
0
~\sun

• microsystems

0

0 Sun Microsystems, Inc. • 2550 Garcia Avenue

Editing and Text Processing
on the Sun Workstation

/
' ' '

• Mountain View, CA 94043 • 415-960-1300

0

0

0

0

0

Editing and Text Processing
on the Sun Workstation

Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

!'art No: 800-1174 Oi
Revision D of 15 198)

Credits and Acknowledgements

Material in this Editing and Text Proce'8ing on the Sun Work.talion comes from a number of
sources: An Introduction to Diaplay Editing with Vi, William Joy, University of California,
Berkeley, revised by Mark Horton; Vi Command and Function Reference, Alan P. W. Hewett,
revised by Mark Horton; Ex Reference Manual, William Joy, revised by Mark Horton, University
of California, Berkeley; Awk - A Pattern Scanning and Proce88ing Language, Alfred V. Aho,
Brian W. Kernighan, Peter J. Weinberger, Bell Laboratories, Murray Hill, New Jersey; Edit: A
Tutorial, Ricki Blau, James Joyce, University of California, Berkeley; A Tutorial Introduction to
the UNIX Text Editor, Brian W. Kernighan, Bell Laboratories, Murray Hill, New Jersey;
Advanced Editing on UNIX, Brian W. Kernighan, Bell Laboratories, Murray Hill, New Jersey;
Sed - a Non-Interactive Text Editor, Lee. E. McMahon, Bell Laboratories, Murray Hill, New
Jersey; Nroff/Troff Uaer'• Manual, Joseph F. Ossanna, Bell Laboratories, Murray Hill, New Jer­
sey; A Troff Tutorial, Brian W. Kernighan, Bell Laboratories, Murray Hill, New Jersey; Typing
Document• on the UNIX System: Using the -m• Macros with Troff and Nroff, M. E. Lesk, Bell
Laboratories, Murray Hill, New Jersey; A Guide to Preparing Document• with -m•, M. E. Lesk,
Bell Laboratories, Murray Hill, New Jersey; Document Formatting on UNIX Using the -m• Mac­
r03, Joel Kies, University of California, Berkeley, California; Tb/ - A Program to Format
Tables, M. E. Lesk, Bell Laboratories, Murray Hill, New Jersey; A System for Typesetting
Mathematics, Brian W. Kernighan, Lorinda L. Cherry, Bell Laboratories, Murray Hill, New Jer­
sey; Typesetting Mathematica - User's Guide, Brian W. Kernighan, Lorinda L. Cherry, Bell
Laboratories, Murray Hill, New Jersey; Writing Tools - The Style and Diction Programs, L. L.
Cherry, W. Vesterman, Bell Laboratories, Murray Hill, New Jersey; Updating Publication• Liata,
M. E. Lesk, Bell Laboratories, Murray Hill, New Jersey; Some Applications of Inverted Indexea
on the UNIX System, M. E. Lesk, Bell Laboratories, Murray Hill, New Jersey; Writing Paper8
with Nroff Using -me, Eric P. Allman, University of California, Berkeley; and -me Reference
Manual, Eric P. Allman, University of California, Berkeley. Introducing the UNIX Syatem,
Henry McGilton, Rachel Morgan, McGraw-Hill Book Company, 1983. These materials are grate­
fully acknowledged.

Trademarks

Sun Workstation, and the combination of Sun with a numeric suffix
are trademarks of Sun Microsystems, Inc.

UNIX, UNIX/32V, UNIX System III, and UNIX
System V are trademarks of Bell Laboratories.

Ethernet® is a registered trademark of Xerox Corporation.

Copyright © l 985 by Sun Microsystems Inc.

0

0

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, translated, transcribed, or transmit-
ted, in any form, or by any means manual, electric, electronic, electro-magnetic, mechanical, 0
chemical, optical, or otherwise, without prior explicit written permission from Sun Microsystems.

0

Revision History

Version Date Comments

A 15 May 1983 First release of Editing and Text Processing.

B 1 November 1983 Updated and reorganized.

C 7 January 1984 New -ms macros; additions to document prepara-
tion introduction; minor corrections.

D 15 May 1985 2.0 FCS release (old format)

0

0
- lll -

0

0

0

0
Contents

Chapter 1 An Introduction to Text Editing ... 1-1

Chapter 2 Using vi, the Visual Display Editor 2-1

Chapter 3 Command Reference for the ex Line Editor 3-1

Chapter 4 Using the ed Line Editor 4-1

Chapter 5 Using sed, the Stream Text Editor 5-1

Chapter 6 Pattern Scanning and Processing with awk 6-1

0

0

- v-

Chapter 7 Introduction to Document Preparation.. 7-1

Chapter 8 Formatting Documents with the -ms Macros...................................... 8-1

Chapter 9 The -man Macro Package 9-1

Chapter 10 Formatting Tables with tbl ... 10-1

Chapter 11 PIC - A Graphics Language for Typesetting 11-1

Chapter 12 Typesetting Mathematics with eqn ... 12-1

Chapter 13 Refer - A Bibliography System ... 13-1

Chapter 14 Formatting Documents with the -me Macros 14-1

Chapter 15 Formatting Documents with nroff and troff ... 15-1

Appendix A Examples of Fonts and Non-ASCII Characters

Appendix B troff Request Summary

Appendix C Escape Sequences for Characters, Indicators, and
Functions

Appendix D Predefined Number Registers

Appendix E Description of troff Output Codes

- VI -

A-1

B-1

C-1

D-1

E-1

0

0

0

0
Contents

Preface ... xxvii

Chapter 1 An Introduction to Text Editing ... 1-1
1.1. Sun System Editors........ 1-1
1.2. Text Editing Basics ... 1-2

1.2.1. Regular Expressions in Text Patterns ... 1-3
1.3. What to Do If Something Goes Wrong......... 1-5

Chapter 2 Using vi, the Visual Display Editor... 2-1
2.1. vi and ex.. 2-1
2.2. Getting Started 2-2

2.2.1. Editing a File 2-2
2.2.2. The Editor's Copy - Editing in the Buffer 2-2
2.2.3. Arrow Keys 2-3
2.2.4. Special Characters: ESC, CR and CTRL-C 2-3
2.2.5. Getting Out of vi - : q, : q ! , : w, ZZ, : wq 2-3 0

2.3. Moving Around in the File 2-4
2.3.1. Scrolling and Paging - CTRL-D, CTRL-U, CTRL-E, CTRL-Y,

CTRL-F, CTRL-B ... 2-4
2.3.2. Searching, Goto, and Previous Context - /, ? , G ... 2-4
2.3.3. Moving Around on the Screen - h, j, k, 1 .. 2-6
2.3.4. Moving Within a Line - b, w, e, E, B, W ... 2-6
2.3.5. Viewing a File - view ... 2-6

2.4. Making Simple Changes 2-7
2.4.1. Inserting - i and a 2-7
2.4.2. Making Small Corrections - x, r, s, R ... 2-8
2.4.3. Deleting, Repeating, and Changing-:- dw, • , db, c 2-8
2.4.4. Operating on Lines - dd, cc, S .. 2-9
2.4.5. Undoing - u, U. 2-9

2.5. Moving About: Rearranging and Duplicating Text .. 2-10
2.5.1. Low-level Character Motions - f, F, - .. 2-10
2.5.2. Higher Level Text Objects - (,) , {, }, [[,]] 2-10
2.5.3. Rearranging and Duplicating Text - y, Y, p, P 2-11

2.6. High-Level Commands 2-12
2.6.1. Writing, Quitting, and Editing New Files - ZZ, : w, : q,

:e, :n 2-12

0
2.6.2. Escaping to a Shell - : ! , : sh, CTRL-Z ... 2-12

- Vll -

2.6.3. Marking and Returning - m 2-13
2.6.4. Adjusting the Screen CTRL-L, z ... 2-13

2.7. Special Topics... 2-13
2.7.1. Options, the Set Variable, and Editor Start-up Files 2-13
2.7.2. Recovering Lost Lines ... 2-15
2.7.3. Recovering Lost Files - the -r Option .. 2-15
2.7.4. Continuous Text Input - wrapmargin ... 2-16
2.7.5. Features for Editing Programs ... 2-16
2.7.6. Filtering Portions of the Buffer ... 2-17
2.7.7. Commands for Editing LISP 2-17
2.7.8. Macros 2-17
2.7.9. Word Abbreviations - : ab, : una 2-19

2.8. Nitty-gritty Details 2-19
2.8.1. Line Representation in the Display .. 2-19
2.8.2. Command Counts .. 2-20
2.8.3. File Manipulation Commands .. 2-20
2.8.4. More about Searching for Strings ... 2-22
2.8.5. More about Input Mode 2-23

2.9. Command and Function Reference .. 2-24
2.9.1. Notation 2-24
2.9.2. Commands 2-25
2.9.3. Entry and Exit 2-25
2.9.4. Cursor and Page Motion ... 2-25
2.9.5. Searches 2-28
2.9.6. Text Insertion 2-28
2.9.7. Text Deletion 2-29
2.9.8. Text Replacement.. 2-29
2.9.9. Moving Text .. 2-30
2.9.10. Miscellaneous Commands 2-31
2.9.11. Special Insert Characters....................... 2-32
2.9.12. : Commands 2-32
2.9.13. Set Commands...................................... 2-33
2.9.14. Character Functions 2-37

2.10. Terminal Information................... 2-44
2.10.1. Specifying Terminal Type ... 2-45
2.10.2. Special Arrangements for Startup .. 2-46
2.10.3. Open Mode on Hardcopy Terminals and 'Glass tty's'
2.10.4. Editing on Slow Terminals
2.10.5. Upper-case Only Terminals .. .

2.11. Command Summary

Chapter 3 Command Reference for the ex Line Editor .
3.1. Using ex
3.2. File Manipulation

3.2.1. Current File
3.2.2. Alternate File

- Vlll -

2-46
2-47
2-48
2-48

3-1
3-1
3-2
3-2
3-2

0

0

0

3.2.3. Filename Expansion ... 3-2
3.3. Special Characters ... 3-3

3.3.1. Multiple Files and Named Buffers.......................... 3-3 0
3.3.2. Read Only Mode ,... 3-3

3.4. Exceptional Conditions ... 3-3
3.4.1. Errors and Interrupts 3-3
3.4.2. Recovering If Something Goes Wrong . 3-4

3.5. Editing Modes .. 3-4
3.6. Command Structure 3-4

3.6.1. Specifying Command Parameters 3-4
3.6.2. Invoking Command Variants 3-5
3.6.3. Flags after Commands ... 3-5
3.6.4. Writing Comments 3-5
3.6.5. Putting Multiple Commands on a Line ... 3-5
3.6.6. Reporting Large Changes.. 3-5

3.7. Command Addressing.. 3-6
3.7.1. Addressing Primitives... 3-6
3.7.2. Combining Addressing Primitives .. 3-6

3.8. Regular Expressions and Substitute Replacement Patterns 3-6
3.8.1. Regular Expressions............. 3-7
3.8.2. Magic and Nomagic 3-7
3.8.3. Basic Regular Expression Summary............................. 3-7
3.8.4. Combining Regular Expression Primitives .. 3-8
3.8.5. Substitute Replacement Patterns .. 3-8

3.9. Command Reference .. 3-8 0
3.10. Option Descriptions 3-17
3.11. Limitations 3-22

Chapter 4 Using the ed Line Editor 4-1
4.1. Getting Started 4-1

4.1.1. Creating Text - the Append Command a .. 4-2
4.1.2. Error Messages - ? ... 4-2
4.1.3. Writing Text Out as a File - the Write Command w 4-3
4.1.4. Leaving ed - the Quit Command q 4-4
4.1.5. Creating a New File - the Edit Command e .. 4-4
4.1.6. Exercise: Trying the e Command ... 4-5
4.1.7. Checking the Filename - the Filename Command f 4-6
4.1.8. Reading Text from a File - the Read Command r 4-6
4.1.9. Printing the Buffer Contents - the Print Command p 4-7
4.1.10. Exercise: Trying the p Command .. 4-8
4.1.11. Displaying Text - the List Command 1 ... 4-8
4.1.12. The Current Line - 'Dot' or '.' .. 4-9
4.1.13. Deleting Lines - the Delete Command d .. 4-10
4.1.14. Exercise: Experimenting ... 4-10
4.1.15. Modifying Text - the Substitute Command s 4-11

0
4.1.16. The Ampersand & 4-13

- IX-

4.1.17. Exercise: Trying the sand g Commands..... 4-14
4.1.18. Undoing a Command - the Undo Command u 4-14

4.2. Changing and Inserting Text - the c and i Commands 4-14 0
4.2.1. Exercise: Trying the c Command.. 4-15

4.3. Specifying Lines in the Editor 4-16
4.3.1. Context Searching.. 4-16
4.3.2. Exercise: Trying Context Searching ... 4-17
4.3.3. Specifying Lines with Address Arithmetic - + and - 4-17
4.3.4. Repeated Searches - // and ?? ... 4-18
4.3.5. Default Line Numbers and the Value of Dot ... 4-19
4.3.6. Combining Commands - the Semicolon ; 4-21
4.3.7. Interrupting the Editor............ 4-22

4.4. Editing All Lines - the Global Commands g and v 4-22
4.4.1. Multi-line Global Commands............................... 4-23

4.5. Special Characters............ 4-24
4.5. l. Matching Anything - the Dot '.' 4-24
4.5.2. Specifying Any Character - the Backslash ' \' 4-25
4.5.3. Specifying the End of Line - the Dollar Sign $ 4-27
4.5.4. Specifying the Beginning of the Line - the Circumflex ~ 4-28
4.5.5. Matching Anything - the Star • 4-28
4.5.6. Character Classes - Brackets [] 4-30

4.6. Cutting and Pasting with the Editor 4-31
4.6.1. Moving Lines Around 4-31
4.6.2. Moving Text Around - the Move Command m 4-31
4.6.3. Substituting Newlines................... 4-33 0
4.6.4. Joining Lines - the Join Command j .. 4-33
4.6.5. Rearranging a Line with \ (. . . \) 4-34
4.6.6. Marking a Line - the Mark Command k 4-34
4.6.7. Copying Lines -- the Transfer Command t .. 4-35

4.7. Escaping to the Shell with ! ... 4-35
4.8. Supporting Tools 4-35

4.8.1. Editing Scripts .. 4-36
4.8.2. Matching Patterns with grep . .. 4-36

4.9. Summary of Commands and Line Numbers ... 4-37

Chapter 5 Using sed, the Stream Text Editor 5-1
5.1. Using sed .. 5-2

5.1.1. Command Options... 5-2
5.2. Editing Commands Application Order ... 5-3
5.3. Specifying Lines for Editing .. 5-3

5.3.1. Line-number Addresses .. 5-4
5.3.2. Context Addresses 5-4
5.3.3. Number of Addresses...................... 5-5

5.4. Functions ... 5-6
5.4.1. Whole Line Oriented Functions .. 5-6
5.4.2. The Substitute Function s .. 5-7

0
·- x-

5.4.3. Input-output Functions .. .

0 5.4.4. Multiple Input-line Functions
5.4.5. Hold and Get Functions
5.4.6. Flow-of-Control Functions
5.4.7. Miscellaneous Functions

Chapter 6 Pattern Scanning and Processing with awk

6.1. Using awk
6.1.l. Program Structure
6.1.2. Records and Fields

6.2. Displaying Text .. .
6.3. Specifying Patterns .. .

6.3.1. BEGIN and END ···
6.3.2. Regular Expressions
6.3.3. Relational Expressions
6.3.4. Combinations of Patterns
6.3.5. Pattern Ranges

6.4. Actions
6.4.l. Assignments, Variables, and Expressions
6.4.2. Field Variables
6.4.3. String Concatenation .. .
6.4.4. Built-in Functions .. .

6.4.4.l. length Function .. .

0 6.4.4.2. substring Function
6.4.4.3. index Function
6.4.4.4. sprint f Function

6.4.5. Arrays
6.4.6. Flow-of-Control Statements

0
- Xl -

5-9
5-10
5-10
5-11
5-12

6-1
6-2
6-2
6-3
6-3
6-5
6-5
6-5
6-6
6-7
6-7
6-7
6-7
6-8
6-9
6-9
6-9

6-10
6-10

6-10
6-10
6-11

Chapter 7 Introduction to Document Preparation
7.1. What Do Text Formatters Do?
7.2. What is a Macro Package?
7.3. What is a Preprocessor?
7.4. Typesetting Jargon
7.5. Hints for Typing in Text
7.6. Types of Paragraphs
7.7. Quick References ..

7.7.l. Displaying and Printing Documents
7.7.2. Technical Memorandum
7.7.3. Section Headings for Documents
7.7.4. Changing Fonts
7.7.5. Making a Simple List ..
7.7.6. Multiple Indents for Lists and Outlines
7.7.7. Displays.
7.7.8. Footnotes
7.7.9. Keeping Text Together - Keeps
7.7.10. Double-Column Format
7.7.11. Sample Tables
7.7.12. Writing Mathematical Equations .. .
7.7.13. Registers You Can Change

Chapter 8 Formatting Documents with the -ms Macros

..........

8.1. Changes in the New -ms Macro Package
8.2. Displaying and Printing Documents with -ms
8.3. What Can Macros Do?
8.4. Formatting Requests .. .

8.4.1. Paragraphs
8.4.1.l. Standard Paragraph - . PP
8.4.l.2. Left-Block Paragraph - . LP
8.4.l.3. Indented Paragraph - . IP
8.4.l.4. Nested Indentation - .RS and .RE
8.4.1.5. Quoted Paragraph - . QP

8.4.2. Section Headings - . SH and . NH
8.4.3. Cover Sheets and Title Pages
8.4.4. Running Heads and Feet - LH, CH, RH
8.4.5. Custom Headers and Footers - .OH, .EH, .OF, and .EF

- XII -

0

7-1
7-1
7-2
7-2
7-3
7-4
7-4
7-8
7-8
7-9

7-11
7-11
7-11
7-12
7-13 0 7-13
7-13
7-14
7-14
7-16
7-17

8-1
8-1
8-1
8-2
8-2
8-3
8-3
8-3
8-3
8-5
8-6
8-6
8-7
8-8
8-9

0

0

0

0

8.4.6. Multi-column Formats - . 2C and .MC·-·-···--···--····--···-·-·- .. ·--- ___ . 8-9
8.4.7. Footnotes - .FS and .FE-----------------________ 8-11

8.4.8. Endnotes··---··---···--·---··--------·----------·----------------_______ 8-12
8.4.9. Displays and Tables - .DS and .DE 8-12
8.4.10. Keeping Text Together - . KS, . KE and . KF 8-13

8.4.11. Boxing Words or Lines - . BX and . Bl and . B2 -···--····--···---··---·- 8-13
8.4.12. Changing Fonts - . I, . B, .Rand . UL---··---···---·---·----·----··---···---··---·- 8-14
8.4.13. Changing the Type Size - .LG, .SM and .NL 8-14
8.4.14. Dates - .DA and .ND 8-15

8.4.15. Thesis Format Mode - . TM --··---·-----·-------·----··--···---···---··---·--·-·--···--····--···--··-- 8-15
8.4.16. Bibliography - .XP 8-15
8.4.17. Table of Contents - .XS, .XE, .XA, .PX-· 8-16
8.4.18. Defining Quotation Marks -· 8-16
8.4.19. Accent Marks_ 8-16

8.5. Modifying Default Features 8-18
8.5.l. Dimensions 8-18

8.6. Using nroff and troff Requests 8-20
8.7. Using -ms with tbl to Format Tables··---·----- 8-21
8.8. Using -ms with eqn to Typeset Mathematics --···--····--···---·-·-·---·· ____________ 8-21

8.9. Register Names--···---··-·----··----··--··----·---··--··---···--··---··---··---·--··---···---···--····-···-···--···--····--···--·----· 8-22
8.10. Order of Requests in Input ---·---··--··---··---··----··--···--·--···--···--····-- 8-23
8.11. -ms Request Summary··--··---···--··-····--···--···---··--···--· 8-24

Chapter 9 The -man Macro Package
9.1. Parts of a Manual Page
9.2. Coding Conventions

9.2.l. The . TH Line - Identifying the Page
9.2.2. The NAME Line

9-1
9-1
9-2
9-2
9-2

9.2.3. The SYNOPSIS Section ·-------·----··---··---·----··--·---···---··---····-···--·---···--···--·-· 9-3
9.2.4. The DESCRIPTION Section ··---··----··---·--··---·----··---···---···-··--····--··---···--- 9-3
9.2.5. The OPTIONS Section --··-·- ·-- ·-·· ___ 9-4

9.2.6. The FILES Section -----------··---·--···--··---···---··---·---··--···--···--····-···---··-····--··--···· 9-6
9.2.7. The SEE ALSO Section·---·--··---···--···---··--···--·---··---···-····--···-······- ··-···- --·- ____ 9-6

9.2.8. The BUGS Section ·-----------------··---·-----·----··---·-------··---···--····--··-·-·······--··---··----··---··--- 9-7
9.3. New Features of the -man Macro Package ··-···--···-··· 9-7

9.3.l. New Number Registers .. 9-7
9.3.2. Using the Number Registers ... -.. 9-8

9.4. How to Format a Manual Page ---... -- -... -- ... -- .. ----... 9-8
9.5. Summary of the -man Macro Package Requests ··--·-·-- .. -............................... 9-9

Chapter 10 Formatting Tables with tbl ···················-····--·- -·-- -...................................... 10-1
10.1. Running tbl .. _···-·-····--····--·-- 10-2
10.2. Input Commands _ -.. --... 10-4

10.2.l. Options that Affect the Whole Table .. 10-4

10.2.2. Key Letters - Format Describing Data Items ·························-··········· 10-5
10.2.3. Optional Features of Key Letters .. 10-6

- Xlll -

10.2.4. Data to be Formatted in the Table .. 10-8
10.2.5. Changing the Format or a Table 10-9

10.3. Examples .. 10-10
10.4. Tbl Commands 10-21

Chapter 11 PIC - A Graphics Language for Typesetting 11-1
11.1. Introduction .. 11-1
11.2. Basics .. 11-1
11.3. Controlling Sizes or Objects......... 11-5

11.3.1. Variables for Controlling Size or Objects ... 11-8
11.4. Controlling Positions or Objects 11-9
11.5. Labels and Corners.............. 11-10
11.6. Variables and Expressions 11-14
11.7. More on Text
11.8. Lines and Splines
11.9. Blocks
11.10. Macros
11.11. TROFF Interface
11.12. Some Examples
11.13. Final Observations

11.13.1. Acknowledgements
11.14. PIC Reference Manual

11.14.1. Pictures
11.14.2. Elements
11.14.3. Primitives
11.14.4. Attributes

11-15
. ... 11-15

... 11-16
.. 11-18

.. 11-19
. 11-20
................... 11-23

........................ 11-24
............................. 11-25

................. 11-25
... 11-25
.. 11-26

................................... 11-26
11.14.5. Text 11-27
11.14.6. Positions and places .. 11-27
11.14.7. Variables 11-28
11.14.8. Expressions
11.14.9. Definitions

Chapter 12 Typesetting Mathematics with eqn
12.1. Displaying Equations - '.EQ' and '.EN'

. 11-29
....................... 11-29

12-1
12-1

12.2. Running eqn and neqn 12-2
12.3. Putting Spaces in the Input Text 12-3
12.4. Producing Spaces in the Output Text ... 12-4
12.5. Symbols, Special Names, and Greek Letters ... 12-5
12.6. Subscripts and Superscripts - 'sub' and 'sup' 12-5
12.7. Grouping Equation Parts - '{' and '}' .. 12-6
12.8. Fractions - 'over' .. 12-7
12.9. Square Roots - 'sqrt' ... 12-8
12.10. Summation, Integral, and Other Large Operators.............................. 12-9
12.11. Size and Font Changes 12-9
12.12. Diacritical Marks ... 12-11
12.13. Quoted Text ... 12-11

- XIV -

0

0

O !

I
I

0

0

0

12.14. Lining Up Equations - 'mark' and 'lineup' .. 12-12
12.15. Big Brackets ... 12-13
12.16. Piles - 'pile' ... 12-13
12.17. Matrices - 'matrix' ... 12-14
12.18. Shorthand for In-line Equations - 'delim' ... 12-15
12.19. Definitions - 'define' ... 12-15
12.20. Tuning the Spacing .. 12-17
12.21. Troubleshooting .. 12-17
12.22. Precedences and Keywords .. 12-18
12.23. Several Examples 12-22

Chapter 13 Refer - A Bibliography System ... : 13-1
13.l. Introduction 13-1
13.2. Features ... 13-1
13.3. Data Entry with Add bib 13-3
13.4. Printing the Bibliography............ 13-4
13.5. Citing Papers with Refer 13-4
13.6. Refer·s Command-line Options... 13-6
13.7. Making an Index................... 13-6
13.8. Refer Bugs and Some Solutions . 13-7

13.8.l. Blanks at Ends of Lines 13-7
13.8.2. Interpolated Strings 13-8
13.8.3. Interpreting Foreign Surnames .. 13-8
13.8.4. Footnote Numbers ... 13-8

13.9. Internal Details of Refer
13.10. Changing the Refer Macros .. .

Chapter 14 Formatting Documents with the -me Macros
14.l. Using -me
14.2. Basic -me Requests

14.2.l. Paragraphs
14.2.1.1. Standard Paragraph - '.pp'
14.2.l.2. Left Block Paragraphs - '.Ip'
14.2.l.3. Indented Paragraphs -- '.ip' and '.np'
14.2.1.4. Paragraph Reference

14.3. Headers and Footers - '.he' and '.fo'
14.3.l. Headers and Footers Reference
14.3.2. Double Spacing - '.ls 2'
14.3.3. Page Layout

13-9
. 13-10

14-1
14-1
14-2
14-2
14-2
14-3
14-3
14-5
14-5
14-6
14-6
14-7

14.3.4. Underlining - '.ul' ... 14-8
14.3.5. Displays 14-8

14.3.5.l. Major Quotes - '.(q' and '.)q' 14-8
14.3.5.2. Lists - '.(!'and'.)!' 14-9
14.3.5.3. Keeps - '.(b' and '.)b', '.(z' and '.)z' ... 14-9

11.4. Fancy Displays............... 14-10
14.4.l. Display Reference ... 14-ll

- xv-

14.4.2. Annotations ... 14-12
14.4.3. Footnotes - '.(f' and '.)f' .. 14-12
14.4.4. Delayed Text .. 14-13
14.4.5. Indexes - '.(x' '.)x' and '.xp' .. 14-13
14.4.6. Annotations Reference .. 14-14

14.5. Fancy Features................. . .. 14-14
14.5.l. Section Headings - '.sh' and '.uh' .. 14-15

14.5.l.l. Section Heading Reference .. 14-16
14.5.2. Parts of the Standard Paper .. 14-17

14.5.2.l. Standard Paper Reference .. 14-18
14.5.3. Two-Column Output - '.2c' ... 14-19

14.5.3.l. Columned Output Reference .. 14-20
14.5.4. Defining Macros - '.de' 14-20
14.5.5. Annotations Inside Keeps ... 14-20

14.6. Using 'troff' for Phototypsetting .. 14-21
14.6.l. Fonts 14-21
14.6.2. Point Sizes - '.sz' 14-23

14.6.2.l. Fonts and Sizes Reference ... 14-23
14.6.3. Quotes - '\ *(lq' and '\ *(rq' ... 14-23

14.7. Adjusting Macro Parameters 14-24
14.8. Roff Support .. 14-25
14.9. Preprocessor Support ... 14-25
14.10. Predefined Strings 14-26
14.11. Miscellaneous Requests .. 14-26
14.12. Special Characters and Diacritical Marks - '.sc' 14-27
14.13. '-me' Request Summary .. 14-28

Chapter 16 Formatting Documents with nroff and troff .. 15-1
15.l. Introduction to nroff and troff..................................... 15-1

15.l.l. Text Formatting Versus Word Processing................................ 15-2
15.l.2. The Evolution of nroff and troff... 15-3
15.l.3. Preprocessors and Postprocessors .. 15-3
15.l.4. troff, Typesetters, and Special-Purpose Formatters 15-4
15.l.5. Using the nroff and troff Text Formatters 15-4

15.l.5.l. Options Common to nroff and troff..... 15-5
15.1.5.2. Options Applicable Only to nroff 15-5
15.1.5.3. Options Applicable Only to troff 15-6

15.l.6. General Explanation of troff and nroff Source Files ... 15-6
15.1.6.1. Backspacing .. 15-7
15.1.6.2. Comments .. 15-7
15.1.6.3. Continuation Lines...................... 15-8
15.1.6.4. Transparent Throughput 15-8
15.1.6.5. Formatter and Device Resolution .. 15-8
15.1.6.6. Specifying Numerical Parameters... 15-8
15.1.6.7. Numerical Expressions 15-9

15.l.7. Notation Used in this Manual ... 15-10

-XVI-

0

0

0

15.1.8. Output and Error Messages 15-11
15.2. Filling and Adjusting Lines of Text.. 15-12 0

15.2.1. Controlling Line Breaks.... 15-13
15.2.1.1. .br - Break Lines.. 15-14

15.2.2. Continuation Lines and Interrupted Text .. 15-14
15.2.3. • ad - Specify Adjusting Styles. 15-15
15.2.4. . na - No Adjusting..................................... 15-16
15.2.5 . • nf and .fi --Turn Filling Off and On ... 15-17
15.2.6. Hyphenation 15-18

15.2.6.1. .nh and .hy- Control Hyphenation 15-18
15.2.6.2. • hw - Specify Hyphenation Word List 15-19
15.2.6.3. • ho - Specify Hyphenation Character .. 15-20

15.2.7. • ce - Center Lines of Text ... 15-20
15.2.8. • ul and • cu - Underline or Emphasize Text 15-21
15.2.9. Underlining ... 15-22

15.3. Controlling Page Layout 15-24
15.3.1. Margins and Indentations ... 15-27

15.3.1.1. .po - Set Page Offset 15-27
15.3.1.2. .11 - Set Line Length .. 15-27
15.3.1.3. • in - Set Indent .. 15-28
15.3.1.4. • ti - Temporararily Indent One Line 15-30

15.3.2. Page Lengths, Page Breaks, and Conditional Page Breaks 15-32
15.3.2.1. .pl - Set Page Length ... 15-32
15.3.2.2. • bp - Start a New Page .. 15-33
15.3.2.3 . • pn - Set Page Number ... 15-33 0
15.3.2.4 . • ne - Specify Space Needed .. 15-34

15.3.3. Multi-Columnar Page Layout by Marking and Returning 15-34
15.3.3.1. .mk - Mark Current Vertical Position 15-35
15.3.3.2. • rt - Return to Marked Vertical Position 15-35

15.4. Line Spacing and Character Sizes ... 15-36
15.4.1. • sp - Get Extra Space 15-36
15.4.2. .111 - Change Line Spacing ... 15-37
15.4.3. \x Function - Get Extra Line-space ... 15-37
15.4.4. • vs - Change Vertical Distance Between Lines 15-38
15.4.5. .11p - Get Blocks of Vertical Space .. 15-38
15.4.6. .11v - Save Block of Vertical Space .. 15-39
15.4.7 . • 011- Output Saved Vertical Space ... 15-39
15.4.8 . • n11 - Set No Space Mode 15 .. 40
15.4.9 . • p11- Change the Size of the Type ... 15-40
15.4.10. .1111 - Set Size of Space Character ... 15-42
15.4.11. • 011 - Set Constant Width Characters ... 15-43

15.5. Fonts and Special Characters ... 15-44
15.5.1. Character Set 15-46
15.5.2. Fonts 15-46
15.5.3. • bd - Artificial Bold Face .. 15-47

0 15.5.4. • ft - Set Font 15-47

- XVll -

15.5.5. • fp - Set Font Position ... 15-48
15.5.6. • fz - Force Font Size .. 15-48 0
15.5.7. • lg - Control Ligatures............................... 15-48

15.6. Tabs, Leaders, and Fields - Aligning Things in Columns 15-50
15.6.1. • ta - Set Tabs ... 15-50

15.6.1.1. Setting Relative Tab Stops... 15-50
15.6.1.2. Right-Adjusted Tab Stops......................... 15-51
15.6.1.3. Centered Tab Stops .. 15-51
15.6.1.4. • to - Change Tab Replacement Character 15-52
15.6.1.5. Summary of Tabs .. 15-53

15.6.2. Leaders - Repeated Runs of Characters ... 15-53
15.6.2.1. • lo - Change the Leader Character .. 15-55

15.6.3. • fo - Set Field Characters .. 15-56
15.7. Titles, Pages, and Numbering 15-60

15.7.1. Three Part Titles for Running Headers and Footers 15-62
15.8. Input and Output when using troff.. 15-64

15.8.1. • so - Read Text from a File ... 15-64
15.8.2. • rd - Read from the Standard Input ... 15-66
15.8.3. • tm - Send Messages to the Standard Error File 15-67

15.9. Using Strings as Shorthand ... 15-69
15.9.1. • ds - Define Strings ... 15-69
15.9.2. • as - Append to a String ... 15-70

15.10. Macros, Diversions, and Traps ... 15-73
15.10.1. Macros ... 15-73

15.10.1.1. .de - Define a Macro .. 15-73 0
15.10.1.2. Macros with Arguments .. 15-75
15.10.1.3 . • am -Append to a Macro ... 15-76
15.10.1.4 . • rm- Remove Requests, Macros, or Strings 15-76
15.10.1.5 . • rn - Rename Requests, Macros or Strings 15-77
15.10.1.6. Copy Mode Input Interpretation ... 15-79

15.10.2. Using Diversions to Store Text for Later Processing 15-79
15.10.2.1. .di - Divert Text ~ .. 15-79
15.10.2.2. • da - Append to a Diversion .. 15-81

15.10.3. Using Traps to Process Text at Specific Places on a Page 15-81
15.10.3.1. • wh - Set Page or Position Traps .. 15-82
15.10.3.2. • ch - Change Position of a Page Trap 15-82
15.10.3.3. • dt - Set a Diversion Trap .. 15-82
15.10.3.4. • it - Set an Input-Line Count Trap.............. 15-83
15.10.3.5. • em - Set the End of Processing Trap 15-83

15.11. Number Registers and Arithmetic ... 15-84
15.11.1. .nr - Set Number Registers ... 15-84

15.11.1.1. Auto-increment Number Registers .. 15-85
15.11.2. Arithmetic Expressions with Number Registers 15-86
15.11.3 . • af- Specify Format of Number Registers .. 15-88
15.11.4 . • rr - Remove Number Registers ... 15-89

15.12. Arbitrary Motions and Drawing Lines and Characters 15-90 0

- XVlll -

0 15.12.1. "\u and "\d Functions - Half-Line Vertical Movements 15-90
15.12.2. Arbitrary Local Horizontal and Vertical Motions 15-91

15.12.2.1. "\v Function -Arbitrary Vertical Motion 15-91
15.12.2.2. "\h Function - Arbitrary Horizontal Motion 15-92

15.12.3. "\O Function - Digit Sized Spaces.... 15-93
15.12.4. '"\ 'Function - Unpaddable Space 15-94
15.12.5. "\: and "\ A Functions - Thick and Thin Spaces 15-94
15.12.6. "\& Function - Non-Printing Zero-Width Character 15-95
15.12.7. "\o Function - Overstriking Characters .. 15-96
15.12.8. "\z Function - Zero Motion Characters .. 15-97
15.12.9. "\w Function - Get Width of a String .. 15-98
15.12.10. "\k Function - Mark Current Horizontal Place 15-99
15.12.11. "\b Function - Build Large Brackets .. 15-99
15.12.12. "\r Function - Reverse Vertical Motions15-101
15.12.13. Drawing Horizontal and Vertical Lines......................15-101

15.12.13.1. "\l Function - Draw Horizontal Lines15-101
15.12.13.2. "\L Function - Draw Vertical Lines15-102
15.12.13.3. Combining the Horizontal and Vertical Line

Drawing Functions15-102
15.12.14. .mo - Place Characters in the Margin15-103

15.13. Input and Output Conventions and Character Translations15-104
15.13.1. Input Character Translations15-104

0
15.13.2. , eo and • eo - Set Escape Character or Stop Escapes15-104
15.13.3. • co and, o2 - Set Control Characters15-104
15.13.4. • tr - Output Translation .. .15-105

15.14. Automatic Line Numbering15-106
15.14.1. .nm - Number Output Lines15-106
15.14.2 . • nn - Stop Numbering Lines .. .15-106

15.15. Conditional Processing of Input .. .15-108
15.15.1. , ig - Ignore Input Text .. .15-110

15.16. Requests £or Debugging your troff Input File15-113
15.16.1. • pm - Display Names and Sizes of Defined Macros15-113
15.16.2. • fl - Flush Output Buffer .. .15-113
15.16.3 . • ab -Abort .. .15-114

15.17. Saving State with Environments15-115

Appendix A Examples of Fonts and Non-ASCII Characters A-1

Appendix B troff Request Summary .. . B-1

Appendix C Escape Sequences for Characters, Indicators, and
Functions ... C-1

Appendix D Predefined Number Registers .. D-1

0 Appendix E Description of troff Output Codes .. E-1

- XIX-

E.l. Codes OOxxxxxx - Flash Codes to Expose Characters
E.2. Codes lxxxxxxx - Escape Codes Specifying Horizontal Motion

E-2 0 E-2
E.3. Codes Ollxxxxx - Lead Codes Specifying Vertical Motion E-3
E.4. Codes OlOlxxxx - Size Change Codes .. . E-3
E.5. Codes OlOOxxxx - Control Codes E-4
E.6. How Fonts are Selected E-5
E.7. Initial State of the C/A/T E-5

0

0

- xx-

0
Figures

Figure 15-1 Filling and Adjusting Styles. 15-16
Figure 15-2 Layout of a Page ... 15-26

0

0
-)0(1 -

0 !

