small; /* Underflow, inexact. */
 print_81_status(0); /* Invalid operation, overflow, */
 /* underflow, inexact message, clear status. */
}
F... -fsoft
S... -fsky
M... -f68881
W... -ffpa

while the last letter indicates the precision:

...s single
...d double

Calling conventions are shown in the table below. Not all entry points have two arguments.

<table>
<thead>
<tr>
<th></th>
<th>First Argument/Result</th>
<th>Second Argument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single precision</td>
<td>d0</td>
<td>d1</td>
</tr>
<tr>
<td>Double precision</td>
<td>d0/d1</td>
<td>a0@</td>
</tr>
</tbody>
</table>

The IEEE remainder, a function of two arguments, is available from these assembly language entry points:

.globl Vrems,Vremd,Frems,Fremd,Srems,Sremd,Mrems,Mremd,Wrems,Wremd

Convert floating to integral value in integer format with rounding toward zero, a one-argument function, is available from these assembly language entry points:

.globl Vints,Vintd,Fints,Fintd,Sints,Sintd,Mints,Mintd,Wints,Wintd

This function is directly available in FORTRAN (INT), Pascal (trunc), and C (int).

Convert floating to integral value in integer format with rounding to nearest, a one-argument function, is available from these assembly language entry points:

.globl Frints,Frintd,Srints,Srintd

Convert floating to integral value in integer format with rounding according to current IEEE rounding mode, a one-argument function, is available from these assembly language entry points:

.globl Mrints,Mrintd,Wrints,Wrintd

Convert floating to integral value in floating-point format with rounding toward zero, a one-argument function, is available from these assembly language entry points:
This function is directly available in FORTRAN (AINT).

Convert floating to integral value in floating-point format with rounding to nearest, a one-argument function, is available from these assembly language entry points:

```
.globl Vaints,Vaintd,Faints,Faintd,Saints,Saintd,Maints,Maintd,Waints,Waintd
```

Convert floating to integral value in floating-point format with rounding according to current IEEE rounding mode, a one-argument function, is available from these assembly language entry points:

```
.globl Farints,Farintd,Sarints,Sarintd
```

```
.globl Marints,Marintd,Warints,Warintd
```
Benchmarks

Benchmarks .. 43

4.1. IEEE Test Vectors ... 43
 Software Test Vector Results ... 44
 Sky Test Vector Results ... 44
 MC68881 Test Vector Results ... 44
 A79J MC68881 Test Vector Results ... 45
 Sun FPA Test Vector Results ... 45
 Sun FPA Test Vector Results, fpamode(3) ... 45

4.2. Paranoia Test Program .. 45
 -ffpa Comments .. 46
 -f68881 Comments .. 46
 -fsky Comments .. 47
 Summaries .. 47

4.3. Elementary Function Accuracy Benchmarks .. 47
 Elfun Test Programs .. 47
 Test Programs of Liu .. 49
 Monotonicity .. 50

4.4. Performance Benchmarks .. 51
 Linpack .. 51
 SPICE .. 53

4.5. Benchmarking Hazards .. 54
 MC68020 Cache .. 54
 Whetstone .. 55
Several benchmarks are described in this chapter to give you some idea of the performance and degree of conformance of the floating-point support provided for Sun's systems.

The benchmarks described include conformance benchmarks, elementary function accuracy benchmarks, and performance benchmarks.

Note: All specific claims for conformance, accuracy, and speed are based on tests and measurements made using a preliminary version of Sun Software Release 3.2. Results obtained with the final Release 3.2 or with other releases may vary.

The conformance benchmarks described in this chapter are:

- IEEE test vectors.
- Paranoia.

Conformance to the IEEE Standard is primarily tested by running the IEEE test vectors, a collection of 15 sets of input data and output numerical results and exceptions, distributed by the University of California. A test program converts the input data from its distributed symbolic form to the corresponding binary representation, obtains the result delivered by Sun floating-point software or hardware, and compares the computed result and exceptions with those prescribed by the Standard.

Sun's test program tests single-precision results computed from single-precision operands, and double-precision results computed from double-precision operands. The test program obtains access to Sun's floating-point software or hardware primarily through FORTRAN. The following double-precision add test function is typical:

```fortran
real*8 function addd ( x, y)
real*8 x, y
addd = x + y
end
```

Test vectors for the following functions are tested with FORTRAN subprograms like `addd`:
Some functions are coded in assembly language as described in Appendix D. Test vectors for the following functions are tested with such assembly language subroutines:

- absolute value
- add
- compare
- divide
- multiply
- negate
- subtract
- square root

The test vectors as distributed contain 21002 test cases when all rounding modes are tested and 5280 test cases when only the default round-to-nearest mode is tested.

Software Test Vector Results

With `-fsoft`, IEEE test vectors find no numerical errors in the default rounding direction mode. Software floating point does not support other rounding direction modes or IEEE exceptions.

Sky Test Vector Results

With `-fsky`, IEEE test vectors find 59 numerical errors in the default rounding direction mode, 20 in addition, 20 in subtraction, 8 in multiplication, 2 in division, and 9 in square root. All are errors of one unit in the last place or errors in the sign of zero results. The errors arise because of limitations in the microcode for the Sky FFP. Sky floating point does not support other rounding direction modes or IEEE exceptions.

MC68881 Test Vector Results

With A93N `-f68881`, and with `double rounding` precision mode, IEEE test vectors find no numerical or exception errors in any rounding direction mode.

With A93N `-f68881`, and with `extended rounding` precision mode, IEEE test vectors find 22 numerical errors and 50 exception errors in addition (2, 0), subtraction (2, 0), multiplication (2, 27), division (11, 23), and square root (5, 0), testing all rounding direction modes. All numerical errors are one unit in the last place. The errors arise because extended rounding precision occasionally causes different results from double rounding precision as discussed above.
With A79J -f68881, and with double rounding precision mode, IEEE test vectors find 27 numerical errors and no exception errors, in multiplication (16), division (5), and scalb (6), testing all rounding direction modes. All numerical errors relate to erroneous zero results being computed when correctly rounded results would be the smallest normalized number.

With -ffpa and an A93N MC68881 installed, IEEE test vectors find no numerical or exception errors in any rounding direction mode.

With -ffpa and "fast" fpamode enabled, IEEE test vectors find 1616 numerical errors and 1032 exception errors in addition, subtraction, multiplication, division, comparison, round to integral value, and nextafter. This mode is not intended to conform to the IEEE standard.

The Paranoia test program was developed by W. Kahan at the University of California to test implementations of floating-point arithmetic by ostensibly machine-independent means. Shortcomings in numerics are detected and classified as DISASTERS, FAILURES, SEVERE DEFECTS, DEFECTS, FLAWS, and WARNINGS. At the end of the program, the number of shortcomings in each class is displayed, and if the arithmetic appears to conform to the IEEE Standard, the program so states. Sun tests Fortran, C, and Pascal versions of Paranoia that evolved from Kahan’s original 1983 version in Basic.

In the following tables, DEFECTS, FLAWS, and WARNINGS encountered are enumerated D1, Fj, and Wk, and described afterward. 754 indicates the arithmetic appeared to conform to the IEEE Standard.

Single-Precision Paranoia Results

<table>
<thead>
<tr>
<th>Compiler Options</th>
<th>Fortran</th>
<th>C</th>
<th>Pascal</th>
</tr>
</thead>
<tbody>
<tr>
<td>-O -ffpa</td>
<td>754 W1</td>
<td>754 W1</td>
<td>754 W1</td>
</tr>
<tr>
<td>-O -f68881</td>
<td>754 W1</td>
<td>754 W1</td>
<td>754 W1</td>
</tr>
<tr>
<td>-O -f68881 -fstore</td>
<td>754 W1</td>
<td>754 W1</td>
<td>754 W1</td>
</tr>
<tr>
<td>-O -fsky</td>
<td>D1 D2 D3 F1 F2 W1</td>
<td>D4 F1 F2 W1</td>
<td>D1 F1 F2 W1</td>
</tr>
<tr>
<td>-O -fsoft</td>
<td>754 W1</td>
<td>754 W1</td>
<td>754 W1</td>
</tr>
</tbody>
</table>

Double-Precision Paranoia Results

<table>
<thead>
<tr>
<th>Compiler Options</th>
<th>Fortran</th>
<th>C</th>
<th>Pascal</th>
</tr>
</thead>
<tbody>
<tr>
<td>-O -ffpa</td>
<td>754 W1</td>
<td>754 W1</td>
<td>754 W1</td>
</tr>
<tr>
<td>-O -f68881</td>
<td>754 W1</td>
<td>F1 W1</td>
<td>F1 W1</td>
</tr>
<tr>
<td>-O -f68881 -fstore</td>
<td>F1 W1</td>
<td>F1 W1</td>
<td>F1 W1</td>
</tr>
<tr>
<td>-O -fsky</td>
<td>F1 W1</td>
<td>F1 W1</td>
<td>F1 W1</td>
</tr>
<tr>
<td>-O -fsoft</td>
<td>754 W1</td>
<td>754 W1</td>
<td>754 W1</td>
</tr>
</tbody>
</table>

Key to Shortcomings:

D1: DEFECT: sqrt(0.2401000e+04) - 0.4900000e+02 = 0.3814697e-05 instead of correct value 0.
D2: DEFECT: computed (0.20000000e+01)**(11) = 0.20480002e+04
Error like this may invalidate financial calculations involving interest rates.

D3: DEFECT: computed \((0.20000000e+01)^{(120)}\) = \(0.13292334e+37\)
they differ by \(0.53875151e+31\).

D4: DEFECT: Comparison alleges that what prints as \(Z = 1.40129846432481710e-45\)
is too far from \(\sqrt{Z} \times 2 = 0.000000000000000000000000000000e+00\).

F1: FLAW: lack(s) of guard digits or failure(s) to correctly round or chop
F2: FLAW: underflow can stick at an allegedly positive value \(z_0\)
that prints out as \(0.14012985e-44\).
W1: WARNING: computed \((0.00000000e+00)^{(0)}\) = NaN
compares unequal to correct \(0.10000000e+01\)

That peculiar results for \(x**y\) count only as WARNINGS when \(x=0\) and \(y=0\) reflects a division of opinion among analysts. The original BASIC version of Paranoia reflects Kahan’s view that \(x**0\) should be 1, even if \(x\) be zero, infinity, or NaN. Subsequent translators felt strongly differently, and so changed the code accordingly to note these cases as WARNINGS without otherwise counting them in determining the quality of implementations.

In "fast" mode, selected by

\[\text{call fpamode}(3)\]

Paranoia discovers an inconsistency of underflow treatment: underflow itself leads to recomputation of a subnormal result, but in subsequent use that result is sometimes treated as zero. Thus in single precision, Paranoia output includes the following:

SERIOUS DEFECT: \(X = 1.61630e-38\) is Unequal to \(Z = 1.17549e-38\),
yet \(X-Z\) yields \(4.40810e-39\).

"Fast" mode is not intended to conform to the IEEE Standard.

The FORTRAN version of Paranoia must be compiled with -fstore to force rounding to storage precision on assignment. If -fstore is omitted, Paranoia encounters numerous FAILURES and SERIOUS DEFECTS.

Double precision does not conform to the IEEE standard even with -fstore because of multiple roundings. However, by selecting double rounding precision mode with

\[\text{call fpmode}(128)\]
the result becomes 754 F1.
Shortcomings, particularly in single precision, are due to limited microcode space on the Sky FFP. C, FORTRAN, and Pascal defects differ because sqrt and pow are implemented in double precision in C, while pow is implemented in double precision in Pascal.

Each program prints an overall summary of the tested arithmetic. The summaries corresponding to the tables above are as follows:

| 754 W1: |
| No failures, defects nor flaws have been discovered. |
| Rounding appears to conform to IEEE standard p754. |
| The arithmetic diagnosed appears to be excellent! |
| F1 W1: |
| The arithmetic diagnosed seems satisfactory though flawed. |
| D1 D2 D3 F1 F2 W1: |
| D4 F1 F2 W1: |
| D1 F1 F2 W1: |
| The arithmetic diagnosed may be acceptable despite inconvenient defects. |

4.3. Elementary Function Accuracy Benchmarks

The accuracy of elementary transcendental functions is tested using the Elefunt FORTRAN test suite of Cody and Waite, and a preliminary C test suite of Alex Liu, of the University of California. More information on these programs may be obtained from sources listed in the Preface to this manual.

All programs are compiled with -O; MC68881's are used only in the default extended rounding precision mode. For these tests, A79J and A93N masks produce the same results.

In Cody and Waite's program, each function is tested by checking several independent identities at many random points; reported errors measure the degree to which the computed function values fail to satisfy certain identities, rather than the errors in the computed function values themselves. In addition to testing identities at random points, as shown below, Cody and Waite's programs also test error responses at isolated points.

Cody and Waite advise that it may be necessary to modify their test programs when extended-precision expression evaluation is performed, as in the case of Sun's -f68881 option. Sun's version of Elefunt accordingly contains changes to the codes that purify test arguments; these changes are listed below under the commented-out source lines they replace:
Below are worst-case differences detected in identities tested, expressed as the number of bits of precision lost.

compiler option->	-fsoft	-fsky	-f68881	-f68881	-ffpa
function:					
sqrt	0	1.0	0	0	0
exp	1.0	2.0	0	1.0	1.0
log	1.0	2.6	0	1.0	1.0
log10	2.4	3.0	3.0	2.1	2.1
x**y	1.0	7.3	3.2	1.0	1.0
sinh/cosh	2.0	2.0	0	1.0	1.6
tanh	2.1	2.0	0	1.0	1.5
sin/cos	1.5	3.1	0	0.6	1.5
tan	1.8	2.6	0	1.3	1.8
asin/acos	1.9	2.0	0	1.0	1.0
atan	1.0	1.9	0	1.0	1.0

Revision A of 19 September 1986
Greatest number of bits lost - double-precision elefunct

<table>
<thead>
<tr>
<th>compiler option-→</th>
<th>-fsoft</th>
<th>-fsky</th>
<th>-f68881</th>
<th>-f68881</th>
<th>-ffpa</th>
</tr>
</thead>
<tbody>
<tr>
<td>function:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sqrt</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>exp</td>
<td>1.0</td>
<td>1.0</td>
<td>0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>log</td>
<td>1.0</td>
<td>1.0</td>
<td>0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>log10</td>
<td>2.4</td>
<td>2.6</td>
<td>3.1</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>x**y</td>
<td>2.3</td>
<td>2.4</td>
<td>6.2</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>sinh/cosh</td>
<td>2.1</td>
<td>2.1</td>
<td>0</td>
<td>1.0</td>
<td>1.6</td>
</tr>
<tr>
<td>tanh</td>
<td>2.1</td>
<td>2.1</td>
<td>0</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>sin/cos</td>
<td>1.5</td>
<td>1.5</td>
<td>0</td>
<td>0.7</td>
<td>1.5</td>
</tr>
<tr>
<td>tan</td>
<td>2.0</td>
<td>2.1</td>
<td>0</td>
<td>1.2</td>
<td>2.0</td>
</tr>
<tr>
<td>asin/acos</td>
<td>1.2</td>
<td>1.2</td>
<td>0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>atan</td>
<td>1.0</td>
<td>1.4</td>
<td>0</td>
<td>1.0</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Test Programs of Liu

In Liu's test program, 64 random points are tested in 64 regions for each function; reported errors are the errors in the computed function values themselves, tested against more accurate values generated internally by Liu's program. Tests of $e^{*x} - 1$ and $\log(1+x)$ used assembly language entry points [FSMW] {expl,log1} [sd].