0

0

0
Tables

Table 1-1 Utilities and Their Metacharacters
Table 2-1 Editor Options
Table 2-2 File Manipulation Commands
Table 2-3 Extended Pattern Matching Characters .. .
Table 2-4 Input Mode Corrections
Table 2-5 Common Character Abbreviations
Table 2-6 Terminal Types
Table 2-7 Frequently-Used vi Commands

0

0
- XXlll -

1-4
2-13
2-20
2-23

. 2-23
2-25
2-45
2-49

•

•

Table 7-1 Types of Paragraphs.. 7-7
Table 7-2 How to Display and Print Documents.. 7-9
Table 7-3 Registers You Can Change .. 7-17
Table 8-1 Display Macros 8-13
Table 8-2 Old Accent Marks................................... 8-17
Table 8-3 Accent Marks... 8-17
Table 8-4 Units of Measurement in nroff and troff 8-19
Table 8-5 Summary of -ms Number Registers 8-20
Table 8-6 Bell Laboratories Macros (deleted from -ms) 8-24
Table 8-7 New -ms Requests..... 8-24
Table 8-8 New String Definitions ... 8-25
Table 8-9 -ms Macro Request Summary 8-25
Table 8-10 -ms String Definitions ... 8-27
Table 8-11 Printing and Displaying Documents 8-28
Table 10--1 tbl Command Characters and Words .. 10--21
Table 11-1 PIC Objects and their Standard Sizes .. 11-5
Table 12-1 Character Sequence Transalation .. 12-19
Table 12-2 Greek Letters 12-20
Table 12-3 eqn Keywords 12-21
Table 14-1 Special Characters and Diacritical Marks 14-27
Table 14-2 -me Request Summary ... 14-28
Table 15-1 Scale Indicators for Numerical Input ... 15-9
Table 15-2 Arithmetic Operators and Logical Operators for Expressions 15-10
Table 15-3 Constructs that Break the Filling Process ... 15-13
Table 15-4 Formatter Requests that Cause a Line Break ... 15-14
Table 15-5 Adjusting Styles for Filled Text .. 15-15
Table 15-6 Exceptions to the Standard ASCII Character Mapping 15-46
Table 15-7 Types of Tab Stops .. 15-53
Table 15-8 Requests that Cause a Line Break .. 15-61
Table 15-9 Access Sequences for Auto--incrementing Number Registers 15-86
Table 15-10 Arithmetic Operators and Logical Operators for

Expressions ... 15-87
Table 15-11 Interpolation Formats for Number Registers ... 15-89
Table 15-12 Pieces for Constructing Large Brackets .. .15-100
Table 15-13 Built In Condition Names for Conditional Processing15-110
Table B-1 Notes in the Tables ... B-6
Table D-1 General Number Registers.......... D-1
Table D-2 Read-Only Number Registers . D-1

- XXIV -

0

0

0

0

0

0

Table E-1 Size Change Codes
Table E-2 C/A/T Control Codes and their Meanings
Table E-3 Correspondence Between Rail, Mag, Tilt, and Font Number

- XXV -

E-3
E-4
E-5

0

0

i 0,
i
' '

0

0

0

Preface

Editing and Text Proceuing on the Sun Workstation provides user's guides and reference infor­
mation for the text editors and document processing tools. 'We assume you are familiar with a
terminal keyboard and the Sun system. If you are not, see the Beginner'• Guide to the Sun
Workstation for information on the basics, like logging in and the Sun file system. If you are not
familiar with a text editor or document processor in general, read "An Introduction to Text Edit­
ing" and "An Introduction to Document Preparation" in this manual for descriptions of the basic
concepts and some simple examples that you can try. Finally, we assume that you are using a
Sun Workstation, although specific terminal information is also provided.

If you choose to read one of the user's guides, sit down at your workstation and try the exercises
and examples. The reference sections provide additional explanations and examples on how to
use certain facilities and can be dipped _into as necessary. For additional details on Sun system
commands and programs, see the Commands Reference Manual for the Sun Workstation.

Summary of Contents

Use the table of contents to Part One and Part Two as roadmaps to guide you to the informa­
tion you need.

Part One of this manual provides information on the text editors and Part Two describes the
document formatting tools.

The contents of Part One are:

l. An Introduction to Text Editing - Describes the basics of text editing and provides a guide
to the available editing tools. Newcomers should start here.

2. Using vi, the Visual Display Editor - Tutorial and reference information on the visual
display editor vi. Includes a quick reference to tape up by your workstation.

3. Command Reference for the ex Line Editor - A command reference for the ex and vi
editors. Also includes a quick reference.

4. Using the ed Line Editor - Provides a user's guide to the ed tools.

5. U•ing sed, the Stream Text Editor - A user's guide to sed, the non-interactive variant of
ed for processing large files.

6. Pattern Scanning and Processing with awk - A user's guide to the awk programmmg
language for data transformation and selection operations.

Part Two contains the following chapters:

- XXVII -

1. Introduction to Document Preparation - Describes the basics of text processing, macros and
macro packages, provides a guide to the available tools and several simple examples after
which to pat.tern your papers and documents. Newcomers to the Sun document formatters
should start here.

2. Formatting Document• with the -ms Macro• ·- User's guide and reference information for
the -ms macros for formatting papers and documents. Includes new -ms macros.

3. Formatting Table, with tbl - A user's guide and numerous examples to the table process­
ing utility tbl.

4. PIG - A Graphic, Language for Typesetting - A user's guide and reference guide to the
pie language for drawing simple pictures.

5. Typesetting Mathematics with eqn -- A user's guide to the eqn mathematical equation
processor.

6. Refer - a Bibliography Syatem - Explains how to use the bibliographic citation program
refer.

7. Formatting Documents with the -me Macro• - Describes the -me macro package for pro­
ducing papers and documents.

8. Formatting Documents with nroff and troff -- Provides a user's guide and reference
material for the nroff and troff text processors.

9. The -man Macro Package - Describes the -man macro package for producing manual
pages.

10. Examples of Fonts and Non-ASCII Characters - Several tables demonstrating troff fonts
and escape sequences for generating non-ASCII characters.

11. troff Request Summary - A table summarizing all of the troff requests and their argu­
ments.

12. Escape Sequence• for Charactera, Indicators, and Function, - A table summarizing troff
escape sequences - character sequences beginning with a backslash {\).

13. Predefined Number Regiatera - Tables of troff General al)d Predefined Number Regis­
ters

14. Description of troff's Output Codes -- A summary of the binary codes for the C/A/T
phototypesetter.

Conventions Used in This Manual

Throughout this manual we use

hostname%

as the prompt to which you type system commands. Bold face typewriter font indi­
cates commands that you type in exactly as printed on the page of this manual. Regu 1 ar
typewriter font represents what the system prints out to your screen. Typewriter font also
specifies Sun system command names (program names) and illustrates source code listings. Ital­
ic a indicates general arguments or para.meters that you should replace with a specific word or
string. We also occasionally use italics to emphaBize important terms.

- :XXV111 -

0

0

0

0

0

0

Chapter 1

An Introduction to Text Editing

An editor is a utility program that you use to modify the contents of a file. A tezt editor deals
with files containing a string of characters in a particular character set. A string is a sequence of
characters, 'ABC,' 'evan' or 'm3154' for example. You usually use an editor interactively; that is,
you can see on the workstation screen what you have and then make changes accordingly.

With a text editor, you can browse through a file, make changes, and then make the changes
permanent.

There are also utility programs such as awk, grep, fgrep, egrep, and tr that operate on a
file, but do not change the original file. Rather they modify the data contained in it as the data
goes from the original file to the workstation screen, printer, or whatever. Moreover, these com­
mands operate on a global basis, that is, they change everything that conforms to a specific regu­
lar pattern. See "Pattern Scanning and Processing with awk" in this manual for more informa­
tion and the Command• Reference Manual for the Sun Workatation for details on the other utili­
ties.

There are two kinds of editors, line editors and screen editors. A line editor has a line as its
basic unit for change. A line is a string of characters terminated by a newline character, the
character that is generated when you type RETURN. You can give the editor commands to do
operations on lines, display, change, delete, move, copy a line, or insert a new line. You can sub­
stitute character strings within a line or group of lines.

A ureen editor displays a portion of a file on the workstation screen. You can move the cursor
around the screen to indicate where you want to make changes, and you can choose which part
of the file to display. Screen editors, such as vi, are also called display editors.

1.1. Sun System Editors

The Sun system has two basic editors. ed is the basic, interactive line editor from which the
others have been developed. As they are all related, you can see similarities with vi, ex, and
sed. Your primary interface to the Sun system is probably vi for editing both source code and
text. See the chapter "Using the ed Line Editor" for details on ed.

The other basic editor is the dream editor sed, which as a lineal descendant of ed, can per­
form similar operations. However, it is not interactive and you cannot move backwards in the
edit file. ·You specify the command or series of commands to be executed, and sed performs
them from the beginning to the end of the file. Because sed does not copy your file into the
buffer to create a temporary file like ed does, you can use sed to edit any size file. sed is
usually used for making transient changes only. sed recognizes basically the same regular
ezpreuion• as ed. Regular expressions are described below. See the chapter "Using sed, the
Stream Text Editor" for instructions on how to use sed.

Version D of 15 May 1985 1-1

An Introduction to Text Editing Editing and Text Processing

More useful for general text editing are the screen editors ex and vi. A variant of ex, edit,
has features designed to make it less complicated to learn and use. 1

ex is also based on ed, but has many extensions and additional features. Commands are less
cryptic and hence, easier to remember. There are variants of some editor operations, which
modify the way in which those operations are performed under certain conditions. ex is more
communicative, displaying more descriptive error messages than merely '?' as ed does and pro­
viding instructions on how to override the error condition. There are editor options which
modify overall ex behavior. ex also provides the visual mode, which turns ex into a screen
editor. In this mode, ex is identical to vi. You can use the open mode for intraline editing.

vi is the screen, display, or visual editor version of ex. A portion of the file you wish to modify
is displayed on your workstation screen. Within the displayed portion of the file, you can move
the cursor around to control where changes are to be made, and then you can make changes by
replacing, adding or deleting text. You can change the portion of the file displayed on the
screen, so you have access to the whole file.

You also have access to all of the ex line-oriented commands from vi. Many of the more use­
ful operations that can· be performed in vi simply call upon ex functions. Additionally, some
operations, such as global substitutions, are easily performed using ex from vi. Because of this
connection, refer to both chapters: "Using vi, the Visual Display Editor" and the "Command
Reference for the ex Line Editor". For a quick tutorial on the most useful vi commands and
features, read the chapter on vi in the Beginner'• Guide to the Sun Workstation.

1.2. Text Editing Basics

In editing jargon, we say you enter an editor to edit a file and quit an editor to return to the sys­
tem command level shell.

Most editors set aside a temporary work space, called a buffer, separate from your permanent
file. Before starting to work on an existing file, the editor makes a copy of it in the buffer, leav­
ing the original untouched. When you make editing changes to the buffer copy, you must then
save or write the file to make the changes permanent. The buffer disappears at the end of the
editing session.

During an editing session there are two usual modes of operation: command mode and text input
mode. (This disregards, for the moment, open and viaual modes, discussed below.) In command
mode, the editor may prompt you with a question mark (?), a colon (:), or nothing at all as in
vi. In text input mode, there is no prompt and the editor merely adds the text you type in to
the buffer. You start text input mode with a command that appends, inserts, or changes, and
terminate it either by typing a period as the first and only character on a line for ed and ex or
by typing the ESCAPE (ESC) key for vi.

The editor keeps track of lines of text in the buffer by numbering them consecutively starting
with 1 and renumbering as lines are added or deleted. It doesn't normally display the line
numbers, although you can specify that they be displayed in vi. At any given time the editor is
positioned at one of these lines; this position is called the current line.

Some editor commands take lin.e-number prefixes. The concept of line numbers is especially
important in ed and ex; you use them to indicate which lines to operate on. You also use line

1 See Edit: A Tutorial, Ricki Bla.u and James Joyce, University or California, Berkeley.

1-2 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing An Introduction to Text Editing

numbers in vi, but less frequently. With ed, you can precede most commands by one or two
line-number addresses which indicate the lines to be affected. If you give one line number, the
command operates on that line only; if you give two, it operates on an inclusive range of lines.
Commands that can take line-number prefixes also assume default prefixes if none are given.
The default assumed by each command is designed to make it convenient to use in many
instances without any line-number prefix. For the most part, a command used without a prefix
operates on the current line, though there are exceptions to this rule. The print command by
itself, for instance, displays one line, the current line, on the workstation screen. In the address
prefix notation, '.' stands for the current line and '$' stands for the last line of the buffer. If no
such notation appears, no line-number prefix may be used. Some commands take trailing infor­
mation.

Besides command and text input modes, ex, vi, and edit provide other modes of editing
called open and viaual. In these modes you can move the cursor to individual words or charac­
ters in a line. The commands you then use are very different from the standard editor com­
mands; most do not appear on the screen when typed.

1.2.1. Regular Expressions in Text Patterns

You can use the editors and the utilities mentioned above to deal with fixed strings of characters,
but this may become tedious if you want to do something more complex. You can also specify a
pattern or template of text you want to modify; this pattern is called a regular expre8"ion. Cer­
tain characters take on special meanings when used in in these patterns. These special charac­
ters are called metacharactera because they represent something other than themselves.

Version D of 15 May 1985 1-3

An Introduction to Text Editing Editing and Text Processing

Here is a table of all the special metacharacters and which utilities support those particular char­
acters.

Table 1-1: Utilities and Their Metacharacters

Supported by

Character Meaning fgrep grep egrep avk ed sed ex

C
any character

yes yes yes yes yes yes yes except specials

- match beginning yes yes yes yes yes yes yes
of line

$
match end
of line

yes yes yes yes yes yes yes

\< match beginning no yes no no no no yes of word

\> match end
of word

no yes no no no no yes

any character no yes yes yes yes yes yes

[string] character class no yes yes yes yes yes yes

[- string] negated character class no yes yes yes yes yes yes

* closure 110 yes yes yes yes yes yes

(pattern) group mg no no yes yes no no no

I alternation no no yes yes no no no

\ (pattern\) remember pattern 110 no 110 no yes yes yes

To use one of these special characters as a simple graphic representation rather than its special
meaning, precede it by a backslash (\). The backslash always has this special eacape meaning.

Some of the metacharacters that ed and some of the other utilities use are also used by the shell
for matching filenames, so you should enc lose the regular expression in single quotes (').

You can combine regular expressions to specify a lot more than just a single string of text, so you
can give the editor commands that operate on either a very specific string of text or globally on a
whole file.

See the Beginner'a Guide to the Sun Workatation for a more detailed and descriptive explanation
of regular expressions.

1-4 Version D of 15 Moy 1985

0

0

0

0

0

0

Editing and Text Processing An Introduction to Text Editing

1.3. What to Do If Something Goes Wrong

Sometimes you may make a mistake or your system may not respond correctly. Here are some
suggestions on what to do.

If you make a mistake in the editor that you cannot recover from easily, do not panic. As long as
you do not write the file and quit the editor, you can retrieve the original file. Force the editor
to quit (in vi, for example, you type :qi, the exclamation point overriding any warning), and
then enter the editor again to start over. When you try to quit the editor without saving
changes, the editor will warn you that you have unsaved changes, so you have to force the quit
with '!'.

At the Sun system level, if you make a typing mistake, and see it before you press RETURN,
there are several ways to recover. The DEL key is the eraae character. Use it to back up over
and erase the previously-typed character. Use the DEL key repeatedly to erase characters back
to the beginning of the line, but not beyond. Use CTRL2 to abort or aend an interrupt to a
currently running program. You can't interrupt an editor with CTRL-C.

Sometimes you can get into a state where your workstation or terminal acts strangely. For
example, you may not be able to move the cursor, your cursor may disappear, there is no echo­
ing of what you type, or typing RETURN may not cause a linefeed or return the cursor to the left
margin. Try the following solutions:

• First, type CTRL-Q to resume possibly suspended output. (You might have typed CTRL-S,

freezing the screen.)

• Another possibility is that you accidentally typed a NO SCRL key (also called SET UP /NO
SCROLL on some terminals) on your keyboard. This also freezes the keyboard like typing a
CTRL-S. Try typing CTRL-Q, which toggles you back to proper operation if you did indeed
type the NO SCRL key in the first place.

• Next, try pressing the LINEFEED key, followed by typing RESET, and pressing LINEFEED

agam.

• If that doesn't help, try logging out and logging back in. If you are usmg a terminal, try
powering it off and on to regain normal operation.

• If you get unwanted messages or garbage on your screen, type CTRL-L to refresh the worksta-
tion screen. (Use CTRL-R on a terminal.)

If your system goes down, a file with almost all of your latest changes is automatically saved.
After rebooting your system, or doing whatever needs to be done, you will receive mail indicat­
ing that the file has been saved. First, return to the directory where the file belongs, and then
re-enter the editor with the -r option to re,tore the file:

hostname% vi -r filename
hostname%

This returns you to a version of the file you were editing, mmus a few of your most recent
changes.

2 We use the convention CTRI.rwhateve, to mean you hold down the control (or C'IRL) key while typing a
tohatner character. CTRL-C means hold down the OONI'ROL key while typing 'c'. The case does not matter;
CTR.L-C and CTRL-c are equivalent.

Version D of 15 May 1985 1-5

oi

0

0 i

0

0

0

Chapter 2

Using vi, the Visual Display Editor

This chapter3 describes vi (pronounced vee-eye) the visual, display editor. The first part of this
chapter provides the basics of using vi. The second part provides a command reference and
terminal set-up information. Finally, there is a quick reference, summarizing the vi commands. ·
Keep this reference handy while you are learning vi. As the vi editor is the visual display
version of the ex line editor, and because the full command set of the line-oriented ex editor is
available within vi, you can use the ex commands in vi. Some editing, such as global substi­
tution, is more easily done with ex. So refer to the information in the chapter "Command
Reference for the ex Line Editor" as it also applies to vi.

This chapter assumes you are using vi on the Sun \,Vorkstation. If you are using vi on a ter­
minal, refer to the "Terminal Information" section for instructions on setting up your terminal.

In the examples, input that must be typed as is will be presented in bold typewriter font.
Text you should replace with appropriate input is given in italics.

2.1. vi and ex

As noted above, vi is actually one mode of editing within the editor ex. When you are run­
ning vi you can escape to the line-oriented editor ex by typing Q. All of the : commands
introduced in the section on "File Manipulation Commands" are available in ex. This places the
cursor on the command line at the bottom of the screen. Likewise, most ex commands can be
invoked from vi using : . Just give them without the : and follow them with a. CR.

In rare instances, an internal error may occur in vi. In this case you will get a diagnostic and
be left in the command mode of ex. You can then save your work a.nd quit if you wish by giv­
ing the command x alter the : that ex prompts you with, or you can re-enter vi by giving
ex a vi command.

There a.re a number of things you can do more easily in ex than in vi. Systematic changes in
line-oriented material are particularly easy. Experienced users often mix their use of ex com­
mand mode and vi command mode to speed the work they are doing. Keep these things in
mind as you read on.

8 The material in this chapter is derived Crom An Introduction to DiBplay Edi0

ting with Vi, W.N. Joy, M.
Horton, University or California., Berkeley and Vi Command a.nd Funch"on Reference, A.P.W. Hewett, M.
Horton.

Version D of 15 May 1985 2-1

Using vi, the Visual Display Editor Editing and Text Processing

2.2. Getting Started

When using vi, changes you make to the file you are editing are reflected in what you see on
your workstation screen.

During an editing session, there are two usual modes of operation: command mode and insert
mode. In command mode you can move the cursor around in the file. There are commands to
move the cursor forward and backward in units of characters, words, sentences and paragraphs.
A small set of operators, like d for delete and c for change, are combined with the motion com­
mands to form operations such as delete word or change paragraph. You can do other opera­
tions that do not involve entering fresh text. To enter new text into the file, you must be in
insert mode. You get into insert mode with the a (append), o (open) and i (insert) commands.
You get out of insert mode by typing the ESC (escape) key (or ALT on some keyboards). The
significant characteristic of insert mode is that commands can't be used, so anything you type
except ESC is inserted into the file. If you change your mind anytime using vi, typing ESC can­
cels the command you started and reverses to command mode. Also, if you are unsure of which
mode you are in, type ESC until the screen flashes; this means that you are back in command
mode.

Run vi on a copy of a file you are familiar with while you are reading this. Try the commands
as they are described.

2.2.1. Editing a File

To use vi on the file, type:

hostname% vi filename

replacing filename with the name of the file copy you just created. The screen clears and the
text of your file appears.

If you do not get the display of text, you may have typed the wrong filename. vi has created a
new file for you with the indication ''file'' [New file]. Type :q (colon and the 'q' key)
and then type the RETURN key. This should get you back to the command level interpreter.
Then try again, this time spelling the filename correctly.

If vi doesn't seem to respond to the commands you type here, try sending vi an interrupt by
typing a CTRL-C (or INTERRUPT signal) at your workstation (or by pressing the DEL or RUB keys
on your terminal). Then type the : q command again followed by a RETURN. If you are using a
terminal and something else happens, you may have given the system an incorrect terminal type
code. vi may make a mess out of your screen. This happens when it sends control codes for
one kind of terminal to some other kind of terminal. Type a : q and RETURN. Figure out what
you did wrong (ask someone else if necessary) and try again.

2.2.2. The Editor's Copy - Editing in the Buffer

vi does not directly modify the file you are editing. Rather, vi makes a copy of this file in a
place called the buffer, and remembers the file's name. All changes you make while editing only
change the contents of the buffer. You do not affect the contents of the file unless and until you
write the buffer back into the original file.

2-2 Version D of 15 May 1985

I
I

ol

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

2.2.3. Arrow Keys

The editor command set is independent of the workstation or terminal you are using. On most
terminals with cursor positioning keys, these keys will also work within the editor. 4 If you don't
have cursor positioning keys, that is, keys with arrows on them, or even if you do, you can use
the h, j, k, and 1 keys as cursor positioning keys. As you will see later, h moves back to the
left (like CTRL-H, a backspace), j moves down (in the same column), k moves up (in the same
column), and 1 moves the cursor to the right.

2.2.4. Special Characters: ESC, CR and CTRL-C

Several of these special characters are very important, so be sure to find them right now. Look
on your keyboard for a key labelled ESC (or ALT on some terminals). It is near the upper left
corner of your workstation keyboard. Try typing this key a few times. vi flashes the screen (or
beeps) to indicate that it is in a quiescent state. You can cancel partially formed commands with
ESC. When you insert text in the file, you end the text insertion with ESC. This key is a fairly
harmless one to press, so you can just press it until the screen flashes if you don't know what is
gomg on.

Use RETURN (or CR for carriage return) key to terminate certain commands. It is at the right
side of the workstation keyboard, and is the same key used at the end of each shell command.

Use the special character CTRL-C (or DEL or RUB key), to send an interrupt, to tell vi to stop
what it is doing. It is a forceful way of making vi listen to you, or to return vi to the quies­
cent state if you don't know or don't like what is going on.

Try typing the '/' key on your keyboard. Use this key to search for a string of characters. vi
displays the cursor at the bottom line of the screen after a '/' is displayed as a prompt. You can
get the cursor back to the current position by pressing BACK SPACE (or DEL); try this now. This
cancels the search. Typing CTRL-C also cancels the search. From now on we will simply refer to
typing CTRL-C (or pressing the DEL or RUB key) as 'sending an interrupt.'5

vi often echoes your commands on the last line of the screen. If the cursor is on the first posi­
tion of this last line, then vi is performing a computation, such as locating a new position in the
file after a search or running a command to reformat part of the buffer. When this is happening,
you can stop vi by sending an interrupt.

2.2.5. Getting Out of vi :q, :q!, :w, ZZ, :wq

When you want to get out of vi and end the editing session, type : q to quit. If you have
changed the buffer contents and type : q, vi responds with No write since last
change (:quit! overrides). If you then want to quit vi without saving the changes,
type : q !. You need to know a.bout : q ! in case you change the editor's copy of a file you wish
only to look at. Be very careful not to give this command when you really want to save the
changes you have made.

4 Note for the HP2621: on this terminal the function keys must be ehi/ted to send to the machine, other­
wise they only act locally. Unshi!ted use leaves the cursor positioned incorrectly.

6 On some systems, this interruptibility comes at a price: you cannot type ahead when the editor is com­
puting with the cursor on the bottom line.

Version D of 15 May 1985 2-3

Using vi, the Visual Display Editor Editing and Text Processing

Do not type : q ! if you want to save your changes. To save or write your changes without quit­
ting vi, type : w. If you are sure about some changes in the middle of an editing session, it's a
good idea to save your changes from time to time.

To write the contents of the buffer back into the file you are editing, with any changes you have
made, and then to quit, type ZZ. And finally, to write the file even if no changes have been
made, and exit vi, type : wq.

You can terminate all commands that read from the last display line with an ESC as well as a
RETURN.

2.3. Moving Around in the File

vi has a number of commands for moving around in the file. You can scroll forward and back­
ward through a file, moving part of the text on the screen. You can page forward and backward
through a file, by moving a whole screenful of text. You can also display one more line at the
top or bottom of the screen.

2.3.1. Scrolling and Paging - CTRL-D, CTRL-U, CTRL-E, CTRL-Y, CTRL-F, CTRL-B

The most useful way to move through a file is to type the control (CTRL) and D keys at the
same time, sending a CTRL-D. We use this notation to refer to control sequences from now on.
The shift key is ignored, so CTRL-D and CTRL-d are equivalent.

Try typing CTRL-D to see that this command scrolls down in the file. The command to scroll up
is CTRL-U. (Many dumb terminals cannot scroll up at all. In that case type CTRL-U to clear and 0
refresh the screen, placing a line that is farther back in the file at the top of the screen.) .

If you want to see more of the file below where you are, you can type CTRL-E to expose one
more line at the bottom of the screen, leaving the cursor where it is. The CTRL-Y (which is
hopelessly non-mnemonic, but next to CTRL-U on the keyboard) exposes one more line at the top
of the screen.

You can also use the keys CTRL-F and CTRL-B to move forward and backward a page, keeping a
couple of lines of continuity between screens so that it, is possible to read through a file using
these rather than CTRL-D and CTRL-U if you wish. CTRL-F and CTRL-B also take preceding
counts, which specify the number of pages to move. For example, 2CTRL-F pages forward two
pages.

Notice the difference between scrolling and paging. If you are trying to read the text in a file,
typing CTRL-F to page forward leaves you only a little context to look back at. Scrolling with
CTRL-D on the other hand, leaves more context, and moves more smoothly. You can continue to
read the text as scrolling is taking place.

2.3.2. Searching, Goto, and Previous Context - /, ?, G

Another way to position yourself in the file is to give vi a string to search for. Type the charac­
ter '/' followed by a string of characters terminated by RETURN. vi positions the cursor at the
next occurrence of this string. Try typing n to go to the nezt occurrence of this string. The
character '?' searches backward from where you are, and is otherwise like '/'. N is like n, but
reverses the direction of the search.

2-4 Version D of 15 May 1985

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

You can string several search expressions together, separated by a semicolon in visual mode, the
same as in command mode in ex. For example:

/today/;/tomorrow

moves the cursor to the first 'tomorrow' after the next 'today'. This also works within one line.

These searches normally wrap around the end of the file, so you can find the string even if it is
not on a line in the direction you search, provided it is somewhere else in the file. You can dis­
able this wraparound with the command : se nowrapscanCR, or more briefly : se nowsCR.

If the search string you give vi is not present in the file, vi displays Pattern not found
on the last line of the screen, and the cursor is returned to its initial position.

If you wish the search to match only at the beginning of a line, begin the search string with a
caret character(-). To match only at the end of a line, end the search string with a dollar sign
($). So to search for the word 'search' at the beginning of a line, type:

;-search<ca>

and to search for the word 'last' at the end of a line, type:

/last$<CR>

Actually, the string you give to search for here can be a regular expression in the sense of the
editors ex and ed. If you don't wish to learn about this yet, you can disable this more general
facility by typing

: se nomagic<CR>

By putting this command in EXINIT in your environment, you can have always this nomagic
option in effect. See the section on "Special Topics" for details on how to do this.

The command G, when preceded by a number, positions the cursor at that line in the file. Thus
lG moves the cursor to the first line of the file. If you do not give G any count, it positions you
at the last line of the file.

If you are near the end of the file, and the last line is not at the bottom of the screen, vi places
only the character tilde (N) on each remaining line. This indicates that the last line in the file is
on the screen; that is, the N lines are past the end of the file.

You can find out the state of the file you are editing by typing a CTRL-G. vi shows you the
name of the file you are editing, the number of the current line, the number of lines m the
buffer, and the percentage of characters already displayed from the buffer. For example:

·'data. file' 1 [Modified] line 329 of 1276 --8%--

Try doing this now, and remember the number of the line you are on. Give a G command to
get to the end and then another G command with the line number to get back where you were.

You can get back to a previous position by using the command '' (two apostrophes). This
returns you to the first non-blank space in the previous location. You can also use '' (two back
quotes) to return to the previous position. The former is more easily typed on the keyboard.
This is often more convenient than G because it requires no advance preparation. Try typing a
G or a search with / or ? and then a '' to get back to where you were. If you accidentally
type n or any command that moves you far away from a context of interest, you can quickly get
back by typing

Version D of 15 May 1985 2-5

Using vi, the Visual Display Editor Editing and Text Processing

2.3.3. Moving Around on the Screen - h, j, k, l

Now try just moving the cursor around on the screen. Try the arrow keys as well as h, j, k,
and l. You will probably prefer these keys to arrow keys, because they are right underneath
your fingers. These are very common keys for moving up and down lines in the file. Notice that
if you go off the bottom or top with these keys then the screen scrolls down (and up if possible)
to bring a line at a time into view.

Type the + key. Each time you do, notice that the cursor advances to the next line in the file,
at the first non-blank position on the line. The - key is like + but the cursor goes to the first
non-blank character in the line above.

The RETURN key has the same effect as the + key.

vi also has commands to take you to the top, middle and bottom of the screen. H takes you to
the top (home) line on the screen. Try preceding it with a number as in 3H. This takes you to
the third line on the screen. Try M, which takes you to the middle line on the screen, and L,
which takes you to the last line on the screen. L also takes counts, so SL takes you to the fifth
line from the bottom.

2.3.,f. Moving Within a Line - b, w, e, E, B, W

Now pick a word on some line on the screen, not the first word on the line. Move the cursor
using h, j, k, 1 or RETURN and - to be on the line where the word is. Try typing the w key.
This advances the cursor to the next word on the line. W advances to the next word ignoring

0

any punctuation. Try typing the b key to back up words in the line. Also try the e key which o·
advances you to the end of the current word rather than to the beginning of the next word. Also
try SPACE (the space bar) which moves right one character and the BACKSPACE (or CTRL-H) key
which moves left one character. The key h works as CTRL-H does and is useful if you don't have
a BACKSPACE key.

If the line had punctuation in it, you may have noticed that the w and b keys stopped at each
group of punctuation. You can also go backward and forward words without stopping at punc­
tuation by using W and B rather than the lower case equivalents. You can think of these as
bigger words. The E command advances to the end of the current word, but unlike e, ignores
punctuation. Try these on a few lines with punctuation to see how they differ from the lower
case e, w, and b.

The word keys wrap around the end of line, rather than stopping at the end. Try moving to a
word on a line below where you are by repeatedly typing w.

2.3.5. Viewing a File - view

If you want to use the editor to look at a file, rather than to make changes, use view instead of
vi. This sets the readonly option which prevents you from accidently overwriting the file. For
example, to look at a file called kubla, type:

2-6 Version D of 15 May 1985

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

hostname% view lcubla
In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.
''kubla'' [Read only] 5 lines, 149 characters
hostname%

To scroll through a file longer than one screenful, use the characters described in the previous
section on "Scrolling and Paging". To get out of view, type : q. If you accidentally made
changes to the file while the readon/y option was set, type : q ! to exit.

2.4. Making Simple Changes

Simple changes involve inserting, deleting, repeating, and changing single characters, words, and
lines of text. In vi, you can also undo the previous change with ease in case you change your
mind.

2.,4.1. Inserting - i and a

There are two basic commands for inserting new text: i to insert text to the left of the cursor,
and a to append text to the right of the cursor. After you type i, everything you type until
you press ESC is inserted into the file. Try this now; position yourself at some word in the file
and try inserting text before this word. (If you are on an dumb terminal it will seem, for a
minute, that some of the characters in your line have been overwritten, but they will reappear
when you type ESC.)

Now try finding a word that can, but does not, end in an 's'. Position the cursor at this word
and type e (move to end of word), then a (for append), 's', and ESC to terminate the text
insert. Use this sequence of commands to easily make a word plural.

Try inserting and appending a few times to make sure you understand how this works.

It is often the case that you want to add new lines to the file you are editing, before or after
some specific line in the file. Find a line where this makes sense and then give the command o
to create a new line after the line you are on, or the command O to create a new line before the
line you are on. After you create a new line in this way, text you type up to an ESC is inserted
on the new line.

Many related editor commands are invoked by the same letter key and differ only in that one is
given by a lower-case key and the other is given by an upper-case key. In these cases, the
upper-case key often differs from the lower-case key in its sense of direction, with the upper-case
key working backward or up, while the lower-case key moves forward or down.

Whenever you are typing in text, you can give many lines of input or just a few characters. To
type in more than one line of text, type a RETURN at the middle of your input. A new line will
be created for text, and you can continue to type. (If you are on a slow, dumb terminal vi may
choose to wait to redraw the tail of the screen, and will let you type over the existing screen
Jines. This avoids the lengthy delay that would occur if vi attempted to always keep the tail of
the screen up to date. The tail of the screen will be fixed up, and the missing lines will reappear,
when you type ESC.)

Version D of 15 May 1985 2-7

Using vi, the Visual Display Editor Editing and Text Processing

While you are inserting new text, you can use the DEL key at the system command level to
backspace over the last character you typed. (This may be CTRL-H on a terminal.) Use CTRL-U
(this may be CTRL-X on a terminal) to erase the input you have typed on the current line. In
fact, the character CTRL-H (backspace) always works to erase the last input character here,
regardless of what your erase character is.

CTRL-W erases a whole word and leaves you after the space after the previous word; use it to
quickly back up when inserting.

Notice that when you backspace during an insertion, the characters you backspace over are not
erased; the cursor moves backward, and the characters remain on the display. This is often use­
ful if you are planning to type in something similar. In any case the characters disappear when
when you press ESC; if you want to get rid of them immediately, hit an ESC and then a again.

Notice also that you can't erase characters you didn't insert, and that you can't backspace
around the end of a line. If you need to back up to the previous line to make a correction, just
hit ESC and move the cursor back to the previous line. After making the correction you can
return to where you were and use the insert or append command again.

2.4-2. Making Small Corrections -- x, r, s, R

You can make small corrections in existing text quite easily. Find a single character that is
wrong or just pick any character. Use the arrow keys to find the character, or get near the
character with the word motion keys and then either backspace with h (or the BACKSPACE key
or CTRL-H) or type a SPACE (using the space bar) until the cursor is on the character that is
wrong. If the character is not needed, type the x key; this deletes the character from the file. It
is analogous to the way you x out characters when you make mistakes on a typewriter, except
it's not as messy.

If the character is incorrect, you can replace it with the correct character by typing the com­
mand re, where c is replaced by the correct character. You don't need to type ESC. Finally if
the character that is incorrect should be replaced by more than one character, type s which
substitutes a string of characters, ending with ESC, for it. If there are a. small number of charac­
ters that are wrong you can precede s with a count of the number of characters to be replaced.
You can use counts with x to specify the number of characters to be deleted and with r, such
as 4rx to specify that a character be replaced with four x's.

Use xp t,o correct simple typos in which you have inverted the order of two letters. The p for
put is described later.

2.,S.3. Deleting, Repeating, and Changing - dw, • , db, c

You already know almost enough to make changes at a higher level. All you need to know now
is that the d key acts as a delete operator. Try the command dw to delete a word. Try typing
'.' a few times. Notice that this repeats the effect of the dw. The '.' repeats the last command
that made a change. You can remember it by analogy with an ellipsis' ... '.

Now try db. This deletes a word before the cursor, namely the preceding word.
This deletes a single character, and is equivalent to the x command.

Use D to delete the rest of the line the cursor is on.

Try dSPACE.

2-8 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

Another very useful operator is c or change. Thus cw changes the text of a single word. You
follow it by the replacement text ending with an ESC. Find a word that you can change to
another, and try this now. Notice that the end of the text to be changed is marked with the dol­
lar sign character ($) so that you can see this as you are typing in the new material.

2.4-4. Operating on Lines - dd, cc, S

It is often the case that you want to operate on lines. Find a line you want to delete, and type
dd, the d operator twice. This deletes the line.

If you are on a dumb terminal, vi may just erase the line on the screen, replacing it with a line
with only an at-sign (@) on it. This line does not correspond to any line in your file, but only
acts as a place holder. It helps to avoid a lengthy redraw of the rest of the screen which would
be necessary to close up the hole created by the deletion on a terminal without a delete line
capability.

Try repeating the c operator twice; this changes a whole line, erasing its previous contents and
replacing them with text you type up to an ESC. The command S is a convenient synonym for
cc, by analogy with s. Think of S as a substitute on lines, while s is a substitute on charac­
ters.

You can delete or change more than one line by preceding the dd or cc with a count, such as
5dd, which deletes 5 lines. You can also give a command like dL to delete all the lines up to
and including the last line on the screen, or d3L to delete through the third from the bottom
line. Try some commands like this now. 6 Notice that vi lets you know when you change a large
number of lines so that you can see the extent of the change. It also always tells you when a
change you make affects text you cannot see.

2.4-5. Undoing - u, U

Now suppose that the last change you made was incorrect; you could use the insert, delete and
append commands to put the correct material back. However, since it is often the case that we
regret a change or make a change incorrectly, vi provides a u command to undo the last
change you made. Try this a few times, and give it twice in a row to notice that a u also
undoes a u.

The undo command lets you reverse only a single change. After you make a number of changes
to a line, you may decide that you would rather have the original state of the line back. The U
command restores the current line to the state before you started changing it only while the cur­
sor is still on that line. If you move the cursor away from the line you changed, U does nothing.

You can recover text that you delete, even if u (undo) will not bring it back; see the section on
"Recovering Lost Lines" on how to recover lost text.

e One subtle point here involves using the '/' search after a d. This normally deletes characters Crom
the current position to the point or the match. Ir what is desired is to delete whole lines including the two
points, give the pattern as /pa.t/+O, a line address.

Version D of 15 May 1985 2-9

Using vi, the Visual Display Editor Editing and Text Processing

2.5. Moving About: Rearranging and Duplicating Text

This describes more commands for moving in a file and explains how to rearrange and make
copies of text.

2.5.1. Low-level Character Motions - f, F, -

Now move the cursor to a line where there is a punctuation or a bracketing character such as a
parenthesis, a comma or a period. Try the command fz to find the next z character to the
right of the cursor in the current line. Try then hitting a ; which finds the next instance on
that line of the same character. By using the f command and then a sequence of ; s you can
often get to a particular place in a line much faster than with a sequence of word motions or
SPACEs. There is also an F command, which is like f, but searches backward. After instituting
a search, the ; repeats the search in the same direction as it was begun, and a comma (,)
repeats the search in the opposite direction.

When you are operating on the text in a line, it is often desirable to deal with the characters up
to, but not including, the first instance of a character. Try dfz for some z now and notice that
the z character is deleted. Undo this with u and then try dtz; the t here stands for to, that
is, delete up to the next z, but not the z. The command T is the reverse of t.

When working with the text of a single line, a,_, moves the cursor to the first non-blank position
on the line, and a $ moves it to the end of the line. Thus $a appends new text at the end of
the current line (as does A which is easier to type).

Your file may have tab (CTRL-1) characters in it. These characters are represented as a number
of spaces expanding to a tab stop, where tab stops are every eight positions.7 When the cursor is
at a tab, it sits on the last of the several spaces that represent that tab. Try moving the cursor
back and forth over tabs so you understand how this works.

On rare occasions, your file may have non-printing characters in it. These characters are
displayed as control sequences, and look like a caret character(-) adjacent to another character.
For example, the symbol for a new page (CTRL-L), looks like -L in the input file. However,
spacing or backspacing over the character reveals that the two characters displayed represent
only a single character.

The editor sometimes discards control characters, depending on the character and the setting of
the beautify option, if you attempt to insert them in your file. You can get a control character
in the file by beginning an insert and then typing a CTRL-V before the control character. The
CTRL-V quotes the following character, causing it to be inserted directly into the file.

2.5.2. Higher Level Text Objects - (,) , {, }, [[,]]

In working with a document it is often advantageous to work in terms of sentences, paragraphs,
and sections. The operations '{' and ')' move to the beginning of the previous and next sen­
tences respectively. Thus the command d) deletes the rest of the current sentence; likewise d (
deletes the previous sentence if you are at the beginning of the current sentence, or the current

7 You can set this with a. command of the form : se ts=z<CR>, where z is four to set tabstops every
four columns, !or example. This affects the screen representation within the editor.

2-10 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

sentence up to where you are if you are not at the beginning of the current sentence.

A sentence is defined as ending at a '.', '!' or '?' followed by either the end of a line, or by two
spaces. Any number of closing ')', '] ', ''" and '· ' characters may appear after the '.', '!' or '?'
before the spaces or end of the line.

The operations '{' and '}' move over paragraphs and the operations ' [[' and ']]' move over
sections. The ' [[' and '])' operations require the operation character to be doubled because
they can move the cursor far from where it currently is. While it is easy to get back with the
command ''' ', these commands would still be frustrating if they were easy to type accidentally.

A paragraph begins after each empty line, and also at each of a set of paragraph macros,
specified by the pairs of characters in the definition of the string-valued option paragraph•. The
default setting for this option defines the paragraph macros of the -ms macro package, that is
the . IP, .LP, .PP, and .QP macros. You can easily change or extend this set of macros by
assigning a different string to the paragraph• option in your EXINIT. See the section on "Special
Topics" for details. The . bp directive is also considered to start a paragraph. Each paragraph
boundary is also a sentence boundary. The sentence and paragraph commands take counts to
operate over groups of sentences and paragraphs.

Sections in the editor begin after each macro in the aectiona option, normally . NH and . SH,
and each line with a formfeed CTRL-L in the first column. Section boundaries are always line and
paragraph boundaries also.

Try experimenting with the sentence and paragraph commands until you are sure how they
work. If you have a large document, try looking through it using the section commands. The
section commands interpret a preceding count as a different view size in which to redraw the
screen at the new location, and this size is the base size for newly-drawn screens until another
size is specified. (This is very useful if you are on a slow terminal and are looking for a particu­
lar section. You can give the first section command a small count to then see each successive
section heading in a small screen area.)

2.5.3. Rearranging and Duplicating Text - y, Y, p, P

vi has a single unnamed buffer where the last deleted or changed text is saved away, and a set
of named buffers a-z that you can use to save copies of text and to move text around in your
file and between files.

The operator y yanks a copy of the object that follows into the unnamed buffer. If preceded by
a buffer name, 11 zy, where x here is replaced by a letter a-z, it places the text in the named
buffer. The text can then be put back in the file with the commands p and P; p puts the text
after or below the cursor, while P puts the text before or. above the cursor.

If the text you yank forms a part of a line, or is an object such as a sentence that partially spans
more than one line, then when you put the text back, it will be placed after the cursor (or before
if you use P). If the yanked text forms whole lines, they will be put back as whole lines, without
changing the current line. In this case, the put acts much like an o or O command.

Try the command YP. This makes a copy of the current line and leaves the cursor on this copy,
which is placed before the current line. The command Y is a convenient abbreviation for yy.
The command Yp will also make a copy of the current line, and place it after the current line.
You can give Ya count of lines to yank, and thus duplicate several lines; try 3YP.

To move text within the buffer, you need to delete it in one place, and put it back in another.
You can precede a delete operation by the name of a buffer in which the text is to be stored as

Version D of 15 May 1985 2-11

Using vi, the Visual Display Editor Editing and Text Processing

in "aSdd deleting 5 lines into the named buffer a. You can then move the cursor to the even-
tual resting place of the lines and do a "ap or "aP to put them back. In fact, you can switch o-
and edit another file before you put the lines back, by giving a command of the form : e
nameCR where name is the name of the other file you want to edit. You will have to write back
the contents of the current editor buffer (or discard them) if you have made changes before vi
will let you switch to the other file. An ordinary delete command saves the text in the unnamed
buffer, so that an ordinary put can move it elsewhere. However, the unnamed buffer is lost when
you change files, so to move text from one file to another you must use a named buffer.

2.6. High-Level Commands

A description of high-level commands that do more than juggle text follows.

2.6.1. Writing, Quitting, and Editing New Files - ZZ, : w, : q, : e, : n

So far you have seen how to enter vi and to write out your file using either ZZ or : wCR. The
first exits from vi, writing if changes were made, and the second writes and stays in vi. We
have also described that if you have changed the editor's copy of the file but do not wish to save
your changes, either because you messed up the file or decided that the changes are not an
improvement to the file, you type

: q! <CR>

to quit from the editor without writing the changes.

You can also re-edit the same file and start over by typing : e ! CR. Use the '!' command rarely
and with caution, as it is not possible to recover the changes you have made after you discard
them in this manner.

You can also edit a different file without leaving vi by giving the command : e nameCR. If you
have not written out your file before you try to do this, vi tells you this, ('No write since last
change: (:edit! overrides)') and delays editing the other file. You can then type :wCR to save
your work, followed by the : e nameCR command again, or carefully give the command
:e! nameCR, which edits the other file discarding the changes you have made to the current file.
To save changes automatically, include set autowrite in your EXJNIT, and use :n instead of
: e. See the "Special Topics" section for details on EXJNIT.

2. 6.2. Escaping to a Shell - : ! , : sh, CTRL-Z

You can get to a shell to execute a single command by giving a vi command of the form
: ! cmdCR. The system runs t,he single command cmd and when the command finishes, vi asks
you to Press RETURN to continue. When you have finished looking at the output on the
screen, type RETURN, and vi redraws the screen. You can then continue editing. You can also
give another : command when it asks you for a RETURN; in this case the screen will not be
redrawn.

If you wish to execute more than one command in the shell, give the command : shCR. This
gives you a new shell, and when you finish with the shell, ending it by typing a CTRL-D, vi
clears the screen and continues.

2-12 Version D of 15 May 1985

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

Use CTRL-Z to suspend vi and to return to the top level shell. The screen is redrawn when vi
is resumed. This is the same as : stop.

2.6.3. Marking and Returning -- m

The command '' returned to the previous place after a motion of the cursor by a command
such as /, ? or G. You can also mark lines in the file with single letter tags and return to these
marks later by naming the tags. Try marking the current line with the command mz, where you
should pick some letter for z, say a. Then move the cursor to a different line (any way you like)
and type 'a. The cursor will return to the place you marked. Marks last only until you edit
another file.

When using operators such as d and referring to marked lines, it is often desirable to delete
whole lines rather than deleting to the exact position in the line marked by m. In this case you
can use the form 'z rather than 'z. Used without an operator, 'z will move to the first non­
blank character of the marked line; similarly '' moves to the first non-blank character of the
line containing the previous context mark

2.6.4, Adjusting the Screen CTRL-L, z

If the screen image is messed up because of a transmission error to your workstation, or because
some program other than vi wrote output to your workstation, you can type a CTRL-L, the
ASCil form-feed character, to refresh the screen. (On a dumb terminal, if there are @ lines in
the middle of the screen as a result of line deletion, you may get rid of these lines by typing
CTRL-R to retype the screen, closing up these holes.8)

If you wish to place a certain line on the screen at the top middle or bottom of the screen, posi­
tion the cursor to that line, and give a z command. Follow the z command with a RETURN if
you want the line to appear at the top of the window, a '.' if you want it at the center, or a'-'
if you want it at the bottom.

If you want to change the window size, use the z command as in z5<CR> to change the win­
dow to five lines.

2. 7. Special Topics

There are several facilities that you can use to customize an editing session.

2. 7.1. Options, the Set Variable, and Editor Start-up Files

vi has a set of options, some of which have been mentioned above. The most useful options are
described in the following table.

The options are of three kinds: numeric options, string options, and toggle options. You can set
numeric and string options by a statement of the form:

8 This includes Televideo gJ2/gzo and ADM31 terminals.

Version D of 15 May 1985 2-13

Using vi, the Visual Display Editor Editing and Text Processing

Table 2-1: Editor Options

Ontion Default

autoindent noai
autowrite noaw
CTRL-', !
ignore case IlOIC

lisp nolisp
list nolist
magic magic
number nonu
paragraphs para=IPLPPPQPbpP LI
redraw nore
sections sect=NHSHH HU
shiftwidth sw=8
CTRL-T
showmatch nosm
slowopen slow
term dumb

set opt=val

Descrintion

Supply indentation automatically
Automatic write before : n, : ta,

Ignore letter case in searching
({) } commands deal with S-expressions
Tabs print as '!, end of lines marked with $
The characters . [and * are special in scans
Lines are displayed prefixed with line numbers
Macro names that start paragraphs
Simulate a smart terminal on a dumb one
Macro names that start new sections
Shift distance for <, > and input CTRL-D and

Show matching (or { as) or } is displayed
Postpone display updates during inserts
The kind of terminal you are using.

and toggle options can be set or unset by statements of one of the forms

set opt
set noopt

Put these statements in your EXINIT in your environment (described below), or use them while
you are running vi by preceding them with a : and following them with a RETURN. For exam­
ple, to display line numbers at the beginning of each line, use:

:se nu

You can get a list of all options that you have changed:

: set<CR>
redraw term=sun wrapmargin=S

or the value of a single option with

The

: set opt?<CR>

: set noai ?<ca>
noautoindent

:set all<CR>

command generates a list of all possible options and their values.
You can also put multiple options on one line, such as,

:se al aw nu<CR>

2-14

You can abbreviate set to se.

Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

\Vhen you set options with the set command, they only last until you terminate the editin ses­
sion in vi. It is common to want to have certain options set whenever you use the editor. To
do this, create a list of ex commands to be run every time you start up vi, ex, or edit. All
commands that start with a colon (:) are ex commands. A typical list includes a set com­
mand, and possibly a few map commands. Put these commands on one line by separating them
with the pipe (I) character. If you use the c shell, c•h, put a line like this in the

setenv EXINIT 'set ai aw terselmap@ ddlmap # x'

Thi• .eta the options autoindent, autowrite, terae, {the set command), and makes @ delete a
line, (the first map), and makes# delete a character, (the second map). (See the "Macros" sec­
tion for a description of the map command.)

If you use the Bourne shell, put these lines in the file .profile in your home directory:

EXINIT= • set ai aw terse I map @ dd I map # x •
export EXINIT

Of course, the particulars of the line depend on the options you want to set.

2. 7.2. Recovering Lost Lines

You might have a serious problem if you delete a number of lines and then regret that they were
deleted. Despair not, vi saves the last nine deleted blocks of text in a set of numbered registers
1-9. You can get the nth previous deleted text back in your file by II np. The II here says that
a buffer name is to follow, n is the number of the buffer you wish to try (use the number 1 for
now), and p, that put• text in the buffer after the cursor. If this doesn't bring back the text you
wanted, type u to undo this and then (period) . to repeat the p. In general the '.' command
repeats the last change you made. As a special case, when the last command refers to a num­
bered text buffer, the ' . ' command increments the number of the buffer before repeating the
command. Thus a sequence of the form:

"lpu.u.u.

will, if repeated long enough, show you all the deleted text that has been saved for you. You can
omit the u commands here to gather up all this text in the buffer, or stop after any . command
to keep just the recovered text. You can also use P rather than p to put the recovered text
before rather than after the cursor.

2. 7.3. Recovering Lost Files - the -r Option

If something goes wrong so the system goes down, you can recover the work you were doing up
to the last few changes. You will normally receive mail when you next log in giving you the name
of the file that has been saved for you. You should then change to the directory where you were
when the system went down and type:

hostname% vi -r filename

replacing filename with the name of the file you were editing. This will recover your work to a
point near where you left off. In rare cases, some of the lines of the file may be lost. vi will
give you the numbers of these lines and the text of the lines will be replaced by the string
'LOST'. These lines will almost always be among the last few that you changed. You can either
choose to discard the changes you made (if they are easy to redo) or to replace the few lost lines
by hand.

Version D of 15 May 1985 2-15

Using vi, the Visual Display Editor Editing and Text Processing

You can get a listing of the files that are saved for you by typing:

hostname% vi -r

If there is more than one instance of a particular file saved, vi gives you the newest instance
each time you recover it. You can thus get an older saved copy back by first recovering the
newer copies.

The invocation 'vi -r' will not always list all saved files, but they can be recovered even if they
are not listed.

2. 7 .. f Continuous Text Input - wrapmargin

When you are typing in large amounts of text it is convenient to have lines broken near the right
margin automatically. To do this, use the set wrapmargin option:

: se wm=lO<CR>

This rewrites words on the next line that you type past the right margin.

If vi breaks an input line and you wish to put it back together, you can tell it to join the lines
with J. You can give J a count of the number of lines to be joined as in 3J to join 3 lines. vi
supplies blank space, if appropriate, at the juncture of the joined lines, and leaves the cursor at
this blank space. You can delete the blank space with x if you don't want it.

If you want to split a line into two, put the cursor where you want the break, and type rCR.

2. 7.5. Features for Editing Programs

vi has a number of commands for editing programs. To generate correctly-indented programs,
use the autoindent option:

:se ai<CR>

Now try opening a new line with o. Type a few tabs on the line and then some characters. If
you type a CR and start another line, notice that vi supplies blank space at the beginning of the
line to align the text of the new line with that of the previous line.

After you have started a new line, you might want to indent your current line less than the pre­
vious line. You a.re still in insert mode, and cannot backspace over the automatic indentation.
However, you can type CTRL-D to backtab over each level of indentation. Each time you type
CTRL-D, you back up one position, normally to an eight-column boundary. You can set the
number of columns that a tab shifts with the ahiftwidth option. Try giving the command:

: se sw=4<CR>

and then experimenting with autoindent again.

For shifting lines in the program left and right, there are operators < and >. These shift the
lines you specify right or left by one shiftwidth. Try << and >> which shift one line left or
right, and. <L and >L shifting the rest of the text left and right.

If you have a complicated expression and wish to see how the parentheses match, put the cursor
at a left or right parenthesis and type %- This shows you the matching parenthesis. This works
also for braces { and}, and brackets [and].

2-16 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

If you are editing C programs, you can use [[and]] to advance or retreat to a line starting
with a {, that is, a function declaration at a time. When you use]] with an operator, it stops
after a line that starts with }; this is sometimes useful with y]] .

2. 7. 6. Filtering Portions of the Buffer

You can run system commands over portions of the buffer using the operator '! '. You can use
this to sort lines in the buffer, or to reformat portions of the buffer with a pretty printer. Try
typing in a list of random words, one per line and ending them with a blank line. Back up to the
beginning of the list, and then give the command:

! }sort<CR>

This says to sort the next paragraph of material, and that the blank line ends a paragraph. The
result is sorted text in your file.

2. 7. 7. Commands for Editing LISP

If you are editing a LISP program, set the option liap by doing:

: se lisp<ca>

This changes the (and) commands to move backward and forward over s-expressions. The {
and } commands are like (and) but don't stop at atoms. Use { and } to skip to the next list,
or through a comment quickly.

The autoindent option works differently for LISP, supplying indentation to align at the first argu­
ment to the last open list. If there is no such argument, the indent is two spaces more than the
last level.

The showmatch option shows matching parentheses. Try setting it with:

:se sm<CR>

and then try typing a '(' some words and then a ')'. Notice that the cursor briefly shows the
position of the '(' which matches the ')'. This happens only if the matching '(' is on the screen,
and the cursor stays there for at most one second.

vi also has an operator to realign existing lines as though they had been typed in with lisp and
autoindent set. This is the = operator. Try the command =% at the beginning of a function.
This realigns all the lines of the function declaration.

When you are editing LISP, the [[and]] advance and retreat to lines beginning with a (. and
are useful for dealing with entire function definitions.

2. 7.8. Macros

vi has a parameterless macro facility you can set up so that when you type a single keystroke,
vi will act as though you had typed some longer sequence of keys. Set this up if you find your­
self repeatedly typing the same sequence of commands or text.

Briefly, there are two kinds of macros:

Version D of 15 May 1985 2-17

Using vi, the Visual Display Editor Editing and Text Processing

1. Ones where you put the macro body in a buffer register, say z. You can then type @x to
invoke the macro. The @ may be followed by another @ to repeat the last macro. 0

2. You can use the map command from vi (typically in your EXINIT) with a command of the
form:

: map lhs rhs<ca>•

mapping rhs into Iha. There are restrictions: Iha should be one keystroke (either one charac­
ter or one function key) since it must be entered within one second unless notimeout (see the
"Option Descriptions" section) is set. In that case you can type it as slowly as you wish, and
vi will wait for you to finish before it echoes anything). The Iha can be no longer than ten
characters, the rha no longer than 100. To get a space, tab or newline into Iha or rha, escape
them with a CTRL-V. It may be necessary to double the CTRL-V if you use the map com­
mand inside vi, rather than in ex. You do not need to escape spaces and tabs inside the
rha.

Thus to make the q key write and exit vi, type:

:map q :wq·V-V<CR> <CR>

which means that whenever you type q, it will be as though you had typed the four characters
: wqCR. A CTRL-V is needed because without it the CR would end the : command, rather than
becoming part of the map definition. There are two CTRlrVs because from within vi, you must
type two CTRL-Vs to get one. The first CR is part of the rhs, the second terminates the : com­
mand.

You can delete macros with

:unmap lhs

If the Iha of a macro is '#0' through '#9', this maps the particular function key instead of the
two-character '#' sequence. So that terminals without function keys can access such definitions,
the form '#x' will mean function key z on all terminals and need not be typed within one
second. You can change the character '#' by using a macro in the usual way:

:map ·v·v·r #

to use tab, for example. This won't affect the map command, which still uses It, but just the
invocation from visual mode.

The undo command reverses an entire macro call as a unit, if it made any changes.

Placing a ! aft.er the word map applies the mapping to input mode, rather than command
mode. So, to arrange for CTRL-T to be the same as four spaces in input mode, type:

:map! .T ·yW)d)l

where j,l is a blank. The CTRL-V prevents the blanks from being taken as blank space between
the Iha and rha. Type simply:

:map!

to list macros that apply during input mode and

:map

to list macros that apply during command mode.

g lh8 is an abbreviation Cor left hand aide. rha is an abbreviation for right hand lide.

2-18 Version D of 15 May 1985

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

2. 7. Y. Word Abbreviations - : ab, : una

A feature similar to macros in input mode is word abbreviation. You can type a short word and
have it expanded into a longer word or words with : abbreviate (: ab). For example:

:ab foo find outer otter

always changes the word 'foo' into the phrase 'find outer otter'. Word abbreviation is different
from macros in that only whole words are affected. If 'foo' were typed as part of a larger word,
it would be left alone. Also, the partial word is echoed as it is typed. There is no need for an
abbreviation to be a single keystroke, as it should be with a macro. This only operates in visual
mode and uses the same syntax as the map command, except that there are no '!' forms.

Use :unabbreviate (:una) to turn off the abbreviation. To unabbreviate the above, for
example, type:

:una foo

The vi editor has a number of short commands that abbreviate the longer commands we have
introduced here. You can find these commands easily in the "ex Commands" section of the "ex
Quick Reference". They often save a bit of typing, and you can learn them when it's con­
venient.

2.8. Nitty-gritty Details

The following presents some functional details and some ex commands (see the "File Manipula­
tion Commands" section) that are particularly useful in vi.

2.8.1. Line Representation in the Display

vi folds long logical lines onto many physical lines in the display. Commands that advance lines
advance logical lines and skip over all the segments of a line in one motion. The command I
moves the cursor to a specific column, and may be useful for getting near the middle of a long
line to split it in half. Try 80 I on a line over 80 columns long. You can make long lines very
easily by placing the cursor on the first line of two you want to join and typing shift-J (capital J).

vi only puts full lines on the display; if there is not enough room on the display to fit a logical
line, the vi editor leaves the physical line empty, placing only an '@' on the line as a place
holder. (When you delete lines on a dumb terminal, vi will often just clear the lines to '@' to
save time rather than rewriting the rest of the screen.) You can always maximize the information
on the screen with CTRL-R.

If you wish, you can have the editor place line numbers before each line on the display. To
enable this, type the option:

:se nu<CR>

To turn it off, use the no numbera option:

:se nonu<s-2CR>

You can have tabs represented as CTRL-1 (appears as ~I) and the ends of lines indicated with '$' o by giving the list option:

Version D of 15 May 1985 2-19

Using vi, the Visual Display Editor

: se 1 ist <CR>

To turn this off, use:

: se nollst<CR>

Editing and Text Processing

Finally, lines consisting of only the character .-, are displayed when the last line in the file is in
the middle of the screen. These represent physical lines that are past the logical end of file.

2.8.2. Command Counts

Most vi commands use a preceding count to affect their behavior in some way. The following
table lists the common ways the counts are used:

New window size
Scroll amount
Line/column number
Reneat effect

:/?[(JI',
CTRL-D CTRL-U
z G:
Most of the rest

vi maintains a notion of the current default window size. (On terminals that run at speeds
greater than 1200 baud, vi uses the full terminal screen. On terminals slower than 1200 baud,
and most dialup lines are in this group, vi uses eight lines as the default window size. At 1200
baud, the default is 16 lines.)

vi uses the default window size when it clears and refills the screen after a search or other
motion moves far from the edge of the current window. All commands that take a new window
size as count often redraw the screen. If you anticipate this, but do not need as large a window
as you are currently using, you may wish to change the screen size by specifying the new size
before these commands. In any case, the number of lines used on the screen will expand if you
move off the top with a '-' or similar command or off the bottom with a command such as
RETURN or CTRL-D. The window will revert to the last specified size the next time it is cleared
and refilled, but not by a CTRL-L which just redraws the screen as it is.

The scroll commands CTRL-D and CTRL-U likewise remember the amount of scroll last specified,
using half the basic window size initially. The simple insert commands use a count to specify a
repetition of the inserted text. Thus lOa+----ESC will insert a grid-like string of text. A few
commands also use a preceding count as a line or column number.

Except for the few commands that ignore any counts, such as CTRL-R, the rest of the vi com­
mands use a count to indicate a simple repetition of their effect. Thus 5w advances five words
on the current line, while 5RETURN advances five lines. A very useful instance of a count as a
repetition is a count given to the . command, which repeats the last changing command. If you
do dw and then 3., you delete first one and then three words. You can then delete two more
words with 2 ..

2.8.3. File Manipulation Commands

The following table lists the file manipulation commands you can use when you are in vi. A CR

or ESC follows all of these commands. The most basic commands are : w and : e. End a normal
editing session on a single file with a ZZ command. If you are editing for a long period of time,
use the : w command occasionally after major amounts of editing, and then finish with a ZZ.
When you edit more than one file, you can finish with one with a : w and start editing a new file

2-20 Version D of 15 May 1985

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

0 Table 2-2: File Manipulation Commands

0

0

Command
:w
:wq
:x
:e name

:e!
:e + name
:e +n
:e #
:w name

:w! name
:x,yw name
:r name
:r !cmd
:n
:n!
:n arga
:ta tay

Meaninit
Write back changes
Write and quit
Write (if necessary) and quit (same as ZZ).
Edit file name
Re-edit, discarding changes
Edit, starting at end
Edit, starting at line n
Edit alternate file
Write file name
Overwrite file name
Write lines x through y to name
Read file name into buffer
Read output of cmd into buffer
Edit next file in argument list
Edit next file, discarding changes to current
Specify new argument list
Edit file containing tag tay, at tay

by giving a : e command, or set autowrite and use : n file.

If you make changes to the editor's copy of a file, but do not wish to write them back, give an
after the command you would otherwise use to exit without changing the file. Use this carefully.

Use the : e command with a + argument to start at the end of the file, or a +n argument to
start at line n. In actuality, n may be any editor command not containing a space, usually a
scan like +/pat or +?pat. In forming new names to the e command, use the character %
which is replaced by the current filename, or the character # which is replaced by the alternate
filename. The alternate filename is generally the last name you typed other than the current
file. Thus if you try to do a : e and get a diagnostic that you haven't written the file, you can
give a : w command and then a : e # command to redo the previous : e.

You can write part of the buffer to a file by finding out the lines that bound the range to be writ­
ten using CTRL-G, and giving these numbers after the : and before the w, separated by , s.
You can also mark these lines with m and then use an address of the form 'z, 'y on the w com­
mand here.

You can read another file into the buffer after the current line by using the : r command. You
can similarly read in the output from a command, just use ! cmd instead of a filename.

If you wish to edit a set of files in succession, you can give all the names on the command line,
and then edit each one in turn using the command :n. To respecify the list of files to be edited,
give the : n command a list of filenames, or a pattern to be expanded as you would have given it
on the initial vi command.

For editing large programs, use the : ta command. It utilizes a data base of function names and
their locations, which can be created by programs such as ctaga, (see the Commands Reference
Manual for the Sun Workstation) to quickly find a function whose name you give. If the : ta
command will require the editor to switch files, then you must : w or abandon any changes
before switching. You can repeat the : ta command without any arguments to look for the

Version D of 15 May 1985 2-21

Using vi, the Visual Display Editor Editing and Text Processing

same tag again.

2.8.4- More about Searching for Strings

When you are searching for strings in the file with / and ?, vi normally places you at the next
or previous occurrence of the string. If you are using an operator such as d, c or y, then you
may well wish to affect lines up to the line before the line containing the pattern. You can give
a search of the form /pat;-n to refer to the nth line before the next line containing pat, or you
can use + instead of - to refer to the lines after the one containing pat. if you don't give a line
offset, vi will affect characters up to the match place, rather than whole lines; thus use +O to
affect the line that matches.

To have vi ignore the case of words in searches, give the ignorecaae option:

:se ic<CR>

To turn this off so that vi recognizes case again, use:

: se noic<CR>

Strings given to searches may actually be regular expressions. If you do not want or need this
facility, you should put:

set nomagic

in your EXINIT. When nomagic is set, only the characters caret(-) and dollar sign($) are special
in patterns. The character backslash (\) is also special with nomagic set. You can precede some
of the normally special characters (not special in nomagic mode) with a backslash to enable their
special properties.

It is necessary to use a backslash (\) before a slash (/) to search for a slash character in a for­
ward scan and before a question mark (?) to search for a question mark in a backward scan.
The command to search for a slash character is shown on the last line of the example below, as it
would appear on your screen.

text text text text text text text text text text text
text text text/text text text text text text text
text text text text text text text text text text text
text text? text text text text text text text text text? text
text text text/text text text text text/text text
text text text text text text text text text text text

//<CR>

The following table gives the extended forms when magic is set.

2-22 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

Table 2-3: Extended Pattern Matching Characters

Character

$

\<
\>
(string] r string]
[z-y] ..

Meaninir
At beginning of pattern, matches beginning of line
At end of pattern, matches end of line
Matches any character
Matches the beginning of a word
Matches the end of a word
Matches any single character in atring
Matches any single character not in atring
Matches any character between z and y
Matches anv number of the orecedine: oattern

If you use nomagic mode, use the '. ['and'*' primitives with a preceding\.

2.8.5. More about Input Mode

There are a number of characters to make corrections during input mode. These are summar­
ized in the following table.

Character
CTRL-H
CTRL-W
erase
kill
\
ESC
DEL
CR
CTRL-D
OCTRL-D
•cTRL-D

CTRL-V

Table 2-4: Input Mode Corrections

Meaning
Deletes the last input character
Deletes the last input word
Your erase character, same as CTRL-H
Your kill character, deletes the input on this line
Escapes a following CTRL-H and your erase and kill
Ends an insertion
Interrupts an insertion, terminating it abnormally
Starts a new line
Backtabs over autoindent
Kills all the autoindent
Same as CTRL-D, but restores indent next line
Quotes the next non-orinting character into the file

The most usual way of making corrections to input is to type DEL (CTRL-H on a terminal) to
correct a single character, or by typing one or more CTRL-W to back over incorrect words.

Your system kill character CTRL-U (or sometimes CTRL-X) erases all the input you have given on
the current line. In general, you can neither erase input back around a line boundary nor can
you erase characters you did not insert with this insertion command. To make corrections on
the previous line after a new line has been started, press ESC to end the insertion, move over and
make the correction, and then return to where you were to continue. Use A to append at the
end of the current line; this is often useful for continuing text input.

If you wish to type in your erase or kill character, say CTRL-U, you must precede it with a \,
just as you would do at the normal system command level. A more general way of typing non­
printing characters into the file is to precede them with a CTRL-V. The CTRL-V echoes as a t

Version D of 15 May 1985 2-23

Using vi, the Visual Display Editor Editing and Text Processing

character on which the cursor rests. This indicates that the editor expects you to type a control
character. In fact you may type any character and it will be inserted into the file at that
point. 10

If you are using autoindent, you can backtab over the indent that it supplies by typing a CTRL-D.
This backs up to a shiftwidth boundary. This only works immediately after the supplied autoin­
dent.

When you are using autoindent you may wish to place a label at the left margin of a line. The
way to do this easily is to type a caret (CTRL-) and then CTRL-D. The editor will move the cur­
sor to the left margin for one line, and restore the previous indent on the next. You can also
type a zero (O) followed immediately by a CTRL-D if you wish to kill all the indent and not have
it come back on the next line.

2.9. Command and Function Reference

The following section provides abridged explanations of the vi and ex commands.

2.9.1. Notation

Notation used in this section is as follows.

[option]

[count]

Denotes optional parts of a command. Many vi commands have an optional count.

Means that an optional number may precede the command to multiply or iterate the
command.

{ variable item}
Denotes parts of the command that must appear, but can take a number of different
values.

<character [-character]>
Means that the character or one of the characters in the range described between the
two angle brackets is to be typed. For example ESC means type the ESCAPE key.
<a-z> means type a lower-case letter. CTRL-<character> means type the character as
a control character, that is, with the CTRL key held down while simultaneously typ­
ing the specified character. Here we indicate control characters with upper-case
letters, but CTRL-<uppercase letter> and CTRL-<lowercase letter> are equivalent.
That is, CTRL-D is equal to CTRL-d. The most common character abbreviations used
in this list are as follows:

10 This is not quite true. vi does not allow the NULL (crru,.@) character to appear in files. Also the edi­
tor uses the LF (lineteed or Cl'RL-J) character to separate lines in the file, so it cannot appear in the middle
or a line. You can insert any other character, however, it you wait for the editor to echo the - before you
type the character. In fa.ct, the editor treats a following letter as a request for the corresponding control
character. This is the only way to type CTRL-S or CTRI.rQ, since the system normally uses them to suspend
and resume output and never gives them to the editor to process.

2-24 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

Table 2-5: Common Character Abbreviations

Character Meaning Hexadecimal
Abbreviation Representation

ESC escape Oxlb
CR carriage return, CTRL-M Oxd
<If> linefeed CTRL-J Oxa
<nl> newline, CTRL-J Oxa (same as linefeed)
<bs> backspace, CTRL-H Ox8
<tab> tab, CTRL-1 Ox9
<bell> be II, CTRL-G Ox7
<ff> formfeed, CTRL-L Oxc
<sp> space Ox20
DEL delete Ox7f

2.9.2. Commands

Following are brief explanations of the vi commands categorized by function for easy reference.

2.9.3. Entry and Exit

To use vi to edit a particular file, type:

hostname% vi filename

vi will read the file intro the buffer, and place the cursor at the beginning of the first line. The
first screenful of the file is displayed on the screen.

To exit from vi, type:

ZZ (or : x or : q or : q !)

If you are in some special mode, such as input mode or the middle of a multi-keystroke com­
mand, it may be necessary to type ESC first.

2.9.f Cursor and Page Motion

Note: You can move the cursor on your screen with the arrow keys on your workstation key­
board, the control character versions, or the h, j, k, and l keys. If you are using a terminal
that does not have arrow keys, use the control character versions or the h, j, k, and l keys.