Below are worst-case errors in ulps, units in the last place, detected for each function tested. A difference of one ulp corresponds to a difference in the least significant bit.

Greatest errors in ulps - single-precision Liu tests

<table>
<thead>
<tr>
<th>compiler option-→</th>
<th>-fsoft</th>
<th>-fsky</th>
<th>-f68881</th>
<th>-ffpa</th>
</tr>
</thead>
<tbody>
<tr>
<td>function:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sin</td>
<td>0.88</td>
<td>5.79</td>
<td>0.54</td>
<td>0.88</td>
</tr>
<tr>
<td>cos</td>
<td>0.90</td>
<td>5.95</td>
<td>0.53</td>
<td>0.90</td>
</tr>
<tr>
<td>atan</td>
<td>0.86</td>
<td>2.08</td>
<td>0.52</td>
<td>0.86</td>
</tr>
<tr>
<td>log</td>
<td>0.92</td>
<td>3.48</td>
<td>0.53</td>
<td>0.92</td>
</tr>
<tr>
<td>log(1+x)</td>
<td>0.88</td>
<td>0.90</td>
<td>0.53</td>
<td>1.06</td>
</tr>
<tr>
<td>$e^{*x} - 1$</td>
<td>0.94</td>
<td>0.94</td>
<td>0.53</td>
<td>0.95</td>
</tr>
</tbody>
</table>
Greatest errors in ulps - double-precision Liu tests

<table>
<thead>
<tr>
<th>compiler option</th>
<th>-fsoft</th>
<th>-fsky</th>
<th>-f68881</th>
<th>-ffpa</th>
</tr>
</thead>
<tbody>
<tr>
<td>sin</td>
<td>1.01</td>
<td>0.99</td>
<td>0.57</td>
<td>1.01</td>
</tr>
<tr>
<td>cos</td>
<td>1.01</td>
<td>0.90</td>
<td>0.55</td>
<td>1.01</td>
</tr>
<tr>
<td>atan</td>
<td>1.06</td>
<td>0.98</td>
<td>0.56</td>
<td>1.02</td>
</tr>
<tr>
<td>log</td>
<td>0.92</td>
<td>0.96</td>
<td>0.59</td>
<td>0.92</td>
</tr>
<tr>
<td>log(1+x)</td>
<td>0.83</td>
<td>0.83</td>
<td>0.59</td>
<td>0.83</td>
</tr>
<tr>
<td>e**x - 1</td>
<td>1.13</td>
<td>1.00</td>
<td>0.57</td>
<td>1.18</td>
</tr>
</tbody>
</table>

Monotonicity

Operations specified in the IEEE Standard are required to be monotonic; elementary transcendental functions are often expected to be monotonic in their primary domains. Although expectations about monotonicity are seldom explicit in programs, monotonicity failures can befuddle debugging.

Liu's program tests monotonicity at selected points; failures were detected only with -fsky and only in single precision as follows:

- **log:** 4 monotonicity failures including $3.2768000000000000e+04$
- **atan:** 449 monotonicity failures including $5.2225278125000000e+05$

Although exhaustive testing of monotonicity is infeasible for double precision, it is in principle possible for single precision. At present, the following single precision IEEE Standard and Fortran functions have been tested over the indicated primary domains by evaluation at each single-precision representable number in the domain. If monotonic, execution times are shown in hours; "no" means not monotonic:

<table>
<thead>
<tr>
<th>IEEE function and domain</th>
<th>-ffpa</th>
<th>-f68881</th>
<th>-fsky</th>
<th>-fsoft</th>
</tr>
</thead>
<tbody>
<tr>
<td>x*x</td>
<td>8</td>
<td>30</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>abs</td>
<td>3</td>
<td>15</td>
<td>17</td>
<td>7</td>
</tr>
<tr>
<td>aint</td>
<td>15</td>
<td>14</td>
<td>17</td>
<td>7</td>
</tr>
<tr>
<td>arint</td>
<td>20</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ceil</td>
<td>22</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>floor</td>
<td>21</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dble</td>
<td>14</td>
<td>10</td>
<td>72</td>
<td>37</td>
</tr>
<tr>
<td>int</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rint</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sqrt</td>
<td>10</td>
<td>9</td>
<td>71</td>
<td>49</td>
</tr>
</tbody>
</table>
The -f68881 acos monotonicity failure is in extended precision and is not detected if -fstore is in effect.

All tests were compiled with -O and without -fstore, and were made on Sun-3’s except -fsky, made on a Sun-2. Timings are the entire execution time for the test program and consequently give only a rough comparison of function speed. As the execution times imply, these tests constitute an ongoing project.

The performance benchmarks described in this section, Linpack and SPICE, are commonly used to compare the relative performance of different manufacturer’s computers.

The most realistic of the frequently cited benchmarks of peak floating-point speed is the Linpack benchmark, a FORTRAN program that determines the time required to solve a 100x100 system of linear equations using the Linpack linear algebra subroutine library.

Sun’s version of the Linpack benchmark program reports performance in thousands of floating-point operations per second (KFLOPS). Performance reported below is based upon measuring total user and system CPU time used. All results are based on compiling FORTRAN source code; -fsoft, -fsky, and -fswitch were compiled on Sun-2’s; -f68881 and -ffpa were compiled on Sun-3’s.

All floating-point hardware runs at 16.7 MHz except as noted.
Sun-2 results (10 MHz MC68010 CPU):

<table>
<thead>
<tr>
<th>Compiler Options</th>
<th>Single Precision (KFLOPS)</th>
<th>Double Precision (KFLOPS)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>-O -fsoft</td>
<td>13</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>-O -fswitch</td>
<td>32</td>
<td>18</td>
<td>using Sky FFP</td>
</tr>
<tr>
<td>-O -fsky</td>
<td>49</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

Sun-3 results (15 MHz MC68020 CPU):

<table>
<thead>
<tr>
<th>FPU MHz</th>
<th>Compiler Options</th>
<th>Single Precision (KFLOPS)</th>
<th>Double Precision (KFLOPS)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5</td>
<td>-O -fsoft</td>
<td>28</td>
<td>12</td>
<td>using MC68881</td>
</tr>
<tr>
<td>12.5</td>
<td>-O -fswitch</td>
<td>47</td>
<td>34</td>
<td>using MC68881</td>
</tr>
<tr>
<td>12.5</td>
<td>-O -f68881</td>
<td>78</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>16.7</td>
<td>-O -f68881</td>
<td>93</td>
<td>87</td>
<td></td>
</tr>
</tbody>
</table>

Sun-3 results (16.7 MHz MC68020 CPU):

<table>
<thead>
<tr>
<th>FPU MHz</th>
<th>Compiler Options</th>
<th>Single Precision (KFLOPS)</th>
<th>Double Precision (KFLOPS)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5</td>
<td>-O -fsoft</td>
<td>34</td>
<td>15</td>
<td>using MC68881</td>
</tr>
<tr>
<td>12.5</td>
<td>-O -fswitch</td>
<td>50</td>
<td>37</td>
<td>using MC68881</td>
</tr>
<tr>
<td>12.5</td>
<td>-O -f68881</td>
<td>85</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>16.7</td>
<td>-O -f68881</td>
<td>108</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>16.7</td>
<td>-O -fswitch</td>
<td>185</td>
<td>105</td>
<td>using FPA</td>
</tr>
<tr>
<td>16.7</td>
<td>-O -ffpa</td>
<td>500</td>
<td>315</td>
<td></td>
</tr>
<tr>
<td>16.7</td>
<td>-O -f68881</td>
<td>87</td>
<td>82</td>
<td>double rounding</td>
</tr>
<tr>
<td>16.7</td>
<td>-f68881</td>
<td>95</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>16.7</td>
<td>-O -f68881</td>
<td>99</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>16.7</td>
<td>-fstore</td>
<td>109</td>
<td>101</td>
<td>rolled</td>
</tr>
<tr>
<td>16.7</td>
<td>-ffpa</td>
<td>280</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>16.7</td>
<td>-P -ffpa</td>
<td>420</td>
<td>285</td>
<td></td>
</tr>
<tr>
<td>16.7</td>
<td>-O -ffpa</td>
<td>615</td>
<td>405</td>
<td></td>
</tr>
</tbody>
</table>

The comment "double rounding" means that the double rounding precision mode of the MC68881 was selected. The comment "rolled" means that the inner loops of the Basic Linear Algebra Subroutines were rewritten slightly. The distributed form of the Linpack benchmark program has the key inner loop written in the Linpack benchmark program.
"unrolled" form

\[
\begin{align*}
\text{do } 1 & \ i = 1, n, 4 \\
x(i) & = x(i) + c \times y(i) \\
x(i+1) & = x(i+1) + c \times y(i+1) \\
x(i+2) & = x(i+2) + c \times y(i+2) \\
x(i+3) & = x(i+3) + c \times y(i+3)
\end{align*}
\]

because that form was faster on certain mainframes common in the mid-1970's. However, the unrolling defeats many current vectorizing compilers, so supercomputer manufacturers usually measure the rolled speed by rewriting the loop in the form:

\[
\begin{align*}
\text{do } 1 & \ i = 1, n \\
x(i) & = x(i) + c \times y(i)
\end{align*}
\]

Dongarra's Linpack benchmark performance compilation, listed in the Preface, annotates such results as "Rolled BLAS." Further complicating the issue is that compilers on some systems do not generate optimum code for the inner loop whether rolled or unrolled, so hand-coded assembly language is faster yet; these results are annotated as "Coded BLAS." For the rolled form of the Linpack benchmark, the Sun-3 code generated with `-O` and either `-ffpa` or `-f68881` is truly optimal and cannot be improved by hand coding in assembly language.

The SPICE program simulates integrated circuits and is an example of a complete application that is floating-point intensive but does not continually attain peak performance rates as does the Linpack benchmark. It is therefore more representative of relative performance on realistic computations that do not closely fit the model of a Linear Algebra computation.

For benchmarking purposes Sun uses a FORTRAN implementation of SPICE version 2G.6, and a C implementation of SPICE version 3A.7, both with an input data file called MOSAMP2, listed in Appendix E. The reported time is the total elapsed real time in seconds for the complete program, invoked with a command like

```
time spice.out < mosamp2.input >! mosamp2.output
```

In each case the program was run at least twice and the fastest result reported. Note that the global optimizer `iropt` is available in Sun's `f77`, but not in Sun's `cc`. `-fswitch` and `-fsoft` versions were compiled on Sun-2's and run on Sun-2s and Sun-3s. `-fsky` versions were compiled and run on Sun-2s. `-f68881` and `-ffpa` versions were compiled and run on Sun-3s. All floating-point hardware runs at 16.7 MHz except as noted.
Results are:

<table>
<thead>
<tr>
<th>FPU</th>
<th>Compiler Options</th>
<th>Real Time to Execute (Seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHz</td>
<td></td>
<td>Time</td>
</tr>
<tr>
<td>Sun-2 results (10 MHz MC68010 CPU):</td>
<td></td>
<td>2G.6</td>
</tr>
<tr>
<td></td>
<td>-O -fsoft</td>
<td>1372</td>
</tr>
<tr>
<td></td>
<td>-O -fswitch+Sky</td>
<td>483</td>
</tr>
<tr>
<td></td>
<td>-O -fsky</td>
<td>441</td>
</tr>
<tr>
<td>Sun-3 results (15 MHz MC68020 CPU):</td>
<td></td>
<td>595</td>
</tr>
<tr>
<td>12.5</td>
<td>-O -fsoft</td>
<td>184</td>
</tr>
<tr>
<td>12.5</td>
<td>-O -fswitch+A79J</td>
<td>102</td>
</tr>
<tr>
<td>16.7</td>
<td>-O -fswitch+A93N</td>
<td>166</td>
</tr>
<tr>
<td>16.7</td>
<td>-O -f68881+A93N</td>
<td>88</td>
</tr>
<tr>
<td>Sun-3 results (16.7 MHz MC68020 CPU):</td>
<td></td>
<td>482</td>
</tr>
<tr>
<td>12.5</td>
<td>-O -fsoft</td>
<td>165</td>
</tr>
<tr>
<td>12.5</td>
<td>-O -f68881+A79J</td>
<td>92</td>
</tr>
<tr>
<td>16.7</td>
<td>-O -f68881+A93N</td>
<td>139</td>
</tr>
<tr>
<td>16.7</td>
<td>-O -f68881+fpa</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>-O -ffpa</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>

4.5. Benchmarking Hazards

It is not easy to construct meaningful benchmark programs that are short and easy to understand and provide a sound basis for projecting results for realistic applications. The following examples illustrate how seemingly minor variations in hardware or in coding techniques can have surprising results.

The MC68020 has a 256-byte direct-mapped instruction cache. "Direct-mapped" means that memory address \(X \) is mapped to cache address \(X \mod 256 \), so memory locations \(X \) and \(X+256*n \) cannot be in the cache at the same time. This can be a problem for short loops or subroutines that call other short subroutines. If the difference in memory addresses of the caller and callee happens to be close to a multiple of 256, almost every instruction fetch misses the cache and performance is degraded overall. Note that this is a problem particularly of direct-mapped caches, and is more likely to be encountered when such caches are small, and is most noticeable when the caller and callee are very short, so that the instruction fetches from main memory add up to a significant fraction of the overall time required.

Programs coded in higher-level languages or even in separate assembly-language modules are usually written without thought to where they might be placed in memory, since that is often an accident of code generation or linking order which may not be visible to or controllable by the programmer.
The Whetstone benchmark was originally an Algol 60 program that duplicated the typical instruction stream processed by the Whetstone Algol interpreter during the 1960's. Performance is reported as thousands of Whetstone interpreter instructions per second.

Various FORTRAN translations of this program have been used to benchmark floating-point performance, but interpretation of the results has become increasingly difficult as new computer architectures and optimization techniques develop. The Linpack and SPICE benchmarks discussed above give better information about relative performance of computers and compilers. However, the Whetstone program is ideal for illustrating MC68020 cache effects.

The Whetstone program consists of several timing loops, but the most important, that consumes about half the overall time, is a loop that calls a subroutine P3. The loop is

```fortran
DO 90 I=1,N8
   CALL P3(X,Y,Z)
90    CONTINUE
```

and the subroutine is

```fortran
SUBROUTINE P3(X,Y,Z)
COMMON T,T2
X1 = X
Y1 = Y
X1 = T * (X1 + Y1)
Y1 = T * (X1 + Y1)
Z = (X1 + Y1) / T2
RETURN
END
```

This code is intended to model an important class of numerical codes that solve nonlinear problems: optimization and finding zeros of functions. These codes repeatedly call user-supplied subroutines to evaluate the nonlinear functions in questions. Usually, the calling routine is rather more complicated than a DO loop and the parameters vary; in those respects P3 is a deficient abstraction.