[count)<bs> or [count)h or [eount)+-
Move the cursor to the left one character. Cursor stops at the left margin of
the page. [count) specifies the number of spaces to move.

[count)CTRL-N or [count]j or [count)! or [count)<lf>
Move down one line. Moving off the screen scrolls the window to force a new
line onto the screen. Mnemonic: Next

Version D of 15 May 1985 2-25

Using vi, the Visual Display Editor Editing and Text Processing

[count]CTRL-P or [count]k or [count]t
Move up one line. Moving off the top of the screen forces new text onto the o.
screen. Mnemonic: Previous

[count]<sp> or [count]! or [count]-+

[count]-

Move to the right one character. Cursor will not go beyond the end of the
line.

Move the cursor up the screen to the beginning of the next line. Scroll if
necessary.

[count]+ or [count]CR

[count]$

0

[count]I

[count]w

[count]W

[count]b

[count]B

[count]e

[count]E

[line number]G

Move the cursor down the screen to the beginning of the next line. Scroll up
if necessary.

Move the cursor to the end of the line. If there is a count, move to the end of
the line count lines forward in the file.

Move the cursor to the beginning of the first word on the line.

Move the cursor to the left margin of the current line.

Move the cursor to the column specified by the count. The default is column
zero.

Move the cursor to the beginning of the next word. If there is a count, then
move forward that many words and position the cursor at the beginning of the
word. Mnemonic: next-word

Move the cursor to the beginning of the next word that follows a blank space
(<sp>,<tab>, or <nl>). Ignore other punctuation.

Move the cursor to the preceding word. Mnemonic: backup-word

Move the cursor to the preceding word that is separated from the current
word by a blank space (<sp>,<tab>, or <nl>).

Move the cursor to the end of the current word or the end of the countth
word hence. Mnemonic: end-of-word

Move the cursor to the end of the current word which is delimited by blank
space (<sp>,<tab>, or <nl>).

Move the cursor to the line specified. Of particular use are the sequences IG
and G, which move the cursor to the beginning and the end of the file respec­
tively. Mnemonic: Go-to

Note: The next four commands (CTRL-D, CTRL-U, CTRL-F, CTRL-B) are not true motion com­
mands, in that they cannot be used as the object of commands such as delete or change.

[count]CTRL-D

[count]CTRL-U

[count]CTRL-F

2-26

Move the cursor down in the file by count lines (or the last count if a new
count isn't given). The initial default is half a page. The screen is simultane­
ously scrolled up. Mnemonic: Down

Move the cursor up in the file by count lines. The screen is simultaneously
scrolled down. Mnemonic: Up

Move the cursor to the next page. A count moves that many pages. Two
lines of the previous page are kept on the screen for continuity if possible.

Version D of 15 May 1985

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

[count]CTRL-B

[count])

(count)(

[count)}

[count){

II

II
%

[count]H

[countJL

M

m<a-z>

'<a-z>

'<a-z>

Mnemonic: Forward

Move the cursor to the previous page. Two lines of the current page are kept
if possible. Mnemonic: Backward

Move the cursor to the beginning of the next sentence. A sentence is defined
as ending with a'.','!', or'?' followed by two spaces or a <nl>.

Move the cursor backward to the beginning of a sentence.

Move the cursor to the beginning of the next paragraph. This command
works best inside nroff documents. It understands the nroff macros in
-ms, for which the commands .IP, .LP, .PP, .QP, as well as the nroff
command . bp are considered to be paragraph delimiters. A blank line also
delimits a paragraph. The nroff macros that it accepts as paragraph delim­
iters are adjustable. See the entry for "Paragraphs" in the "Set Commands"
section.

Move the cursor backward to the beginning of a paragraph.

Move the cursor to the next 'section,' where a section is defined by the set of
nroff macros in -ms, in which .NH, .SH and .H delimit a section. A line
beginning with a <ff><nl> sequence, or a line beginning with a '{' are also
considered to be section delimiters. The last option makes it useful for finding
the beginnings of C functions. The nroff macros that are used for section
delimiters can be adjusted. See the "sections" entry under the heading "Set
Commands".

Move the cursor backward to the beginning of a section.

Move the cursor to the matching parenthesis or brace. This is very useful in
C or lisp code. If the cursor is sitting on a (,) , {, or }, it is moved to the
matching character at the other end of the section. If the cursor is not sitting
on a brace or a parenthesis, vi searches forward on that line until it finds one
and then jumps to the match mate.

If there is no count, move the cursor to the top left position on the screen. If
there is a count, then move the cursor to the beginning of the line count lines
from the top of the screen. Mnemonic: Home

If there is no count, move the cursor to the beginning of the last line on the
screen. If there is a count, move the cursor to the beginning of the line count
lines from the bottom of the screen. Mnemonic: Last

Move the cursor to the beginning of the middle line on the screen. Mnemonic:
Middle

Mark the place in the file without moving the cursor; use a character from a
to z, '<a-z>', as the label for referring to this location in the file. See the
next two commands. Mnemonic: mark Note: the mark command is not a
motion and cannot be used as the target of commands such as delete.

Move the cursor to the beginning of the line that is marked with the label
'<a-z>'.

Move the cursor to the exact position on the line that was marked with the
label '<a-z>'.

Version D of 15 May 1985 2-27

Using vi, the Visual Display Editor Editing and Text Processing

Move the cursor back to the beginning of the line where it was before the last
non-relative move. A non-relative move is something such as searching or o
jumping to a specific line in the file, rather than moving the cursor or scrol-

2.g.s. Searches

ling the screen.

Move the cursor back to the exact spot on the line where it was located before
the last non-relative move.

The following commands search for items in a file.

[count]f{ chr}

[count]F{chr}

[count]t{ chr}

[count]T{ chr}

[count];

[count],

Search forward on the line for the next or counttb occurrence of the character
chr. The cursor is placed at the character of interest. Mnemonic: find char­
acter

Search backward on the line for the next or countth occurrence of the charac­
ter chr. The cursor is placed at the character of interest.

Search forward on the line for the next or countth occurrence of the character
chr. The cursor is placed just preceding the character of interest. Mnemonic:
move cursor up to character

Search backward on the line for the next or countth occurrence of the charac­
ter chr. The cursor is placed just preceding the character of interest.

Repeat the last f, F, t or T command in the same search direction.

Repeat the last f, F, tor T command, but in the opposite search direction.
This is useful if you overshoot what you are looking for.

[count]/[string]/ <nl>
Search forward for the next occurrence of 'string'. Wraparound at the end of
the file does occur. The final / is not required.

[count]?[string]? <nl>
Search backward for the next occurrence of 'string'. If a count is specified,
the count becomes the new window size. Wraparound at the beginning of the
file does occur. The final ? is not required.

n Repeat the last /[string]/ or ?[string]? search. Mnemonic: next occurrence.

N Repeat the last /[string]/ or ?[string]? search, but in the reverse direction.

:g/[string]/[editor command]<nl>
Using the : syntax, it is possible to do global searches like you can in the ed

editor.

2.g.6. Text Insertion

The following commands insert text. Terminate all multi-character text insertions with an ESC
character. You can always undo the last change by typing a u. The text insert in insertion
mode can contain newlines.

a{text}<esc> Insert text immediately following the cursor position. Mnemonic: append

2-28 Version D of 15 May 1985

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

A{text}<esc>

i{ text}<esc>

I{ text}<esc>

o{ text}<esc>

O{text}<esc>

Insert text at the end of the current line. Mnemonic: Append

Insert text immediately preceding the cursor position. Mnemonic: insert

Insert text at the beginning of the current line.

Insert a new line after the line on which the cuTsor appears and insert text
there. Mnemonic: open new line

Insert a new line preceding the line on which the cursor appears and insert
text there.

2. 9. 7. Text Deletion

The following commands delete text in various ways. You can always undo changes by typing
the u command.

[count]x

[count]X

D

[count]d {motion}

Delete the character or characters starting at the cursor position.

Delete the character or characters starting at the character preceding the cur­
sor position.

Delete the remainder of the line starting at the cursor. Mnemonic: Delete the
rest of line

Delete one or more occurrences of the specified motion. You can use any
motion here described in the secions "Low Level Character Motions" and
"Higher Level Text Objects" . You can repeat the d (such as [count]dd) to
delete count lines.

2.9.8. Text Replacement

Use the following commands to simultaneously delete and insert new text. You can undo all such
actions by typing u following the command.

r<chr> Replace the character at the current cursor position with <chr>. This is a
one-character replacement. No ESC is required for termination. Mnemonic:
replace character

R{ text}<esc> Start overlaying the characters on the screen with whatever you type. It does
not stop until you type an ESC.

[count]s{ text}<esc>
Substitute for count characters beginning at the current cursor position. A'$'
appears at the position in the text where the countth character appears so you
will know how much you are erasing. Mnemonic: substitute

[count]S{ text}<esc>
Substitute for the entire current line or lines. If you do not give a count, a'$'
appears at the end of the current line. If you give a count of more than 1, all
the lines to be replaced are deleted before the insertion begins.

[count]c{ motion}{ text}<esc>
Change the specified motion by replacing it with the insertion text. A '$'
appears at the end of the last item that is being deleted unless the deletion

Version D of 15 May 1985 2-29

Using vi, the Visual Display Editor Editing and Text Processing

involves whole lines. Motions can be any motion from the sections "Low Level
Character Motions" and "Higher Level Text Objects". Repeat the c (such as Q.
[count]cc) to change count lines.

2.9.9. Moving Text

You can move chunks of text around in a number of ways with vi. There are nine buffers into
which each piece of text deleted or yanked is put in addition to the undo buffer. The most
recent deletion or yank is in the undo buffer and also usually in buffer 1, the next most recent in
buffer 2, and so forth. Each new deletion pushes down all the older deletions. Deletions older
than 9 disappear. There is also a set of named registers, a-z, into which text can optionally be
placed. If you precede any delete or replacement type command by "<a-z>, that named buffer
will contain the text deleted after the command is executed. For example, "a3dd deletes three
lines starting at the current line and puts them in buffer "a. Referring to an upper-case letter
as a buffer name (A-Z) is the same as referring to the lower-case letter, except that text placed
in such a buffer is appended to it instead of replacing it. There are two more basic commands
and some variations useful in getting and putting text into a file.

["<a-z>] [count]y{ motion}
Yank the specified item or count items and put in the undo buffer or the
specified buffer. The variety of item, that you can yank is the same as those
that you can delete with the d command or changed with the c command.
In the same way that dd means delete the current line and cc means replace
the current line, yy means yank the current line.

["<a-z>][count]Y Yank the current line or the count lines starting from the current line. If no o
buffer is specified, they will go into the undo buffer, like any delete would. It

["<a-z>]p

["<a-z>]P

is equivalent to yy. Mnemonic: Yank

Put undo buffer or the specified buffer down after the cursor. If you yanked
or deleted whole lines into the buffer, they are put down on the line following
the line the cursor is on. If you deleted something else, like a word or sen­
tence, it is inserted immediately following the cursor. Mnemonic: put buffer

Note that text in the named buffers remains there when you start editing a
new file with the : e fileCR command. Since this is so, it is possible to copy or
delete text from one file and carry it over to another file in the buffers. How­
ever, the undo buffer and the ability to undo are lost when changing files.

Put undo buffer or the specified buffer down before the cursor. If you yanked
or deleted whole lines into the buffer, they are put down on the line preceding
the line the cursor is on. If you deleted something else, like a word or sen­
tence, it is inserted immediately preceding the cursor.

[count]>{motion} The shift operator right shifts all the text from the line on which the cursor is
located to the line where the motion is located. The text is shifted by one
ahiftwidth. (See the "Terminal Information" section.) >> means right shift the
current line or lines.

[count]<{motion} The shift operator left shifts all the text from the line on which the cursor is
located to the line where the item is located. The text is shifted by one

2-30

,hiftwidth. (See the section on "Terminal Information".) << means left shift

0 the current line or lines. Once the line has reached the left margin, it is not
affected further.

Version D of 15 May 1985

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

[count]={motion} Prettyprints the indicated area according to LISP conventions. The area
should be a LISP s-expression.

2.9.10. Afiscellaneous Commands

A number of useful miscellaneous vi commands follow:

zz

CTRL-L

CTRL-R

u

u

[count]J

Q

CTRL-J

Exit from vi. If any changes have been made, the file is written out. Then
you are returned to the shell.

Redraw the current screen. This is useful if messages from a background pro­
cess are displayed on the screen, if someone 'writes' to you while you are using
vi or if for any reason garbage gets onto the screen.

On dumb terminals, those not having the 'delete-line' function (the vtlOO for
example), vi saves redrawing the screen when you delete a line by just mark­
ing the line with an '@' at the beginning and blanking the line. If you want to
actually get rid of the lines marked with '@' and see what the page looks like,
type a CTRL-R.

'Dot' repeats the last text modifying command. You can type a command
once and then move to another place and repeat it by just typing '.'.

Undo the last command that changed the buffer. Perhaps the most important
command in the editor. Mnemonic: undo

Undo all the text modifying commands performed on the current line since the
last time you moved onto it.

Join the current line and the following line. The <nl> is deleted and the two
lines joined, usually with a space between the end of the first line and the
beginning of what was the second line. If the first line ended with a 'period',
two spaces are inserted. A count joins the next count lines. Mnemonic: Join
lines

Switch to ex editing mode. In this mode vi behaves very much like ed.
The editor in this mode operates on single lines normally and does not attempt
to keep the 'window' up to date. Once in this mode you can also switch to the
open mode of editing by entering the command [line number]open<nl>. It is
similar to the normal visual mode except the window is only one line long.
Mnemonic: Quit visual mode

An abbreviation for a tag command. The cursor should be positioned at the
beginning of a word. That word is taken as a tag name, and the tag with that
name is found as if it had been typed in a : tag command.

[count]!{motion}{Sun cmd}<nl>
Any Sun system filter (that is, a command that reads the standard input and
outputs something to the standard output) can be sent a section of the current
file and have the output of the command replace the original text. Useful
examples are programs like cb, sort, and nroff. For instance, using
sort you can sort a section of the current file into a new list. Using ! !
means take a line or lines starting at the line the cursor is currently on and
pass them to the Sun system command. Note: To escape to the shell for just
one command, use : ! {cmd}<nl> (see the "High Level Commands" section).

Version D of 15 May 1985 2-31

Using vi, the Visual Display Editor Editing and Text Processing

z{count}<nl> Reset the current window size to count lines and redraw the screen.

2. 9.11. Special Insert Characters

Following are some characters that have special meanings during insert mode.

CTRL-V

[']CTRL-D

CTRL-W

<bs>

During inserts, typing a CTRL-V quotes control characters into the file. Any
character typed after the CTRL-V is inserted into the file.

CTRL-D without any argument backs up one ahiftwidth. Use this to remove
indentation that was inserted by the autoindent feature. Typing ·cTRL-D
temporarily removes all the autoindentation, thus placing the cursor at the
left margin. On the next line, the previous indent level is restored. This is
useful for putting 'labels' at the left margin. OCTRL-D removes all autoindents
and keeps it that way. Thus the cursor moves to the left margin and stays
there on successive lines until you type TABs. As with the TAB, the CTRL-D is
effective only before you type any other 'non-autoindent' controlling charac­
ters. Mnemonic: Delete a shiftwidth

If the cursor is sitting on a word, CTRL-W moves the cursor back to the begin­
ning of the word, erasing the word from the insert. Mnemonic: erase Word

The backspace always serves as an erase during insert modes in addition to
your normal 'erase' character. To insert a <bs> into your file, quote it with
the CTRL-V.

2.9.12. : Commands

Typing a colon (:) during command mode puts the cursor at the bottom on the screen in
preparation for a command. In the ':' mode, you can give vi most ex commands. You can
also exit from vi or switch to different files from this mode. Terminate all commands of this
variety by a <nl>, <er>, or ESC.

:w[!J [file]

:q[!J

:e[!] [+[cmd]] [file]

CTRL-'

2-32

Write out the current text to the disk. It is written to the file you are editing
unless you supply file. If file is supplied, the write is directed to that file
instead. If that file already exists, vi does not write unless you use the '!'
indicating you really want to write over the older copy of the file.

Exit from vi. If you have modified the file you are currently looking at and
haven't written it out, vi refuses to exit unless you type the ! .

Start editing a new file called filename or start editing the current file over
again. The command : e ! says 'ignore the changes I've made to this file and
start over from the beginning'. Use it if you really mess up the file. The
optional '+' says instead of starting at the beginning, start at the 'end', or, if
you supply cmd, execute cmd first. Use this where cmd is n (any integer) that
starts at line number n, and /text, searches for 'text' and starts at the line
where it is found.

Switch back to the place in the previous file that you were editing with vi,
before you switched to the current file.

Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

:n[!]

:n[!] file [file file ...]

:r file

:r !cmd

:!cmd

:ta[!] tag

Start editing the next file in the argument list. Since you can call vi with
multiple filenames, the : n command tells it to stop work on the current file
and switch to the next file. If you have modified the current file, it has to be
written out before the :n will work or else you must use '!', which discards
the changes you made to the current file.

Replace the current argument list with a new list of files and start editing the
first file in this new list.

Read in a copy of file on the line after the cursor.

Execute the cmd and take its output and put it into the file after the current
line.

Execute any system shell command.

vi looks in the file named tag• in the current directory. tag• is a file of lines
in the format:

tag filename vi-search-command

If vi finds the tag you specified in the : ta command, it stops editing the
current file if necessary. If the current file is up to date on the disk, it switches
to the file specified and uses the search pattern specified to find the 'tagged'
item of interest. Use this when editing multi-file C programs such as the
operating system. There is a program called ctag• which generates an
appropriate tag• file for C and f77 programs so that by saying : ta
function<nl> you can switch to that function. It can also be useful when
editing multi-file documents, though the tag• file has to be generated manually
in this case.

2.9.13. Set Commands

vi has a number of internal variables and switches you can set to achieve special affects. These
options come in three forms: switches that toggle off or on, options that require a numeric value,
and options that require an alphanumeric string value. Set the toggle options by a command of
the form:

: set option<nl>

and turn off the toggle options with the command:

: set nooption<nl>

To set commands requiring a value, use a command of the form:

: set option=value<nl>

To display the value of a specific option, type:

: set option?<nl>

To display only those that you have changed, type:

:set<nl>

and to display the long table of all the settable parameters and their current values, type:

Version D of 15 May 1985 2-33

Using vi, the Visual Display Editor Editing and Text Processing

:set all<nl>

Most of the options have a long form and an abbreviation. Both are described in the following
list as well as the normal default value.

To use values other than the default every time you enter vi, place the appropriate aet com­
mand in EXINIT in your environment, such as:

setenv EXINIT 'set al aw terse sh=/bln/csh'

or

EXINIT='set al aw terse sh=/bln/csh'
export EXINIT

for cah and ,h, respectively. Place these in your .login or .profile file in your home directory.

autoindent ai

au toprin t ap

autowrite aw

beautify bf

directory dir

errorbells eb

hardtabs ht

. .
1gnorecase IC

lisp

list

magic

2-34

Default: noai Type: toggle
When in autoindent mode, vi helps you indent code by starting each line in
the same column as the preceding line. Tabbing to the right with <tab> or
CTRL-T moves this boundary to the right; to move it to the left, use CTRL-D.

Default: ap Type: toggle
Displays the current line after each ex text modifying command. Not of
much interest in the normal vi visual mode.

Default: noaw type: toggle
Does an automatic write if there are unsaved changes before certain com­
mands that change files or otherwise interact with the outside world are exe­
cuted. These commands are : ! , : tag, : next, : rewind, CTR!/, and
CTRL-].

Default: nobf Type: toggle
Discards all control characters except <tab>, <nl>, and <ff>.

Default: dir=/tmp Type: string
This is the directory in which vi puts its temporary file.

Default: noe b Type: toggle
Error messages are preceded by a <bell>.

Default: hardtabs=8 Type: numeric
This option contains the value of hardware tabs Ill your terminal, or of
software tabs expanded by the Sun system.

Default: noic Type: toggle
Map all upper-case characters to lower case in regular expression matching.

Default: nolisp Type: toggle
Autoindent for LISP code. The commands (,) , [[, and]] are modified
appropriately to affect s-expressions and functions.

Default: nolist Type: toggle
Show the <tab> and <nl> characters visually on all displayed lines.

Default: magic Type: toggle
Enable the metacharacters for matching. These include
[airing], c-.iring], and [<chr>-<chr>].

., *, <, >,

Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

number nu

open

Default: nonu Type: toggle
Display each line with its line number.

Default: open Type: toggle
When set, prevents entering open or visual modes from ex or edit. Not of
interest from vi.

optimize opt Default: opt Type: toggle
Useful only when using the ex capabilities. This option prevents automatic
<cr>s from taking place, and speeds up output of indented lines, at the
expense of losing typeahead on some versions of the operating system.

paragraphs para Default: para=IPLPPPQPP bp Type: string
Each pair of characters in the string indicates nroff macros to be treated as
the beginning of a paragraph for the { and } commands. The default string
is for the -ms macros. To indicate one-letter nroff macros, such as . P or
. H, insert a space for the second character position. For example:

prompt

redraw

report

scroll

sections

shell sh

shiftwidth sw

showmatch sm

:set paragraphs=PPH\ bp<nl>

causes vi to consider .PP, .Hand .bp as paragraph delimiters.

Default: prompt Type: toggle
In ex command mode the prompt character : is displayed when ex is wait­
ing for a command. This is not of interest from vi.

Default: noredraw Type: toggle
On dumb terminals, force the screen to always be up to date by sending great
amounts of output. Useful only at high speeds.

Default: report=5 Type: numeric
Set the threshold for the number of lines modified. When more than this
number of lines is modified, removed, or yanked, vi reports the number of
lines changed at the bottom of the screen.

Default: scroll={l/2 window} Type: numeric
This is the number of lines that the screen scrolls up or down when using the
CTRL-U and CTRL-D commands.

Default: sections=SHNHH HU Type: string
Each two-character pair of this string specifies nroff macro names that are
to be treated as the beginning of a section by the]] and [[commands.
The default string is for the -ms macros. To enter one-letter nroff mac­
ros, use a quoted space as the second character. See the "Paragraphs" entry
for a fuller explanation.

Default: sh=from environment SHELL or /bin/sh Type: string
Specify the name of the Bh to be used for 'escaped' commands.

Default: sw=8 Type: numeric
Specify the number of spaces that a CTRL-T or CTRL-D will move over for
indenting, and the amount that < and > will shift by.

Default: nosm Type: toggle
When a) or } is typed, show the matching (or { by moving the cursor to
it for one second if it is on the current screen.

Version D of 15 May 1985 2-35

Using vi, the Visual Display Editor Editing and Text Processing

slowopen slow

tabstop ts

taglength ti

term

terse

warn

window

Default: terminal dependent Type: toggle
Prevent updating the screen some of the time to improve speed on terminals
that are slow and dumb.

Default: ts=8 Type: numeric
<tab>s are expanded to boundaries that are multiples of this value.

Default: tl=O Type: numeric
If nonzero, tag names are only significant to this many characters.

Default: (from environment TERM, else dumb) Type: string
This is the terminal and controls the visual displays. It cannot be changed
when in visual mode; you have to type a Q to change to command mode, type
a set term command, and enter vi to get back into visual. Or exit from
vi, fix $TERM, and re-enter. The definitions that drive a particular terminal
type are in the file / etc/termcap.

Default: terse Type: toggle
When set, the error diagnostics are short.

Default: warn Type: toggle
Warns if you try to escape to the shell without writing out the current
changes.

Default: window={8 at 600 baud or less, 16 at 1200 baud, and screen size - l
at 2400 baud or more} Type: numeric
Specify the number of lines in the window whenever vi must redraw an
entire screen. It is useful to make this size smaller if you are on a slow line.

0

w300, wl200, w9600 0
Set the window, but only within the corresponding speed ranges. They are ·

wrapscan ws

useful in an EXINIT to fine tune window sizes. For example,

set w300=4 w1200=12

produces a four-line window at speeds up to 600 baud, a 12-line window at
1200 baud, and a full-screen window (the default) at over 1200 baud.

Default: ws Type: toggle
Searches will wrap around the end of the file when is option is set. When it is
off, the search will terminate when it reaches the end or the beginning of the
file.

wrapmargm wm Default: wm=O Type: numeric
vi automatically inserts a <nl> when it finds a natural break point (usually a
<sp> between words) that occurs within wm spaces of the right margin.
Therefore with 'wm=O', the option is off. Setting it to 10 means that any time
you are within 10 spaces of the right margin, vi looks for a <sp> or <tab>
that it can replace with a <nl>. This is convenient if you forget to look at
the screen while you type. If you go past the margin (even in the middle of a
word), the entire word is erased and rewritten on the next line.

writeany wa Default: nowa Type: toggle

2-36

vi normally makes a number of checks before it writes out a file. This
prevents you from inadvertently destroying a file. When the writeany option
is enabled, vi no longer makes these checks.

Version D of 15 May 1985

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

2.9.14- Character Functions

This section describes how the editor uses each character. The characters are presented in their
order in the ASCII character set: control characters come first, then most special characters, the
digits, upper-, and finally lower-case characters.

For each character we list its meaning as a command and its meaning (if any) during insert
mode.

CTRlr@

CTRlrA

CTRlrB

CTRlrC

CTRL-D

CTRL-E

CTRlrF

CTRlrG

CTRL-H (BS)

CTRlrl (TAB)

CTRlrJ (LF)

CTRlrK

CTRlrL

CTRlrM (CR)

Not a command character. If typed as the first character of an insertion, it is
replaced with the last text inserted, and the insert terminates. Only 128 char­
acters are saved from the last insert; if more characters were inserted the
mechanism is not available. A CTRlr@ cannot be part of the file due to the edi­
tor implementation.

Unused.

Scroll backward one window. A count specifies repetition. The top two lines in
the window before typing CTRlrB appear as the bottom two lines of the next
window.

Unused.

As a command, scrolls down a half window of text. A count gives the number of
(logical) lines to scroll, and is remembered for future CTRlrD and CTRlrU com­
mands. During an insert, CTRlrD backtabs over autoindent blank space at the
beginning of a line. This blank space cannot be backspaced over.

Exposes one more line below the current screen in the file, leaving the cursor
where it is if possible.

Move forward one window. A count specifies repetition. The bottom two lines
in the window before typing CTRlrF appear as the top two lines of the next win­
dow.

Equivalent to : fCR. These commands display the current file, a message if the
file has been modified, the line number of the line the cursor is on, the total
number of lines in the file, an_d the percentage of the way through the file that
the current line is.

Same as - (see h). During an insert, CTRlrH eliminates the last input charac­
ter, backing over it but not erasing it; the character remains so you can see
what you typed if you wish to type something only slightly different.

Not a command character. When inserted it prints as some number of spaces.
When the cursor is at a tab character, it rests at the last of the spaces that
represent the tab. The tabstop option controls the spacing of tabstops.

Same as! (see j).

Unused.

The ASCII formfeed character, that clears and redraws the screen. This is use­
ful after a transmission error, if characters typed by a program other than the
editor scramble the screen, or after output is stopped by an interrupt.

A carriage return advances to the next line, at the first non-blank position in
the line. Given a count, it advances that many lines. During an insert, a CR
causes the insert to continue onto another line.

Version D of 15 May 1985 2-37

Using vi, the Visual Display Editor Editing and Text Processing

CTRL-N

CTRL-0

CTRL-P

CTRL-Q

CTRL-R

CTRL-S

CTRL-T

CTRL-U

CTRL-V

CTRL-W

CTRL-X

CTRL-Y

CTRL-Z

CTRL-1 (ESC)

CTRL-\

CTRL-J

CTRL-'

CTRL-_

2-38

Same as J. (see j).

Unused.

Same as t (see k).

Not a command character. In input mode, CTRL-Q quotes the next character,
the same as CTRL-V, except that some teletype drivers will eat the CTRL-Q so
that vi never sees it. Resumes operation suspended by CTRL-S.

Redraws the current screen, eliminating logical lines not corresponding to phy­
sical lines (lines with only a single @ character on them). On hardcopy termi­
nals in open mode, retypes the current line.

Some teletype drivers use CTRL-S to suspend output until CTRL-Q is pressed.
Unused.

Not a command character. During an insert with autoindent set and at the
beginning of the line, inserts ,hiftwidth blank space.

Scrolls the screen up half a window, the reverse of CTRL-D, which scrolls down.
Counts work as they do for CTRL-D, and the previous scroll amount is common
to both CTRL-D and CTRL-U. On a dumb terminal, CTRL-U will often necessitate
clearing and redrawing the screen further back in the file.

Not a command character. In input mode, quotes the next character so that it
is possible to insert non-printing and special characters into the file.

Not a command character. During an insert, backs up as b does in command
mode; the deleted characters remain on the display-(see CTRL-H).

Unused.

Exposes one more line above the current screen, leaving the cursor where it is if
possible. (No mnemonic value for this key; CTRL-Y is the reverse of CTRL-E).

Stops the editor, exiting to the top level shell. Same as : stopCR.

Cancels a partially-formed command, such as a z when no following character
has yet been given; terminates inputs on the last line (read by commands such
as : / and ?); ends insertions of new text into the buffer. If an ESC is given
when quiescent in command state, the editor flashes the screen or rings the bell.
You can thus type ESC if you don't know what is happening till the editor
flashes the screen. If you don't know if you are in insert mode, you can type
ESCa, and then material to be input; the material is inserted correctly whether
or not you were in insert mode when you started.

Unused.

Searches for the word which is after the cursor as a tag. Equivalent to typing
: ta, this word, and then a CR. Mnemonically, this command is 'go right to'.

Equivalent to : e #CR, returning to the previous position in the last-edited file,
or editing a file that you specified if you got a No 'write since last
change diagnostic and do not want to have to type the filename again.
You have to do a ,,.. before CTRL-' will work in this case. If you do not wish
to write the file you should do : e ! #CR instead.

Unused. Reserved as the command character for the Tektronix 4025 and 4027
terminal.

Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

SPACE

..

$

%

&

)

•
+

Same as--+ (see 1).

An operator that processes lines from the buffer with reformatting commands.
Follow ! with the object to be processed, and then the command name ter­
minated by CR. Doubling ! and preceding it by a count filters the count lines;
otherwise the count is passed on to the object aft-er the ! . Thus 2 ! }fmtCR
reformats the next two paragraphs by running them through the program fmt.
Ir you are working on LISP, the command !%grindCR, given at the beginning
of a function, will run the text of the function through the LISP grinder. (The
gr ind command may not be present at all installations.) To read the output of
a command into the buffer, use : rcmd. To simply execute a command, use
: !cmd .

Precedes a named buffer specification. There are named buffers 1-9 used for
saving deleted text and named buffers a-z into which you can place text.

The macro character which, when followed by a number, will substitute for a
function key on terminals without function keys. In input mode, if this is your
erase character, it will delete the last character you typed in input mode, and
must be preceded with a \ to insert it, since it normally backs over the last
input character you gave.

Moves to the end of the current line. Ir you : se listCR, the end of each
line is indicated by showing a $ after the end of the displayed text in the line.
Given a count, advances to the count'th following end of line; thus 2$
advances to the end of the next line.

Moves to the parenthesis or brace { } that balances the parenthesis or brace
at the current cursor position.

A synonym for : &CR, by analogy with the ex & command.

When followed by a '~,, returns to the previous context at the beginning of a
line. The previous context is set whenever the current line is moved in a non­
relative way. When followed by a letter a-z, returns to the line that was
marked with this letter with a m command, at the first non-blank character in
the line. When used with an operator such as d, the operation takes place
over complete lines; if you use ', the operation takes place from the exact
marked place to the current cursor position within the line.

Retreats to the beginning of a sentence, or to the beginning of a LISP S·

expression if the lisp option is set. A sentence ends at a . , ! , or ? and is fol­
lowed by either the end of a line or by two spaces. Any number of closing) ,
] , ", and ' characters may appear after the . , ! , or ? , and before the
spaces or end of line. Sentences also begin at paragraph and section boundaries
(see the "{"and" [["entries below). A count advances that many sentences.

Advances to the beginning of a sentence. A count repeats the effect. See (
above for the definition of a sentence .

Unused.

Same as CR when used as a command.

Reverse of the last f, F, t, or T command, looking the other way in the
current line. Especially useful after typing too many ; characters. A count
repeats the search.

Version D of 15 May 1985 2-39

Using vi, the Visual Display Editor Editing and Text Processing

I

0

1-9

<

>

2-40

Retrea.Ls to the previous line at the first non-blank character. This is the
inverse of + and RETURN. If the line moved to is not on the screen, the screen
is scrolled, or cleared and redrawn if scrolling is not possible. If a large amount
of scrolling is required, the screen is also cleared and redrawn, with the current
line at the center.

Repeats the last command that changed the buffer. Especially useful when
deleting words or lines; you can delete some words or lines and then type . to
delete more words or lines. Given a count, it passes it on to the command
being repeated. Thus after a 2dw, 3. deletes three words.

Reads a string from the last line on the screen, and scans forward for the next
occurrence of this string. The normal input editing sequences may be used dur­
ing the input on the bottom line; an ESC returns to command state without
ever searching. The search begins when you type CR to terminate the pattern;
the cursor moves to the beginning of the last line to indicate that the search is
in progress; you can then terminate the search with a CTRL-C (orDEL or RUB),
or by backspacing when at the beginning of the bottom line, returning the cur­
sor to its initial position. Searches normally wrap end-around to find a string
anywhere in the buffer.

When used with an operator, the enclosed region is normally affected. By men­
tioning an offset from the line matched by the pattern, you can affect whole
lines. To do this, give a ps"ttern with a closing / and then an offset +nor -n.

To include the character / in the search string, you must escape it with a
preceding \. A - at the beginning of the pattern forces the match to occur at
the beginning of a line only; this may speed the search. A $ at the end of the
pattern forces the match to occur at the end of a line only. More extended pat­
tern matching is available. Unless you set nomagic in your .login file (*?*),
you will have to precede the characters . , [, *, and N in the search pattern
with a \ to get them to work as you would naively expect.

Moves to the first character on the current line. Also used, in forming
numbers, after an initial 1-9.

Used to form numeric arguments to commands.

A prefix to a set of commands for file and option manipulation and escapes to
the system. Input is given on the bottom line and terminated with a CR, and
the command is then executed. You can return to where you were by typing
ESC or DEL if you type : accidentally.

Repeats the last single character find that used f, F, t, or T. A count
iterates the basic scan.

An operator that shifts lines left one ahiftwidth, normally 8 spaces. Like all
operators, affects lines when repeated, as in <<. Counts are passed through to
the basic object, thus 3<< shifts three lines.

Reindents line for LISP, as though they were typed in with lisp and autoindent
set.

An operator that shifts lines right one ahiftwidth, normally 8 spaces. Affects
lines when repeated as in >>. Counts repeat the basic object.

Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

?

@

A

B

C

D

E

F

G

H

J

K

L

M

N

0

p

Scans backward, the opposite of /. See the / description above for details on
scanning.

A macro character. If this is your kill character, you must escape it with a\ to
type it in during input mode, as it normally backs over the input you have
given on the current line.

Appends at the end of line; a synonym for $a.

Backs up a word, where words are composed of non-blank sequences, placing
the cursor at the beginning of the word. A count repeats the effect.

Changes the rest of the text on the current line; a synonym for c$.

Deletes the rest of the text on the current line; a synonym for d$.

Moves forward to the end of a word, defined as blanks and non-blanks, like B
and W. A count repeats the effect.

Finds a single following character backward in the current line. A count
repeats this search that many times.

Goes to the line number given as preceding argument, or to the end of the file
if you do not give a preceding count. The screen is redrawn with the new
current line in the center if necessary.

Horne arrow. Homes the cursor to the top line on the screen. If a count is
given, the cursor is moved to the count'th line on the screen. In any case the
cursor is moved to the first non-blank character on the line. If used as the tar­
get of an operator, full lines are affected.

Inserts at the beginning of a line; a synonym for CTRL-i.

Joins together lines, supplying appropriate blank space: one space between
words, two spaces after a ' . ', and no spaces at all if the first character of the
joined on line is) . A count causes that many lines to be joined rather than
the default two.

Unused.

Moves the cursor to the first non-blank character of the last line on the screen.
Vvith a count, to the first non-blank of the count'th line from the bottom.
Operators affect whole lines when used with L.

Moves the cursor to the middle line on the screen, at the first non-blank posi­
tion on the line.

Scans for the next match of the last pattern given to / or ?, but in the
reverse direction; this is the reverse of n.

Opens a new line above the current line and inputs text there up to an ESC. A
count can be used on dumb terminals to specify a number of lines to be opened;
this is generally obsolete, as the •lowopen option works better.