When compiled in single precision with -O and -ffpa, the results obtained for this program vary markedly depending on the cache contention between P3 and its calling loop. Single precision and -ffpa were chosen for illustration since cache contention is most noticeable when the timings of the caller and callee are as similar as possible. Worst-case performance is 2100 thousand Whetstone instructions per second (KWIPS), best case is 2400. Which result is obtained depends on the relative compiled addresses of the do loop and P3, which vary among compiler releases.

The performance with the MC68020's cache disabled is about 1750 KWIPS, so even the worst cache case is much better. A more complicated cache architecture on the MC68020 might show less variation but might be slower overall.
Assembly Language Inline Expansion

One way to avoid cache contention between callers and callees is to expand procedures inline in the calling code. There is a facility in Sun's compilers to facilitate such expansion at the assembly-language level; see the appendix "Assembly-Level Inline Expansion". This facility is intended to allow short, simple assembly-language library routines to be expanded inline to bypass the procedure-call overhead of saving and restoring registers and pushing arguments. To demonstrate the facility, we apply it to P3 by first compiling P3 separately with `-O -ffpa -S` to obtain this assembly language:

```assembly
.data
.comm  __BLNK__, 40
.text
.globl _p3_
_p3_:
    link a6, # -16
    fpmoved fpa4, a6@(-16)
    fpmoved fpa5, a6@(-8)
    movl a6@(8), a0
    fpmoves a0@, fpa4
    movl a6@(-12), a0
    fpmoves a0@, fpa5
    fpams fpa5, fpa4, __BLNK__, fpa4
    fpams fpa5, fpa4, __BLNK__, fpa5
    fpadd3s fpa5, fpa4, fpa2
    fpdivs __BLNK__ + 8, fpa2
    movl a6@(-16), a0
    fpmoves fpa2, a0@
    fpmoved a6@(-8), fpa5
    fpmoved a6@(-16), fpa4
    unlk a6
    rts
```

which was converted manually according to the inline expansion rules to

```assembly
.data
.comm  __BLNK__, 40
.text
.inline _p3_, 12
movl sp@+, a0
fpmoves a0@, fpa0
movl sp@+, a0
fpmoves a0@, fpa1
fpams fpa1, fpa0, __BLNK__, fpa0
fpams fpa1, fpa0, __BLNK__, fpa1
fpadd3s fpa1, fpa0, fpa2
fpdivs __BLNK__ + 8, fpa2
movl sp@+, a0
fpmoves fpa2, a0@
.end
```
When the FORTRAN Whetstone source, with P3 removed, was compiled with a .il inline expansion file containing the above, the resulting performance was 3300 KWIPS. The inner loop was:

```
L77069:
  movl  #VAR_SEG1+4, a0
  movl  d6, ___BLNK_+36
  movl  d7, ___BLNK_+32
  movl  d3, ___BLNK_+28
  fpmoves a0, fpa0
  movl  #VAR_SEG1+8, a0
  fpmoves a0, fpa1
  fpams  fpa1, fpa0, ___BLNK__, fpa0
  fpams  fpa1, fpa0, ___BLNK__, fpa1
  fpadd3s fpa1, fpa0, fpa2
  fpdivs  ___BLNK__+8, fpa2
  movl  #VAR_SEG1+12, a0
  fpmoves fpa2, a0
  movl  ___BLNK__+32, d7
  movl  ___BLNK__+36, d6
  movl  ___BLNK__+28, d3
  dbra  d5, L77069
```

Of course, someone optimizing by hand would normally expand FORTRAN source inline into the FORTRAN source of the caller! If the following source code is compiled:

```
DO 90 I=1,N8
   X1 = X
   Y1 = Y
   X1 = T * (X1 + Y1)
   Y1 = T * (X1 + Y1)
   Z = (X1 + Y1) / T2
90  CONTINUE
```

then resulting performance is 4100 KWIPS. Examination of the generated code shows the same number of floating-point instructions executed:

```
L77069:
  fpams@5  fpa5, fpa7, ___BLNK__, fpa6
  fpams@5  fpa5, fpa6, ___BLNK__, fpa4
  fpadd3s@5  fpa4, fpa6, fpa8
  fpdivs@5  ___BLNK__+8, fpa8
dbra  d5, L77069
```
Interestingly enough, executing the \texttt{P3} loop only once would be logically sufficient. Inspection shows that the inputs \(X\), \(Y\), \(T\), and \(T2\) are the same on each invocation, so the call could be moved outside the loop entirely. An optimizing compiler that did interprocedural global analysis might detect this. To measure the effect such analysis would have if performed by a hypothetical compiler, we change the source code to:

\begin{verbatim}
CALL P3(X,Y,Z)
DO 90 I=1,N8
90 CONTINUE
\end{verbatim}

Resulting performance is 4800 KWIPS; the floating point instructions are only executed once.

There is no compiler that can optimize code as well as a person who understands what is required to be done and how to do it! The Whetstone benchmark example illustrates this point extremely well, simultaneously rendering suspect its own value as a general-purpose floating-point benchmark.

A benchmark program by Myron Ginsberg was adapted to further illustrate how source coding techniques and compiler optimization techniques interact to affect the throughput on floating-point intensive calculations. This adaptation measures the time to evaluate a specific fifth-degree polynomial \(A\) at 500 points \(X(I)\) using several different methods. The "explicit" method is written out \textit{in extenso} specifically for fifth-degree polynomials:

\begin{verbatim}
DO 10 I=1,500
10 Y(I) = A(1) + X(I) * (A(2) + X(I) * (A(3) + X(I) * (A(4) + X(I) * (A(5) + X(I) * A(6))))))
\end{verbatim}

The "external" method relies on a conventional external subroutine for evaluating polynomials of arbitrary degree:

\begin{verbatim}
DO 10 I=1,500
Y(I) = PEVAL(A, M, X(I))
10 CONTINUE
\end{verbatim}

\begin{verbatim}
REAL FUNCTION PEVAL(A, M, X)
REAL A(*),X
INTEGER M,K
REAL P
P = A(M+1)
DO 15 K = M,1,-1
P = P * X + A(K)
15 CONTINUE
PEVAL = P
END
\end{verbatim}

The "inline" method effectively expands the "external" code inline at the source level:
The "vectored" method is intended to be optimized into appropriate vector operations on supercomputers:

```fortran
P = A(NCOEF)
DO 10 I=1,500
DO 20 J=M,1,-1
   20 P = A(NCOEF-J) + X(I) * P
10 Y(I) = P
```

The results are reported in KFLOPS. Each polynomial evaluation requires ten floating-point operations. The number of floating-point operations executed is the same in every case:

Single-Precision KFLOPS

<table>
<thead>
<tr>
<th>Options</th>
<th>explicit</th>
<th>inline</th>
<th>external</th>
<th>vectored</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0 -fsky</td>
<td>62</td>
<td>49</td>
<td>43</td>
<td>23</td>
</tr>
<tr>
<td>-0 -f68881</td>
<td>210</td>
<td>130</td>
<td>125</td>
<td>73</td>
</tr>
<tr>
<td>-0 -ffpa</td>
<td>1500</td>
<td>710</td>
<td>295-335</td>
<td>175</td>
</tr>
</tbody>
</table>

Double-Precision KFLOPS

<table>
<thead>
<tr>
<th>Options</th>
<th>explicit</th>
<th>inline</th>
<th>external</th>
<th>vectored</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0 -fsky</td>
<td>33</td>
<td>26</td>
<td>24</td>
<td>13</td>
</tr>
<tr>
<td>-0 -f68881</td>
<td>200</td>
<td>120</td>
<td>115</td>
<td>67</td>
</tr>
<tr>
<td>-0 -ffpa</td>
<td>1060</td>
<td>480</td>
<td>265-290</td>
<td>130</td>
</tr>
</tbody>
</table>

Note that the MC68020's internal cache causes the variable external case performance with `-ffpa`. The variation is insignificant with `-f68881`.

As the results indicate, the Sun FPA attains almost one third of the maximum theoretical throughput of the 1164/1165 chips - 4800 KFLOPS single, 3300 KFLOPS double. But this remarkably high efficiency is seldom achievable on realistic problems because performance is primarily limited by bus and memory bandwidth. The explicitly coded polynomial evaluation creates expressions so simple that Sun's FORTRAN compiler can allocate all the constants to FPA registers to minimize bus traffic. The vectorization-oriented evaluation, in contrast, is more difficult to optimize effectively for the FPA, since its complicated
expressions involve double subscripts and heavy bus traffic. These differences are most pronounced for high-performance floating-point hardware.
adb Changes

adb Changes ... 63

A.1. Changes in Release 3.1 ... 63
A.2. Examples of FPA Disassembly 64
A.3. Examples of FPA Register Use 65
A.1. Changes in Release 3.1

Release of the Floating-Point Accelerator (FPA) required some changes to adb, in order to support assembly language debugging of programs that use the FPA. Here are the changes made to adb in Release 3.1:

1. The new debugger variables A through Z are reserved for special use by adb. They should not be used in adb scripts.

2. The FPA register names fpa0 through fpa31 are recognized and can be used or modified in debugger commands. (This extension only applies to machines with FPA's.)

3. The debugger variable F governs FPA disassembly. A value of 0 indicates that all FPA instructions are to be treated as move instructions. A nonzero value indicates that FPA instruction sequences are to be disassembled and single-stepped using FPA assembly language mnemonics. The default value is 1 on machines with FPA's; on other machines, the default value is 0.

4. The debugger variable B is used to designate an FPA base register. If FPA disassembly is disabled (the F flag = 0) its value is ignored. Otherwise, its value is interpreted as follows:

 0 through 7:
 Based-mode FPA instructions that use the corresponding address register in [a0..a7] to address the FPA are also disassembled using FPA assembler mnemonics. Note that this is independent of the actual runtime value of the register.
 otherwise:
 All based-mode FPA instructions are disassembled and single-stepped as move instructions.

 The default value of the FPA base register number is -1, which designates no FPA base register.

5. The command $x has been added to display the values of FPA registers fpa0 through fpa15, along with FPA control registers and the current contents of the FPA instruction pipeline. All registers are displayed in the format:

<low word> <high word> <double precision> <single precision>
A.2. Examples of FPA Disassembly

As an example, consider the following assembly source fragment:

```
% cat foo.s
foo:
fpadds d0,fpa0
fpadd@d0 d0,fpa0
fpadd@d5 d0,fpa0
%
```

On machines without an FPA, the default mode is to disassemble all FPA instructions as moves. For the example program, the following output is produced (except the parenthesized comments added here for explanation):

```
% as foo.s -o foo.o
% adb foo.o
<F=d
0 (default value of 'F' on a machine without FPA)
foo?ia
foo:   movl d0,0xe0000380 (normal disassembly)
```

FPA disassembly can be enabled by setting the debugger variable F to 1. For example:

```
% adb foo.o
>1
<F=d
1 (new value of 'F')
foo?ia
foo:   fpadds d0,fpa0  (FPA disassembly)
```

On machines with an FPA, FPA disassembly is on by default, so the above output is produced without having to set the value of F.

FPA instructions may address the FPA using a base register in [a0..a7]. In practice, only [a0..a5] are used by the compilers.

adb does not know which register (if any) is being used to address the FPA in a given sequence of machine code. However, another debugger variable (B) may
be set by the user to designate a register as an FPA base register. By default, this variable has the value -1, which means that no register should be assumed to point to the FPA, so only instructions that access the FPA using absolute addressing are recognized as FPA instructions.

For the example program, a machine with an FPA produces the following output:

```
% adb foo.o
<F=d
  1 (default value of 'F' on a machine with FPA)
<B=d
  -1 (default value of 'B')
foo,3?ia
foo:  fpadds d0,fpa0            (FPA disassembly)
0x6:  movl d0,a0@(0x380)        (normal disassembly)
0xa:  movl d0,a5@(0x380)        (normal disassembly)
```

Note that the second and third instructions are still disassembled as moves, since adb cannot assume that they access the FPA. Continuing this example, if the FPA base register number is set to 5, the following output is produced:

```
% adb foo.o
5>B
<B=d
  5
foo,3?ia
foo:  fpadds d0,fpa0            (FPA disassembly)
0x6:  movl d0,a0@(0x380)        (normal disassembly)
0xa:  fpadds@5 d0,fpa0          (FPA disassembly)
```

Note that the second instruction is still disassembled as a move, since a5, the register designated as the FPA base, is not used in it.

A.3. Examples of FPA Register Use

FPA data registers can be displayed using a syntax similar to that used for the MC68881 coprocessor registers. Note that unlike the MC68881 registers, FPA registers may contain either single-precision (32-bit) or double-precision (64-bit) values; MC68881 registers always contain extended-precision (96-bit) values.

For example, if fpa0 contains the value 2.718282, we may display it as follows:

```
<fpao=f
  fpa0  0x402df855 +2.718282e+00
```

Note that the value is displayed in hexadecimal as well as in floating-point notation. Unfortunately, an FPA register can only be set to a hexadecimal value. To set fpa0 to 1.0, for example, you must know that this is represented as 0x3f800000 in IEEE single-precision format:
$$0x3f800000 > fpa0$$
$$<fpa0 = X$$
$$3f800000$$
$$<fpa0 = f$$
$$+1.00000000e+00$$
dbx and dbxtool Changes

B.1. Changes in Release 3.1 ... 69
B.2. Example of FPA Disassembly .. 70
B.3. Examples of FPA Register Use .. 72
B

B.1. Changes in Release 3.1

Release of the Floating-Point Accelerator (FPA) required some changes to dbx and dbxtool, in order to support debugging of programs using the FPA. Here are the changes made to dbx in Release 3.1:

1. There is a new fpaasm debugger variable to control disassembly of FPA instructions. This variable may be set or displayed using the dbxenv command, for which the syntax is:

 \[\text{dbxenv fpaasm [on|off]} \]

 All FPA instructions are disassembled as moves if the value of fpaasm is off. FPA instructions are disassembled with FPA assembly language mnemonics if the value is on. Defaults: on a machine with an FPA, fpaasm is initially set to on; on machines without an FPA, it is initially set to off.

2. The fpabase debugger variable has been added. It designates an MC68020 address register for FPA instructions that use base+short displacement addressing to address the FPA. The syntax is:

 \[\text{dbxenv fpabase [a[0-7]|off]} \]

 If FPA disassembly is disabled (if fpaasm is off) its value is ignored. Otherwise, its value is interpreted as follows:

 value in a0..a7:
 - Long move instructions that use the designated address register in base+short displacement mode address the FPA, and are disassembled using FPA assembler mnemonics. Note that this is independent of the actual run-time value of the register.

 value = off:
 - All based-mode FPA instructions are disassembled and single-stepped as move instructions.

The default value of fpabase is off, which designates no FPA base register.
3. The FPA registers $fpa0 .. $fpa31 are recognized and can be used in arithmetic expressions or modified in set commands. This extension only applies to machines with FPA's. Note that if an FPA register is used in an expression or assignment, its type is assumed to be double precision.

4. FPA registers can be displayed in single precision using the /e display format. Double-precision values are displayed using the /F display format.

B.2. Example of FPA Disassembly

Consider the following FORTRAN program:

```fortran
program example
print *,f(1.0,1.0)
end

function f(x,y)
f = atan(x/y)
return
end
```

Assume that this program has been compiled with the -g option into the file example. On a machine with an FPA, we could disassemble the function `f` as shown below. Note that the FORTRAN intrinsic ATAN is directly supported by the FPA instruction set and compiler.

```
% dbx a.out
(dbx) stop in f
(1) stop in f
(dbx) run
Running: a.out
stopped in f at line 5 in file "example.f"
      5   f = atan(x/y)
      (dbx) $pc/8i
f+0x12: movl   a68(0xc),a0
f+0x16: fpmoves a00,fpa0
f+0x1c: movl   a68(0x8),a0
f+0x20: fprdivs a00,fpa0
f+0x26: fpmoves fpa0,a68(-0xc)
f+0x2e: fpmoves a68(-0xc),fpa1
f+0x36: fpatans fpa1,fpa1
f+0x40: fpmoves fpa1,a68(-0x8)
...
```

FPA disassembly can be disabled by setting the debugger variable fpaasm to off. This causes dbx to disassemble FPA instructions as long moves to addresses on the FPA page.
When tracing a more complex program, one may occasionally want to step into a routine that has been compiled with optimization on. In such routines, the compiled code often addresses the FPA page by using base+short offset addressing. Such code can be difficult to recognize unless it is known ahead of time that a particular address register is being used to address the FPA. This situation can be identified by the presence of an instruction that loads the address of the FPA page (0xe0000000) into an address register before doing any floating-point arithmetic.

For example, here is a disassembly of the beginning of an optimized FORTRAN routine compiled with the -O and -ffpa options:

```
(dbx) &ddot_/7i

ddot : link a6,#-0x2a0
ddot+0x4: moveml #<d2,d3,d4,d5,d6,d7,a2,a3,a4,a5>,sp8
ddot+0x8: lea e0000000:1,a2
ddot+0xe: movl a28(0xe20),a68(-0x278)
ddot+0x14: movl a28(0xe24),a68(-0x274)
ddot+0x1a: movl a28(0xe28),a68(-0x270)
ddot+0x20: movl a28(0xe2c),a68(-0x26c)
```

dbx does not know which register (if any) is being used to address the FPA in a given sequence of machine code. However, you may set the dbxenv variable fpabase to designate an MC68020 address register as the FPA base register. In this example, we note that the compiler has loaded the address of the FPA page into register a2, and we then designate a2 as the FPA base register to obtain the following:

```
(dbx) dbxenv fpabase a2
(dbx) &ddot_/7i

ddot : link a6,#-0x2a0
ddot+0x4: moveml #<d2,d3,d4,d5,d6,d7,a2,a3,a4,a5>,sp8
ddot+0x8: lea e0000000:1,a2
ddot+0xe: fpmovd@2 fpa4,a68(-0x278)
ddot+0x1a: fpmovd@2 fpa5,a68(-0x270)
ddot+0x26: fpmovd@2 204ce:1,fpa5
ddot+0x36: fpmovd@2 204ce:1,fpa4
```
B.3. Examples of FPA Register Use

FPA data registers can be displayed using a syntax similar to that used for the MC68881 coprocessor registers. Note that unlike the MC68881 registers, FPA registers may contain either single-precision (32-bit) or double-precision (64-bit) values; MC68881 registers always contain extended-precision (96-bit) values.

For example, if fpa0 contains the single-precision value 2.718282, we may display it as follows:

```
(dbx) &fpa0/f
fpa3 0x402df855 +2.718282e+00
```

Note that the value is displayed in hexadecimal as well as in floating-point notation.

A double-precision value may be displayed using the /F format. For example, if fpa0 contains the double-precision value 2.718281828, we may display it as follows:

```
(dbx) &fpa0/F
fpa0 0x4005bf0a 0xb04919b +2.71828182800000e+00
```

Note that it is important to use the correct display format; attempting to display a double-precision value in single precision will usually produce meaningless results.

FPA registers can also be used in set commands and in arithmetic expressions. Since dbx cannot tell whether the value in an FPA register is single- or double-precision, dbx provides two sets of names to refer to FPA registers. The names $fpa0 .. $fpa31 always cause the contents of the register to be interpreted as a double-precision value; the names $fpa0s .. $fpa31s cause interpretation as a single-precision value. Thus, the commands

```
(dbx) set $fpa0s = 1.0
(dbx) set $fpa0 = 1.0
```

store different values in fpa0.
FPA Assembler Syntax

C.1. Instruction Syntax ... 75
C.2. Register Syntax ... 76
C.3. Operand Types ... 76
C.4. Two-Operand Instructions ... 76
C.5. Three-Operand Instructions ... 77
C.6. Four-Operand Instructions .. 78
C.7. Other Instructions .. 82
C.8. Restrictions and Errors ... 83
C.9. Instruction Set Summary .. 83
This appendix describes the Floating-Point Accelerator (FPA) support extensions to as included in Sun software release 3.1.

The extensions to as are described in general, with discussions of two-, three-, and four-operand instruction examples. Some instructions covered separately don't follow the formats described at the beginning of the appendix. The appendix includes restrictions and potential errors, followed by a summary of supported floating-point instructions.

The general format for floating-point instructions is

```
fop: @A operands
```

where

- `fp` indicates an FPA instruction.
- `op` is the opcode name.
- `t` is the operand type, either single (s) or double (d).

The `@A` part of the instruction is optional. When present, `A` specifies the address register which contains the base address for the FPA and can be in the range 0..7. If this form is used, a previous instruction must load the FPA address (0xe0000000) into the specified address register.

If `@A` is not present, then absolute long addressing is used to refer to the FPA. This form is more efficient for short routines.

Depending on the instruction, there may be from zero to four operands specified. The operands can be any of the following forms:

- Any MC68020 effective address, with the exception that absolute short addresses are not allowed for double-precision values.
- If either of the data register or the address register is used to hold a double-precision value, then the value will be in a register pair and both registers, separated by a colon, must be specified in the instruction. For example:

```
fpadd d0:d1, fpa0
```
The only exception to this rule is the fpltod instruction (convert integer to double-precision value).

- In some instructions (command register type) it is possible to specify that the register is in constant RAM. The syntax used for this case is %n, where n is a register number in the range 0 to 511.

C.2. Register Syntax

The 32 floating-point data registers are designated fpa0, fpa1, ..., fpa31. The supported control registers are:

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODE3_0</td>
<td>fpamode</td>
</tr>
<tr>
<td>WSTATUS</td>
<td>fpastatus</td>
</tr>
</tbody>
</table>

C.3. Operand Types

as supports three floating-point operand types:

- s for single-precision operands.
- d for double-precision operands.
- l for 32-bit integer operands, used for integer to floating-point conversions.

C.4. Two-Operand Instructions

Opcodes such as add, subtract, multiply, divide, negate, absolute value, square root, conversion from integer to floating-point, conversion from single to double (and vice versa) are all represented as:

\[
\text{fpopt } X, \text{ fpan}
\]

where t = s or d, and X is any valid MC68020 effective address for an operand or is an FPA data register.

If X is an FPA register which is in the constant RAM, then it can be in the range 0 to 511. If it is not in constant RAM, then it is one of the 32 FPA data registers. When X is an FPA register, then fpan is one of the 32 floating-point data registers. If X is an effective address, then fpan is one of the FPA registers in the range 0 to 15. The following are examples of such instructions:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Computes</th>
</tr>
</thead>
<tbody>
<tr>
<td>fpnegs</td>
<td><effective address>, fpa1</td>
</tr>
<tr>
<td>fpsqrd</td>
<td><effective address>, fpa2</td>
</tr>
<tr>
<td>fpsubs</td>
<td>fpa1, fpa2</td>
</tr>
<tr>
<td>fprsubs</td>
<td>fpa1, fpa2</td>
</tr>
<tr>
<td>fpdivs</td>
<td>d0, fpa2</td>
</tr>
<tr>
<td>fprdivs</td>
<td>d0, fpa2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Computes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>fpa2 ← fpa2 - fpa1</td>
</tr>
<tr>
<td></td>
<td>fpa2 ← fpa1 - fpa2</td>
</tr>
<tr>
<td></td>
<td>fpa2 ← fpa2 / d0</td>
</tr>
<tr>
<td></td>
<td>fpa2 ← d0 / fpa2</td>
</tr>
</tbody>
</table>

In the above examples fprsubs and fprdivs are the reverse subtract and reverse divide operators, respectively.
The opcodes for sine, cosine, atan, e^x, e^-x, ln(x), ln(1+x) and sincos(x) are all supported as command register type instructions:

\[\text{fpop} t \text{ fpax, fpam} \]

where \(t = s \) or \(d \).

\(\text{fpax} \) is either a floating-point register or a register in the constant RAM (which is specified as \%number). For the sincos instruction, the destination operand is actually a register pair:

\[\text{fpsincos} t \text{ fpax, fpac:fpas} \]

where \(\text{fpas} \) is the sine’s destination and \(\text{fpac} \) is the cosine’s destination.

C.5. Three-Operand Instructions

The opcodes +, -, *, / are supported in extended and command register forms as

\[\text{fpop} t X, \text{fpam}, \text{fpas} \]

where \(t = s \) or \(d \) and \(X \) is an <effective address> for an extended instruction or a floating-point register for a command register type of instruction.

In the command register form, \(X \) and \(\text{fpam} \) can indicate a register number in the constant RAM. That is, they can either be in the range 0 to 511 or in the range 0 to 31. In the extended instruction form, \(\text{fpam} \) and \(\text{fpas} \) must be in the range 0 to 15. In the above format the position of \(X \) and \(\text{fpam} \) can be exchanged for the commutative operators add and multiply (the result of the operation remains the same).

For example,

\[\text{fpa2} \leftarrow <\text{effective address}> + \text{fpal} \]

can be represented by either of the following forms:

\[\text{fpadd3s <effective address>, fpal, fpa2} \]
\[\text{fpadd3s fpal, <effective address>, fpa2} \]

The same rule applies to subtract and divide operations. However, they are not commutative, so different answers result from each order. For example,

\[\text{fpa2} \leftarrow \text{fpal} - <\text{effective address}> \]

must be coded as:

\[\text{fpsub3s <effective address>, fpal, fpa2} \]
whereas
\[\text{fpa2} \leftarrow <\text{effective address}> \text{ - fpa1} \]
must be coded as:
\[\text{fpsub3s fpa1, <effective address>, fpa2} \]

Following the same format,
\[\text{fpa3} \leftarrow \text{fpa2} \text{ - fpa1} \]
must be coded as:
\[\text{fpsub3s fpa1, fpa2, fpa3} \]

C.6. Four-Operand Instructions

In the extended and command register formats there are pivot instructions of the form:
\[\text{fpoit} \ X, \text{fpax, fpay, fpan} \]

where \(\text{fpan} \) is the destination floating-point data register and \(t = s \text{ or } d \), and \(X \) is an effective address or a floating-point register.

In the extended form, the positions of \(X \) and \(\text{fpay} \) can be exchanged for both single- and double-precision types of instructions. In single-precision extended form, it is possible for two of the four operands to be effective addresses. This is in general either the first and third or the second and third operands.

In the command register form, \(\text{fpax} \) and \(\text{fpay} \) can be replaced by \(%x \) and \(%y \) indicating register numbers \(x \) and \(y \) in the constant RAM.

For four-operand instructions, \(\text{fpax, fpay and fpan} \) can each be in the range 0 to 15, when \(X \) is an effective address. If \(X \) is an FPA register, then \(X \) and \(\text{fpan} \) must be in the range 0 to 31 and \(\text{fpax} \) and \(\text{fpay} \) can either be in the range 0 to 511 (designating a location in constant RAM) or else in the range 0 to 31.

These pivot instructions are rather complicated and will be dealt with completely. The following shows the forms of each operation, the assembly code equivalent to each form, a generalization of the assembly instruction and the sequence of operations equivalent to the pivot instruction.
The `fpma` instruction, where \(m \) stands for multiply, and \(a \) stands for add, can be generalized as

\[
\text{fpma} \; X, \; fpa.x, \; fpay, \; fpan
\]

where \(t \) is \(s \) or \(d \), and \(X \) is an <effective address> or one of the floating-point data registers. In the extended type of instruction, the positions of \(X \) and \(fpay \) can be exchanged. Also, for single precision either the first and third operands or the second and third operands can be effective addresses. Note that, for example,

\[
\text{fpmas} \; d0, \; fpal, \; fpa2, \; fpa3
\]

is equivalent to the following sequence of instructions

\[
\begin{align*}
\text{fpmul3s} & \; d0, \; fpal, \; \text{temp} \\
\text{fpadd3s} & \; \text{temp}, \; fpa2, \; \text{temp} \\
\text{fpmoves} & \; \text{temp}, \; fpa3
\end{align*}
\]

where \(\text{temp} \) is a temporary register.

The `fpms` instruction, where \(m \) stands for multiply, and \(s \) stands for subtract, can be generalized as

\[
\text{fpms} \; X, \; fpa.x, \; fpay, \; fpan
\]

where \(t \) is \(s \) or \(d \), and \(X \) is an <effective address> or one of the floating-point data registers. In the extended type of instruction, the positions of \(X \) and \(fpay \) can be exchanged. Also, in single-precision two-memory instructions, either the first and third operands or the second and third operands can be effective addresses. Note that, for example,

\[
\text{fpms} \; fpa1, \; fpa2, \; d0, \; fpa3
\]
is equivalent to the following sequence of instructions:

```
fpmul3s  fpal, fpa2, temp
fpsub3s  temp, d0, temp
fpmoves  temp, fpa3
```

The `fpmr` instruction, where `m` stands for multiply, and `r` stands for reverse subtract, can be generalized as:

```
fpmr t X, fpax, fpay, fpay
```

where `t` is `s` or `d`, and `X` is an `<effective address>` or one of the floating-point data registers. In the extended type of instruction, the positions of `X` and `fpay` can be exchanged.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fpmr{s,d} <effective address>, reg2, reg3, reg1</code></td>
<td><code>regl ← (-reg3) + (reg2 * operand)</code></td>
</tr>
<tr>
<td><code>fpmr{s,d} reg2, reg3, <effective address>, reg1</code></td>
<td><code>regl ← (-operand) + (reg3 * reg2)</code></td>
</tr>
<tr>
<td><code>fpmr{s,d} reg4, reg2, reg3, reg1</code></td>
<td><code>regl ← (-reg3) + (reg2 * reg4)</code></td>
</tr>
<tr>
<td><code>fpmrs <eal>, reg2, <ea2>, reg1</code></td>
<td><code>regl ← (-operand2) + (reg2 * operand1)</code></td>
</tr>
</tbody>
</table>

In single-precision extended form either the first and third operands or the second and third operands can be effective addresses. Note that, for example,

```
fpmrs d0, fpal, fpa2, fpa3
```

is equivalent to the following sequence of instructions:

```
fpmul3s  d0, fpal, temp
fpsub3s  fpa2, temp, temp
fpmoves  temp, fpa3
```

The `fpam` instruction, where `a` stands for add, and `m` stands for multiply, can be generalized as:

```
fpam X, fpax, fpay, fpan
```

where `t` is `s` or `d`, and `X` is an `<effective address>` or one of the floating-point data registers. In the extended type of instruction, the positions of `X` and `fpay` can be exchanged.
In single-precision two-memory instructions, either the first and third operands or the second and third operands can be effective addresses. Note that, for example,

\[
\text{fpsms } \text{d0, fpal, fpa2, fpa3}
\]

is equivalent to the following sequence of instructions:

\[
\begin{align*}
\text{fpadd3s} & \quad \text{fpal, fpa2, temp} \\
\text{fpmul3s} & \quad \text{temp, fpa3, temp} \\
\text{fpmoves} & \quad \text{temp, fpa4}
\end{align*}
\]

The \text{fpsm} instruction, where \text{s} stands for subtract, and \text{m} stands for multiply, can be generalized as

\[
\text{fpsm} \quad \text{X, fpax, fpay, fpam}
\]

where \(t \) is \(s \) or \(d \), and \(X \) is an effective address or one of the floating-point data registers. In the extended type of instruction, the positions of \(X \) and \(\text{fpay} \) can be exchanged. The special cases for single-precision instructions are that either the first and third operands or the second and third operands can be effective addresses.