Puts the last deleted text back before/above the cursor. The text goes back as
whole lines above the cursor if it was deleted as whole lines. Otherwise the text
is inserted between the characters before and at the cursor. May be preceded
by a named buffer specification "x to retrieve the contents of the buffer;
buffers 1-9 contain deleted material, buffers a-·z are available for general
use.

Version D of 15 May 1985 2-41

Using vi, the Visual Display Editor Editing and Text Processing

Q

R

s

T

u
V

w

X

y

zz

II

\
II

a

2-42

Quits from vi to ex command mode. In this mode, whole lines form com­
mands, ending with a RETURN. You can give all the : commands; the editor
supplies the : as a prompt.

Replaces characters on the screen with characters you type (overlay fashion).
Terminates with an ESC.

Changes whole lines, a synonym for cc. A count substitutes for that many
lines. The lines are saved in the numeric buffers, and erased on the screen
before the substitution begins.

Takes a single following character, locates the character before the cursor m
the current line, and places the cursor just after that character. A count
repeats the effect. Most useful with operators such as d.

Restores the current line to its state before you started changing it.

Unused.

Moves forward to the beginning of a word in the current line, where words are
defined as sequences of blank/non-blank characters. A count repeats the effect.

Deletes the character before the cursor. A count repeats the effect, but only
characters on the current line are deleted.

Yanks a copy of the current line into the unnamed buffer, to be put back by a
later p or P; a very useful synonym for yy. A count yanks that many lines.
May be preceded by a buffer name to put lines in that buffer.

Exits the editor. (Same as :xCR.) If any changes have been made, the buffer is
written out to the current file. Then the editor quits.

Backs up to the previous section boundary. A section begins at each macro in
the sec ti om option, normally a . NH or . SH and also at lines that start with a
formfeed CTRL-L. Lines beginning with { also stop [[; this makes it useful for
looking backward, a function at a time, in C programs. If the li,p option is set,
stops at each (at the beginning of a line, and is thus useful for moving back­
ward at the top level LISP objects.

Unused.

Forward to a section boundary; see [[for a definition.

Moves to the first non-blank position on the current line.

Unused.

When followed by a ' returns to the previous context. The previous context is
set whenever the current line is moved in a non-relative way. When followed
by a letter a-z, returns to the position that was marked with this letter with
an m command. When used with an operator such as d, the operation takes
place from the exact marked place to the current position within the line; if
you use ', the operation takes place over complete lines.

Appends arbitrary text after the current cursor position; the insert can con­
tinue onto multiple lines by using RETURN within the insert. A count causes
the inserted text to be replicated, but only if the inserted text is all on one line.
Terminate the insertion with an ESC.

Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

b

C

d

e

f

g

h

k

m

n

0

p

q

r

s

Backs up to the beginning of a word in the current line. A word is a sequence
of alphanumerics, or a sequence of special characters. A count repeats the
effect.

An operator that changes the following object, replacing it with the following
input text up to an ESC. If more than part of a single line is affected, the text
that is changed is saved in the numeric named buffers. If only part of the
current line is affected, the la,;t character to be changed away is marked with a
$. A count causes that many objects to be affected, thus both 3c) and c3}
change the following three sentences.

An operator that deletes the following object. If more than part of a line is
affected, the text is saved in the numeric buffers. A count causes that many
objects to be affected; thus 3dw is the same a,; d3w.

Advances to the end of the next word, defined a,; for b and w. A count
repeats the effect.

Finds the first instance of the next character following the cursor on the
current line. A count repeats the find.

Unused.

Arrow keys h, j, k, 1, and CTRL-H ('H).

Left arrow. Moves the cursor one character to the left. Like the other arrow
keys, either h, the left arrow key, or one of the synonyms, CTRL-H ha,; the
same effect. A count repeats the effect.

Inserts text before the cursor.

Down arrow. Moves the cursor one line down in the same column. If the posi­
tion does not exist, vi comes a,; close a,; possible to the same column.
Synonyms include CTRL-J (linefeed) and CTRL-N.

Up arrow. Moves the cursor up one line. CTRL-P is a synonym.

Right arrow. Moves the cursor one character to the right. SPACE 1s a
synonym.

Marks the current position of the cursor in the mark register that is specified
by the next character a-z. Return to this position or use with an operator
using''' or'#'.

Repeats the la,;t / or ? scanning commands.

Opens new lines below the current line; otherwise like 0.

Puts text after or below the cursor; otherwise like P.

Unused.

Replaces the single character at the cursor with a single character you type.
The new character may be a RETURN; this is the easiest way to split lines. A
count replaces each of the following count characters with the single character
given; see R above which is the more usually useful iteration of r.

Changes the single character under the cursor to the text that follows up to an
ESC; given a count, that many characters from the current line are changed.
The last character to be changed is marked with $ as in c.

Version D of 15 May 1985 2-43

Using vi, the Visual Display Editor Editing and Text Processing

t

u

V

w

X

y

z

{

}

CTRL-C (DEL)

Advances the cursor up to the character before the next character typed. Most
useful with operators such as d and c to delete the characters up to a follow­
ing character. You can use . to delete more if this doesn't delete enough the
first time.

Undoes the last change made to the current buffer. If repeated, will alternate
between these two states, thus is its own inverse. When used after an insert
that inserted text on more than one line, the lines are saved in the numeric
named buffers.

Unused.

Advances to the beginning of the next word, as defined by b.

Deletes the single character under the cursor. With a count deletes that many
characters forward from the cursor position, but only on the current line.

An operator, yanks the following object into the unnamed temporary buffer. If
preceded by a named buffer specification, "x, the text is placed in that buffer
also. Text can be recovered by a later p or P.

Redraws the screen with the current line placed as specified by the following
character: RETURN specifies the top of the screen, . the center of the screen,
and '-' at the bottom of the screen. A count before the z gives the number of
the line to place in the center of the screen instead of the default current line.
To change the window size, use a count after the z and before the RETURN, as
in zS<CR>.

Retreats to the beginning of the preceding paragraph. A paragraph begins at
each macro in the paragraph• option, normally . IP, .LP, .PP, .QP, and
. bp. A paragraph also begins after a completely empty line, and at each sec­
tion boundary (see [[above).

Places the cursor on the character in the column specified by the count.

Advances to the beginning of the next paragraph. See { for the definition of
paragraph.

Unused.

Interrupts the editor, returning it to command accepting state.

2.10. Terminal Information

vi works on a large number of display terminals. You can edit a terminal description file to
drive new terminals. While it is advantageous to have an intelligent terminal that can locally
insert and delete lines and characters from the display, vi functions quite well on dumb termi­
nals over slow phone lines. vi allows for the low bandwidth in these situations and uses smaller
window sizes and different display updating algorithms to make best use of the limited speed
available.

You can also use the vi command set on hardcopy terminals, storage tubes and 'glass ttys'
using a one-line editing window.

2-44 Version D of 15 May 1985

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

2.10.1. Specifying Terminal Type

Before you can start vi you must tell the system what kind of terminal you are using. Here is a
(necessarily incomplete) list of terminal type codes. If your terminal does not appear here, you
should consult with one of the staff members on your system to find out the code for your termi­
nal. If your terminal does not have a code, one can be assigned and a description for the termi­
nal can be created.

Table 2-6: Terminal Types

Code Full Name Type

sun Sun Workstation Intelligent
tvi925 Televideo 925 Dumb
wy-50 Wyse 50 Dumb
2621 Hewlett-Packard 262IA/P Intelligent
2645 Hewlett-Packard 264x Intelligent
act4 Microterm ACT-IV Dumb
act5 Microterm ACT-V Dumb
adm3a Lear Siegler ADM-3a Dumb
adm3I Lear Siegler ADM-31 Intelligent
clOO Human Design Concept 100 Intelligent
dml520 Datamedia 1520 Dumb
dm2500 Datamedia 2500 Intelligent
dm3025 Datamedia 3025 Intelligent
fox Perkin-Elmer Fox Dumb
hI500 Hazeltine 1500 Intelligent
hl9 Heathkit hl9 Intelligent
ilOO Infoton 100 Intelligent
mime Imitating a smart act4 Intelligent
tl061 Teleray 1061 Intelligent
vt52 Dec VT-52 Dumb

Suppose for example that you have a Hewlett-Packard HP2621A terminal. The code used by the
system for this terminal is '2621'. In this case you can use one of the following commands to tell
t,he system your terminal type:

hostname% setenv TERM 2621

If you are using the Bourne shell, use:

$ TERM=2621
$ export TERM

If you want to arrange to have your terminal type set up automatically when you log in, use the
tset program. If you dial in on a mime, but often use hardwired ports, a typical line for your
.login file (if you use csh) is

setenv TERM 'tset - -d mime .. o or for your .profile file (if you use ,h):

Version D of 15 May 1985 2-45

Using vi, the Visual Display Editor Editing and Text Processing

TERM='tset - -d mime'

tset knows which terminals are hardwired to each port and needs only to be told that when
you dial in you are probably on a mime. You can use tset to change the erase and kill charac­
ters, too.

2.10.2. Special Arrangements for Startup

vi takes the value of $TERM and looks up the characteristics of that terminal in the file
/ etc/termcap. If you don't know vi's name for the terminal you are working on, look in
/etc/termcap. The editor adopts the convention that a null string in the environment is the
same as not being set. This applies to TERM, TERMCAP, and EXINIT.

When vi sta.rts, it attempts to read the variable EXINIT from your environment. If that exists,
it takes the values in it as the default values for certain of its internal constants. If EXINIT

doesn't exist, you will get all the normal defaults.

Should you inadvertently hang up the phone while inside vi, or should something else go wrong,
all may not be lost. Upon returning to the system, type:

hostname% vi -r filename

This will normally recover the file. If there is more than one temporary file for a specific
filename, vi recovers the newest one. You can get an older version by recovering the file more
than once. The command vi -r without a filename lists the files from an on-line list that were
saved in the last system crash (but not the file just saved when the phone was hung up).

2.10.3. Open Mode on Hardcopy Terminals and 'Glass tty's'

If you are on a hardcopy terminal or a terminal that does not have a cursor that can move off
the bottom line, you can still use the command set of vi, but in a different mode. When you
give a vi command, the editor will tell you that it is using open mode. This name comes from
the open command in ex, which is used to get into the same mode.

The only difference between visual mode and open mode is the way the text is displayed. In
open mode the editor uses a single-line window into the file, and moving backward and forward
in the file displays new lines, always below the current line. Two vi commands that work
differently in open mode are:

• z and

• CTRL-R.

The z command does not take parameters, but rather draws a window of context around the
current line and then returns you to the current line.

If you are on a hardcopy terminal, the CTRL-R command retypes the current line. On such ter­
minals, vi normally uses two lines to represent the current line. The first line is a copy of the
line as you started to edit it, and you work on the line below this line. When you delete charac­
ters, the editor types a number of \'s to show you the characters that are deleted. It also
reprints the current line soon after such changes so that you can see what the line looks like
agam.

2-46 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

It is sometimes useful to use this mode on very slow terminals that can support vi in the full
screen mode. You can do this by entering ex and using an open command.

2.10.4- Editing on Slow Terminals

When you are on a slow terminal, it is important to limit the amount of output that is generated
to your screen so that you will not suffer long delays, waiting for the screen to be refreshed. We
have already pointed out how the editor optimizes the updating of the screen during insertions
on dumb terminals to limit the delays, and how the editor erases lines to @ when they are
deleted on dumb terminals.

The use of the slow terminal insertion mode is controlled by the s/owopen option. You can force
the editor to use this mode even on faster terminals by giving the command:

: se slow<CR>

If your system is sluggish this helps lessen the amount of output coming to your terminal. You
can disable this option by:

: se noslow<CR>

The editor can simulate an intelligent terminal on a dumb one. Try giving the command:

: se redraw<CR>

This simulation generates a great deal of output and is generally tolerable only on lightly loaded
systems and fast terminals. You can disable this by giving the command:

: se noredraw<CR>

The editor also makes editing more pleasant at low speed by starting editing in a small window,
and letting the window expand as you edit. This works particularly well on intelligent terminals.
The editor can expand the window easily when you insert in the middle of the screen on these
terminals. If possible, try the editor on an intelligent terminal to see how this works.

You can control the size of the window that is redrawn each time the screen is cleared by giving
window size as an argument to the commands that cause large screen motions:

: / ? [[]] '

Thus if you are searching for a particular instance of a common string in a file, you can precede
the first search command by a small number, say 3, and the editor will draw three line windows
around each instance of the string it locates.

You can expand or contract the window size, placing the current line as you choose, with the z
command, as in z5<CR>, which changes the window to five lines. You can also use . or -.
Thus the command z5. redraws the screen with the current line in the center of a five-line win­
dow. Note that the command 5z. has an entirely different effect, placing line 5 in the center of
a new window. Use -, as in 5z- to position the cursor at line 5 in the file.

The default window sizes are 8 lines at 300 baud, 16 lines at 1200 baud, and full-screen size at
9600 baud. Any baud rate less than 1200 behaves like 300, and any over 1200 like 9600.

If the editor is redrawing or otherwise updating large portions of the display, you can interrupt
this updating by typing a DEL or RUB as usual. If you do this, you may partially confuse the edi­
tor about what is displayed on the screen. You can still edit the text on the screen if you wish;
clear up the confusion by typing a CTRL-L, or you can move or search through the file agam,

Version D of 15 May 1985 2-47

Using vi, the Visual Display Editor Editing and Text Processing

ignoring the current state of the display.

See the section on open mode for another way to use the vi command set on slow terminals.

2.10.5. Upper-case Only Terminals

If your terminal has only upper-case characters, you can still use vi by using the normal system
convention for typing on such a terminal. Characters that you normally type are converted to
lower case, and you can type upper-case letters by preceding them with a '\'. The characters {
- } I ' are not available on such terminals, but you can escape them as \(\ • \) \! \ '. These
characters are represented on the display in the same way they are typed.11

2.11. Command Summary

The following is a quick summary of frequently used commands. Refer to the quick reference
pages for a reference summary of all commands.

11 The '\' character you give will not echo until you type another key.

2-48 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

Command

SPACE

CTRL-B

CTRL-D

CTRL-E
CTRL-F
CTRL-G

CTRL-H
CTRL-N

CTRL-P

CTRL-U

CTRL-Y

+

I
?
B
b
E
e
G
H
L
M
n
w
w

CTRL-W

DEL

CTRL-U

A
a

C
C

D
d
I

0
0

u
u

Table 2-7: Frequently-Used vi Commands

Description

advance the cursor one column
scroll backward one window
scroll down in the file half a window
exposes another line at the bottom of the window
scroll forward one window
tell what is going on
backspace the cursor
move down to next line, same column
move up to previous line, same column
scroll up in the file half a window
expose another line at the top of the window
move down to the next line, at the beginning of the line
move up to the previous line, at the beginning of the line
scan forward in the file for the following string
scan backward in the file for the following string
move the cursor back one word, ignoring punctuation
move the cursor back a word or punctuation character
move the cursor to the end of the current word ignoring punctuation
move the cursor to the end of the current word
go to specified line; default is last line in file
move the cursor to the top (or head) of the window
move the cursor to the last screen line
move the cursor to the middle screen line
scan through file for next instance of / or ? pattern
move the cursor forward one word, ignoring punctuation
move the cursor forward a word or punctuation character

erase a word during an insert
your erase character (or CTRL-H), erases a character during an insert
your kill character (or CTRL-X), kills the insert on this line
repeats the changing command
appends text at the end ol the current line
appends text after the cursor
changes entire line
changes the object you specify to the following text
deletes to the end of a line
deletes the object you specify
inserts text at the beginning ol a line
inserts text before the cursor
opens and inputs new lines, above the current line
opens and inputs new lines, below the current line
undoes the changes you made to the current line
undoes the last change

Version D of 15 May 1985 2-49

Using vi, the Visual Display Editor Editing and Text Processing

$
)
(
}
{
II
[[
Fz
rx
p
p
y
y
tz
Tx

2-50

move cursor to first non-blank on line
move cursor to end of line
move cursor forward one sentence
move cursor backward one sentence
move cursor forward one paragraph
move cursor backward one paragraph
move cursor forward one section
move cursor backward one section
find z backward in line
find x forward in line
put text back, before cursor or above current line
put text back, after cursor or below current line
yank one line into buffer
yank the object you specify into buffer; for copies and moves
perform some operation forward on the line to x
perform some operation backward on the line to x

Version D of 15 May 1985

0

0

0

0

0

0

Vi Quick Reference

Entering/Leaving vi
% vi name edit name at top

... at line • % vi +n name
% vi+ name
% vi-r
% vi -r name
% vi name •••
% vi -t tag

•.. at end
list saved files
recover file name
edit first; rest via :n
start at tog

% vi +/pat nome
% view name
zz

search ror pat

read only mode
exit from ~i, saving cha.nges
stop fl for later resumption ·z

The Display
Last line

0 lines
~ lines
·~
tabs

Vi Modes

Error messages, echoing input to : / ?
and I, reedback about i/o and large
changes.
On screen only, not in file.
Lines past end or file.
Control characters, DEL is delete.
Expand to spaces, cursor at last.

Command Normal and initial state, Others return
here. ESC (escape) cancels partial com·
mand.

Insert Entered by a i A I o O c C • S R.
Arbitrary text then terminates with
ESC character, or abnormally with
interrupt.

Last line Reading input for : / ? or !; terminate
with ESC or CR to execute, interrupt
to cancel.

Counts Before vi Commands
line/column number I G I
scroll amount "D "U
replicate insert
repeat effect
Simple Command•
dw
de
dd
3dd
it,.tESC
c:wnewESC
ea,ESC
xp

a i A I
most rest

delete a. word
... leaving punctuation
delete a line
..• 3 lines
insert text abe
change word to neui
pluralize word
transpose characters

Interrupting, Cancelling
ESC end insert or incomplete emd
·c interrupt (or DEL)
"L rerresh screen if scrambled

File Manipulation
:w
:wq
:q
:qi
:e acme
:el
:e + asme

:e +•
:_e,..f

:w aame
:wl acme

:ah
:lem,
:n
:n .,g,
,r

write back changes
write and quit
quit
quit, discard changes
edit file name
reedit, discard changes
edit, starting at end
edit starting at line 11

edit alternate file
synonym ror :e *
write file name
overwrite file name
run shell, then return
run cmd, then return
edit next file in arglist
speciry new arglist
show current file and line

"'] synonym for :t
:ta tag to tag file entry tag
·1 :ta, rollowing word is tag

Positioning within File
.F forward screenrull
"B backward screcnrull
"D scroll down half screen
·u scroll up hair screen
G goto line (end default)
/ pal next line matching pat
!pd prev line matching pd
n repeat last / or !
N reverse la.st / or !
/pat/+• n'th line arter pot
?pot?-• n'th line berore pat
]] next section/runetion
[(previous section/function
% find matching () { or }

Adjusting the Screen
"L clear and redraw
"R retype, eliminate a lines
sCR redraw, current at window top
1- .•. at bottom
I,

I pot/•-...
.E
·y

••. &t center
pat line at bottom
use n line window
scroll window down 1 line
scroll window up 1 line

Marking and Returning Correction• During Insert

0 previous context ·u erase last character

... at first non•white in line ·w erases last word

mz mark position with letter z er ... your erase, nme as "D

• to mark z kill your kill, erase input thia line
'z ... at first non-white in line \ escapes "H, your erase and kill

Line Positioning ESC en& insertion, back to command

H home window line ·c interrupt, terminates inaert

L last window line ·o backtab over adoia,eat

M middle window line
.. D kill •utointlen.t, save for next

+ next line, at first non-white o·o ... but at margin next aloc>

previous line, at first norrwhite ·v quote non-printing character

CR return, same M + Insert and Replace
I or j next line, same column a append after cursor
l or k previous line, same column I insert before

Character Positioning A append at end or line

first non white I insert before fi,.t non-blank

0 beginning or line 0 open line below

• end or line 0 open above

h or- forward r• replace single char with •

I or - backward! R replace characten,

·u same as - Operaton (double to afl'ect line11)
space same as - d delete
r, find z forward • change
Fz r backward < lert shirt
tz upto z forward > right shirt
Tz back upto z I filter through command

repeat last t F t or T - indent for LISP
inverse of; y yank lines to buffer 0 to specified column Mlacellaneou• Operation•

% find matching ({) or } C change rest or line
Words, Sentence11, Paragraph• D delete rest of line

w word rorward I substitute chars
b back word s substitute lines
e end or word J join lines
) to next sentence X delete characters

} to next paragraph X ... before cursor
(back sentence y yank lines
{ back paragraph Yank and Put
w blank delimited word p put back lines
B back W p put berore
E to end or w •op put from buffer 6

Commands for LISP •,y yank to buffer z
) Forward s-expression • :,d delete into buffer z
} ... but don't stop at atoms Undo, Redo, Retrieve
(Back s-expression u undo last change
{ ... but don't stop at atoms u restore current line

repeat last change
•Jp retrieve Ith last delete

01

0

0

0

Chapter 3

Command Reference for the ex Line Editor

This chapter12 provides reference material for ex, the line-oriented text editor, which also sup­
ports display oriented editing in the form of the vi editor described in the chapter "Using vi,
the Visual Display Editor". The contents of this chapter describe the line-oriented part of ex.
You can also use these commands with vi. For a summary of ex commands, see the ex Quick
Reference.

3.1. Using ex

ex has a set of options, which you can use to tailor ex to your liking. The command edit
invokes a version of ex designed for more casual or beginning users by changing the default set­
tings of some of these options. To simplify the description which follows, we assume the default
settings of the options, and we assume that you are running ex on a Sun Workstation.

If there is a variable EXINIT in the environment, ex executes the commands in that variable,
otherwise if there is a file .ezrc in your HOME directory ex reads commands from that file,
simulating a source command. Option setting commands placed in EXINIT or .ezrc are executed
before each editor session.

If you are running ex on a terminal, ex determines the terminal type from the TERM variable
in the environment when invoked. It there is a TERMCAP variable in the environment, and the
type of the terminal described there matches the TERM variable, that description is used. Also if
the TERMCAP variable contains a pathname (beginning with a/), ex seeks the description of the
terminal in :hat file, rather than in the default /etc/termcap.)

The standard ex command format follows. Brackets'['']' surround optional parameters here.

hostname% ex [-] [-v] [-t tag] [-r] [-I] [-wn] [-x] [-R] [+command] filename ...

The most common case edits a single file with no options, that is,:

hostname% ex filename

The '-' command line option option suppresses all interactive-user feedback and is useful in pro­
cessing ex scripts in command files. The -v option is equivalent to using vi rather than ex.
The -t option is equivalent to an initial tag command, editing the file containing the tag and
positioning the editor at its definition.

Use the -r option to recover a file after an editor or system problem, retrieving the la.st saved
version of the named file or, if no file is specified, displaying a list of saved files. The -I option
sets up for editing LISP, setting the showmatch and liap options. The -w option sets the default
window size to n, and is useful on dialups to start in small windows. The -x option causes ex

12 The material in this chapter is derived from E:z Reference Manual, W.N. Joy, M. Horton, University or
CaliCornia, Berkeley.

Version D of 15 May 1985 3-1

Command Reference for the ex Line Editor Editing and Text Processing

to prompt for a key, which is used to encrypt and decrypt the contents or the file, which should
already be encrypted using the same key (see crypt in the Commands Reference Manual for the
Sun Workstation). The -R option sets the readonly option at the start. If set, writes will fail
unless you use an ! after the write. This option affects ZZ, autowrite and anything that writes
to guarantee you won't clobber a file by accident. Filename arguments indicate files to be
edited. An argument of the form +command indicates that the editor should begin by executing
the specified command. If command is omitted, it defaults to '$', initially positioning ex at the
last line of the first file. Other useful commands here are scanning patterns of the form '/pat' or
line numbers, such as +100, which means 'start at line 100.'

3.2. File Manipulation

The following describes commands for handling files.

3.2.1. Current File

ex normally edits the contents of a single file, whose name is recorded in the current filename.
ex performs all editing actions in a buffer into which the text of the file is initially read.
Changes made to the buffer have no effect on the file being edited unless and until you write the
buffer contents out to the file with a write command. After the buffer contents are written, the
previous contents of the written file are no longer accessible. When a file is edited, its name
becomes the current filename, and its contents are read into the buffer.

0

The current file is almost always considered to be edited. This means that the contents of the 0
buffer are logically connected with the current filename, so that writing the current buffer con- :
tents onto that file, even if it exists, is a reasonable action. If the current file is not edited, ex
will not normally write on it if it already exists. The file command will say [Not edited] if
the current file is not considered edited.

3.2.2. Alternate File

Each time a new value is given to the current filename, the previous current filename is saved as
the alternate filename. Similarly if a file is mentioned but does not become the current file, it is
saved as the alternate filename.

3.2.3. Filename Expansion

You may specify filenames within the editor using the normal Shell expansion conventions. In
addition, the character % in filenames is replaced by the current filename and the character #
by the alternate filename. This makes it easy to deal alternately with two files and eliminates
the need for retyping the name supplied on an edit command after a No vrite since
last change diagnostic is received.

3-2 Version D of 15 May 1985

0

0

0

0

Editing and Text Processing Command Reference for the ex Line Editor

3.3. Special Characters

Some characters take on special meanings when used in context searches and in patterns given to
the substitute command. For edit, these are the caret (~) and dollar sign ($) characters, mean­
ing the beginning and end of a line, respectively. ex has the following additional special char­
acters:

&. • [l

To use one of the special characters as its simple graphic representation rather than with its spe­
cial meaning, precede it by a backslash (\). The. backslash always has a special meanir:g.

3.3.1. Multiple Files and Named Buffers

If more than one file is given on the ex command line, the first file is edited as described above.
The remaining arguments are placed with the first file in the argument list. You can display the
current argument list with the args command. To edit the next file in the argument list, use the
next command. You may also respecify the argument list by specifying a list of names to the
next command. These names are expanded, the resulting list of names becomes the new argu­
ment list, and ex edits the first file on the list.

To save blocks of text while editing, and especially when editing more than one file, ex has a
group of named buffers. These are similar to the normal buffer, except that only a limited
number of operations are available on them. The buffers have names a through z. It is also pos­
sible to refer to A through Z; the upper-case buffers are the same as the lower but commands
append to named buffers rather than replacing if upper-case names are used.

3.3.2. Read Only Mode

It is possible to use ex in read only mode to look at files that you have no intention of modify­
ing. This mode protects you from accidently overwriting the file. Read only mode is on when
the readonly option is set. It can be turned on with the -R command line option, by the view
command line invocation, or by setting the readonly option. It can be cleared by setting
noreadonly. It is possible to write, even while in read only mode, by indicating that you really
know what you are doing. You can write to a different file with : w newfilename, or can use the
: w ! form of write, even while in read only mode.

3.4. Exceptional Conditions

The following describes additional editing situations.

3.4.1. Errors and Interrupts

When errors occur ex flashes the workstation screen and displays an error diagnostic. If the
primary input is from a file, editor processing terminates. If you interrupt ex, it displays 'Inter­
rupt' and returns to its command level. If the primary input is a file, ex exits when this occurs.

Version D of 15 May 1985 3-3

Command Reference for the ex Line Editor Editing and Text Processing

3.,i.2. Recovering If Something Goes lVrong

If something goes wrong and the buffer has been modified since it was last written out, or if the
system crashes, either the editor or the system (after it reboots) attempts to preserve the buffer.
The next time you log in, you should be able to recover the work you were doing, losing at most
a few lines of changes from the last point before the problem. To recover a file, use the -r
option. If you were editing the file resume for example, change to the directory where you were
when the problem occurred, and use ex with the -r (recover) option:

hostname% ex -r file

After checking that the retrieved file is indeed ok, you can write it over the previous contents of
that file.

You will normally get mail from the system telling you when a file has been saved after the sys­
tem has gone down. Use the -r option without a following filename:

hostname% ex -r

to display a list of the files that have been saved for you. In the case of a hangup, the file will
not appear in the list, although it can be recovered.

3.5. Editing Modes

ex has five distinct modes. The primary mode is command mode. You type in commands in
command mode when a ':' prompt is present, and execute them each time you send a complete
line. In insert mode, ex gathers input lines and places them in the file. The append, insert, and
change commands use insert mode. No prompt is displayed when you are in text input mode.
To leave this mode and return to command mode, type a '.' alone at the beginning of a line.

The last three modes are open and visual modes, entered by the commands of the same names,
and, within open and visual modes text insertion mode. In open and visual modes, you do local
editing operations on the text in the file. The open command displays one line at a time on the
screen, while visual works on the workstation and CRT terminals with random positioning cur­
sors, using the screen as a single window for file editing changes. See the chapter on "Using vi,

The Visual Display Editor" for descriptions of these modes.

3.6. Command Structure

Most command names are English words; you can use initial prefixes of the words as acceptable
abbreviations. The ambiguity of abbreviations is resolved in favor of the more commonly used
commands. As an example, the command substitute can be abbreviated as s while the
shortest available abbreviation for the set command is se. See the "Command Reference"
section for descriptions and acceptable abbreviations.

3.6.1. Specifying Command Parameters

Most commands accept prefix addresses specifying the lines in the file upon which they are to
have effect. The forms of these addresses will be discussed below. A number of commands also
may take a trailing count specifying the number of lines to be involved in the command. Counts
are rounded down if necessary. Thus the command lOp displays the tenth line in the buffer,

3-4 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Command Reference for the ex Line Editor

while dS deletes five lines from the buffer, starting with the current line.

Some commands take other information or parameters, that you provide after the command
name. Examples would be option names in a set command such as, set number, a filename
in an edit command, a regular expression in a substitute command, or a target address for
a copy command, such as, 1, 5 copy 25.

3.6.2. Invoking Command Variants

A number of commands have two distinct variants. The variant form of the command is invoked
by placing an ! immediately after the command name. You can control some of the default
variants with options; in this case, the ! serves to toggle the default.

3.6.3. Flags after Commands

You may place the characters #, p and 1 after many commands. You must precede a p or 1
by a blank or tab except in the single special case of dp. The command that these characters
abbreviates is executed after the command completes. Since ex normally shows the new
current line after each change, p is rarely necessary. You can also give any number of + or -
characters with these flags. If they appear, the specified offset is applied to the current line
value before the display command is executed.

3.6.,4. Writing Comments

It is possible to give editor commands which are ignored. This is useful when making complex
editor scripts for which comments are desired. Use the double quote II as the comment char­
acter. Any command line beginning with II is ignored. You can also put comments beginning
with II at the ends of commands, except in cases where they could be confused as part of text,
for example as shell escapes and the substitute and map commands.

3.6.5. Putting Multiple Commands on a Line

You can place more than one ex command on a line by separating each pair of commands by a
pipe (I) character. However the global commands, comments, and the shell escape ! must be
the last command on a line, as they are not terminated by a 1.

3.6.6. Reporting Large Changes

Most commands which change the contents of the editor buffer give feedback if the scope of the
change exceeds a threshold given by the report option. This feedback helps to detect undesir­
ably large changes so that you may quickly and easily reverse them with undo. After commands
with more global effect, such as global or viaual, you will be informed if the net change in the
number of lines in the buffer during this command exceeds this threshold.

Version D of 15 May 1985 3-5

Command Reference for the ex Line Editor Editing and Text Processing

3. 7. Command Addressing

The following describes the editor commands called addreaaing primitivea.

3. 7.1. Addressing Primitives

n

$

%
+n-n

The current line. The current line is traditionally called 'dot' because you address it
with a dot '. '. Most commands leave the current line as the last line which they
affect. The default address for most commands is the current line, so you rarely use
' • ' alone as an address.

The nth line in the editor's buffer, lines being numbered sequentially from l.

The last line in the buffer.

An abbreviation for 1, $, the entire buffer.

An offset relative to· the current buffer line. The forms . +3 +3 and +++ are all
equivalent; if the current line is line 100, they all address line 103.

/pat/ ?pat?

0

Scan forward and backward respectively for a line containing pat, a regular expres­
sion (as defined below in the section "Regular Expressions and Substitute Replace­
ment Patterns". The scans normally wrap around the end of the buffer. If all that is
desired is to show the next line containing pat, you may omit trailing / or ?. If you
omit pat or leave it explicitly empty, the last regular expression specified is located.
The forms \/ and \? scan using the last regular expression used in a scan; after a o
substitute,// and?? would scan using the substitute's regular expression.

'z Before each non-relative motion of the current line '.', the previous current line is
marked with a tag, subsequently referred to as ''' '. This makes it easy to refer or
return to this previous context. You can also establish marks with the mark com­
mand, using single lower-case letters z and the marked lines referred to as '' z '.

3. 7.2. Combining Addressing Primitives

Addresses to commands consist of a series of addressing primitives, separated by',' or';'. Such
address lists are evaluated left-to-right. When addresses are separated by ';' the current line '.'
is set to the value of the previous addressing expression before the next address is interpreted. If
you give more addresses than the command requires, all but the last one or two are ignored. If
the command takes two addresses, the first addressed line must precede the second in the buffer.
Null address specifications are permitted in a list of addresses; the default in this case is the
current line'.'. So ',100' is equivalent to '.,100'. It is an error to give a prefix address to a com­
mand which expects none.

3.8. Regular Expressions and Substitute Replacement Patterns

3-6 Version D of 15 May l 985

0

0

0

0

Editing and Text Processing Command Reference for the ex Line Editor

3.8.1. Regular Expressions

A regular expression specifies a set of strings of characters. A member of this set of strings is
said to be matched by the regular expression. ex remembers two previons regular expressions:
the previous regular expression used in a substitute command and the previous regular
expression used elsewhere (referred to as the previous acanning regular expression). The previ­
ous regular expression can always be referred to by a null regular expression, that is // or ??.

3.8.2. Magic and Nomagic

The regular expressions allowed by ex are constructed in one of two ways depending on the set­
ting of the magic option. The ex and vi default setting of magic gives quick access to a
powerful set of regular expression metacharacters. The disadvantage of magic is that the user
must remember that these metacharacters are magic and precede them with the character
backslash (\) to use them as "ordinary" characters. With no magic, the default for edit, regu­
lar expressions are much simpler because there are only two metacharacters: ''' (beginning of
line) and '$' (end of line). The power of the other metacharacters is still available by preceding
the (now) ordinary character with a \. Note that \ is thus always a metacharacter.

The remainder of the discussion of regular expressions assumes that the setting of this option is
magicl3

3.8.3. Basic Regular Expression Summary

The following basic constructs are used to construct magic mode regular expressions.

char An ordinary character matches itself. The characters - at the beginning of a line, $

at the end of line, * as any character other than the first, '. ', \, [,and,-, are not
ordinary characters and must be escaped (preceded) by \ to be treated as such.

At the beginning of a pattern forces the match to succeed only at the beginning of a
line.

At the end of a regular expression forces the match to succeed only at the end of the
line.

Matches any single character except the new-line character.

\ < Forces the match to occur only at the beginning of a 'variable' or 'word'; that is,
either at the beginning of a line, or just before a letter, digit, or underline and after a
character not one of these.

\> Similar to \ <, but matching the end of a 'variable' or 'word,' that is either the end
of the line or before character which is neither a letter, nor a digit, nor the underline
character.

13 To discern what is true with nomagic it is sufficient to remember that the only special characters in
this case will be - at the beginning ot a regular expression, $ at the end of a regular expression, and \.
With nomagic the characters , ... , and & also lose their special meanings related to the replacement pattern
of a substitute.

Version D of 15 May 1985 3-7

Command Reference for the ex Line Editor Editing and Text Processing

(string] Matches any single character in the class defined by airing. Most characters in .iring
define themselves. A pair of characters separated by - in .iring defines a set of
characters between the specified lower and upper bounds, thus [a-z] as a regular
expression matches any single lower-case letter. If the first character of ,tring is a A,
the construct matches all but those characters; thus [Aa-z] matches anything but
a lower-case letter and of course a newline. You must escape any of the characters
A, [, or - in ,tring with a preceding \.

3.8.4- Combining Regular Expression Primitives

The concatenation of two regular expressions matches the leftmost and then longest string,
which can be divided with the first piece matching the first regular expression and the second
piece matching the second. Any of the single character matching regular expressions mentioned
above may be followed by the character * to form a regular expression which matches any
number of adjacent occurrences (including 0) of characters matched by the regular expression it
follows.

The character ' - ' may be used in a regular expression, and matches the text which defined the
replacement part of the last substitute command. A regular expression may be enclosed
between the sequences \ (and \) with side effects in the aub.titute replacement patterns.

3.8.5. Substitute Replacement Patterns

The basic metacharacters for the replacement pattern are & and ·; these are given as \& and
\ - when nomagic is set. Each instance of & is replaced by the characters which the regular
expression matched. The metacharacter ,_, stands, in the replacement pattern, for the defining
text of the previous replacement pattern.