Note that, for example,

\[
\text{fpsms } \text{d0, fpal, fpa2, fpa3}
\]

is equivalent to the following sequence of instructions:
Other special instructions are listed below. In each of them the last operand is also the destination, except for \texttt{tst}, \texttt{cmp} and \texttt{mcmp} where \texttt{fpastatus} is the implied destination. \texttt{X} is either an effective address or an FPA data register and \texttt{t} is either \texttt{s} or \texttt{d} for all instructions except \texttt{fpmove}, where \texttt{t} can be \texttt{s}, \texttt{d}, or \texttt{l}.

Table C-1 \textit{Other Instructions}

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Syntax</th>
<th>Operation Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{fpnop}</td>
<td>\texttt{nop}</td>
<td></td>
</tr>
<tr>
<td>\texttt{fptst}</td>
<td>\texttt{X}</td>
<td>operand compare with zero</td>
</tr>
<tr>
<td>\texttt{fpcmp}</td>
<td>\texttt{X}, \texttt{fpam}</td>
<td>register \texttt{m} compare with operand</td>
</tr>
<tr>
<td>\texttt{fpcmcmp}</td>
<td>\texttt{X}, \texttt{fpam}</td>
<td>register \texttt{m} compare magnitude with operand</td>
</tr>
<tr>
<td>\texttt{fpmove}</td>
<td>\texttt{fpam}, \texttt{fpam}</td>
<td>move floating-point registers</td>
</tr>
<tr>
<td>\texttt{fpmove2t}</td>
<td>\texttt{fpam}, \texttt{fpam}</td>
<td>2x2 matrix move</td>
</tr>
<tr>
<td>\texttt{fpmove3t}</td>
<td>\texttt{fpam}, \texttt{fpam}</td>
<td>3x3 matrix move</td>
</tr>
<tr>
<td>\texttt{fpmove4t}</td>
<td>\texttt{fpam}, \texttt{fpam}</td>
<td>4x4 matrix move</td>
</tr>
<tr>
<td>\texttt{fpdot2t}</td>
<td>\texttt{fpax}, \texttt{fpay}, \texttt{fpam}</td>
<td>\texttt{fpam} + \texttt{fpaxfpay} + (\texttt{fpax+l})(\texttt{fpay+l})</td>
</tr>
<tr>
<td>\texttt{fpdot3t}</td>
<td>\texttt{fpax}, \texttt{fpay}, \texttt{fpam}</td>
<td>\texttt{fpam} + \texttt{fpaxfpay} + (\texttt{fpax+l})(\texttt{fpay+l}) + (\texttt{fpax+2})*(\texttt{fpay+2})</td>
</tr>
<tr>
<td>\texttt{fpdot4t}</td>
<td>\texttt{fpax}, \texttt{fpay}, \texttt{fpam}</td>
<td>\texttt{fpam} + \texttt{fpaxfpay} + (\texttt{fpax+l})(\texttt{fpay+l}) + (\texttt{fpax+2})(\texttt{fpay+2}) + (\texttt{fpax+3})(\texttt{fpay+3})</td>
</tr>
<tr>
<td>\texttt{fptran2t}</td>
<td>\texttt{fpam}, \texttt{fpam}</td>
<td>transpose 2x2 matrix</td>
</tr>
<tr>
<td>\texttt{fptran3t}</td>
<td>\texttt{fpam}, \texttt{fpam}</td>
<td>transpose 3x3 matrix</td>
</tr>
<tr>
<td>\texttt{fptran4t}</td>
<td>\texttt{fpam}, \texttt{fpam}</td>
<td>transpose 4x4 matrix</td>
</tr>
<tr>
<td>\texttt{fpmove}</td>
<td>\texttt{fpamode}, \texttt{<ea>}</td>
<td>read mode register</td>
</tr>
<tr>
<td>\texttt{fpmove}</td>
<td>\texttt{<ea>}, \texttt{fpamode}</td>
<td>write to mode register</td>
</tr>
<tr>
<td>\texttt{fpmove}</td>
<td>\texttt{fpastatus}, \texttt{<ea>}</td>
<td>read status register</td>
</tr>
<tr>
<td>\texttt{fpmove}</td>
<td>\texttt{<ea>}, \texttt{fpastatus}</td>
<td>write to status register</td>
</tr>
<tr>
<td>\texttt{fpmove}</td>
<td>\texttt{fpam}, \texttt{<ea>}</td>
<td>read a floating-point data register</td>
</tr>
<tr>
<td>\texttt{fpmove}</td>
<td>\texttt{<ea>}, \texttt{fpam}</td>
<td>write to a floating-point data register</td>
</tr>
</tbody>
</table>
C.8. Restrictions and Errors

as reports an invalid operand error in double-precision instructions when absolute short addressing or a single data or address register is used.

as reports a register out of range error for the dot product and matrix move and transpose instructions when the register specified does not fall within the specified range.

For most instructions where one operand is an effective address, the register range is 0 to 15. If all operands are FPA registers, then the register range is 0 to 31. For constant RAM registers, the range is 0 to 511. as reports an invalid operand error when any of these registers are not within the permitted range.

In the following table, X is any valid FPA register or MC68020 effective address (the form (xxx) : w is not allowed for double). In some three- or four-address instructions the position of the X and one of the FPA registers can be exchanged as shown in the fourth column of the following table.

C.9. Instruction Set Summary

Table C-2 Floating-Point Instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Syntax</th>
<th>Operation</th>
<th>Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>fpnegs</td>
<td>X, fpan</td>
<td>negate single</td>
<td></td>
</tr>
<tr>
<td>fnegd</td>
<td>X, fpan</td>
<td>negate double</td>
<td></td>
</tr>
<tr>
<td>fpabss</td>
<td>X, fpan</td>
<td>absolute value single</td>
<td></td>
</tr>
<tr>
<td>fpabsd</td>
<td>X, fpan</td>
<td>absolute value double</td>
<td></td>
</tr>
<tr>
<td>fpltos</td>
<td>X, fpan</td>
<td>convert integer to single</td>
<td></td>
</tr>
<tr>
<td>fpltod</td>
<td>X, fpan</td>
<td>convert integer to double</td>
<td></td>
</tr>
<tr>
<td>fpstol</td>
<td>X, fpan</td>
<td>convert single to integer</td>
<td></td>
</tr>
<tr>
<td>fpdtol</td>
<td>X, fpan</td>
<td>convert double to integer</td>
<td></td>
</tr>
<tr>
<td>fpstud</td>
<td>X, fpan</td>
<td>convert single to double</td>
<td></td>
</tr>
<tr>
<td>fpdtod</td>
<td>X, fpan</td>
<td>convert double to single</td>
<td></td>
</tr>
<tr>
<td>fpsQRS</td>
<td>X, fpan</td>
<td>square single</td>
<td></td>
</tr>
<tr>
<td>fpsQRD</td>
<td>X, fpan</td>
<td>square double</td>
<td></td>
</tr>
<tr>
<td>fpadds</td>
<td>X, fpan</td>
<td>add single</td>
<td></td>
</tr>
<tr>
<td>fpadd3s</td>
<td>X, fpan, fpan</td>
<td>add single</td>
<td>fpam, X, fpan</td>
</tr>
<tr>
<td>fpaddd</td>
<td>X, fpan</td>
<td>add double</td>
<td></td>
</tr>
<tr>
<td>fpadd3d</td>
<td>X, fpan, fpan</td>
<td>add double</td>
<td>fpam, X, fpan</td>
</tr>
<tr>
<td>fpsubs</td>
<td>X, fpan</td>
<td>subtract single</td>
<td></td>
</tr>
<tr>
<td>fpsub3s</td>
<td>X, fpan, fpan</td>
<td>subtract single</td>
<td>fpam, X, fpan</td>
</tr>
<tr>
<td>fpsubs <ea>, fpan</td>
<td>reverse subtract single</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fpsubd</td>
<td>X, fpan</td>
<td>subtract double</td>
<td></td>
</tr>
<tr>
<td>fpsubd <ea>, fpan</td>
<td>subtract double</td>
<td>fpam, X, fpan</td>
<td></td>
</tr>
<tr>
<td>fpsubd <ea>, fpan</td>
<td>reverse subtract double</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table C-2 Floating-Point Instructions—Continued

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Syntax</th>
<th>Operation</th>
<th>Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>fpmuls</td>
<td>X, fpam, fpn</td>
<td>multiply single</td>
<td>fpan, X, fpam</td>
</tr>
<tr>
<td>fpmul3s</td>
<td>X, fpam, fpn</td>
<td>multiply single</td>
<td>fpan, X, fpam</td>
</tr>
<tr>
<td>fpmuld</td>
<td>X, fpam, fpn</td>
<td>multiply double</td>
<td>fpan, X, fpam</td>
</tr>
<tr>
<td>fpmul3d</td>
<td>X, fpam, fpn</td>
<td>multiply double</td>
<td>fpan, X, fpam</td>
</tr>
<tr>
<td>fpdivs</td>
<td>X, fpam, fpn</td>
<td>divide single</td>
<td>fpan, X, fpam</td>
</tr>
<tr>
<td>fpdiv3s</td>
<td>X, fpam, fpn</td>
<td>divide single</td>
<td>fpan, X, fpam</td>
</tr>
<tr>
<td>fpdivs</td>
<td><ea>, fpn</td>
<td>reverse divide single</td>
<td>fpan, X, fpam</td>
</tr>
<tr>
<td>fpdivd</td>
<td>X, fpam</td>
<td>divide double</td>
<td>fpan, X, fpam</td>
</tr>
<tr>
<td>fpdiv3d</td>
<td>X, fpam, fpn</td>
<td>divide double</td>
<td>fpan, X, fpam</td>
</tr>
<tr>
<td>fprdivd</td>
<td><ea>, fpn</td>
<td>reverse divide double</td>
<td>fpan, X, fpam</td>
</tr>
<tr>
<td>fpnop</td>
<td></td>
<td>nop</td>
<td></td>
</tr>
<tr>
<td>fptsts</td>
<td>X</td>
<td>single compare with 0</td>
<td></td>
</tr>
<tr>
<td>fptstd</td>
<td>X</td>
<td>double compare with 0</td>
<td></td>
</tr>
<tr>
<td>fpcmps</td>
<td>X, fpam</td>
<td>single compare</td>
<td></td>
</tr>
<tr>
<td>fpcmpd</td>
<td>X, fpam</td>
<td>double compare</td>
<td></td>
</tr>
<tr>
<td>fpfcmsps</td>
<td>X, fpam</td>
<td>single magnitude compare</td>
<td></td>
</tr>
<tr>
<td>fpfcmpmd</td>
<td>X, fpam</td>
<td>double magnitude compare</td>
<td></td>
</tr>
<tr>
<td>fpsins</td>
<td>fpax, fpn</td>
<td>sine single</td>
<td></td>
</tr>
<tr>
<td>fpsind</td>
<td>fpax, fpn</td>
<td>sine double</td>
<td></td>
</tr>
<tr>
<td>fpcoss</td>
<td>fpax, fpn</td>
<td>cosine single</td>
<td></td>
</tr>
<tr>
<td>fpcosd</td>
<td>fpax, fpn</td>
<td>cosine double</td>
<td></td>
</tr>
<tr>
<td>fpfatan</td>
<td>fpax, fpn</td>
<td>atan single</td>
<td></td>
</tr>
<tr>
<td>fpfatanl</td>
<td>fpax, fpn</td>
<td>atan double</td>
<td></td>
</tr>
<tr>
<td>fpetoxs</td>
<td>fpax, fpn</td>
<td>e^x single</td>
<td></td>
</tr>
<tr>
<td>fpetoxd</td>
<td>fpax, fpn</td>
<td>e^x double</td>
<td></td>
</tr>
<tr>
<td>fpetoxmls</td>
<td>fpax, fpn</td>
<td>e^x-1 single</td>
<td></td>
</tr>
<tr>
<td>fpetoxmd</td>
<td>fpax, fpn</td>
<td>e^x-1 double</td>
<td></td>
</tr>
<tr>
<td>fplogns</td>
<td>fpax, fpn</td>
<td>ln(x) single</td>
<td></td>
</tr>
<tr>
<td>fplognd</td>
<td>fpax, fpn</td>
<td>ln(x) double</td>
<td></td>
</tr>
<tr>
<td>fplognps</td>
<td>fpax, fpn</td>
<td>ln(1+x) single</td>
<td></td>
</tr>
<tr>
<td>fplognpl</td>
<td>fpax, fpn</td>
<td>ln(1+x) double</td>
<td></td>
</tr>
<tr>
<td>fpsincoss</td>
<td>fpax, fpac:fpas</td>
<td>fpac ← cosine(x), fpas ← sine(x)</td>
<td></td>
</tr>
<tr>
<td>fpsincosd</td>
<td>fpax, fpac:fpas</td>
<td>fpac ← cosine(x), fpas ← sine(x)</td>
<td></td>
</tr>
<tr>
<td>fpmsas</td>
<td>X, fpax, fpay, fpn</td>
<td>fpam ← (fpax * X) + fpay</td>
<td>fpan, X, fpay, fpn</td>
</tr>
<tr>
<td>fpmad</td>
<td>X, fpax, fpay, fpn</td>
<td>fpam ← (fpax * X) + fpay</td>
<td>fpan, X, fpay, fpn</td>
</tr>
<tr>
<td>Instruction</td>
<td>Syntax</td>
<td>Operation</td>
<td>Alternative</td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>fpmsd</td>
<td>X, fpax, fpay, fpan</td>
<td>fpax ← fpay - (fpax * X)</td>
<td>fpax, X, fpan, fpay, fpan, X, fpan</td>
</tr>
<tr>
<td>fpmsd</td>
<td>X, fpax, fpay, fpan</td>
<td>fpax ← fpay - (fpax * X)</td>
<td>fpax, X, fpan, fpay, fpan, X, fpan</td>
</tr>
<tr>
<td>fpmrs</td>
<td>X, fpax, fpay, fpan</td>
<td>fpax ← (fpax * X) - fpay</td>
<td>fpax, X, fpan, fpay, fpan, X, fpan</td>
</tr>
<tr>
<td>fpmrd</td>
<td>X, fpax, fpay, fpan</td>
<td>fpax ← (fpax * X) - fpay</td>
<td>fpax, X, fpan, fpay, fpan, X, fpan</td>
</tr>
<tr>
<td>fpmrs</td>
<td>X, fpax, fpay, fpan</td>
<td>fpax ← (fpax * X) - fpay</td>
<td>fpax, X, fpan, fpay, fpan, X, fpan</td>
</tr>
<tr>
<td>fpmrd</td>
<td>X, fpax, fpay, fpan</td>
<td>fpax ← (fpax * X) - fpay</td>
<td>fpax, X, fpan, fpay, fpan, X, fpan</td>
</tr>
<tr>
<td>fpmrs</td>
<td>X, fpax, fpay, fpan</td>
<td>fpax ← (fpax * X) - fpay</td>
<td>fpax, X, fpan, fpay, fpan, X, fpan</td>
</tr>
<tr>
<td>fpmrd</td>
<td>X, fpax, fpay, fpan</td>
<td>fpax ← (fpax * X) - fpay</td>
<td>fpax, X, fpan, fpay, fpan, X, fpan</td>
</tr>
<tr>
<td>fpmoves</td>
<td><ea>, fpan</td>
<td>write to a register, single</td>
<td>fpax, X, fpan, fpay, fpan, X, fpan</td>
</tr>
<tr>
<td>fpmoved</td>
<td><ea>, fpan</td>
<td>write to a register, double</td>
<td>fpax, X, fpan, fpay, fpan, X, fpan</td>
</tr>
<tr>
<td>fpmovel</td>
<td><ea>, fpan</td>
<td>write to a register, integer</td>
<td>fpax, X, fpan, fpay, fpan, X, fpan</td>
</tr>
<tr>
<td>fpmoves</td>
<td>fpam, <ea></td>
<td>read a register, single</td>
<td>fpax, X, fpan, fpay, fpan, X, fpan</td>
</tr>
<tr>
<td>fpmoved</td>
<td>fpam, <ea></td>
<td>read a register, double</td>
<td>fpax, X, fpan, fpay, fpan, X, fpan</td>
</tr>
<tr>
<td>fpmove2s</td>
<td>fpam, fpam</td>
<td>2x2 matrix move, single</td>
<td>fpax, X, fpan, fpay, fpan, X, fpan</td>
</tr>
<tr>
<td>fpmove2d</td>
<td>fpam, fpam</td>
<td>2x2 matrix move, double</td>
<td>fpax, X, fpan, fpay, fpan, X, fpan</td>
</tr>
<tr>
<td>fpmove3s</td>
<td>fpam, fpam</td>
<td>3x3 matrix move, single</td>
<td>fpax, X, fpan, fpay, fpan, X, fpan</td>
</tr>
<tr>
<td>fpmove3d</td>
<td>fpam, fpam</td>
<td>3x3 matrix move, double</td>
<td>fpax, X, fpan, fpay, fpan, X, fpan</td>
</tr>
<tr>
<td>fpmove4s</td>
<td>fpam, fpam</td>
<td>4x4 matrix move, single</td>
<td>fpax, X, fpan, fpay, fpan, X, fpan</td>
</tr>
<tr>
<td>fpmove4d</td>
<td>fpam, fpam</td>
<td>4x4 matrix move, double</td>
<td>fpax, X, fpan, fpay, fpan, X, fpan</td>
</tr>
</tbody>
</table>
Floating-Point Instructions—Continued

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Syntax</th>
<th>Operation</th>
<th>Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>fpdot2s</td>
<td>fpax, fpay, fpaz</td>
<td>fpax ← fpax*fpay + (fpax+1) * (fpay+1)</td>
<td>fpaz</td>
</tr>
<tr>
<td>fpdot2d</td>
<td>fpax, fpay, fpaz</td>
<td>fpax ← fpax*fpay + (fpax+1) * (fpay+1)</td>
<td>fpaz</td>
</tr>
<tr>
<td>fpdot3s</td>
<td>fpax, fpay, fpaz</td>
<td>fpax ← fpax*fpay + (fpax+1) * (fpay+1) + (fpax+2) * (fpay+2)</td>
<td>fpaz</td>
</tr>
<tr>
<td>fpdot3d</td>
<td>fpax, fpay, fpaz</td>
<td>fpax ← fpax*fpay + (fpax+1) * (fpay+1) + (fpax+2) * (fpay+2)</td>
<td>fpaz</td>
</tr>
<tr>
<td>fpdot4s</td>
<td>fpax, fpay, fpaz</td>
<td>fpax ← fpaxfpay + (fpax+1)(fpay+1) + (fpax+2)(fpay+2) + (fpax+3)(fpay+3)</td>
<td>fpaz</td>
</tr>
<tr>
<td>fpdot4d</td>
<td>fpax, fpay, fpaz</td>
<td>fpax ← fpaxfpay + (fpax+1)(fpay+1) + (fpax+2)(fpay+2) + (fpax+3)(fpay+3)</td>
<td>fpaz</td>
</tr>
<tr>
<td>fptran2s</td>
<td>fpam, fpaz</td>
<td>transpose 2x2 matrix, single</td>
<td></td>
</tr>
<tr>
<td>fptran2d</td>
<td>fpam, fpaz</td>
<td>transpose 2x2 matrix, double</td>
<td></td>
</tr>
<tr>
<td>fptran3s</td>
<td>fpam, fpaz</td>
<td>transpose 3x3 matrix, single</td>
<td></td>
</tr>
<tr>
<td>fptran3d</td>
<td>fpam, fpaz</td>
<td>transpose 3x3 matrix, double</td>
<td></td>
</tr>
<tr>
<td>fptran4s</td>
<td>fpam, fpaz</td>
<td>transpose 4x4 matrix, single</td>
<td></td>
</tr>
<tr>
<td>fptran4d</td>
<td>fpam, fpaz</td>
<td>transpose 4x4 matrix, double</td>
<td></td>
</tr>
<tr>
<td>fpmode</td>
<td>fpamode, <ea></td>
<td>read the mode register</td>
<td></td>
</tr>
<tr>
<td>fpmove</td>
<td><ea>, fpamode</td>
<td>write on mode register</td>
<td></td>
</tr>
<tr>
<td>fpmove</td>
<td>fpastatus, <ea></td>
<td>read the status register</td>
<td></td>
</tr>
<tr>
<td>fpmove</td>
<td><ea>, fpastatus</td>
<td>write to status register</td>
<td></td>
</tr>
</tbody>
</table>
IEEE Appendix Functions
IEEE Appendix Functions

The IEEE Standard for Binary Floating-Point Arithmetic includes an appendix of useful functions which are not usually available in higher-level languages. The IEEE test vectors measure compliance with the specification of some of those functions. The following paragraphs give examples of double-precision FORTRAN and assembly language routines that implement those functions in a way that passes the IEEE test vectors under conditions described under "Conformance Benchmarks" in Chapter 4. The assembly language examples are coded to use switched floating-point. These functions, especially the assembly language ones that call V... and F... entry points in libc, may not work in future software releases. Efficiency was not a coding consideration.

Copy Sign:

|.globl _copyd_ | Works with any kind of floating point!

copyd

mvel sp@4,a0
moveml a0,d0/d1 | d0 := x.
mvel sp@8,a0 | Address of y.
tstb a0
bmis 1f
bclr #31,d0
bras 2f
1:
 bset #31,d0
2:
 rts

Logb:

|.globl _logbd_

logbd

mvel sp@4,a0
mvel a0,d0
jsr Fexpod
cmpw #-0x3ff,d0
beqs 3f
cmpw #0x400,d0
beqs 2f
1:
 jsr Vfltd
 rts

2:
 moveml a0@,d0/d1
 bclr #31,d0
 lea dzero,a0
 jsr Vaddd
 | Add zero to catch signalling NaN.
 rts

3:
 moveml a0@,d0/d1
 bclr #31,d0
 tstl d0
 bnes Sf
 tstl d1
 beqs 4f

5:
 movel #-0x3ff,d0
 bras 1b
 4:
 moveml dmone,d0/d1
 lea dzero,a0
 jsr Vdivd
 | Set up -1/0 to generate divide by zero signal.
 rts

dzero: .double 0r0
dmone: .double 0r-1

Scalb:

real*8 function scalbd (x, y)
real*8 x, y, scalid
scalbd = scalid(x, int(y))
end

.globl _scalid_
scalid
 movel sp@(4),a0
 moveml a0@,d0/d1 | x.
 movel sp@(8),a0 | Address of y.
 jsr Vscaleid
 rts
Fraction part: The fraction part or significand function, not in the Standard, is nonetheless tested by an IEEE test vector.

```fortran
real*8 function signifd ( x )
    real*8 x, logbd, scalbd, s
    s = scalbd(x,-logbd(x))
    if ((abs(s) .gt. 0.0d0 ) .and. (abs(s) .lt. 1.0d0)) then
        s = s + s
    endif
    if (abs(s) .lt. 1.0d0) goto 1
    signifd = s
end
```

Nextafter:

```fortran
real*8 function nextd ( x, y)
real*8 x, y, t, minnorm, maxnorm
integer i(2)
equivalence (i,t)
parameter ( minnorm = 2.225073858507201383d-308)
parameter ( maxnorm = 1.7976931348623157d+308)
if ((y .ne. y) .or. (x .ne. x)) then
    c handle nans; convert signalling nans
    nextd = x + y
    return
end if

  t = x
  if ( x .lt. y) then
      if (x .lt. 0) then
          i(2) = i(2) - 1
      endif
      if (i(2) .eq. -1) i(1) = i(1) - 1
      else if (x .gt. 0) then
          i(2) = i(2) + 1
      endif
      if (i(2) .eq. 0) i(1) = i(1) + 1
  else if ( x .eq. 0) then
      i(2) = 1
      i(1) = 0
  endif
  else if ( x .gt. y) then
      if (x .lt. 0) then
          i(2) = i(2) + 1
      endif
      if (i(2) .eq. 0) i(1) = i(1) + 1
  else if (x .eq. 0) then
      i(2) = 1
      i(1) = 0
  endif
  t = -t
```

Revision A of 19 September 1986
end if
end if

It would have been preferable to use the following statements to
generate underflow and overflow signals, but optimization with -0
eliminates the statements as dead code.

if (x .ne. t) then
 if (abs(t) .lt. minnorm) then
 signal underflow without changing t
 z = minnorm * 0.1d0
 else if (abs(t) .gt. maxnorm) then
 signal overflow without changing t
 z = maxnorm * 2.0d0
 end if
end if

The following code accomplishes the same thing with more trouble,
but fails with -f68881 -0 because of extended register allocation.

if (x .ne. t) then
 if (abs(t) .lt. minnorm) then
 signal underflow without changing t
 t = copyd(min(abs(t),4.0d0 * (minnorm/3.0d0)),t)
 else if (abs(t) .gt. maxnorm) then
 signal overflow without changing t
 t = copyd(max(abs(t),maxnorm + maxnorm),t)
 end if

if (x .ne. t) then
 if (abs(t) .lt. minnorm) then
 signal underflow without changing t
 call dummyd(minnorm * minnorm)
 else if (abs(t) .gt. maxnorm) then
 signal overflow without changing t
 call dummyd(maxnorm * maxnorm)
 end if
end if
nextd = t
end

subroutine dummyd(x)
real*8 x
end
SPICE Input Files

<table>
<thead>
<tr>
<th>File</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPICE Input Files</td>
<td>95</td>
</tr>
<tr>
<td>E.1. tdo</td>
<td>95</td>
</tr>
<tr>
<td>E.2. mosamp2</td>
<td>96</td>
</tr>
</tbody>
</table>
SPICE Input Files

E.1. tdo

The following input file models a tunnel diode oscillator; the transient analysis output calculation is extremely ill-conditioned, as discussed under "Different Numerical Results" in Chapter 2:

```
TDO - TUNNEL DIODE OSCILLATOR
.WIDTH IN=72
VBIAS 0 2 -120MV
LS 2 1 2.5UH
CS 1 0 100PF
GTD 1 0 POLY(1) 1 0
   + -3.95510115972848E-17 +1.80727308405845E-01 -2.93646217292003E+00
   + +4.12669748472374E+01 -6.09649516869413E+02 +6.08207899870511E+03
   + -3.73459336478768E+04 +1.44146702315112E+05 -3.53021176453665E+05
   + +5.34093436084762E+05 -4.56234076434067E+05 +1.68527934888894E+05
.DC VBIAS 0 -600MV -5MV
.PL T DC I(VBIAS) (0,5MA)
.TRAN 5NS 500NS 0 5NS
.PLOT TRAN V(1)
.OPT ACCT LIST NODE LVLCOD=2
.END
```
The following input file models an MOS amplifier, and is used to obtain the benchmark results discussed under "Performance Benchmarks" in Chapter 4:

```
mosamp2 - mos amplifier - transient
.WIDTH OUT=80
.OPTIONS ACCT ABSTOL=10N VNTOL=10N
.TRAN 0.1US 10US
M1 15 15 1 32 M w=88.9U L=25.4U
M2 1 1 2 32 M w=12.7U L=266.7U
M3 2 2 30 32 M w=88.9U L=25.4U
M4 15 5 4 32 M w=12.7U L=106.7U
M5 4 4 30 32 M w=88.9U L=12.7U
M6 15 15 5 32 M w=44.5U L=25.4U
M7 5 20 8 32 M w=482.6U L=12.7U
M8 8 2 30 32 M w=88.9U L=25.4U
M9 15 15 6 32 M w=44.5U L=25.4U
M10 6 21 8 32 M w=482.6U L=12.7U
M11 15 6 7 32 M w=12.7U L=106.7U
M12 7 4 30 32 M w=88.9U L=12.7U
M13 15 10 9 32 M w=139.7U L=12.7U
M14 9 11 30 32 M w=139.7U L=12.7U
M15 15 15 12 32 M w=12.7U L=207.8U
M16 12 12 11 32 M w=54.1U L=12.7U
M17 11 11 30 32 M w=54.1U L=12.7U
M18 15 15 10 32 M w=12.7U L=45.2U
M19 10 12 13 32 M w=270.5U L=12.7U
M20 13 7 30 32 M w=270.5U L=12.7U
M21 15 10 14 32 M w=254U L=12.7U
M22 14 11 30 32 M w=241.3U L=12.7U
M23 15 20 16 32 M w=19U L=38.1U
M24 16 14 30 32 M w=406.4U L=12.7U
M25 15 15 20 32 M w=38.1U L=42.7U
M26 20 16 30 32 M w=381U L=25.4U
M27 20 15 66 32 M w=22.9U L=7.6U
CC 7 9 40PF
CL 66 0 70PF
VIN 21 0 PULSE(0 5 1NS 1NS 1NS SUS 10US)
VCCP 15 0 DC +15
VDDN 30 0 DC -15
VB 32 0 DC -20
.MODEL M NMOS(NSUB=2.2E15 UO=575 UCRIT=49K UEKP=0.1 TOX=0.11U XJ=2.95U
+ LEVEL=2 CGSO=1.5N CGDO=1.5N CBD=4.5F CBS=4.5F LD=2.4485U NSS=3.2E10
+ KP=2E-5 PHI=0.6 )
.PRINT TRAN V(20) V(66)
.PLOT TRAN V(20) V(66)
.END
```
MC68881 Mask Differences

MC68881 Mask Differences .. 99

fmove [sd] fpm, <ea> ... 99
fmovex fpm, <ea> ... 99
flognt, flog2t, flog10t .. 100
fsqrtx fpm, fpn \(m<>n \) .. 100
fsqrt p <ea>, fpn .. 100
Binary-to-Decimal Conversion ... 100
Decimal-to-Binary Conversion ... 101
MC68881 Mask Differences

This appendix describes differences between the MC68881’s A79J and later A93N masks. The A93N mask reflects the MC68881 described in Motorola’s definitive *MC68881 Floating-Point Coprocessor User’s Manual*.