Other metasequences possible in the replacement pattern are always introduced by the escape
character \. The sequence '\n' is replaced by the text matched by the n-th regular subexpres­
sion enclosed between \ (and \) _ 14 The sequences \u and \1 cause the immediately following
character in the replacement to be converted to upper- or lower-case respectively if this charac­
ter is a letter. The sequences \U and \L turn such conversion on, either until \E or \e is
encountered, or until the end of the replacement pattern.

3.9. Command Reference

The following form is a prototype for all ex commands:

address command ! parameters count flags

All parts are optional; the simplest case is the empty command, which displays the next line in
the file. To avoid confusion from within vi,ual mode, ex ignores a : preceding any command.

In the following command descriptions, the default addresses are shown in parentheses, which
are not, however, part of the command.

14 When nested, parenthesized subexpressions are present, n is determined by counting occurrences or
\ (starting from the left.

3-8 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Command Reference for the ex Line Editor

abbreviate word rha abbr: ab
Add the named abbreviation to the current list. When in input mode in visual, if word is typed
as a complete word, it will be changed to rha.

(.) append
text

abbr: a

a!
text

Reads the input text and places it after the specified line. After the command, '.' addresses
the last line input or the specified line if no lines were input. If address O is given, text is
placed at the beginning of the buffer.

The variant flag to append toggles the setting for the autoindent option during the input of
text.

args

The members of the argument list are printed, with the current argument delimited by [
and] .

. , .) change count
text

abbr: c

c!
text

Replaces the specified lines with the input text. The current line becomes the last line input;
if no lines were input, it is left as for a delete.

The variant toggles autoindent during the change.

(. , .) copy addr flaga abbr: co

A copy of the specified lines is placed after addr, which may be 'O' (zero). The current line
'.' addresses the last line of the copy. The command t is a synonym for copy.

(. , .) delete buffer count flaga abbr: d

Removes the specified lines from the buffer. The line after the last line deleted becomes the
current line; if the lines deleted were originally at the end, the new last line becomes the
current line. If a named buffer is specified by giving a letter, then the specified lines are
saved in that buffer, or appended to it if an upper case letter is used.

edit file
ex file
edit! file

abbr: e

Used to begin an editing session on a new file. Same as : vi file. The editor first checks to
see if the buffer has been modified since the last vr i te command was issued. If it has

Version D of 15 May 1985 3-9

Command Reference for the ex Line Editor Editing and Text Processing

been, a warning is issued and the command is aborted. The command otherwise deletes the

entire contenfts o'. the _editohr buffh?r,fiml a~es th~bn
1
amhed fidl~ the cudrrenht fifile

1
a~d p'.intbs tffhe new Q.

filename. A ter msurmg t at t 1s e 1s sens1 e t e e 1tor rea s t e e mto its u er. A
'sensible' file is not a binary file such as a directory, a block or character special file other
than / dev/ tty, a terminal, or a binary or executable file as indicated by the first word.

If the read of the file completes without error, the number of lines and characters read is
typed. If there were any non-ASCII characters in the file they are stripped of their non-ASCII
high bits, and any null characters in the file are discarded. If none of these errors occurred,
the file is considered edited. If the last line of the input file is missing the trailing newline
character, it will be supplied and a complaint will be issued. This command leaves the
current line '.' at the last line read. If executed from within open or viwal, the current line
is initially the first line of the file.

e ! file

The variant form suppresses the complaint about modifications having been made and not
written from the editor buffer, thus discarding all changes which have been made before
editing the new file.

e +n file

Causes the editor to begin at line n rather than at the last line; n may also be an editor
command containing no spaces, for example: + /pat.

file abbr: f

Prints the current file name, whether it has been [Modified] since the last write com- o
mand, whether it is "read only", the current line, the number of lines in the buffer, and
the percentage of the way through the buffer of the current line. In the rare case that the
current file is [Not edited] this is also noted. You have to use w ! to write to the file,
since ex does not want to write a file unrelated to the current contents of the buffer.

file file

The current filename is changed to file which is considered [Not edited].

1, $) global /pat/ cmda abbr: g

First marks each line among those specified which matches the given regular expression.
Then the given command list is executed with ',' initially set to each marked line.

The command list consists of the remaining commands on the current input line and may
continue to multiple lines by ending all but the last such line with a \. If cmda (and possi­
bly the trailing / delimiter) is omitted, each line matching pat is printed. append,
insert, and change commands and associated input are permitted; the '.' terminating
input may be omitted if it would be on the last line of the command list. open and
visual commands are permitted in the command list and take input from the terminal.

The global command itself may not appear in cmda. The undo command is also not per­
mitted there, as undo instead can be used to reverse the entire global command. The
options autoprint and autoindent are inhibited during a global, (and possibly the trailing
/ delimiter) and the value of the report option is temporarily infinite, in deference to a
repor

1
t for the edntbire global.d ~inally, hthe codntdext_ mark

1
·b· i

1
s set to thde value of ' . 'hbeforbe the o

globa comman egins an 1s not c ange urmg a go a comman , except per aps y an

3-10 Version D of 15 May 1985

0

Editing and Text Processing Command Reference for the ex Line Editor

open or visual command within the global.

g! /pat/ cmds abbr: v

The variant form of global runs cmds at each line not matching pat.

.)insert
text

abbr: i

• I l..

text

Places the given text before the specified line. The current line is left at the last line input;
if there were none input it is left at the line before the addressed line. This command differs
from append only in the placement of text.

The variant toggles autoindent during the insert.

(. , . +l) join count flag• abbr: j

Places the text from a specified range of lines· together on one line. White space is adjusted
at each junction to provide at least one blank character, two if there was a '.' at the end of
the line, or none if the first following character is a) . If there is already white space at the
end of the line, then the white space at the start of the next line will be discarded.

0 j!

0

The variant causes a simpler join with no white space processmg; the characters in the
lines are simply concatenated.

) k X

The k command is a synonym for mark. It does not require a blank or tab before the fol­
lowing letter.

, .) 1 ist count flags

Prints the specified lines in a more unambiguous way: tabs are printed as CTRL-1 ('I) and the
end of each line is marked with a trailing $. The current line is left at the last line printed.

map lhs rh•

The map command is used to define macros for use in visual mode. lhs should be a single
character, or the sequence #n, for n a digit, referring to function key n. When this charac­
ter or function key is typed in viaua/ mode, it will be as though the corresponding rh• had
been typed. On terminals without function keys, you can type #n. See the "Macros" sec­
tion in the chapter "Using vi, the Visual Display Editor" for more details.

(.) mark z

Gives the specified line mark z, a single lower case letter. The z must be preceded by a
blank or a tab. The addressing form 'z then addresses this line. The current line is not
affected by this command.

Version D of 15 May 1985 3-11

Command Reference for the ex Line Editor Editing and Text Processing

abbr: m . , .) move addr

The move command repositions the specified lines to be after addr. The first of the moved 0
lines becomes the current line.

next abbr: n

n!

The next file from the command line argument list is edited.

The variant suppresses warnings about the modifications to the buffer not having been writ­
ten out, discarding (irretrievably) any changes that may have been made.

n fi/elist
n +command filelist

The specified filelist is expanded and the resulting list replaces the current argument list; the
first file in the new list is then edited. If command is given (it must contain no spaces), then
it is executed after editing the first such file .

. , .) number count flags abbr: # or nu

Prints each specified line preceded by its buffer line number. The current line is left at the
last line printed. The count option specifies the number of lines to print.

) open flags abbr: o
) open /pat/ flags

Enters intraline editing open mode at each addressed line. If pat is given, then the cursor will
be placed initially at the beginning of the string matched by the pattern. To exit this mode,
use Q. See the chapter on "Using vi the Visual Display Editor".

preserve

The current editor buffer is saved as though the system had just crashed. This command is
for use only in emergencies when a write command has resulted in an error and you don't
know how to save your work. After a preserve you should seek help.

(. , .)print count abbr: p or P

Prints the specified lines with non-pnntmg characters printed as control characters ''X';
delete (hexadecimal Ox? f) is represented as -? . The count option specifies the number of
lines to print. The current line is left at the last line printed .

.) put buffer abbr: pu

3-12

Puts back previously deleted or yanked lines. Normally used with delete to effect move­
ment of lines, or with yank to effect duplication of lines. If no buffer is specified, then the
last deleted or yanked text is restored. But no modifying commands may intervene between
the delete or yank and the put, nor may lines be moved between files without using a
named buffer. By using a named buffer, text may be restored that was saved there at any
previous time.

Version D of 15 May 1985

0

0

0

0

0

Editing and Text Processing Command Reference for the ex Line Editor

quit abbr: q

q!

(

Causes ex to terminate. No automatic write of the editor buffer to a file is performed.
However, ex issues a warning message if the file has changed since the last write com­
mand was issued, and does not quit. ex also warns you if there are more files in the argu­
ment list. Normally, you do want to save your changes, so you should use a write com­
mand; if you wish to discard them, use the q ! command variant.

Quits from the editor, discarding changes to the buffer without complaint.

) read file abbr: r

Places a copy of the text of the given file in the editing buffer after the specified line. If no
file is given the current file name is used. The current file name is not changed unless there
is none in which case file becomes the current name. The sensibility restrictions for the
edit command apply here also. If the file buffer is empty and there is no current name
then ex treats this as an edit command.

Address 'O' (zero) is legal for this command and causes the file to be read at the beginning of
the buffer. Statistics are given as for the edit command when the read successfully ter­
minates. After a read the current line is the last line read. Within open and visual modes
the current line is set to the first line read rather than the last.

(.) read ! command

Reads the output of the command command into the buffer after the specified line. This is
not a variant form of the command, rather a read specifying a command rather than a
filename; a blank or tab before the ! is mandatory.

recover file

Recovers file from the system save area. Used after an accidental hangup of the phone or a
system crash or preserve command. The system saves a copy of the file you were editing
only if you have made changes to the file. Except when you use preserve you will be
notified by mail when a file is saved.

rewind abbr: rew

The argument list is rewound, and the first file in the list is edited.

rew!

Rewinds the argument list discarding any changes made to the current buffer.

set parameter

With no arguments, prints those options whose values have been changed from their
defaults; with parameter all it prints all of the option values.

Giving an option name followed by a ? causes the current value of that option to be
printed. The ? is unnecessary unless the option is Boolean valued. Boolean options are
given values either by the form set option to turn them on or set no option to turn them
off; string and numeric options are assigned via the form set option=value.

Version D of 15 May 1985 3-13

Command Reference for the ex Line Editor Editing and Text Processing

More than one parameter may be given to set; they are interpreted from left to right.

shell abbr: sh

A new shell is created. When it terminates, editing resumes.

source file abbr: so

Reads and executes commands from the specified file. source commands may be nested.

(. , .) substitute /pat/ rep// option• count flag• abbr: s

On each specified line, the first instance of pattern pat is replaced by replacement pattern
rep/. If the global indicator option character g appears, then all instances are substituted; if
the confirm indication character c appears, then before each substitution the line to be sub­
stituted is typed with the string to be substituted marked with - characters. By typing a y
one can cause the substitution to be performed, any other input causes no change to take
place. After a substitute command is executed, the last line substituted becomes the
current line.

Lines may be split by substituting new-line characters into them. The newline in rep/ must
be escaped by preceding it with a \. Other metacharacters available in pat and rep/ are
described below.

stop

Suspends the editor, returning control to the top level shell. If autowrite is set and there are
unsaved changes, a write is done first unless the form stop! is used. This commands is only
available where supported by the teletype driver and operating system.

(. , .) substitute option• count flag• abbr: s

if pat and rep/ are omitted, then the last substitution is repeated. This is a synonym for the
& command.

, .) t addr flag•

The t command is a synonym for copy.

ta tag

The focus of editing switches to the location of tag, switching to a different line in the
current file where it is defined, or if necessary to another file. If you have modified the
current file before giving a tag command, you must write it out; giving another tag com­
mand, specifying no tag reuses the previous tag.

The tags file is normally created by a program such as ctaga, and consists of a number of
lines with three fields separated by blanks or tabs. The first field gives the name of the tag,
the second the name of the file where the tag resides, and the third gives an addressing form
which can be used by the editor to find the tag; this field is usually a contextual scan using
'/ pat/' to be immune to minor changes in the file. Such scans are always performed as if
nomagic were set.

The tag names in the tags file must be sorted alphabetically.

3-14 Version D of 15 May 1985

0

0

0

0

0

Editing and Text Processing Command Reference for the ex Line Editor

unabbreviate word abbr: una

Delete word from the list of abbreviations.

undo abbr: u

Reverses the changes made in the buffer by the last buffer editing command. Note that glo­
ba 1 commands are considered a single command for the purpose of undo (as are open and
visual commands.) Also, the commands vrite and edit which interact with the file sys­
tem cannot be undone. undo is its own inverse.

undo always marks the previous value of the current line ' . ' as '' ''. After an undo the current
line is the first line restored or the line before the first line deleted if no lines were restored. For
commands with more global effect such as global and visual the current line regains its
pre-command value after an undo.

unmap Iha

The macro expansion associated by map for Iha is removed.

1 , $) v /pat/ cmda

A synonym for the global command variant g!, running the specified cmda on each line
that does not match pat.

version abbr: ve

Prints the current version number of the editor as well as the date the editor was last
changed.

vi file

Same as : edit file or : ex file.

(.) visual type count flags abbr: vi

Enters visual mode at the specified line. Type is optional and may be'-',''' or'.' as in the
z command to specify the placement of the specified line on the screen. By default, if type
is omitted, the specified line is placed as the first on the screen. A count specifies an initial
window size; the default is the value of the option window. See the chapter "Using vi, the
Visual Display Editor for more details. To exit visual mode, type Q.

visual file
visual +n file

From visual mode, this command is the same as edit.

(1, $) vritefile abbr: v

Writes changes made back to file, printing the number of lines and characters written. Nor­
mally file is omitted and the text goes back where it came from. If a file is specified, then
text will be written to that file_ 15 If the file does not exist it is created. The current file

16 The editor writes to a. file only if it is the current file a.nd is edited, it the file does not exist, or if the
file is actually a teletype, /dev/ttg, /dev/null. Otherwise, you must give the variant form vi to force the
write.

Version D of 15 May I 985 3-15

Command Reference for the ex Line Editor Editing and Text Processing

name is changed only if there is no current file name; the current line is never changed.

If an error occurs while writing the current and edited file, the editor considers that there
has been "No write since last change'' even if the buffer had not previously
been modified.

(1 , $) write>> file abbr: w>>

Writes the buffer contents at the end of an existing file.

w! name

Overrides the checking of the normal write command, and will write to any file which the
system permits.

(1 , $) w ! command

Writes the specified lines into command. Note the difference between w ! which overrides
checks and w ! which writes to a command.

wq name

Like a write and then a quit command.

wq! name

The variant overrides checking on the sensibility of the write command, as w ! does.

xit name abbr: x

If any changes have been made and not written, writes the buffer out. Then, in any case,
quits. Same as wq, but does not bother to write if there have not been any changes to the
file.

(. , .) yank buffer count abbr: ya

Places the specified lines in the named buffer, for later retrieval via put. If no buffer name
is specified, the lines go to a more volatile place; see the put command description.

(. + 1) z count

Print the next count lines, default window.

(.) z type count

Displays a window of text with the specified line at the top. If type is '-' the line is placed
at the bottom; a ' . ' places the line in the center. A count gives the number of lines to be
displayed rather than double the number specified by the aero/I option. On a terminal, the
screen is cleared before display begins unless you give a count less than the screen size. The
current line is left at the last line displayed. Forms z= and z- also exist; z= places the
current line in the center, surrounds it with lines of - characters and leaves the current line
at this line. The form z- prints the window before z- would. The characters +, - and
- may be repeated for cumulative effect.

3-16 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Command Reference for the ex Line Editor

command

The remainder of the line after the ! character is sent to a shell to be executed. Within the
text of command the characters % and # are expanded as in filenames and the character !
is replaced with the text of the previous command. Thus, in particular, ! ! repeats the last
such shell escape. If any such expansion is performed, the expanded line will be echoed.
The current line is unchanged by this command.

If there has been '' [No write]'' of the buffer contents since the last change to the edit­
ing buffer, then a diagnostic will be printed before the command is executed as a warning. A
single ! is printed when the command completes.

(addr , addr) ! command

Takes the specified address range and supplies it as standard input to command; the result­
ing output then replaces the input lines.

($) =
Prints the line number of the addressed line. The current line is unchanged .

. , .) > count flag•
• , •) < count flag,

Perform intelligent shifting on the specified lines; < shifts left and > shifts right. The quan­
tity of shift is determined by the ahiftwidth option and the repetition of the specification
character. Only white space (blanks and tabs) is shifted; no non-white characters are dis­
carded in a left-shift. The current line becomes the last line which changed due to the shift­
mg.

CTRL-D

An end-of-file from a terminal input scrolls through the file. The scroll option specifies the
size of the scroll, normally a half screen of text.

(.+1, .+1)
(.+1, .+1)

An address alone causes the addressed lines to be printed. A blank line prints the next line
in the file.

, •) & option• count flag•

Repeats the previous substitute command .

. , .) - option• count flag•

Replaces the previous regular expression with the previous replacement pattern from a sub­
stitution.

3.10. Option Descriptions

Version D of 15 May 1985 3-17

Command Reference for the ex Line Editor Editing and Text Processing

autoindent, ai default: noai

The autoindent option can be used to ease the preparation of structured program text. At 0
the beginning of each append, change, or insert command, or when a new line is
opened or created by an append, change, insert, or substitute operation within
open or visual mode, ex looks at the line being appended after, the first line changed or the
line inserted before and calculates the amount of white space at the start of the line. It then
aligns the cursor at the level of indentation so determined.

If you then type in lines of text, they will continue to be justified at the displayed indenting
level. If more white space is typed at the beginning of a line, the following line will be
aligned with the first non-white character of the previous line. To back the cursor up to the
preceding tab stop, type CTRL-D. The tab stops going backwards are defined at multiples of
the sh1Jtwidth option. You cannot backspace over the indent, except by sending an end-of­
file with a CTRL-D.

Specially processed in this mode is a line with no characters added to it, which turns into a
completely blank line (the white space provided for the autoindent is discarded.) Also spe­
cially processed in this mode are lines beginning with a A and immediately followed by a
CTRL-D. This causes the input to be repositioned at the beginning of the line, but retains the
previous indent for the next line. Similarly, a 'O' (zero) followed by a CTRL-D repositions at
the beginning but without retaining the previous indent.

autoindent doesn't happen in global commands or when the input is not a terminal.

autoprint, ap default: ap

Causes the current line to be printed after each delete, copy, Join, move, substi-

0 tute, t, undo, or shift command. This has the same effect as supplying a trailing p to
each such command. autoprint is suppressed in globals, and only applies to the last of many
commands on a line.

autowrite, aw default: noaw

Causes the contents of the buffer to be written to the current file if you have modified it and
give a next, rewind, stop, tag, or ! command, or a CTRL-- (switch files) or CTRL-J
(tag goto) command in visual mode. Note, that the edit and ex commands do not
autowrite. In each case, there is an equivalent way of switching when autowrite is set to
avoid the autowrite (edit for next, rewind! for rewind, stop! for stop, tag! for
tag, shel 1 for ! , and : e # and a : ta! command from within visual mode).

beautify, bf default: nobeautify

Causes all control characters except tab, newline and form-feed to be discarded from the
input. A complaint is registered the first time a backspace character is discarded. beautify
does not apply to command input.

directory, dir default: dir=/tmp

Specifies the directory in which ex places its buffer file. If this directory is not writable,
then the editor will exit abruptly when it fails to be able to create its buffer there. This
feature is useful on systems where / Imp fills up. Being able to specify that the editor use
your own file space can allow you to edit even if / Imp is full.

3-18 Version D of 15 May 1985

0

0

0

0

Editing and Text Processing Command Reference for the ex Line Editor

edcompatible default: noedcompatible

Causes the presence or absence of g and c suffixes on substitute commands to be remem­
bered, and to be toggled by repeating the suffixes. The suffix r makes the substitution be as
in the - command, instead of like &.

errorbells, eb default: noeb

Error messages are preceded by a beep or bell. 16 If possible the editor always places the
error message in a standout mode of the terminal (such as inverse video) instead of ringing
the bell.

hardtabs, ht default: ht=8

Gives the boundaries on which terminal hardware tabs are set (or on which the system
expands tabs).

ignorecase, ic default: noic

lisp

list

All upper case characters in the text are mapped to lower case in regular expression match­
ing. In addition, all upper case characters in regular expressions are mapped to lower case
except in character class specifications.

default: nolisp

autoindent indents appropriately for LISP code, and the (,) , {, }, [[, and]] commands
m open and visual modes are modified to have meaning for LISP.

default: nolist

All printed lines will be displayed (more) unambiguously, showing tabs and ends-of-lines as in
the 1 ist command.

magic default: magic for ex and vi 17

If nomagic is set, the number of regular expression metacharacters is greatly reduced, with
only - and $ having special effects. In addition the metacharacters ~ and & of the
replacement pattern are treated as normal characters. All the normal metacharacters may
be made magic when nomagic is set by preceding them with a backslash (\).

mesg default: mesg

Causes write permission to be turned off to the terminal while you are in visual mode, if
nomeag is set.

number, nu default: nonumber

Causes all output lines to be printed with their line numbers. In addition each input line will
be prompted for by supplying the line number it will have.

1n Beeping and bell ringing: in open and 11i1ual on errors is not suppressed by setting noeb.

17 nomagic tor edit.

Version D of 15 May 1985 3-19

Command Reference for the ex Line Editor Editing and Text Processing

open default: open

If noopen, the commands open and visual are not permitted. This is set for edit to 0
prevent confusion resulting from accidental entry to open or visual mode.

optimize, opt default: optimize

Throughput of text is expedited by setting the terminal to not do automatic carriage returns
when printing more than one (logical) line of output, greatly speeding output on terminals
without addressable cursors when text with leading white space is printed.

paragraphs, para default: para=IPLPPPQPP Llbp

Specifies the paragraphs for the { and } operations in open and virnal modes. The pairs of
characters in the option's value are the names of the macros which start paragraphs.

prompt default: prompt

Command mode input is prompted for with a : .

readonly, ro default: off

If set, writes will fail unless you use an ! after the write. Affects x, ZZ, autowrite and any­
thing that writes to guarantee you won't clobber a file by accident. Abbreviate to ro.

redraw default: noredraw

The editor simulates (using great amounts of output), an intelligent terminal on a dumb ter-
minal (e.g. during insertions in vim al mode the characters to the right of the cursor position o
are refreshed as each input character is typed.) Useful only at very high speed.

remap default: remap

If on, macros are repeatedly tried until they are unchanged. For example, if o is mapped to
0, and O is mapped to I, then if remap is set, o will map to I, but if noremap is set, it will
map to 0. Can map q to # and #1 to something else, and ql to something else. If off, can
map CTRL-L to 1 and CTRL-R to CTRL-L without having CTRL-R map to 1.

report default: report=518

Specifies a threshold for feedback from commands. Any command which modifies more than
the specified number of lines will provide feedback as to the scope of its changes. For com­
mands such as global, open, undo, and visual which have potentially more far reach­
ing scope, the net change in the number of lines in the buffer is presented at the end of the
command, subject to this same threshold. Thus notification is suppressed during a global
command on the individual commands performed.

scroll default: scroll='k window

Determines the number of logical lines scrolled when an end-of-file is received from a termi­
nal input in command mode, and the number of lines printed by a command mode z com­
mand (double the value of aero//).

18 2 for edit.

3-20 Version D of 15 May 1985

0

0

0

0

Editing and Text Processing Command Reference for the ex Line Editor

sections default: sections=SHNHH HU

Specifies the section macros for the [[and]] operations in open and visual modes. The
pairs of characters in the options's value are the names of the macros which start para­
graphs.

shell, sh default: sh=/bin/ sh

Gives the path name of the shell forked for the shell escape command ! , and by the shell
command. The default is taken from SHELL in the environment, if present.

shiftwidth, sw default: sw=8

Gives the width a software tab stop, used in reverse tabbing with CTRL-D when using autoin­
dent to append text, and by the shift commands.

showmatch, sm default: nosm

In open and visual mode, when a) or } is typed, move the cursor to the matching (or {
for one second if this matching character is on the screen. Extremely useful with LISP.

slowopen, slow terminal dependent

Affects the display algorithm used in visual mode, holding off display updating during input
of new text to improve throughput when the terminal in use is both slow and unintelligent.
See the chapter "Using vi, the Visual Display Editor" for more details.

tabstop, ts default: ts=8

The editor expands tabs in the input file to be on tabatop boundaries for the purposes of
display.

taglength, ti default: tl=O

Tags are not significant beyond this many characters. A value of zero (the default) means
that all characters are significant.

tags default: tags=tags / usr/ lib/ tags

A path of files to be used as tag files for the tag command, similar to the path variable of
csh. Separate the files by spaces, and precede each space with a backslash. Files are
searched left to right. Always put tag• as your first entry. A requested tag is searched for
in the specified files, sequentially. By default (even in version 2) files called tag• are searched
for in the current directory and in /uar/lib (a master file for the entire system.)

term default: from environment TERM

The terminal type of the output device.

terse default: noterse

Shorter error diagnostics are produced for the experienced user.

Version D of 15 May 1985 3-21

Command Reference for the ex Line Editor Editing and Text Processing

timeout default: on

Causes macros to time out after one second. Turn it off and they wait forever. Use this if 0
you want multi-character macros. If your terminal sends an escape sequence for arrow keys,
type ESC twice.

warn default: warn

Warn if there has been '[No write since last change]' before a
escape.

window default: window=speed dependent

command

The number of lines in a text window in the visual command. The default is 8 at slow
speeds (600 baud or less), 16 at medium speed (1200 baud), and the full screen (minus one
line) at higher speeds.

w300, w1200, w9600

These are not true options but set window only if the speed is slow (300), medium (1200), or
high (9600), respectively. They are suitable for an EXINIT and make it easy to change the
8/16/full screen rule. Can specify a 12-line window at 300 baud and a 23-line window at
1200 in your EXINIT with: :set w300=12 w1200=23. Synonymous with window but only at
300, 1200, and 9600 baud.

wrapscan, ws default: ws

Searches using the regular expressions in addressing will wrap around past the end of the
file. 0

wrapmargin, wm default: wm=O

Defines a margin for automatic wrapover of text during input in open and visual modes.
Any number other than O (zero) is a distance from the right edge of the area where wraps
can take place. If you type past the margin, the entire word is rewritten on the next line.
Behaves much like fill/nojustify mode in nroff. See the section "Using vi, the Visual
Display Editor" for details.

writeany, wa default: nowa

Inhibit the checks normally made before write commands, allowing a write to any file which
the system protection mechanism will allow.

3.11. Limitations

Editor limits that the user is likely to encounter are as follows: 1024 characters per line, 256
characters per global command list, 128 characters per file name, 128 characters in the previous
inserted and deleted text in open or viaual modes, 100 characters in a shell escape command, 63
characters in a string valued option, and 30 characters in a tag name, and a limit of 250,000 lines
in the file is silently enforced.

The viaual implementation limits the number of macros defined with map to 32, and the total
number of characters in macros to be less than 512.

3-22 Version D of 15 May 1985

0

0

0

0

Ex Quick Reference

Entering/Leaving ex
% ex name edit name, start at end

•.. at line • % ex +n ncune
% ex -t tag
% ex -r
% ex -r name
% ex n11me •••
% ex -R name
: X

: qi
ex States
Comma.nd

Insert

Open/visual

start at ta~
list saved files
recover file ,same
edit first; rest via :n
read only mode
exit, saving changes
exit, discarding changes

Normal and initial state. Input
prompted ror by :. Your kill char­
acter cancels partial command.
Entered by a i and c. Arbitrary
text then terminates with line hav­
ing only • character on it or abnor-­
mally with interrupt.
Entered by open or vi, terminates
with Q or·\.

ex Commands
abbrev ab next n unabbrev una
append a number nu undo u
args ar open 0 unmap unm
change C preserve pre version ve
copy co print p visual vi
delete d put pu write w
edit e quit q xit X

file r read re yank ya
global g recover rec window •
insert rewind rew escape
join j set se shirt <
list I shell sh print next CR
m•p source so resubst &
mark ma stop st rshirt >
move m substitute s scroll ·o
ex Command Addresses

• line • /pat next with .pa:t
current ?pat previous with pat

• !&st >• n before #

+ next z,, # through J
previous 'z muked with z

+• n forward previous context
% 1,S

Specifying Terminal Type
% setenv TERM tl/P<
S TERM-type; export TERM
See also t,d in the user's manual

Some Terminal Types
2621 43 adm31
26~ 733 adm3a
300. 7~ c!OO
33 act4 dml520
37 act5 dm2500
4014 adm3 dm3025
Initialising Options

dwl
dw2
gt40
gt42
hl500
hl510

(ror e.A)
(ror ,A)

h!O
i!OO
mime
owl
t!06!
vt52

EXINIT place set's here in environment var.
11et z enable option
11et noz disable option
set z-,d give value val
set show changed options
set all ehow all options
11et zf show value of option z
Useful Options
autoindent
aut.owrite
ignorecase
lisp
list
magic
number
paragraphs
redraw
scroll

ai
aw
ic

nu
para

eupply indent
write before changing flies
in scanning
() { } are 11-exp's
print ·1 ror tab, • at end
• (• special in patterns
number lines
macro names which start ...
simulate smart terminal
command mode lines

sections sect macro names ...
ahlrtwidth ... ror < >, and input ·o
showmatch sm to) and } as typed
alowopen slow choke updates during insert
window visual mode lines
wrapacan ws around end of buffer
wrapmargin wm automatic line splitting

Scanning Pattern Formation

•
\<
\>
[,tr)
[I .tr)
[z-r)
•

beginning or line
end or line
any character
beginning or word
end of word
any char in ,tr
..• not in .i,
... between z and r
any number of preceding

o!

0

01

----·---

0

0

0

Chapter 4

Using the ed Line Editor

This chapter19 describes the editing tools of the ed line editor. It provides the newcomer with
elementary instructions and exercises for learning the most necessary and common commands
and the more advanced user with information about additional editing facilities. The contents
include descriptions of appending, changing, deleting, moving, copying and inserting lines of text;
reading and writing files; displaying your files; context searching; the global commands; line
addressing; and using special characters. There are also brief discussions on writing scripts and
on the pattern-matching tool grep, which is related to ed.

We assume that you know how to log in to the system and that you have an understanding of
what a file is. You must also know what character to type as the end-of-line on your workstation
or terminal. This character is the RETURN key in most cases.

Do the exercises in this chapter as you read along. What you enter at the keyboard is shown in
bold typewriter font like this.

If you need basic information on the Sun system, refer to the Beginner'• Guide to the Sun
Workatation. See ed in the Command• Reference Manual for the Sun Workatation for a nut­
shell description of the ed commands.

4.1. Getting Started

The ed text editor is an interactive program for creating and modifying text, using directions
that you provide from your workstation. The text can be a document, a program or perhaps
data for a program.

We'll assume that you have logged in to your system, and it is displaying the hostname and
prompt character, which we show throughout this manual as:

hostname%

To use ed, type ed and a carriage return at the 'hostname%' prompt:

hostname,:: ed
hostname%

You are now ready to go. ed does not prompt you for information, but waits for you to tell it
what to do. First you'll learn how to get some text into a file and later how to change it and
make corrections.

19 The material in this chapter is derived from A Tutorial Introduction to the UNIX Tezt Editor, B.W.
Kernighan and Ad1Janced Editing on UNIX, B.W. Kernighan, Bell Laboratories, Murray Hill, New Jersey.

Version D of 15 May 1985 4-1

Using the ed Line Editor Editing and Text Processing

4.1.1. Creating Text - the Append Command a

Let's assume you are typing the first draft of a memo and starting from scratch. When you first
start ed, in this case, you are working with a 'blank piece of paper'; there is no text or informa­
tion present. To supply this text, you either type it in or read it in from a file. To type it in,
use the append command a.

So, to type in lines of text into the buffer, you type an a followed by a RETURN, followed by the
lines of text you want, like this:

hostname% ed
a<CR>
Now is the time
for all good men
to come to the aid of their party.

If you make a mistake, use the DEL key to back up over and correct your mistakes. You cannot
go back to a previous line after typing RETURN to correct your errors. The only way to stop
appending is to tell ed that you have finished by typing a line that contains only a period. It
takes practice to remember it, but it has to be there. If ed seems to be ignoring you, type an
extra line with just'.' on it. You may then find you've added some garbage lines to your text;
you will have to take them out later.

After the append command, your file contains the lines:

Now is the time
for all good men
to come to the aid of their party.

The a and'.' aren't there, because they are not text.

To add more text to what you already have, type another a, and continue typing.

If you have not used a text editor before, read the following to learn a bit of terminology. If you
have used an editor, skip to the "Error Messages - ?" section.

In ed jargon, the text being worked on is said to be in a work space or 'kept in a buffer'. The
buffer is like a piece of paper on which you write things, change some of them, and finally file the
whole thing away for another day.

You have learned how to tell ed what to do to the text by typing instructions called commanda.
Most commands consist of a single letter that you type in lower case letters. An example is the
append command a. Type each command on a separate line. You sometimes precede the com­
mand by information about what line or lines of text are to be affected; we discuss this shortly.

As you have seen, ed does not respond to most commands; that is, there isn't any prompting or
message display like 'ready'. If this bothers you as a beginner, be patient. You'll get used to it.

4,1.2. Error Messages - ?

When you make an error in the commands you type, ed asks you:

?

0

0

This is about as cryptic as it can be, but with practice, you can usually figure out how you O
goofed.

4-2 Version D of 15 May 1985

0

0

0

Editing and Text Processing Using the ed Line Editor

4-1.s. Writing Text Out as a File - the Write Command w

When you want to save your text for later use, write out the contents of the buffer into a file
with the write command v, followed by the filename you want to write in. The w command
copies the buffer's contents into the specified file, destroying any previous information on the file.
To save the text in a file named junk, for example, type:

V junlc
68

Leave a space between the v and the filename. ed responds by displaying the number of char­
acters it wrote out, in this case 68. Remember that blanks and the return character at the end
of each line are included in the character count. The buffer's contents are not disturbed, so you
can go on adding lines to it. This is an important point. ed works on a copy of a file at all
times, not on the file itself. There is no change in the contents of a file until you type a v.
Writing out the text into a file from time to time is a good idea to save most of your text should
you make some horrible mistake. If you do something disastrous, you only lose the text in the
buffer, not the text that was written into the file.

When you want to copy a portion of a file to another name so you can format it separately, use
the v command. Suppose that in the file being edited you have:

.TS
... lots of stuff

.TE

This is the way a table is set up for the th 1 program. To isolate the table in a separate file
called, for example, table, first find the start of the table (the . TS line), then write out the
interesting part:

r\.TS/
. TS (ed prints the line it found)
.,1•\,TE/v table

and the job is done. If you are confident, you can do it all at once with:

1•\,TS/;/•\,TE/v table

The point is that v can write out a group of lines, instead of the whole file. In fact, you can
write out a single line if you like; give one line number instead of two (we explain line numbers
later - see the section "Specifying Lines in the Editor" for details). For example, if you have
just typed a very long, complicated line and you know that you are going to need it or something
like it later, then save it - don't re-type it. In the editor, say:

Version D of 15 May 1985 4-3

Using the ed Line Editor

a
.. .lots of stuff ...
... very long, complicated line ...

• w temp
number of characters
a
... more stuff ...

• r temp
number of characters
a
... more stuff ...

Editing and Text Processing

This last example is worth studying to be sure you appreciate what's going on. The . w temp
writes the very long, complicated line (the current line) you typed to the file called temp. The
. r temp reads that line from temp into the file you are editing after the current line 'dot' so
you don't have to re-type it.

4-1.4- Leaving ed - the Quit Command q

To terminate an ed session, save the text you're working on by writing it into a file using the w
command, and then type the quit command q.

w

number of characters
q
hostname%

The system responds with the hostname prompt. At this point your buffer vanishes, with all its
text, which is why you want to write it out before quitting. Actually, ed displays '?' if you try
to quit without writing. At that point, write the file if you want; if not, type another q to get
you out 0£ ed regardless 0£ whether you changed the file or not.

4.1.5. Creating a New File - the Edit Command e

The edit command e says 'I want to edit a new file called newfile, without leaving the editor.'
To do this, you type:

e newfile

The e command discards whatever you're currently working on and starts over on newfile. It's
exactly the same as if you had quit with the q command, then re-entered ed with a new
filename, except that if you have a pattern remembered, a command like / / will still work.
(See the section "Repeated Searches - // and ??" later in this chapter.)

If you enter ed with the command:

hostname% ed file

ed remembers the name of the file, and any subsequent e, r or w commands that don't contain
a filename refer to this remembered file. Thus:

4-4 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing

hostname% ed file1
... {editing) ...

w (writes back in file!}
e file2 {edit new file, without leaving editor}

... {editing in file2} ...
w (writes back in file/1}

Using the ed Line Editor

and so on does a series of edits on various files without ever leaving ed and without typing the
name of any file more than once.