You can run `mc68881version` (8) on a Sun-3 to determine the installed MC68881’s mask and approximate clock rate.

Some of the problems listed below are worked around in software in Sun’s Release 3.0 and later, sometimes at a cost in accuracy and performance, relative to A93N hardware and software without workarounds. Since one of the problems described below has no workaround, and future releases of Sun software may have other workarounds removed to improve accuracy and performance, it is a good idea for you to upgrade to the A93N-version MC68881 when it is available.

`fmove[sd] fpm, <ea>` to single- or double-precision destinations produces an incorrect result when the result underflows but rounds back up to the smallest normalized number. The result returned is zero instead of the smallest normalized number.

This problem might occasionally confound programs that depend on monotonicity: there are single- and double-precision $x > 0$ such that the computed result of $x/2$ is 0 but the computed result of $x/4$ is > 0. There is no software workaround for this problem, which may, but probably does not, adversely affect any program in which underflow occurs. Underflow can be detected by enabling the underflow bit in the MC68881 Exception Enable Byte.

`fmove[sd] fpm, <ea>` to an extended-precision destination produces an incorrect result when the source operand is an extended-precision denormalized number. The result returned is zero, an incorrect denormalized number, or an incorrect, tiny normalized number.

The problem can be demonstrated by constructing an appropriate sequence of operations on double-precision operands but it is unlikely to be encountered unintentionally. There is no software workaround for this problem, but it is unlikely to affect any Sun-supplied software since the extended data type is not directly supported by Sun’s compilers.
The \texttt{flognt}, \texttt{flog2t}, and \texttt{flog10t} instruction produces an excessive amount of error in the results for operands $1\pm\epsilon$. As ϵ approaches 0, the results become totally dominated by error.

Sun's software releases 3.0 and later contain workarounds that avoid this problem for programs written in higher-level languages, as the assembly language entry \texttt{Mlogd} illustrates:

```
fmoved sp0,fp0       |sp0 contains the argument x.
fcmps #0r0.5,fp0     |Branch if x<=0.5 or x is Nan.
fjule 1f             |This is more accurate for x>0.5.
fsubl #1,fp0         |
flognplx fp0,fp0     |This is more accurate for x<0.5.
bras 2f
1:
flognx fp0,fp0       |
2:
moved fp0,sp0        |sp0 receives the computed logn.
```

\texttt{fsqrtx fpm,fpn} \hspace{1em} (m<>n) can produce an incorrect result; the failure is dependent upon the contents of \texttt{fpn} before the \texttt{fsqrtx} executes. Therefore, this problem can be avoided in software by preceding the \texttt{fsqrtx} with an instruction which loads \texttt{fpn} with an innocuous value such as 2.0: precede the \texttt{fsqrtx} with \texttt{fmoveb} #2, \texttt{fpn} or an equivalent instruction.

\texttt{fsqrtp <ea>,fpn} may cause the same problem, and may be avoided in the same way. Note that this problem can't occur for either register-to-register \texttt{fsqrtx fpm,fpn} or memory-to-register \texttt{fsqrt [sdxbw] <ea>,fpn}.

Sun's software releases 3.0 and later contain workarounds that avoid this problem for programs written in higher-level languages.

Binary-to-Decimal Conversion

a. When the result is an exact power of 10, the packed BCD mantissa is $\$C.000...000$ instead of $\$1.000...000$ (note non-BCD digit).

b. The result will have the incorrect exponent sign when the decimal exponent is greater than +999.

c. When the "K" parameter is in the range 0 thru 17, the OPERR (IOP) exception is incorrectly signalled.

d. When the magnitude of the decimal exponent is greater than 999, the OVFL exception is incorrectly signalled (OPERR should be signalled).

e. When the source operand is an extended-precision denormalized number, the numeric value of the result is correct but the decimal rounding boundary is incorrect.

f. The inexact exception is set even when conversion is exact.

g. Conversions with a "K" parameter of 0 do not function as specified, the result is the same as K=+1.
Sun's releases 3.0 and later use the MC68881's binary-to-ASCII conversion instructions only in the `adb` and `dbx` debuggers. These problems are worked around there.

Decimal-to-Binary Conversion

`fopp <ea>,fpm` of some exact powers of ten contains an error of 1 bit. These instructions are not used in Sun's releases 3.0 and later.
Assembly-Level In-line Expansion

Assembly-Level In-line Expansion ... 105

G.1. Introduction ... 105
 Language-Specific Constructs ... 105
 Access to Special Instructions ... 105
 Special Instructions, Access to ... 105
 Register Allocation .. 105

G.2. User Interface .. 106
 Implementation ... 106

G.3. In-line Expansion Pass .. 108

G.4. Peephole Optimizations .. 110

G.5. Using Sun's Predefined .il Files ... 112
 Faster Execution .. 112
 Smaller Executable Files .. 112
G.1. Introduction

A simple in-line expansion facility lets you integrate assembly routines into higher-level routines written in C, Pascal, or FORTRAN.

The peephole optimizer e2 has been modified to optimize code sequences containing inline-expanded routines. In many cases, the resulting code is comparable in quality to that compiled for constructs directly supported in the common code generator.

In-line expansion of procedure calls is an important optimization strategy, primarily because it exposes opportunities for other optimizations. It is also useful as a "software Swiss Army knife" in applications that depend on routines written in assembly language, either for performance reasons or for access to machine instructions not otherwise available in high-level languages. Several such applications are described in the following sections.

Language-Specific Constructs

The constructs of a given language frequently cannot be supported in a common backend with a reasonably small operator set in multilingual environments based on a common code generator. For example, Pascal sets and strings, and FORTRAN complex numbers are not naturally supported in a compiler system based on the Portable C Compiler (pcc), which includes none of these types. Attempts to support all such language-specific constructs in a single code generator typically result in large, unwieldy code generators containing large amounts of code intended only for a specific language. In-line expansion of language-specific library routines presents an attractive alternative.

Access to Special Instructions

A programmer frequently requires access in system software to instructions not normally produced by the code generator. The usual technique is to call a hand-coded assembly routine which uses the desired instruction. Unfortunately, the procedure call and return overhead may be unacceptable if this occurs in a region of high execution frequency.

Register Allocation

As noted earlier, in-line expansion is an important optimization strategy, primarily because it exposes opportunities for improved register allocation and other optimizations. This is important in the Sun Workstation environment, for several reasons.

First, the Sun MC68000 family calling sequence requires that all argument values be passed on the stack. This incurs memory traffic that becomes unnecessary when the body of a called procedure is integrated into the caller's text.
Second, the calling sequence requires that all function results be returned in the main processor registers d0 and d1. This is particularly annoying for functions returning floating-point values, since the calling routine cannot normally assume that the called routine uses a specific floating-point processor. Consequently, the calling sequence typically incurs a significant amount of traffic between the main processor registers and the floating-point processor registers. For simple operations, the cost of moving data in and out of external registers can easily exceed the cost of the operation itself. Experience shows that such operations are used frequently.

G.2. User Interface

Implementation

In the C, FORTRAN, and Pascal compilers, filenames ending with the suffix ".il" are assumed to contain inline-expandable assembly routines. In addition, the Pascal compiler uses the same mechanism to expand standard procedures and functions.

In-line expansion is divided into two tasks. The expansion itself is a straightforward text substitution, with little knowledge of the details of the assembly language. Most of the work of reducing calling sequence overhead is done by the peephole optimizer c2. This partitioning of tasks is convenient, since most of the information required is already present in the program representation built by c2 for other optimizations.

For illustrative purposes, consider the FORTRAN function cexp() or complex exponential. Assuming the real functions sin(), cos(), and exp() as primitives, the cexp() function may be implemented by the following C routine:

```c
typedef struct {
    double real, imag;
} dcomplex;

void c_exp(r, z)
    dcomplex *r, *z;
{
    register double expx;
    double exp(), cos(), sin();
    expx = exp(z->real);
    r->real = expx * cos(z->imag);
    r->imag = expx * sin(z->imag);
}
```

Straightforward compilation with MC68881 code generation (-f68881) enabled produces the following translation:

```assembly
.text
|PROC# 04
.globl _c_exp
_c_exp:
    link a6,#0
    add1 #-LF12,sp
    moveml #LS12,sp@(-LFF12)
    fmovem #LSS12,a6@(-LFF12)
```

Revision A of 19 September 1986
Appendix G — Assembly-Level In-line Expansion

```
movl a6@ (0xc), a0
movl a0@ (0x4), sp@-
movl a0@, sp@-
jbsr _exp
addqw #0x8, sp
movl d1, sp@-
movl d0, sp@-
fmoved sp@+, fp7
movl a6@ (0xc), a0
movl a0@ (0xc), sp@-
movl a0@ (0x8), sp@-
jbsr _cos
addqw #0x8, sp
movl d1, sp@-
movl d0, sp@-
fmoved sp@+, fp0
fmulx fp7, fp0
movl a6@ (0x8), a0
fmoved fp0, a0@
movl a6@ (0xc), a0
movl a0@ (0xc), sp@-
movl a0@ (0x8), sp@-
jbsr _sin
addqw #0x8, sp
movl d1, sp@-
movl d0, sp@-
fmoved sp@+, fp0
fmulx fp7, fp0
movl a6@ (0x8), a0
fmoved fp0, a0@ (0x8)
LE12:
fmovem a6@ (-0xc), #0x1
unlk a6
rts
LF12 = 0
LS12 = 0x0
LFS12 = 12
LSS12 = 0x1
LP12 = 0x10
.data
```

Note that most of this code is occupied with passing arguments on the stack, and moving function results from d0/d1 to fp0. Even the latter involves stack traffic, since the MC68881 does not support direct moves between floating-point registers and register pairs on the main processor. Additional overhead (not shown) exists for similar reasons in the called library routines. In-line expansion can do much to alleviate such problems, as will be shown in the following sections.
G.3. In-line Expansion Pass

Inline, the program that actually does in-line expansion, is little more than a glorified _sed_ script. It knows nothing about the syntax or semantics of the target machine assembly language, other than the form of a call instruction. **Inline** is invoked by the cc, pc, and f77 compilers as

```
/usr/lib/inline [sourcefile] [-o outputfile] [-i inlinefile]
```

Inline expands call instructions in _sourcefile_ using routine definitions from one or more _inlinefiles_. If no _sourcefile_ is specified, the default source is stdin. If no _outputfile_ is specified, the default output is stdout. If no _inlinefile_ is specified, inline behaves essentially like /bin/cat. Note that nested expansions are not supported, but may be implemented using pipes.

Each _inlinefile_ contains one or more labeled assembly language routines of the form:

```
.inline name,argsize
    ...
    instructions
    ...
.end
```

where the _instructions_ constitute an in-line expansion of the named routine, and _argsize_ is the number of bytes of arguments expected. The routine must observe the following restrictions:

1. Registers a0-a1/d0-dl/fp0-fp1/fp0-fpa3 may be used freely.
2. Other registers must be saved on entry and restored on exit.
3. Results are returned in d0 or d0/d1.
4. Arguments must be explicitly deleted from the stack. In general, this should be done using autoincrement addressing.

The optimizations performed in _c2_ assume that in-line routines are coded in a way that makes the lifetimes of stack temporaries explicit. On the MC68000 family of processors, this can be done by using autoincrement addressing to pop incoming arguments from the stack. For the preceding example, on the MC68881 you could code double-precision versions of _sin(), cos(),_ and _expO_ as follows:

```
.inline _cos,8
fcoad sp@+,fp0
fmoved fp0,sp@-
movl sp@+,d0
movl sp@+,dl
.end

.inline _sin,8
fsind sp@+,fp0
fmoved fp0,sp@-
```
When `inline` is run on the preceding compiled code using these routines, the result is:

```assembly
.text
.globl _c_exp
_c_exp:
    link a6,#0
    addl #0-LF12,sp
    moveml #LS12,sp@
    fmovem #LSS12,a6@(-LFF12)
    movl a6@(0xc),a0
    movl a0@(0x4),sp@
    movl a0,sp@
    fetoxd sp@+,fp0
    fmoved fp0,sp@
    movl sp@+,d0
    movl sp@+,dl
    subql #8,sp
    addqw #0x8,sp
    movl d1,sp@
    movl d0,sp@
    fmoved sp@+,fp7
    movl a6@(0xc),a0
    movl a0@(0xc),sp@
    movl a0@(0x8),sp@
    fsind sp@+,fp0
    fmoved fp0,sp@
    movl sp@+,d0
    movl sp@+,dl
    subql #8,sp
    addqw #0x8,sp
    movl d1,sp@
    movl d0,sp@
    fmoved sp@+,fp0
    fmulx fp7,fp0
    movl a6@(0x8),a0
    fmoved fp0,a0@
    movl a6@(0xc),a0
    movl a0@(0xc),sp@
    movl a0@(0x8),sp@
    fsind sp@+,fp0
```
This code looks terrible, but it has several desirable attributes.

1. It will execute correctly in its present form, and may even be slightly faster than the original code, although it is considerably larger.

2. All stack traffic is explicit, rather than being hidden in the semantics of the procedure call.

3. The patterns of stack overhead are regular and may be readily optimized by local transformations. In particular, no elaborate analysis is necessary to determine lifetimes of stack temporaries.

The symmetric use of autoincrement and autodecrement addressing is taken by c2 to indicate the lifetime of the stack copy of an argument. In particular, if there are no other uses of the stack copy, the copy need not be created, and the argument may instead be loaded into a register or used directly in the source field of an instruction in the expanded routine. This is typical of a class of optimizations in c2 which are similar to copy propagation, and generally attempt to reduce the height of the runtime stack. These optimizations depend on a program representation in which uses, definitions, and lifetimes of registers are explicit.

For example, consider the following code pattern:

1. move x, sp@-
 ...
2. <op> sp@+, ...

If possible, this pattern is rewritten as

1. (deleted)
 ...
2. <op> x, ...

This optimization is feasible only if x is not modified between (1) and (2). Other requirements include: side effects of (1) (including condition codes) must not be used, the value on the top of the stack must not be used, and the stack pointer
itself must not be used or set. If any of these restrictions are not met, the code is left unchanged.

Another similar pattern is the following:

```
(1) move x, sp@-
    ....
(2) move sp@+, rn
```

If possible, this pattern is rewritten as

```
(1) move x,rn
    ...
(2) (deleted)
```

This optimization requires that the register rn be neither used nor set in the interim. Care must also be taken to leave the code unchanged if the condition codes are live after either instruction (1) or instruction (2).

Applying these and other c2 optimizations to the example of the previous section yields the following:

```
.text
.globl _c_exp
_c_exp:
    link a6,#-12
    fmovex fp7,a6@(-12)
    movl a6@(12),a0
    fetoxd a0@,fp7
    fcosd a0@(8),fp0
    fmulx fp7,fp0
    movl a6@(8),a0
    fmoved fp0,a0@
    movl a6@(12),a0
    fsind a0@(8),fp0
    fmulx fp7,fp0
    movl a6@(8),a0
    fmoved fp0,a0@
    fmovex a6@(-12),fp7
    unlk a6
    rts
```

Although this code is not optimal, the improvement over the initial version is substantial. In addition, the final code is smaller than that which would be obtained by optimizing the original unexpanded code. Thus a gain in speed is obtained without incurring an increase in code size.
G.5. Using Sun's Predefined .il Files

Starting with Release 3.1, Sun provides five inline expansion template files:

- /usr/lib/fswitch.il
- /usr/lib/fsoft.il
- /usr/lib/fsky.il
- /usr/lib/f68881.il
- /usr/lib/ffpa.il

These files may be optionally used to replace calls to procedures in libF77.a and libm.a with code that will either execute faster or provide smaller executable files.

The procedure is simple; replace a command like

```
f77 -O -ffpa -c cx.f
```

with

```
f77 -O -ffpa -c cx.f /usr/lib/ffpa.il
```

Then any code generated to call routines redefined in /usr/lib/ffpa.il will be appropriately expanded inline. More than one .il file can be specified; in that case, the first definition encountered of an inline-expanded procedure will supersede any following definitions of the same procedure.

None of Sun's compilers use the f*.il files from /usr/lib except when specifically requested. pc always automatically uses another file pc2.il which doesn't affect floating-point subroutines.

The /usr/lib/f*.il files' primary application is to accelerate calculations involving the complex and doublecomplex data types in FORTRAN. For -ffpa, -f68881, and -fsky, intensive complex arithmetic may be twice as fast with inline expansion.

Smaller Executable Files

Although inline expansion normally increases an executable file's size, it can decrease executable size by avoiding the need to link in all or most of switched floating-point support.

With f77, using x**, mod, atan2, cabs, nint, and complex or doublecomplex arithmetic, can all provoke linking-in switched floating point even when -fsky, -f68881, or -ffpa is specified. Using fsky ila, f68881 ila, or ffpa ila causes these calls to switched floating point to be replaced by inline code or calls to appropriate unswitched routines.

With cc, use of almost any of the functions defined in <math.h> invokes switched floating point, but the appropriate .il file undoes the damage. With SPICE 3A.7, for instance, the version compiled with

```
-O -ffpa /usr/lib/ffpa.il
```
was 40,000 bytes smaller than the version compiled just with

```
-0 -ffpa
```

Using the .il file also avoids certain overheads required for System V compatibility.
System V Interface Compliance

System V Interface Compliance

H.1. SVID History ... 117
H.2. IEEE History .. 118
H.3. SVID Future Directions .. 118
H.4. Sun Implementation .. 118
 SIGNAL Notes ... 119
 libm.a Notes ... 119
H.1. SVID History

A joint goal of Sun and AT&T is to develop a version of UNIX that incorporates the best features of Berkeley BSD 4.2 and System V. Accordingly, Sun's Software Release 3.2 mathematical library `libm.a and related files have been modified so that C programs compiled with the `-fsoft` floating point option or compiled with `-fswitch` and running without floating-point hardware better comply with the System V Interface Definition (SVID). Fortran and Pascal programs, and C programs running with floating-point hardware, are usually not affected. The differences primarily involve exception handling.

To understand the differences between exception handling according to SVID and the point of view represented by the IEEE Standard, it is necessary to review the circumstances under which both developed. Many of the ideas in SVID trace their origins to the early days of Unix, when it was first implemented on PDP-11's and then ported to VAXes and IBM and Honeywell mainframe computers. These various environments have in common that rational floating-point operations +, -, *, and / are atomic machine instructions, while `sqrt`, conversion to integral value in floating-point format, and elementary transcendental functions are subroutines composed of many atomic machine instructions.

Because these environments treat floating-point exceptions in varied ways, uniformity could only be imposed by checking arguments and results in software before and after each atomic floating-point instruction. Since this would have too great an impact on performance, SVID does not specify the effect of floating-point exceptions such as division by zero or overflow.

Operations implemented by subroutines are slow compared to single atomic floating-point instructions; extra error checking of arguments and results has little performance impact; so such checking is required by the SVID. When exceptions are detected, default results are specified, `errno` is set to `EDOM` for improper operands, or `ERANGE` for results that overflow or underflow, and the function `matherr()` is called with a record containing details of the exception. This costs little on the machines for which Unix was originally developed, but the value is correspondingly small since the far more common exceptions in the basic operations +, -, *, and / are completely unspecified.
H.2. IEEE History

The IEEE Standard explicitly states that compatibility with previous implementations was not a goal. Instead, an exception handling scheme was developed with efficiency and users' requirements in mind. This scheme is uniform across the simple rational operations (+, -, *, and /), and more complicated operations such as remainder, square root, and conversion between formats. Although the Standard does not specify transcendental functions, the framers of the Standard anticipated that the same exception handling scheme would be applied to elementary transcendental functions in conforming systems.

Elements of IEEE exception handling include suitable default results and interruption of computation only when requested in advance. High performance conforming processors such as the MC68881 compute the common elementary transcendental functions in single instructions that look, from a programmer's viewpoint, just like the instructions for +, -, *, and /.

H.3. SVID Future Directions

The current SVID identifies certain directions for future development. One of these is compatibility with the IEEE Standard. In particular a future version of the SVID will replace references to HUGE, intended to be a large finite number, with HUGE_VAL, which would be infinity on IEEE systems. HUGE_VAL would, for instance, be returned as the result of floating-point overflows. In this respect, Sun's implementation has already arrived at SVID's future direction, since the constant HUGE in /usr/include/math.h is defined to be a constant that compiles into IEEE infinity.

H.4. Sun Implementation

In Release 3.2, the following C language libc and libm functions provide operand or result checking corresponding to SVID, when called from C programs compiled with -fsoft, or compiled with -fswitch and run without floating-point hardware:

- exp
- log and log10
- pow
- sqrt
- hypot
- cabs
- sinh and cosh
- sin, cos and tan
- asin, acos, atan and atan2

When exceptional conditions are detected, the SVID function matherr() is invoked. The default matherr() in libm returns a default result value and, for EDOM errors, prints an error message prior to continuing. Because SVID encompasses machines without infinities or NaNs, the default results specified are finite values and therefore sometimes misleading. Users may provide their own matherr() function to obtain alternative processing.

For efficiency, programs compiled with inline hardware floating-point or with -fswitch and run with floating-point hardware do not do the extra checking.
required to set _EDOM_ or _ERANGE_ or call _matherr()._ Usually NaN is returned for the function value in situations where _EDOM_ might otherwise be set, and Infinity is returned for the function value where _ERANGE_ might be set to indicate overflow. Where _ERANGE_ might be set to indicate underflow, these functions return subnormal numbers or zero.

Note that if inline expansion files are used to expand _libm_ functions, the SVID exception handling may be bypassed, even for -fsoft.

The SVID defines _SIGFPE_ as "floating-point exception". On Suns, _SIGFPE_ is also generated by MC68010 and MC68020 integer division by zero, CHK and TRAPV instructions, and by FPA-related non-numerical exceptions.

SVID specifies two floating-point exceptions, "PLOSS" (partial loss of significance) and "TLOSS" (total loss of significance). Unlike _sqrt(-1)_ , these have no inherent mathematical meaning, and unlike _exp(+10000)_ , these do not reflect inherent limitations of a floating-point storage format. _PLOSS_ and _TLOSS_ reflect instead limitations of particular algorithms for _fmod_ and for trigonometric functions that suffer abrupt declines in accuracy at definite boundaries. Like most IEEE implementations, the Sun algorithms used with -fsoft, -f68881, and -ffpa do not suffer such abrupt declines, and so do not signal PLOSS or TLOSS, nor do the Bessel functions which call the trigonometric functions.

Instead, Sun's _sin, cos, and tan_ treat the essential singularity at infinity like other essential singularities by returning a NaN and setting _EDOM_ for infinite arguments. The Bessel functions of the first kind, _j0, j1, and jn_, return zero for infinite arguments, while the Bessel functions of the second kind, _y0, y1, and yn_, return zero for positive infinite arguments, and return NaN and set _EDOM_ for negative arguments.

Likewise SVID specifies that _fmod(x,y)_ should be zero if _x/y_ would overflow, but Sun's _fmod_, derived from the IEEE remainder function, does not compute _x/y_ explicitly and hence always delivers a correctly rounded result.
Index

A
ASCII-to-Binary Conversion, 31
Assembler Syntax, FPA, 75

B
Benchmark, 51, 53
Benchmarking Hazards, 54

C
Cache, MC68020, 54
Code Generation
 Floating-Point Default, 5
 Floating-Point Options, 5
Comparisons
 Ordered, 32
Compiler Options, 3 thru 6
 -f68881, 5
 -ffpa, 5
 -fsingle, 9
 -fsingle2, 9
 -fsky, 5
 -fstore, 7
 -0, 4
 -P, 4
Condition Code, 34
Constant Expressions, 9
Conversion, ASCII-to-Binary, 31

D
Debuggers and Floating Point, 21
Decimal Digits, Precision, 17
Differing Numerical Results, 13
Disassembly, MC68881, 22
Double Precision, 17

E
Elefunt Test Programs, 47
Entry Points, 37
Exceptions, 25, 31, 34
 Inexact, 25
Expansion Inline, 4
Expression Evaluation
 FORTRAN Style, 7
 Greatest Available Precision Style, 7
 Options, 7
Extended Precision, 17

F
-f68881, 46
FCVS Tests, 17
-ffpa, 46
File Size
 Executable Files, 6
 Libraries, 6
Floating Point
 Debuggers, 21
Floating-Point
 Default, 5
 From FORTRAN, 33
 Instructions, 83 thru 86
 Performance, 26
 Performance Benchmarks, 51
 Registers, Modifying, 23
 Signals, 20
Floating-Point and Signal Handlers, 19
Floating-Point Options, 3, 5
Floating-Point Programs, 15 thru 16
 Formats, Numeric, 31
Four-Operand Instructions, 78
FPA
 Assembler Syntax, 75
 Recomputation, 24
 Register Use, 72
 Registers, Printing, 23
 Test Vector, 45
 fpmode from C, 34
 fpstatus from C, 34
 -fsingle, 9
 -fsingle2, 9
 -fsky, 47
 -fstore, 7

H
Hardware Floating-Point Options, 3

I
IEEE Appendix Functions, 89 thru 92
IEEE Standard
 Features, 31
 History, 118
 Special Features, 32
 Support, 31
 Test Vectors, 43
Index — Continued

.il Files, 112	Inline Files, 112
Ill Condition, Detecting, 14	Instability, Detecting, 14
Inexact Exceptions, 25	Instructions
Inline Expansion, 4, 108	Five-Operand, 78
Assembly Language, 56	Three-Operand, 77
Assembly-Level, 105	Two-Operand, 76
Source Level, 57	
Libraries and Executable File Sizes, 6	Libraries and Executable File Sizes, 6
Linpack Benchmark, 51	Linpack Benchmark, 51
Liu, Test Programs, 49	Liu, Test Programs, 49

Mask Differences, MC68881, 99	Mask Differences, MC68881, 99
MC68020 Cache, 54	MC68020 Cache, 54
MC68881	MC68881
Disassembly, 22	Disassembly, 22
Mask Differences, 99	Mask Differences, 99
Test Vector, 44	Test Vector, 44
Monotonicity, 50	Monotonicity, 50
mosamp2, 96	mosamp2, 96

| Numeric Formats, 31 | Numeric Results, 31 |
| | |

-O - cc option, 4	-P - cc option, 4
Operand Types, 76	Paranoia Test Program, 45
Optimization	Partial Optimization, 4
Partial, 4	Performance, Floating-Point, 26, 58
Peephole, 110	Precision in Decimal Digits, 17
Side Effects, 4	Printing
Optimization, Floating-Point, 58	Printing
Options	Options
Compiler Code Generation, 3	Compiler Code Generation, 3
Expression Evaluation, 7	Expression Evaluation, 7
Floating-Point, 3	Floating-Point, 3
Hardware Floating-Point, 3	Hardware Floating-Point, 3
Ordered Comparisons, 32	Ordered Comparisons, 32

| Programs, Floating-Point, 15 thru 16 | Programs, Floating-Point, 15 thru 16 |
| Quotient Status, 34 | Quotient Status, 34 |

Recomputation, FPA, 24	Recomputation, FPA, 24
Register	Register
Allocation, 105	Allocation, 105
Syntax, 76	Syntax, 76
Register Use	Register Use
FPA, 72	FPA, 72
Results, Numerical, 31	Results, Numerical, 31
Rounding	Rounding
Errors, 13	Errors, 13
MC68881, 32	MC68881, 32
Modes, 25, 33	Modes, 25, 33
Precision Mode, 32	Precision Mode, 32
Rounding Direction Modes, 31	Rounding Direction Modes, 31

setjmp/longjmp, 20	setjmp/longjmp, 20
SIGEMT, 20	SIGEMT, 20
SIGFPE, 20	SIGFPE, 20
Signal Handlers	Signal Handlers
and Floating-Point, 19	and Floating-Point, 19
Signalling NaNs, 34	Signalling NaNs, 34
Signals, 20, 21	Signals, 20, 21
Single Precision, 17	Single Precision, 17
Software Test Vector, 44	Software Test Vector, 44
Source Coding, Floating-Point, 58	Source Coding, Floating-Point, 58
SPICE, 53, 95 thru 96	SPICE, 53, 95 thru 96
tdo, 14	tdo, 14
SVID History, 117	SVID History, 117
System V Interface Compliance, 117	System V Interface Compliance, 117

tdo File, 95	tdo File, 95
Test Vector	Test Vector
IEEE, 43	IEEE, 43
MC68881, 44	MC68881, 44
SFP1, 45	SFP1, 45
Sky, 44	Sky, 44
Software, 44	Software, 44
Trap Enabling, 33	Trap Enabling, 33
Traps, 26, 31	Traps, 26, 31

- 122 -