A common way to get text into the buffer is to read it from a file in the file system. This is what
you do to edit text that you saved with w in a previous session. The edit command e also
fetches the entire contents of a file into the buffer. So if you had saved the three lines 'Now is
the time', etc., with w in an earlier session, the ed command e fetches the entire contents of
the file junk into the buffer, and responds with the number of characters in junk:

hostname% e junk
68

If anything waa already in the buffer, it ia deleted ft.rat.

If you use e to read a file into the buffer, you do not need to use a filename after a subsequent
w command; ed remembers the last filename used in an e command, and w will write on this
file. Thus a good way to operate is:

hostname% ed
e file
number of characters
{editing session/

" number of characters
q
hostname%

This way, you can simply say w from time to time, and be secure that you are writing into the
proper file each time.

,t.1.6. Exercise: Trying the e Command

Experiment with the e command - try reading and displaying various files. You may get an
error

?name

where name is the name of a file; this means that the file doesn't exist, typically because you
spelled the filename wrong, or perhaps because you are not allowed to read or write it. Try
alternately reading and appending to see that they work similarly. Verify that:

hostname% ed filename
number of characters in file

is equivalent to:

hostname% ed
e filename
number of characters in file

Version D of 15 May 1985 4-5

Using the ed Line Editor Editing and Text Processing

.J.1. 7. Checking the Filename - the Filename Command f

You can find out the remembered filename at any time with the f command; just type f
without a filename. In this example, if you type f, ed replies:

hostname% ed junk
68
f
junk

You can also change the name of the remembered filename with f; this following sequence
guarantees that a careless w command will write on junk instead of precioua. Try:

hostname% ed precious
f junk

... {editing} ...

.J.1.8. Reading Text from a File - the Read Command r

Sometimes you want to read a file into the buffer without destroying anything that is already
there. To do this, use the read command r. The command:

r junk
68

reads the file junk into the buffer, adding it to the end of whatever is already in the buffer. ed
responds with the number of characters in the buffer. So if you do a read after an edit:

hostname% ed junk
68
r junk
68

" 136
q
host name%

the buffer contains two copies of the text or six lines (136 characters) in this case. Like w and
e, r displays the number of characters read in after the reading operation is complete. Now
check the file contents with cat:

hostname% cat junk
Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.
hostname%

Generally speaking, you won't use r as much as e.

Suppose you have a file called memo, and you want the file called table to be inserted just after
the reference to Table 1. That is, in memo somewhere is a line that says

4-6 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Using the ed Line Editor

Table 1 shows that ...

The data contained in table has to go there so nroff or troff will format it properly. Now
what?

This one is easy. Edit memo, find 'Table 1 ', and add the file table right there:

hostname% ed memo
/Table 1/
Table 1 shows that . . . (response from ed}
.r table

The critical line is the la.st one. As we said earlier, the r command reads a file; here you asked
for it to be read in right after line dot. An r command without any address adds lines at the
end, which is the same as $r .

. ,t.1.9. Printing the Buffer Contents - the Print Command p

To print or 'display' the contents of the buffer or parts of it on the screen, use the print com­
mand p. To do this, specify the lines where you want the display to begin and where you want
it to end, separated by a comma, and followed by p. Thus to show the first two lines of the
buffer, for example, say:

1,2p (starting line=l, ending line=2 p}
Now .is the time
for all good men

Suppose you want to print all the lines in the buffer. You could use 1, 3p if you knew there
were exactly three lines in the buffer. But in general, you don't know how many lines there are,
so what do you use for the ending line number? ed provides a shorthand symbol for 'line
number of last line in buffer' - the dollar sign $. Use it to display all the lines in the buffer,
line I to last line:

1,$p
Now is the time
for all good men
to come to the aid of their party.
Now ls the time
for all good men
to come to the aid of their party.

If you want to stop the display of more than one screenful before it is finished, type the INTER­
RUPT character CTRL,.C (or the DEL key).

CTRL-C
?

gd waits for the next command.

To display the last line of the buffer, you can use:

$,$p
to come to the aid of their party.

or abbreviate it to:

Version D of 15 May 1985 4-7

Using the ed Line Editor Editing and Text Processing

Sp
to come to the aid of their party.

You can show any single line by typing the line number followed by a p. So, to display the first
line of the buffer, type:

1p
Now is the time

In fact, ed lets you abbreviate even further: you can display any single line by typing just the
line number - there is no need to type the letter p. So if you say:

2
for all good men

ed displays the second line of the buffer.

You can also use $ in combinations to display the last two lines of the buffer, for example:

S-1,Sp
for all good men
to come to the aid of their party.

This helps when you want to see how far you got in typing.

4-1.10. Exercise: Trying the p Command

As before
1

create some text using the a command and experiment with the p command. You
will find, for example, that you can't show line O or a line beyond the end of the buffer, and that
attempts to show a buffer in reverse order don't work. For example, you get an error message if
you type:

3, 1p
?

,4.1.11. Displaying Text - the List Command 1

ed provides two commands for displaying the contents of the lines you're editing. You are fami­
liar with the p command that displays lines of text. Less familiar is the list command 1 (the
letter 'ell'), which gives slightly more information than p. In particular, 1 makes visible charac­
ters that are normally invisible, such as tabs and backspaces. If you list a line that contains
some of these, 1 will show each tab as > and each backspace as ... A sample display of a ran­
dom file with tab characters and backspaces is:

l
Now is the>> time for<< all good men

This makes it much easier to correct the sort of typing mistake that inserts extra spaces adja­
cent to tabs, or inserts a backspace followed by a space.

The 1 command also 'folds' long lines for printing. Any line that exceeds 72 characters is
displayed on multiple lines. Each printed line except the last is terminated by a backslash ' \',
so you can tell it was folded. This is useful for displaying long lines on small terminal screens. A
sample output of a folded line is:

4-8 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Using the ed Line Editor

l
This is an example of using the 1 command to display a very long line that\
has more than 72 characters

Occasionally the 1 command displays in a line a string of numbers preceded by a backslash,
such as '\07' or '\16'. These combinations make visible the characters that normally don't show,
like form feed or vertical tab or bell. Each such combination is a single character. When you
see such characters, be wary - they may have surprising meanings when displayed on some ter­
minals. Often their presence means that your finger slipped while you were typing; you almost
never want them .

. ,S.1.12. The Current Line - 'Dot' or'.'

Suppose your buffer still contains the six lines as above, and that you have just typed:

1,3p
Now is the time
for all good men
to come to the aid of their party.

ed has displayed the three lines for you. Try typing just a p to display:

p (no line numbers}
to come to the aid of their party.

The line displayed is the third line of the buffer. In fact it is the last or most recent line that
you have done anything with. (You just displayed it!) You can repeat p without line numbers,
and it will continue to display line 3.

The reason is that ed maintains a record of the last line that you did anything to (in this case,
line 3, which you just displayed) so that you can use it instead of an explicit line number. You
refer to this most recent line by the shorthand symbol:

(pronounced 'dot'}
to come to the aid of their party.

Dot is a line number in the same way that '$' is; it means exactly 'the current line', or loosely,
'the line you most recently did something to'. You can use it in several ways - one possibility is
to display all the lines from and including the current line to the end of the buffer .

. • fp
Now is the time
for all good men
to come to the aid of their party.
to come to the aid of their party.

In our example these are lines 3 through 6.

Some commands change the value of dot, while others do not. The p command sets dot to the
number of the last line displayed; that is, after this command sets both '.' and '$' refer to the
last line of the file, line 6.

Dot is most useful in combinations like:

, +1 (or equivalently, , +1p)

This means 'show the next line' and is a handy way to step slowly through a buffer. You can
also say:

Version D of 15 May 1985 4-9

Using the ed Line Editor Editing and Text Processing

.-1 (or .-1p}

This means 'show the line before the current line'. Use this to go backward if you wish.
Another useful one is something like:

.-3, .-1p

This command displays the previous three lines.

Don't forget that all or these change the value 0£ dot. You can find out what dot is at any time
by typing: ..

3

Let's summarize some things about p and dot. Essentially you can precede p by 0, l, or 2 line
numbers. If you do not give a line number, p shows the 'current line', the line that dot refers
to. If there is one line number given with or without the letter p, it shows that line and dot is
set there; and if there are two line numbers, it shows all the lines in that range, and sets dot to
the last line displayed. If you specify two line numbers, the first can't be bigger than the second.

Typing a single RETURN displays the next line - it's equivalent to . + lp. Try it. Try typing a
-; you will find that it's equivalent to . -lp.

4-1.13. Deleting Lines - the Delete Command d

Suppose you want to get rid oC the three extra lines in the buffer. To do this, use the delete
command d. The d command is similar to p, except that d deletes lines instead or displaying
them, You specify the lines to be deleted for d exactly as you do for p:

starting line, ending line d

Thus the command:

4,$d

deletes lines 4 through the end. There are now three lines left, as you can check by using:

1,$p
Now is the time
for all good men
to come to the aid of their party.

And notice that '$' now is line 3. Dot is set to the next line after the last line deleted, unless the
last line deleted is the last line in the buffer. In that case, dot is set to'$'.

4-1.14. Exercise: Experimenting

Experiment with a, e, r, w, p and d until you are sure you know what they do, and until you
understand how to use dot, '$' and the line numbers.

If you are adventurous, try using line numbers with a, r and w as well. You will find that a
appends lines after the line number that you specify rather than after dot; that r reads a file in
after the line number you specify and not necessarily at the end of the buffer; and that w writes

0

0

out exactly the lines you specify, not necessarily the whole buffer. These variations are useful, 0
for instance, for inserting a file at the beginning of a buffer:

4-10 Version D of 15 May 1985

0

0

0

Editing and Text Processing Using the ed Line Editor

Or filename
number of characters

ed indicates the number of characters read in. You can enter lines at the beginning of the buffer
by saying:

Oa
. text . . .

Or you can write out the lines you specify with w. Notice that . w is very different from:

w
number of characters

4.1.15. Modifying Text - the Substitute Command s

One of the most important commands is the substitute command s. Use s to change individual
words or letters within a line or group of lines. For example, you can correct spelling mistakes
and typing errors.

Suppose that by a typing error, line 1 says:

Now is th time

- the 'e' has been left off 't,he'. You can use s to fix this up as follows:

1s/th/the/

This says: 'in line 1, substitute for the characters 'th' the characters 'the'. ed does not display
the result automatically, so verify that it works with:

p
Now is the time

You get what you wanted. Notice that dot has been set to the line where the substitution took
place, since p printed that line. The s command always sets dot in this way.

The general way to use the substitute command is:

starting-line, ending-line &/change this/to this/

\Vhatever string of characters is between the first pair of slashes is replaced by whatever is
between the second pair, in all the lines between atarting-/ine and ending-line. Only the first
occurrence on each line is changed, however. If you want to change every occurrence, read on
below. The rules for line numbers are the same as those for p, except that dot is set to t,he last
line changed. But there is a trap for the unwary: if no substitution took place, dot is not
changed. This causes an error '?' as a warning.

Thus you can say:

1,Ss/speling/spelling/

and correct the first spelling mistake on each line in the text. (This is useful for people who are
consistent misspel!ers!)

You can precede any s command by one or two 'line numbers' to specify that the substitution is
to take place on a group of lines. Thus, to change the first occurrence of 'mispell' to 'misspell' on

Version D of 15 May 1985 4-11

Using the ed Line Editor Editing and Text Processing

every line of the file, type:

1,$s/mispell/misspell/

But to change every occurrence in every line, type:

1,$s/mispell/misspell/g

This is more likely what you wanted in this particular case.

Note: Be careful that this is exactly what you want to do. Unless you specify the substitution
specifically, globally changing the string 'the', will also change every instance of those characters,
including 'other', etc.

If you do not give any line numbers, s assumes you mean 'make the substitution on line dot,' so
it changes things only on the current line. You will see that a very common sequence is to
correct a mistake on the current line, and then display the line to make sure everything is all
right:

s/something/something else/p
line with something else

If it didn't, you can try again.

Notice that there is a p on the same line as the s command. With few exceptions, p can fol­
low any command. No other multi-command line• are legal.

You can also say:

s/ ... II

which means 'change the first string of characters to nothing;' that is, remove the first string of
characters. Use this sequence for deleting extra words in a line or removing extra letters from
words. For instance, if you had:

Nowxx is the time

To correct this, say:

sha.//p
Now is the time

Notice that // (two adjacent slashes) means 'no characters,' not a blank. There i• a difference!
(See the section "Repeated Searches" for another meaning of //.)

If you want to replace the firat 'this' on a line with 'that', for example, use:

a/this/that/

If there is more than one 'this' on the line, a second form with the trailing global command g
changes all of them:

s/this/that/g

The general format is:

s/ ... / ... /gp

Try other characters instead of slashes to delimit the two sets of characters in the
- anything should work except blanks or tabs.

If you get funny results using any of the characters:

s command

4-12 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Using the ed Line Editor

$ [• \ &

read the section on "Special Characters".

You can follow either form of the s command by p or 1 to display or list the contents or the
line.

s/thie/that/p
e/thie/that/1
e/thie/that/gp
s/this/that/gl

are all acceptable and mean slightly different things. Make sure you know what the differences
are.

You should also notice that if you add a p or 1 to the end of any of these substitute commands,
only the last line that was changed will be displayed, not all the lines. We will talk later about
how to show all the lines that were modified.

4.1.16. The Ampersand &

The & is a shorthand character - it is used only on the right-hand part or a substitute com­
mand where it means 'whatever was matched on the left-hand side'. Use it to save typing. Sup­
pose the current line contained:

Now is the time

and you wanted to put parentheses around it. You could just retype the line, but this is tedious.
Or you could say:

er/(/
e/$/)/

using your knowledge of - and $. But the easiest way uses the &:

e/.•/(&)/

This says 'match the whole line, and replace it by itself surrounded by parentheses'.

You can use the & several times in a line:

e/. •/&? &II/
Now is the time? Now is the time!!

or

a/the/& beet and & worst/
Now is the best and the worst time

You don't have to match the whole line, of course, if the buffer contains:

the end of the world

you can type:

/world/a//& ia at hand/
the end of the world is at hand

Observe this expression carefully, for it illustrates how to take advantage of ed to save typing.
The string '/world/' found the desired line; the shorthand // found the same word in the line;
and the & saves you from typing it again.

Version D of 15 May 1985 4-13

Using the ed Line Editor Editing and Text Processing

Notice that & is not special on the left side of a substitute, only on the right side.

The & is a special character only within the replacement text of a substitute command, and has
no special meaning elsewhere. You can turn off the special meaning of & by preceding it with a
backslash (\):

a/ampersand/'&/

converts the word 'ampersand' into the literal symbol '&' in the current line. Of course this
isn't much of a saving if the thing matched is just 'the', but if it is something truly long or awful,
or if it is something like '.*' which matches a lot of text, you can save some tedious typing.
There is also much less chance of making a typing error in the replacement text. For example,
to put parentheses around a line, regardless of its length, use:

el.•/(&)/

fl.17. Exercise: Trying the s and g Commands

Experiment with s and g. See what happens if you substitute for some word on a line with
several occurrences of that word. For example, do this:

a
the other side of the coin

e/the/on the/p
on the other side of the coin

4.1.18. Undoing a Command - the Undo Command u

Occasionally you will make a substitution in a line, only to realize too late that it was a mistake.
Use the undo command u to undo the last substitution. This restores the last line that was sub­
stituted to its previous state. For example, study the following example:

a/party/country/
p
to come to the aid of their country.
u
p
to come to the aid of their party.

4.2. Changing and Inserting Text - the c and i Commands

This section discusses the change command c and the inaert command i. The change com­
mand changes or replaces a group of one or more lines. The insert command inserts a group of
one or more lines.

The c command replaces a number of lines with different lines you type in at the workstation.
For example, to change lines '.+l' through'$' to something else, type:

4-14 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Using the ed Line Editor

.+1,,c
type the lines of tezt you want here

The lines you type between the c command and the '.' take the place of the original lines
between start line and end line. This is most useful in replacing a line or several lines that have
errors in them.

If you only specify one line in the c command, just that line is replaced. You can type in as
many replacement lines as you like. Notice the use of '.' to end the input - this works just like
the '.' in the append command and must appear by itself on a new line. If no line number is
given, line dot is replaced. The value of dot is set to the last line you typed in.

'Insert' is similar to append, for instance:

/string/!
. . . type the lines to be inserted here

inserts the given text before the next line that contains 'string', that is, the text between i and
'.' is inserted before the specified line. If no line number is specified dot is used. Dot is set to
the last line inserted.

4,2.1. Exercise: Trying the c Command

Change is rather like a combination of delete followed by insert. Experiment to verify that:

start, end d
i
... tezt ...

is almost the same as:

start, end c
... tezt ...

These are not preci,ely the same if line '$' gets deleted. Check this out. What is dot?

Experiment with a and i, to see that they are similar, but not the same. You will observe that
to append after the given line, you type:

line-number a
... tezt ...

while to insert before it, you type:

line-number i
... tezt . . .

Observe that if you do not give a line number, i inserts before line dot, while a appends after
line dot.

Version D of 15 May l 985 4-15

Using the ed Line Editor Editing and Text Processing

4.3. Specifying Lines in the Editor

To specify which lines are to be affected by the editing commands, you use line addreaaing.
There are several methods, and they are described below.

f3.1. Context Searching

One way is context aearching. Context searching is simply a method of specifying the desired
line, regardless of what its number is, by specifying some context on it.

Suppose you have the original three-line text in the buffer:

Now is the time
for all good men
to come to the aid of their party.

If you want to find the line that contains 'their' so you can change it to 'the'. With only three
lines in the buffer, it's pretty easy to keep track of what line the word 'their' is on. But if the
buffer contains several hundred lines, and you'd been making changes, deleting and rearranging
lines, and so on, you would no longer really know what this line number would be.

For example, to locate the next occurrence of the characters between slashes ('their'), type:

/their/
to come to the aid of their party.

To search for a line that contains a particular string of characters, the general format is:

/string of characters we want to find/

This is sufficient to find the desired line. It also sets dot to that line and displays the line for
verification. 'Next occurrence' means that ed starts looking for the string at line '.+l', searches
to the end of the buffer, then continues at line 1 and searches to line dot. That is, the search
'wraps around' from '$' to 1. It scans all the lines in the buffer until it either finds the desired
line or gets back to dot again. If the given string of characters can't be found in any line, ed
displays the error message:

?

Otherwise it shows the line it found.

Less familiar is the use of:

?thing?

This command scans backward for the previous occurrence of 'thing'. This is especially handy
when you realize that the thing you want to operate on is back up the page from where you are
currently editing.

The slash and question mark are the only characters you can use to delimit a context search,
though you can use essentially any character in a substitute command. You can do both the
search for the desired line and a substitution all at once, like this:

/their/s/their/the/p
to come to the aid of the party.

There were three parts to that last command: a context search for the desired line, the substitu­
tion, and displaying the line.

4-16 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Using the ed Line Editor

The expression /their/ is a context search expression. In their simplest form, all context
search expressions are like this - a string of characters surrounded by slashes. Context searches
are interchangeable with line numbers, so you can use them by themselves to find and show a
desired line, or as line numbers for some other command, like s. We use them both ways in the
examples above.

,1.3. 2. Exercise: Trying Context Searching

Experiment with context searching. Try a body of text with several occurrences of the same
string of characters, and scan through it using the same context search.

Try using context searches as line numbers for the substitute, print and delete commands. You
can also use context searching with with r, w, and a.

If you get funny results with any of the characters:

$ [• \ &

read the section on "Special Characters".

4.3.3. Specifying Lines with Address Arithmetic - + and -

Another area where you can save typing in specifying lines is to use minus (-) and plus (+) as
line numbers by themselves. To move back up one line in the file, type:

In fact, you can string several minus signs together to move back up that many lines:

moves up three lines, as does -3. Thus:

-3,+3p

is also identical to the examples above.

Since - is shorter than • -1, use it to change 'bad' to 'good' on the previous line and on the
current line.

- , • s/l:>ad/ good/

You can use + and - in combination with searches using / ... /and ? ... ?, and with $. To
find the line containing 'thing', and position you two lines before it, type:

/thing/--

The next step is to combine the line numbers like ' ' and '$', context searches like '/. .. /' and
'? ... ?'with'+' and'-'. Thus:

•-1

displays the next-to-last line of the current file, that is, one line before line '$'. For example, to
recall how far you got in a previous editing session, type:

s-s,•p
which shows the last six lines. (Be sure you understand why it shows six, not five.) If there are
less than six, of course, you'll get an error message. Suppose the buffer contains the three

Version D of 15 May 1985 4-17

Using the ed Line Editor

familiar lines:

Now is the time
for all good men
to come to the aid of their party.

Then the ed line numbers:

/Nov/+1
/good/
/party/-1

Editing and Text Processing

are all context search expressions, and they all refer to the same line, line 2. To make a change
in line 2, you could say:

/Nov/+1a/good/bad/

or:

/good/a/good/bad/

or:

/party/-1a/good/bad/

Convenience dictates the choice. You could display all three lines by, for instance:

/Nov/,/party/p

or:

/Nov/,/Nov/+2p

or by any number of similar combinations. The first one 0£ these might be better if you don't
know how many lines are involved. Of course, i£ there were only three lines in the buffer, you'd
use:

1,$p

but not i£ there were several hundred.

The basic rule is: a context search expression 1s the •ame a• a line number, so you can use it
wherever a line number is needed.

As another example:

.-3,.+Jp

displays from three lines before where you are now at line dot to three lines after, thus giving
you a bit of context. By the way, you can omit the '+':

. -3,. 3p

is identical in meaning .

. 4,s.4- Repeated Searches - I I and ??

Suppose you ask for the search:

/horrible thing/

and when the line is displayed, you discover that it isn't the horrible thing that you wanted, so
you have to repeat the search again. You don't have to re-type the search; use the construction:

4-18 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Using the ed Line Editor

//

as a shorthand for 'the previous thing that was searched for', whatever it was. You can repeat
this as many times as necessary. You can a.lso search backward through the file by typing:

??

? ? searches for the same thing, but in the reverse direction.

Not only can you repeat the search, but you can use '//' as the left side of a substitute com­
mand, to mean 'the most recent pattern.'

/horrible thing/
... ed prints line with 'horrible thing' ...

s//good/p

To go backward and change a line, say:

??s//good/

You can still use the & on the right hand side of a substitute to stand for whatever got matched:

//s//& &/p

This finds the next occurrence of whatever you searched for last, replaces it by two copies of
itself, then displays the line just to verify that it worked.

4-3.5. Default Line Numbers and the Value of Dot

One of the most effective ways to speed up your editing is always to know what lines will be
affected by a command if you don't specify the lines it is to act on, and on what line you will be
positioned, that is, the va.lue of dot, when a command finishes. If you can edit without specifying
unnecessary line numbers, you can save a lot of typing.

As the most obvious example, if you give a search command like:

/thing/

you are left pointing at the next line that contains 'thing'. No address is required with com­
mands like s to make a substitution on that line. Addresses are also not required with p to
show it, 1 to list it, d to delete it, a to append text after it, c to change it, or i to insert text
before it.

\\.'hat would happen if there were no 'thing'? Then you are left right where you were - dot is
unchanged. This is also true if you are sitting on the only 'thing' when you issue the command.
The same rules hold for searches that use ? ... ?; the only difference is the direction in which
you search.

The delete command d leaves dot pointing at the line that followed the last deleted line. \\.'hen
line '$' gets deleted, however, dot points at the riew line '$'.

The line-changing commands a, c and i by default all affect the current line. If you do not
give a line number with them, the a appends text after the current line, c changes the current
line, and i inserts text before the current line.

The a, c, and i commands behave identically in one respect - when you stop appending,
changing or inserting, dot points at the last line entered. This is exactly what you want for typ­
ing and editing on the fly. For example, you can say:

Version D of 15 May 1985 4-19

Using the ed Line Editor

a
... text .. .
... botch .. .

s/botcb/correct/
a
... more text ...

(minor error)
(fix botched line)

Editing and Text Processing

without specifying any line number for the substitute command or for the second append com­
mand. Or you can say:

a
... text ...
... horrible botch ... (major error)

C (replace entire line}
... fixed up line ...

You should experiment to determine what happens if you do not add any lines with a, c or i.

The r command reads a file into the text being edited, either at the end if you do not give an
address, or after the specified line if you do. In either case, dot points at the last line read in.
Remember that you can even say Or to read a file in at the beginning of the text. You can also
say Oa or li to start adding text at the beginning.

The w command writes out the entire file. If you precede the command by one line number,
that line is written, while if you precede it by two line numbers, that range of lines is written.
The w command does not change dot; the current line remains the same, regardless of what lines
are written. This is true even if you say something that involves a context search, such as:

/A,.AJl/,/A,.AE/w abstract

Since w is so easy to use, you should save what you are editing regularly as you go along just in
case something goes wrong, or in case you do something foolish, like clobbering what you're edit­
mg.

With the s command, the rule is simple; you are left positioned on the last line that got
changed. If there were no changes, dot doesn't move.

To illustrate, suppose that there are three lines in the buffer, and the cursor is sitting on the
middle one:

xl
x2
x3

The command line

-,+s/x/y/p

displays the third line, the last one changed. But if the three lines had been:

xl
y2
y3

and the same command had been issued while dot pointed at the second line, then the result
would be to change and show only the first line, and that is where dot would be set.

4-20 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Using the ed Line Editor

4.S.6. Combining Commands - the Semicolon ;

Searches with / ... / and ? ... ? start at the current line and move forward or backward
respectively until they either find the pattern or get back to the current line. Sometimes this is
not what is wanted. Suppose, for example, that the buffer contains lines like this:

ab

be

Starting at line 1, one would expect that the command:

/a/,/b/p

would display all the lines from the 'ab' to the 'be' inclusive. Actually this is not what happens.
Both searches (for 'a' and for 'b') start from the same point, and thus they both find the line that
contains 'ab'. The result is to display a single line. Worse, if there had been a line with a 'b' in
it before the 'ab' line, then the print command would be in error, since the second line number
would be less than the first, and you cannot display lines in reverse order.

This happens because the comma separator for line numbers doesn't set dot as each address is
processed; each search starts from the same place. In ed, you can use the semicolon ; just like
comma, with the single difference that use of a semicolon forces dot to be set at that point as the
line numbers are being evaluated. In effect, the semicolon 'moves' dot. Thus in the example
above, the command:

/a/;/b/p

displays the range of lines from 'ab' to 'be', because after the 'a' is found, dot is set to that line,
and then 'b' is searched for, starting beyond that line.

Use the semicolon when you want to find the second occurrence of something. For example, to
find the second occurrence of 'thing', you can say:

/thing/
line with 'thing'
II
second line with 'thing'

But this displays the first occurrence as well as the second, and is a nuisance when you know
very well that it is only the second one you're interested in. The solution is to find the first
occurrence of 'thing', set dot to that line, then find the second and display only that:

/thing/;//

Closely related is searching for the second previous occurrence of something, as in:

?something?;??

We leave you to try showing the third or fourth or ... in either direction.

Version D of 15 May 1985 4-21

Using the ed Line Editor Editing and Text Processing

Finally, bear in mind that if you want to find the first occurrence of something in a file, starting
at an arbitrary place within the file, it is not sufficient to say:

1;/thing/

This search fails if 'thing' occurs on line l. But it is possible to say:

O;/thing/

This is one of the few places where O is a legal line number, for this starts the search at line l.

4-s. 7. Interrupting the Editor

As a final note on what dot gets set to, be aware that if you type an INTERRUPT (CTRL-C is the
default, but your terminal may be set up with the DELETE, RUBOUT or BREAK keys) while
ed is doing a command, things are put back together again and your state is restored as much as
possible to what it was before the command began. Naturally, some changes are irrevocable -
if you are reading or writing a file or making substitutions or deleting lines, these will be stopped
in the middle of execution in some clean but unpredictable state; hence it is not usually wise to
stop them. Dot may or may not be changed.

Displaying is more clear cut. Dot is not changed until the display is done. Thus if you display
lines until you see an interesting one, then type CTRL-C, you are not sitting on that line or even
near it. Dot is left where it was when the p command was started.

4.4. Editing All Lines - the Global Commands g and v

Use the global command g to execute one or more ed commands on all those lines in the buffer
that match some specified string. For example, to display all lines that contain 'peling', type:

g/peling/p

As another example:

gr\.lp

displays all the formatting commands in a file. The pattern that goes between the slashes can be
anything that could be used in a line search or in a substitute command; the same rules and limi­
tations apply.

For a more useful command, which makes the substitution everywhere on the line, then displays
each corrected line, type:

g/peling/s//pelling/gp

Compare this to the following command line, which only displays the last line substituted:

1,$a/peling/pelling/gp

Another subtle difference is that the g command does not give a '?' if 'peling' is not found
whereas the s command will.

The substitute command is probably the most useful command that can follow a global because
you can use this to make a change and display each affected line for verification. For example,
you can change the word 'SUN' to 'Sun' everywhere in a file, and verify that it really worked,
with:

4-22 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Using the ed Line Editor

g/SU!l/s//Sun/gp

Notice that you use / / in the substitute command to mean 'the previous pattern', in this case,
'SUN'. The p command is done on every line that matches the pattern, not just those on which
a substitution took place.

The v command is identical to g, except that it operates on those lines that do not contain an
occurrence of the pattern; that is, v 'inverts' the process, so:

vr\./p

The command that follows g or v can be anything:

gr\.td

deletes all lines that begin with'.', and:

qr,1d

deletes all empty lines.

The global command operates by making two passes over the file. On the first pass, all lines that
match the pattern are marked. On the second pass, each marked line in turn is examined, dot is
set to that line, and the command executed. This means that it is possible for the command that
follows a g or v to use addresses, set dot, and so on, quite freely.

gr\.PP/+

displays the line that follows each . PP command (the signal for a new paragraph m some for­
matting packages). Remember that + means 'one line past dot'. And:

g/topic/?A\,SB?1

searches for each line that contains 'topic', scans backward until it finds a line that begins . SH
(a section heading) and shows the line that follows that, thus showing the section headings under
which 'topic' is mentioned. Finally:

g/A\.EQ/+,/A\,EN/-p

displays all the lines that lie between lines beginning with . EQ and . EN formatting commands.

You can also precede the g and v commands by line numbers, in which case the lines searched
are only those in the range specified.

4.4-1. l'vfulti-line Global Commands

You can use more than one command under the control of a global command, although the syn­
tax for expressing the operation is not especially natural or pleasant. As an example, suppose the
task is to change 'x' to 'y' and 'a' to 'b' on all lines that contain 'thing'. Then:

g/thing/s/x/y/\
s/a/b/

is sufficient. The ' \' signals g that the set of commands continues on the next line; it ter­
minates on the first line that does not end with ' \'. You can't use a substitute command to
insert a newline within a g command.

Watch out for the command:

Version D of 15 May 1985 4-23

Using the ed Line Editor

g/x/s//y/,
s/a/b/

Editing and Text Processing

which does not work as you expect. The remembered pattern is the last pattern that was actu­
ally executed, so sometimes it will be 'x' (as expected), and sometimes it will be 'a' (not
expected). You must spell it out, like this:

ghr./s/x/y/\
s/a./b/

It is also possible to execute a, c and i commands under a global command; as with other
multi-line constructions, all that is needed is to add an \ at the end of each line except the
last. Thus to add a .nf and .sp command before each .EQ line, type:

gr\.EQ/i\
.nf,
.sp

You do not need a final line containing a'.' to terminate the i command, unless you are using
further commands under the global command. On the other hand, it does no harm to put it in
either.

4.5. Special Characters

Certain characters have unexpected meanings when they occur in the left side of a substitute
command, or in a search /or a particular line. You may have noticed that things just don't work
right when you use some characters like'.', *, $, and others in context searches and with the
substitute command. These special characters are called metacharacter.. Basically, ed treats
these characters as special, with special meanings. For instance, in a context search or the first
string of the substitute command only, '.' means 'any character,' not a period, so:

hr..yl

means 'a line with an 'x', any character, and a 'y' ' not just 'a line with an 'x', a period, and a
'y'.' A complete list of the special characters is:

$ [• \

4,5.1. }.,latching Anything - the Dot '.'

Use t,he 'dot' metacharacter '.' to match any single character. For exa.mple, to find any line
where 'x' and 'y' occur separated by a single character, type:

/x.y/

You may get any of:

x+y
x-y
X y
x.

and so on.

-1-24 Version D of 15 May 1!)85

0

0

0

0

0

0

Editing and Text Processing Using the ed Line Editor

Since '.' matches a single character, it gives you a way to deal with funny characters that 1
displays. Suppose you have a line that, when displayed with the l command, appears as:

th07is

and you want to get rid of the 07 (which represents the bell character, by the way).

The most obvious solution is to try:

s/07//

but this will fail. (Try it.) The brute force solution, which most people would now take, is to re­
type the entire line. This is guaranteed, and is actually quite a reasonable tactic if the line in
question isn't too big, but for a very long line, re-typing is a bore. This is where the metacharac­
ter '.' comes in handy. Since '07' really represents a single character, if we say:

a/th.is/this/

the job is done. The '.' matches the mysterious character between the 'h' and the 'i', whatever it
18.

Bear in mind that since '.' matches any single character, the command:

al .I ,I

converts the first character on a line into a comma (,), which very often is not what you
intended.

As is true of many characters in ed, the '.' has several meanings, depending on its context.
This line shows all three:

.al.I.I

The first '.' is a line number, the number of the line we are editing, which is called 'line dot'.
The second '.' is a metacharacter that matches any single character on that line. The third '.' is
the only one that really is an honest literal period. On the right side of a substitution, '.' is not
special. If you apply this command to the line:

Now is the time.

the result will be:

.al .I .I

.ow is the time.

which is probably not what you intended.

4.5.2. Specifying Any Character - the Backslash '\'

The backslash character ' \' is special to ed as noted in the description of the ampersand. For
safety's sake, avoid the backslash where possible. If you have to use one of the special charac­
ters in a substitute command, you can turn off its magic meaning temporarily by preceding it
with the backslash. Thus:

a/\\\.\•/backalaah dot star/

changes'\.*' into 'backslash dot star'.

Since a period means 'any character', the question naturally arises of what to do when you really
want a period. For example, how do you convert the line:

Version D of 15 May 1985 4-25

Using the ed Line Editor

Now is the time.

into:

Now is the time?

Editing and Text Processing

Use the backslash ' \' here as well to turn off any special meaning that the next character might
have; in particular,'\.' converts the'.' from a 'match anything' into a period, so you can use it
to replace the period in 'Now is the time.', type:

s/,.1?/p
Now is the time?

ed treats the pair of characters'\.' as a single real period.

You can also use the backslash when searching for lines that contain a special character. Sup­
pose you are looking for a line that contains:

.PP

The search for . PP finds:

/.PP/
THE APPLICATION OF ...

because the '.' matches the letter 'A'. But if you say:

/,.PP/

you will find only lines that contain . PP.

Consider finding a line that contains a backslash. The search:

/'/

won't work, because the ' \' isn't a literal ' \', but instead means that the second '/' no longer
delimits the search. But by preceding a backslash with another one, you can search for a literal
backslash. Thus:

/''/
does work. Similarly, you can search for a forward slash'/' with:

/'//

The backslash turns off the meaning of the immediately following'/' so that it doesn't terminate
the / ... / construction prematurely.

As an exercise, before reading further, find two substitute commands that each convert the line:

\x\.\y

into the line:

\x\y

Here are several solutions; verify that each works as advertised.

s/,,,.1/
s/x . .Ix/
s/ • .y/y/

Here are a couple of miscellaneous notes about backslashes and special characters. First, you
can use any character to delimit the pieces of an s command: there is nothing sacred about

4-26 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Using the ed Line Editor

slashes. But you must use slashes for context searching. For instance, in a line that contains a
lot of slashes already, like:

//exec //sys.fort.go// etc ...

you could use a colon as the delimiter - to delete a.II the slashes, type:

a:/: :g

When you are adding text with a or i or c, the backslash is not special, and you should only
put in one backslash for each one you really want.

,4.5.3. Specifying the End of Line - the Dollar Sign $

The dollar-sign, $, denotes the end of a line:

/atringS/

only finds an occurrence of 'string' that is at the end of some line. This implies, of course, that:

ratringS/

finds a line that contains just 'string', and:

r,S/

finds a line containing exactly one character.

As an obvious use, suppose you have the line:

Now is the

and you wish to add the word 'time' to the end. Use the $ like this:

a/S/ time/p
Now is the time

Notice that a space is needed before 'time' in the substitute command, or you will get:

Now is thetime

As another example, replace the second comma in a. line with a period without altering the first
comma. Type:

a/ ,S/ ./p
Now is the time, for all good men,

The $ sign here specifies the comma. at the end of the sentence. Without it, of course, s

operates on the first comma to produce:

a/,/ ./p
Now is the time. for all good men,

As another example, to convert:

Now is the time.

into:

Now is the time?

as you did earlier, you can use:

Version D of 15 May 1985 4-27

Using the ed Line Editor Editing and Text Processing

s/.S/?/p
Now is the time?

Like '. ', the $ has multiple meanings depending on context. In the line:

$&/$/$/

the first $ refers to the last line of the file, the second refers to the end of that line, and the
third is a literal dollar sign, to he added to that line.

4,5.4, Specifying the Beginning of the Line - the Circumflex -

The circumflex - signifies the beginning of a line. Thus:

/Aetring/
string

finds 'string' only if it is at the beginning of a line, but not:

the string ...

You can also use - to insert something at the beginning of a line. J:'or example, to place a space
at the beginning of the current line, type:

8/A/ /

You can combine metacharacters. To search for a line that contains only the characters . PP by
typing:

4,5.5. Matching Anything - the Star *

Suppose you have a line that looks like this:

text x y text

where text stands for lots of text, and there are some indeterminate number of spaces between
the 'x' and the 'y'. Suppose the job is to replace all the spaces between 'x' and 'y' by a single
space. The line is too long to retype, and there are too many spaces to count. What now?

This is where the metacharacter * comes in handy. A character followed by a star stands for as
many consecutive occurrences of that character as possible. To refer to all the spaces at once,
say:

s/x •y/x y/

The construction * means 'as many spaces as possible'. Thus x *y means 'an x, as many
spaces as possible, then a y'.

You can use the star with any character, not just the space. If the original example was instead:

text x--------y text

0

0

then you can replace all - signs by a single space with the command: o
4-28 Version D of 15 May 1985

0

0

0

Editing and Text Processing Using the ed Line Editor

s/x-•y/x y/

Finally, suppose that the line was:

text x y text

Can you see what trap lies in wait for the unwary? What will happen if you blindly type:

s/x.•y/x y/

The answer, naturally, is that it depends. If there are no other x's or y's on the line, then every­
thing works, but it's blind luck, not good management. Remember that'.' matches any single
character. Then '. *' matches as many single characters as possible, and unless you're careful, it
can eat up a lot more of the line than you expected. If the line was, for example, like this:

text x text x y text y text

then saying:

s/x.•y/x y/

takes everything from the first 'x' to the laat 'y'. In this example, this is more than you wanted.

The solution, of course, is to turn off the special meaning of'.' with
\.:

s/x,.•y/x y/

Now everything works, for \. * means 'as many periods as possible'.

The dot is useful in conjunction with *, a repetition cha.racter; a* is a shorthand for 'any
number of 'a' s', so • * matches any number of anythings. Use this like:

a/.•/atuff/

which changes an entire line, or:

nl.•,II

which deletes all characters in the line up to and including the last comma. Since * finds the
longest possible match, this goes up to the last comma.

There are times when the pattern . * is exactly what you want. For example, use:

Now ls the time for al 1 good men
s/ for. •I .Ip
Now is the time.

The • * replaces all of the characters from the space before the word 'for' with a dot. The
string 'Now is the time.' is the result in this example.

There are a couple of additional pitfalls associated with * that you should be aware of. First
note that 'as many as possible' means zero or more. The fact that zero is a legitimate possibility
is sometimes rather surprising. For example, if your line contained:

text xy text x

and you said:

s/x •y/x y/

y text

the firat 'xy' matches this pattern, for it consists of an 'x', zero spaces, and a 'y'. The result is
that the substitute acts on the first 'xy', and does not touch the later one that actually contains
some intervening spaces.

Version D of 15 May 1985 4-29

Using the ed Line Editor Editing and Text Processing

The way around this, if it matters, is to specify a pattern like:

/xllll•y/

where ~ represents a blank. This describes 'an x, a space, then as many more spaces as possible,
then a y', in other words, one or more spaces.

The other startling behavior of * is again related to the fact that zero is a legitimate number of
occurrences of something followed by a star. The following command does not produce what was
intended:

abcdef
s/x•/y/g
p
yaybycydyeyfy

The reason for this behavior again, is that zero is a legal number of matches, and there are no
x's at the beginning of the line (so that gets converted into a 'y'), nor between the 'a' and the 'b'
(so that gets converted into a 'y'), nor ... and so on. Make sure you really want zero matches; if
not, in this case write:

s/xx•/y/g

xx* is 'one or more 'x's'.

4-5. 6. Character Classes - Brackets []

The [and] brackets form 'character classes'. Any characters can appear within a character

0

class, and just to confuse the issue, there are essentially no special characters inside the brackets; o
even the backslash doesn't have a special meaning. For example, to match any single digit, use:

/(0123456789)/

Any one of the characters inside the braces will cause a match. It is a nuisance to have to spell
out the digits, so you can abbreviate them as [0-9]. Similarly, [a-z] stands for the lower-case
letters, and [A-Z] for upper case.

Suppose that you want to delete any numbers that appear at the beginning of all lines of a file.
You might first think of trying a series of commands like:

1,$8/A1•//
1,$8/A2•//
1,$s/A3•//

and so on, but this is clearly going to take forever if the numbers are at all long. Unless you
want to repeat the commands over and over until all numbers are gone, you must get all the
digits on one pass. This is the purpose of the brackets [and] .

Another example: To match zero or more digits (an entire number), and to delete all digits from
the beginning of all lines, type:

1,$s/A(0123456789]•//

To search for special characters, for example, you can say:

/[.\$A[]/

Within [...] , the [is not special. To get a] into a character class, make it the first charac­
ter.

4-30 Version D of 15 May 1985

0

0

Editing and Text Processing Using the ed Line Editor

As a final frill on character classes, you can specify a class that means 'none of the following
characters'. To do this, begin the class with a caret (-) to stand for 'any character except a
digit':

[-0-9]

Thus you might find the first line that does not begin with a tab or space by a search like:

1-c-cspace)(tab)]/

Within a character class, the circumflex has a special meaning only if it occurs at the beginning.
Just to convince yourself, verify that to find a line that doesn't begin with a circumflex, you
type:

/"[""]/

4.6. Cutting and Pasting with the Editor

ed has commands for manipulating individual lines or groups of lines in files.

4.6.1. Moving Lines Around

There are several ways to move text around in a file.

Q 4.6.2. Moving Text Around - the Move Command m

0

Use the move command m for cutting and pasting - you can move a group of lines from one
place to another in the buffer. Suppose you want to put the first three lines of the buffer at the
end instead. You could do it by saying:

1,3w temp
$r temp
1,3d

This is the brute force way; that is, you write the paragraph into a temporary file, read in the
temporary file at the end, and then delete it from its current position. As another example, con­
sider:

.,1-,.PP/-w temp

. ,ll-d •r temp

That is, from where you are now('.') until one line before the next .PP (!-\.PP/-), write into
temp. Then delete the same lines. Finally, read in temp at the end.

But you can do it a lot easier with m, so you can do a whole operation at one crack.

1,3m•

The general case is:

start tine, end tine m after thi• tine

Notice that there is a third line to be specified - the place where the moved stuff gets put.

Version D of 15 May 1985 4-31

Using the ed Line Editor

If you try:

1,Sm3
?

ed reminds you that you can't do this.

Editing and Text Processing

The m command is like many other ed commands in that it takes up to two line numbers in
front that tell what lines are to be moved. It is also followed by a line number that tells where
the lines are to go. Thus:

linel, /ine2 m lines

says to move all the lines between 'line!' and 'line2' after 'line3'. Naturally, any of 'line!' etc.,
can be patterns between slashes, dollar signs, or other ways to specify lines.

Of course you can specify the lines to be moved by context searches; if you had:

First paragraph

end of first paragraph.
Second paragraph

end of second paragraph.

you could reverse the two paragraphs like this:

/Second/,/end of second/m/First/-1

0

Notice the -1: the moved text goes after the line mentioned. Dot gets set to the last line
moved. Suppose you want to move a paragraph from its present position in a paper to the end.
How would you do it? As a hint, suppose each paragraph in the paper begins with the formatting 0
command . PP. Think about it and write down the details before reading on.

Suppose again that you're sitting at the first line of the paragraph. Then you can say:

. ,IA\. PP/-mS

That's all.

As another example of a frequent operation, you can reverse the order of two adjacent lines by
moving the first one after the second. Suppose that you are positioned at the first. Then, to
move line dot to one line after line dot, type:

m+

If you are positioned on the second line, and want to do the reverse, type:

m--

As you can see, m is more succinct and direct than writing, deleting and re-reading. When is
brute force better? This is a matter of personal taste - do what you have most confidence in.
The main difficulty with m is that if you use patterns to specify both the lines you are moving
and the target, you have to take care that you specify them properly, or you may well not move
the lines yoti thought you did. The result of a botched m command can be a mess. Doing the
job a step at a time makes it easier for you to verify at each step that you accomplished what
you wanted to. It's also a good idea to use a v command before doing anything complicated;
then if you goof, it's easy to back up to where you were.

4-32 Version D of 15 May 1985

0

0

0

0

Editing and Text Processing Using the ed Line Editor

4, 6.3. Substituting Newlines

You can split a single line into two or more shorter lines by 'substituting in a newline'. As the
simplest example, suppose a line has gotten unmanageably long because of editing or merely
because it was unwisely typed. If it looks like:

text xy text

you can break it between the 'x' and the 'y' like this:

s/xy/x,
y/

This is actually a single command, although it is typed on two lines. Bearing in mind that ' \'
turns off special meanings, it seems relatively intuitive that a' \' at the end of a line would make
the newline there no longer special.

You can in fact make a single line into several lines with this same mechanism. As a large exam­
ple, consider underlining the word 'very' in a long line by splitting 'very' onto a separate line,
and preceding it by the nroff formatting command . ul.

text a very big text

To convert the line into four shorter lines, preceding the word 'very' by the line . ul, and elim­
inating the spaces around the 'very', all at the same time, type:

a/ very/\
.ul\
very\
/

When a newline is substituted in, dot is left pointing at the last line created.

,S.6.4, Joining Lines - the Join Command j

You may also join lines together, but use the join command j for this instead of s. Given the
lines:

Now is
the time

and supposing that dot is set to the first of them, then the command:

j

JO!Ils them together. No blanks are added, which is why we carefully showed a blank at the
beginning of the second line.

All by itself, a j command joins line dot to line dot+l, but any contiguous set of lines can be
joined. Just specify the starting and ending line numbers. For example:

1,.jp

joins all the lines into one big one and displays it.

Version D of 15 May 1985 4-33

Using the ed Line Editor Editing and Text Processing

4-6.5. Rearranging a Line with \ (... \)

Skip this section if this is the first time you're reading this chapter. Recall that & stands for
whatever was matched by the left side of an s command. In much the same way you can cap­
ture separate pieces of what was matched; the only difference is that you have to specify on the
left side just what pieces you're interested in.

Suppose, for instance, that you have a file of lines that consist of names in the form:

Smith, A. B.
Jones, C.

and so on, and you want the initials to precede the name, as in:

A. B. Smith
C. Jones

It is possible to do this with a series of editing commands, but it is tedious and error-prone. (It is
instructive to figure out how it is done, though.)

The alternative is to 'tag' the pieces of the pattern, in this case, the last name, and the initials,
and then rearrange the pieces. On the left side of a substitution, if part of the pattern is
enclosed between \(and \), whatever matched that part is remembered, and available for use on
the right side. On the right side, the symbol \1 refers to whatever matched the first \(... \)
pair, \2 to the second\(... \), and so on.

The command:

1,$sl"\([A,]*\), *\(,*\)/\2 \1/

0

although hard to read, does the job. The first\(... \) matches the last name, which is any string o·
up to the comma; this is referred to on the right side with \1. The second \(.. .\) is whatever
follows the comma and any spaces, and is referred to as ' \2'.

Of course, with any editing sequence this complicated, it's foolhardy to simply run it and hope.
The global commands g and v provide a way for you to display exactly those lines which were
affected by the substitute command, and thus verify that it did what you wanted in all cases.

,f.6.6. },larking a Line - the Mark Command k

You can ma.rk a line with a particular name so you can refer to it later by name, regardless of its
actual line number. This can be handy for moving lines, and for keeping track of them as they
move. The mark command is k. To mark the current line with the name x, use:

kx

If a line number precedes the Jc, that line is marked. The mark name must be a single lower­
case letter. Now you can refer to the marked line with the address:

'x

Marks are most useful for moving things around. Find the first line of the block to be moved,
and mark it with 1a. Then find the last line and mark it with 'b. Now position yourself at the
place where the stuff is to go and say:

, a, 'bm..

4-34 Version D of 15 May 1985

0

0

0

0

Editing and Text Processing Using the ed Line Editor

Bear in mind that only one line can have a particular mark name associated with it at any given
time.

4-6. 7. Copying Lines - the Transfer Command t

We mentioned earlier the idea of saving a line that was hard to type or used often, to cut down
on typing time. Of course this can be more than one line, in which case the saving is presumably
even greater.

ed provides another command, called t (tran•fer) for making a copy of a group of one or more
lines at any point. This is often easier than writing and reading.

The t command is identical to m, except that instead of moving lines, it simply duplicates them
at the place you named. Thus, to duplicate the entire contents that you are editing, use:

1,$tS

A more common use for t is for creating a series of lines that differ only slightly. For example,
you can say:

a

t.
s/x/y/

t.
s/y/z/

and so on.

X

(make a copy)
(change it a bit}
(make third copy)

(change it a bit}

(long line)

4. 7. Escaping to the Shell with !

Sometimes it is convenient to be able to temporarily escape from the editor to use some Shell
command without leaving the editor. Use the ! (escape) command to do this.

To suspend your current editing state and execute the shell command you asked for, type:

I any shell command
I

When the command finishes, ed will signal you by displaying another ! ; at that point, you can
resume editing.

You can really do any shell command, including another ed. This is quite common, in fact. In
this case, you can even do another ! .

4.8. Supporting Tools

There are several tools and techniques that go along with the editor, all of which are relatively
easy once you know how ed works, because they are all based on the editor. This section gives
some fairly cursory examples of these tools, more to indicate their existence than to provide a
complete tutorial. For more information on each, refer to the Command• Reference Manual for
the Sun Work,tation.

Version D of 15 May 1985 4-35

Using the ed Line Editor Editing and Text Processing

,4.8.1. Editing Scripts

If you have a fairly complicated set of editing operations to do on a whole set of files, the easiest
thing to do is to make up a 'script', that is, a file that contains the operations you want to per­
form, and then apply this script to each file in turn.

For example, suppose you want to change every 'SUN' to 'Sun' and every 'SYSTEM' to 'System'
in a large number of files. Then put into a file, which we'll call change,, the lines:

g/Slll'l/s//Sun/g
g/SYSTEM/s//System/g
V

q

Now you can say:

hostname% ed file1 <script
hostname% ed file2 <script

This causes ed to take its commands from the prepared script called change,. Notice that you
have to plan the whole job in advance.

And of course by using the Sun UNIXt command interpreter, the shell, you can cycle through a
set of files automatically, with varying degrees of ease.

,4.8.2. Matching Patterns with grep

Sometimes you want to find all occurrences of some word or pattern in a set of files, to edit them
or perhaps just to verify their presence or absence. You can edit each file separately and look
for the pattern of interest, but if there are many files, this can get very tedious, and if the files
are really big, it may be impossible because of limits in ed.

The program grep gets around these limitations. The search patterns that are described in this
chapter are often called 'regular expressions', and 'grep' stands for 'general regular expression,
print.' That describes exactly what grep does - it displays every line in a set of files that con­
tains a particular pattern. Thus, to find 'thing' wherever it occurs in any of the files file1, file2,
etc., type:

hostname% grep 'thing' file1 file2 file3
hostname%

grep also indicates the file in which the line was found, so you can later edit it if you like.

The pattern represented by 'thing' can be any pattern you can use in the editor, since grep
and ed use exactly the same mechanism for pattern searching. It is wisest always to enclose the
pattern in the single quotes 1 ••• 1 if it contains any non-alphabetic characters, since many such
characters also mean something special to the Sun UNIX command interpreter, the shell. If you
don't quote them, the command interpreter will try to interpret them before grep gets a
chance.

There is also a way to find lines that do not contain a pattern:

ig t UNIX is a trademark oC Bell Laboratories.

4-36 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Using the ed Line Editor

hostname% grep -v 'thing' file1 file2
hostname%

finds all lines that don't contain 'thing'. The -v must occur in the position shown. Given grep
and grep -v, it is possible to do things like selecting a.II lines that contain some combination of
patterns. For example, to get all lines that contain 'x' but not 'y', use:

hostname% grep x file,,,
hostname%

grep -v y

The notation J is a 'pipe', which causes the output of the first command to be used as input to
the second command; see the Beginner's Guide to the Sun Workstation for an introduction to
'piping.' See the Command, Reference Manual for the Sun Workatation for details on grep.

4.9. Summary of Commands and Line Numbers

The general form of ed commands is the command name, perhaps preceded by one or two line
numbers, and, in the case of e, r, and w, followed by a filename. Only one command is
allowed per line, but a p command may follow any other command, except for e, r, wand q.

a

C

d

e

f

g

i

m

p

q

r

Append, that is, add lines to the buffer at line dot, unless a different line is specified.
Type a '.' on a new line to terminate appending. Dot is set to the last line appended.

Change the specified lines to the new text that follows. Type a '.' as with a to ter­
minate the change. If no lines are specified, replace line dot. Dot is set to last line
changed.

Delete the lines specified. If none is specified, delete line dot. Dot is set to the first
undeleted line, unless '$' is deleted, in which case dot is set to '$'.

Edit new file. Any previous contents of the buffer are thrown away, so use a w

beforehand.

Print remembered filename. If a name follows f the remembered name will be set to
it.

The command:

g/---/ commands

executes the commands on those lines that contain ' --- ', which can be any context
search expression.

Insert lines before specified line (or dot) until a'.' is typed on a new line. Dot is set
to last line inserted.

Move lines specified to after the line named after m. Dot is set to the last line
moved.

Display specified lines. If none is specified, display line dot. A single line number is
equivalent to line-number p. Type a single RETURN to show • +l, the next line.

Quit ed. This wipes out all text in buffer if you give it twice in a row without first
giving a w command.

Read a file into the buffer at the end unless an address is specified. Dot is set to the
last line read.

Version D of 15 May 1985 4-37

Using the ed Line Editor Editing and Text Processing

s

V

W'

The command:

s/string1/string2/

substitutes the characters 'string2' into 'stringl' in the specified lines. If no lines are
specified, make the substitution in line dot. Dot is set to last line in which a substitu­
tion took place, which means that if no substitution took place, dot is not changed.
An s changes only the first occurrence of 'stringl' on a line; to change all of them,
type a g after the final slash.

The command:

vi---/ commands

executes commands on those lines that do not contain' --- '.

Write out buffer into a file. Dot is not changed.

= Show value of dot (current line number). An = by itself shows the value of '$.'
(riumber of the last line in the buffer).

The line:

I commond

executes command as a Sun UNIX shell command.

/-----/ Context search. Search for next line that contains this string of characters and
display it. Dot is set to the line where string was found. Search starts at '.+l',
wraps around from '$' to 1, and continues to dot, if necessary.

?-----? Context search in reverse direction. Start search at '.-1', scan to 1, wrap around to
'$.'.

4-38 Version D of 15 May 1985

0

0

0

0 Chapter 5

0

0

Using sed, the Stream Text Editor

This chapter20 describes sed, the non-interactive context or ,tream editor. Use sed for edit­
ing files too large for comfortable interactive editing, editing any size file when the sequence of
editing commands is too complicated to be comfortably typed in interactive mode, and perform­
ing multiple global editing functions efficiently in one pass through the input. Because the
default mode is to apply edit commands globally, and because its output is to the standard out­
put, your workstation or terminal screen, sed is good for making changes of a transient nature,
rather than permanent modifications to a file.

You can create a complicated editing script separately and use it as a command file. For complex
edits, this saves considerable typing, and its attendant errors. Running sed from a command
file is much more efficient than any interactive editor even if that editor can be driven by a pre­
written script.

Whereas the ed editor copies your original file into a buffer, sed does not use temporary files
so you can edit any size file. The only space requirement is that the input and output fit simul­
taneously into the available second storage. Additionally, ed lets you explore the text in what­
ever order you want, while sed works on your file from beginning to end, and allows you no
choice of edit commands once you have started it. Basically sed passes some data through a set
of transformations called editor function,.

By default sed copies the standard input to the standard output, perhaps performing one or
more editing commands on each line before writing it to the output. You can modify this
behavior by adding a command-line option; see the "Command Options" section below.

As a lineal descendant of the ed editor, sed recognizes basically the same regular expressions
as ed. The range of pattern matches is called the pattern space. Ordinarily, the pattern space
is one line of text, but you can read more than one line into the pattern space if necessary. But
because of the differences between interactive and non-interactive operation, ed and sed are
different enough that even experienced ed users should read this chapter. You cannot use rela­
tive addressing with sed as you can with an interactive editor because sed operates a line at a
time. sed also does not give you any immediate verification that a command has done what
was intended.

Refer to the chapter on "Using the ed Line Editor" for more information on ed and to the
descriptions of sed and ed in the Commands Reference Manual for the Sun Workstation.

20 The material in this chapter is derived from Sed - a Non-Interactitie Tezt Editor, L.E. McMahon,
Bell Laboratories, Murray Hill, New Jersey.

Version D of 15 May 1985 5-1

Using sed, the Stream Text Editor Editing and Text Processing

5.1. Using sed

The general format of an editing command is:

hostname% sed [line1[,line2JJ function [arguments[

There is an optional line address, or two line addresses separated by a comma, a single-letter edit
function, followed by other arguments, which may be required or optional, depending on which
function you use. See the section "Specifying Lines for Editing" for the format of line addresses.
Any number of blanks or tabs may separate the line addresses from the function. sed ignores
tab characters and spaces at the beginning of lines. The function must be present; the available
commands are discussed in the "Functions" section under each individual function name. You
can either put the edit commands on the sed command line or put the commands in a file,
which is then applied to the file you want to edit. If the commands are few and simple, put
them on the sed command line. For example, assume the following input text in a file called
kubla:

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

Let's copy the first two lines of input as a simple example:

hostname% sed 2q kubla
In Xanadu did Kubla Khan
A stately pleasure dome decree:

As another example, suppose that you want to change the 'Khan' to 'KHAN.' Then the com­
mand:

hostname% sed e/lOlan/lCHAN/g kubla

applies the command 's/Khan/KAN /' to all lines from kubla and copies all lines to the standard
output. The advantage of using sed in such a case is that you can use it with input too large
for ed to handle. All the output can be collected in one place, either in a file or perhaps piped
into another program.

If the editing transformation is so complicated that more than one editing command is needed,
commands can be supplied from a file or on the command line with a slightly more complex syn­
tax. To take commands from a file, for example:

hostname% eed -f cmdfi/e input-files ...

5.1.1. Command Options

sed has three options that modify sed's action. If you invoke sed with the - f (file) option,
the edit commands are taken from a file. For example:

hostname% eed -f edcomde oldfile > newfile
hostname%

The name of the file containing the edit commands must immediately follow the -f option.
Here, the edit commands in the edcomda file are applied to the file oldfile, and the standard out­
put is redirected to newfile.

5-2 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Using sed, the Stream Text Editor

You use the -e (edit) option to place editing commands directly on the sed command line. If
you are only using one edit command, you can omit the -e, but we include it in the example
below for instructive purposes. For example, to delete a line containing the string 'Khan' from
lrnbla, you type:

hostname% sed -e /Khan.Id kubla > newkubla
hostname%

If you put more than one edit command on the sed command line, each one must be preceded
by -e. For example:

hostname% sed -e /Jehan/d -ea/decree/DECREE/ newkubla
hostname%

You can also use both the -e and the -r options at the same time.

sed normally copies all input lines that are changed by the edit operation to the output. If you
want to suppress this normal output, and have only specific lines appear on the output, use the
-n option with the p (print) flag. For example:

hostname% sed -n -e s/to/by/p kubla
Through caverns measureless by man
Down by a sunless sea.
hostname%

As a quick reference, these options are:

-f Use the next argument as a filename; the file should contain one editing command to
a line.

-e Use the next argument as an editing command.

-n Send only those lines to the output specified by p functions or p functions after
substitute functions (see the "Input-Output Functions" section).

5.2. Editing Commands Application Order

Before any editing is done (in fact, before any input file is even opened), all the editing com­
mands are compiled into a moderately efficient form for execution when the commands are actu­
ally applied to lines of the input file. The commands are compiled in the order in which they are
encountered; this is generally the order in which they will be attempted at execution time. The
commands are applied one at a time; the input to each command is the output of all preceding
commands.

You can change the default linear order of application of editing commands by the flow-of­
control commands, t and b (see the "Flow-of-Control Functions" section). Even when you
change the order of application by these commands, it is still true that the input line to any
command is the output of any previously applied command.

5.3. Specifying Lines for Editing

Use addresses to select lines in the input file(s) to apply the editing commands to. Addresses
may be either line numbers or context addresses.

Version D of 15 May 1985 5-3

Using sed, the Stream Text Editor Editing and Text Processing

Group one address or address-pair with curly braces '{ }' to control the application of a group of
commands. See the "Flow-of-Control Functions" section for more on this.

5.9.1. Line-number Addresses

A line number is a decimal integer. As each line is read from the input, a line-number counter is
incremented; a line-number address matches or 'selects' the input line which causes the internal
counter to equal the address line-number. The counter runs cumulatively through multiple input
files; it is not reset when a new input file is opened.

As a special case, the character $ matches the last line of the last input file.

5.9.2. Context Addresses

A context address is a pattern or regular expression enclosed in slashes (/). sed recognizes the
regular expressions that are constructed as follows:

ordinary character

$

An ordinary character (not one of those discussed below) is a regular expression, and
matches that character.

A circumflex ' at the beginning of a regular expression matches the null character at
the beginning of a line.

A dollar-sign $ at the end of a regular expression matches the null character at the
end of a line.

\n The characters backslash and en \n match an embedded newline character, but not
the newline at the end of the pattern space.

*

A period . matches any character except the terminal newline of the pattern space.

A regular expression followed by an asterisk '*' matches any number (including 0) of
adjacent occurrences of the regular expression it follows.

[character string]
A string of characters in square brackets [] matches any character in the string,
and no others. If, however, the first character of the string is a circumflex ', the
regular expression matches any character except the characters in the string and the
terminal newline of the pattern space.

concatenation

\ (\)

\d

5-4

A concatenation of regular expressions is a regular expression v, hich matches the con­
catenation of strings matched by the components of the regular expression.

A regular expression between the sequences \ (and \) is identical in effect to the
unadorned regular expression, but has side-effects which are described in the section
entitled "The Substitute Function s" and immediately below.

This stands for the same string of characters matched by an expression enclosed in
\ (and \) earlier in the same pattern. Here d is a single digit; the string specified is
that beginning with the dth occurrence of \ (counting from the left. For example,
the expression -\ (. *\) \1 matches a line beginning with two repeated occurrences
of the same string.

Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Using sed, the Stream Text Editor

null The null regular expression standing alone (such as, //) is equivalent to the last reg-
ular expression compiled.

To use one of the special characters (- $ * [] \ /) as a literal, that is, to match an
occurrence of itself in the input, precede the special character by a backslash \.

For a context address to 'match' the input requires that the whole pattern within the address
match some portion of the pattern space.

5.3.3. Number of Addresses

The commands described in the "Functions" section can have 0, 1, or 2 addresses. Specifying
more than the maximum number of addresses allowed is an error. If a command has no
addresses, it is applied to every line in the input. If a command has one address, it is applied to
all lines that match that address. If a command has two addresses, it is applied to the inclusive
range defined by those two addresses.

The command is applied to the first line that matches the first address, and to all subsequent
lines until and including the first subsequent line which matches the second address. Then an
attempt is made on subsequent lines to again match the first address, and the process is
repeated. A comma separates two addresses.

For example:

/an/ matches lines 1, 9, 4 in our sample kubla file
In Xanadu did Kubla Khan
Where Alph, the sacred river, ran
Through caverns measureless to man

/an.•an/ matches line 1
In Xanadu did Kubla Khan

matches no lines

/./ matches all lines
In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

/',./ matches line 5
Down to a sunless sea.

/r•an/ matches lines 1,9, 4 {number = zero!}
In Xanadu did Kubla Khan
Where Alph, the sacred river, ran
Through caverns measureless to man

matches line 1
In Xanadu did Kubla Khan

Version D of 15 May 1985 5-5

Using sed, the Stream Text Editor Editing and Text Processing

5.4. Functions

All functions are named by a single character. In the following summary, the maximum number
of allowable addresses is enclosed in parentheses, followed by the single character function name
and possible arguments in italics. The summary provides an expanded English translation of the
single-character name, and a description of what each function does.

5.4-1. Whole Line Oriented Functions

The functions that operate on a whole line of input text are as follows:

{2} d

(2) n

(1) a\
text

{1} i\

Delete lines. The d function deletes from the file all those lines matched by its
address(es); that is, it does not write the indicated lines to the output, No further
commands are attempted on a deleted line; as soon as the d function is executed, a
new line is read from the input, and the list of editing commands is re-started from
the beginning on the new line.

Next line. The n function reads the next line from the input, replacing the current
line. The current line is written to the output if it should be. The list of editing
commands is continued following the n command.

Append lines. The a function writes the argument text to the output after the line
matched by its address. The a function is inherently multi-line; a must appear at
the end of a line, and text may contain any number of lines. To preserve the one
command to a line, the interior newlines must be hidden by a backslash character(\)
immediately preceding the newline. The text argument is terminated by the first
unhidden newline (the first one not immediately preceded by backslash). Once an a
function is successfully executed, text will be written to the output regardless of what
later commands do to the line that triggered it. The triggering line may be deleted
entirely; text will still be written to the output. The text is not scanned for address
matches, and no editing commands are attempted on it. It does not change the line­
number counter.

text Insert lines. The i function behaves identically to the a function, except that text
is written to the output before the matched line. All other comments about the a
function apply to the i function as well.

{2} c\
text Change lines. The c function deletes the lines selected by its address(es), and

replaces them with the lines in tezt. Like a and i, put a newline hidden by a
backslash after c; interior new lines in text must also be hidden by backslashes. The
c function may have two addresses, and therefore select a range of lines. If it does,
all the lines in the range are deleted, but only one copy of text is written to the out­
put, not one copy per line deleted. As with a and i, text is not scanned for address
matches, and no editing commands are attempted on it. It does not change the
line-number counter.

No further commands are attempted on a line deleted by a c function.

5-6 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Using sed, the Stream Text Editor

If text is appended after a line by a or r functions, and the line is subsequently
changed, the text inserted by the c function will be placed before the text of the a
or r functions. See the section "Multiple Input-line Functions" later in this chapter
for a description of the r function.

Note: Leading blanks and tabs are not displayed in the output produced by these functions. To
get leading blanks and tabs into the output, precede the first desired blank or tab by a
backslash; the backslash does not appear in the output.

For example, put the following list of editing commands in a file called Xkub/a:

hostname% cat> Xkubla
n
a\
xxxx
d
AD

hostname% aed -f Xkubla kubla
In Xanadu did Kubla Khan
xxxx
Where Alph, the sacred river, ran
xxxx
Down to a sunless sea.
hostname%

In this particular case, the same effect would be produced by either of the two following com­
mand lists:

or

5.4,2. The Substitute Function s

The s (substitute) function changes parts of lines selected by a context search within the line.
The standard format is the same as the ed substitute command:

{2} a pattern replacement flags

The s function replaces part of a line, selected by pattern, with replacement. It can best be
read 'Substitute for pattern, replacement.'

The pattern argument contains a pattern, exactly like the patterns described in the "Specifying
Lines for Editing" section. The only difference between pattern and a context address is that the
context address must be delimited by slash (/) characters; you can delimit pattern by any char­
acter other than space or newline.

By default, only the first string matched by pattern is replaced. See the g flag below.

Version D of 15 May 1985 5.7

Using sad, the Stream Text Editor Editing and Text Processing

The replacement argument begins immediately after the second delimiting character of pattern,
and must be followed immediately by another instance of the delimiting character. Thus there
are exactly three instances of the delimiting character.

The replacement is not a pattern, and the characters which are special in patterns do not have
special meaning in replacement. Instead, other characters are special:

& Is replaced by the string matched by pattern.

\ d ls replaced by the dth substring matched by parts of pattern enclosed in \ (and \)
where d is a single digit. If nested substrings occur in pattern, the dth is determined
by counting opening delimiters ('\(').

As in patterns, you can make the special characters (&, +, and \) literal by preceding them
with a backslash (\).

The flag• argument may contain the following flags:

g Substitute replacement for all (non-overlapping) instances of pattern in the line.
After a successful substitution, the scan for the next instance of pattern begins just
after the end of the inserted characters; characters put into the line from replace­
ment are not rescanned.

p Print or 'display' the line if a successful replacement was done. The p flag writes
the line to the output if and only if a substitution was actually made by the s func­
tion. Notice that if several s functions, each followed by a p flag, successfully sub­
stitute in the same input line, multiple copies of the line will be written to the out­
put: one for each successful substitution.

w filename
Write the line to a file if a successful replacement was done. The w flag writes lines
which are actually substituted by the s function to a file named by filename. If
filename exists before sed is run, it is overwritten; if not, it is created. A single
space must separate w and filename. The possibilities of multiple, somewhat
different copies of one input line being written are the same as for p. You can
specify a maximum of 10 different filenames after w flags and w functions (see
below), combined.

For example, applying the following command to the the kubla file produces on the standard out­
put:

hostname% sed -e "s/to/by/w changes• kubla
In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

Note that if the edit command contains spaces, you must enclose it with quotes.

It also creates a new file called change, that contains only the lines changed as you can see using
the more command:

5-8

hostname% more changes
Through caverns measureless by man
Down by a sunless sea.
hostname%

Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Using sed, the Stream Text Editor

If the nocopy option -n is in effect, you see those lines that are changed:

hostname% sed -e "s/[.,;?:]/•P&•/gp• -n kubla
A stately pleasure dome decree*P:*
Where Alph*P,* the sacred river*P,* ran
Down to a sunless sea*P.*
hostname%

Finally, to illustrate the effect of the g flag assuming nocopy mode, consider: LS hostname%
sed -e "/X/s/an/AN/p" -n kubla In XANadu did Kubla Khan hostname%

and the command:

hostname% eed -e "/X/s/an/AN/gp• -n kubla
In XANadu did Kubla KhAN
hostname%

5.4-s. Input-output Functions

The following functions affect the input and output of text. The maximum number of allowable
addresses is in parentheses.

(2) p Print. The print function writes the addressed lines to the standard output file.
They are written at the time the p function is encountered, regardless of what
succeeding editing commands may do to the lines.

(2) w filename
Write to filename. The write function writes the addressed lines to the file named by
filename. If the file previously existed, it is overwritten; if not, it is created. The
lines are written exactly as they exist when the write function is encountered for
each line, regardless of what subsequent editing commands may do to them. Put
only one space between w and filename. You can use a maximum of ten different
files in write functions and with w flags after s functions, combined.

(1) r filename
Read the contents of a file. The read function reads the contents of filename, and
appends them after the line matched by the address. The file is read and appended
regardless of what subsequent editing commands do to the line which matched its
address. If you execute r and a functions on the same line, the text from the a
functions and the r functions is written to the output in the order that the functions
are executed. Put only one space between the r and filename. If a file mentioned
by a r function cannot be opened, it is considered a null file, not an error, and no
diagnostic is displayed.

Note: Since there is a limit to the number of files that can be opened simultaneously, put no
more than ten files in w functions or flags; reduce that number by one if any r functions are
present. Only one read file is open at one time.

Assume that the file note1 has the following contents:

Note: Kubla Khan (more properly Kublai Khan; 1216-1294)
was the grandson and most eminent successor of Genghiz
(Chingiz) Khan, and founder of the Mongol dynasty in China.

Then the following command reads in note1 after the line containing 'Kubla':

Version D of 15 May 1985 5-9

Using sed, the Stream Text Edit,or Editing and Text Processing

hostname% aed -e "/~ubla/r note1" kubl&
In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan; 1216-1294)
was the grandson and most eminent successor of Genghiz
(Chingiz) Khan, and founder of the Mongol dynasty in China.

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

5.4-4- Multiple Input-line Functions

Three functions, all spelled with capital letters, deal specially with pattern apace• contammg
embedded newlines; they are intended principally to provide pattern matches across lines in the
input. A pattern space is the range of pattern matches. Ordinarily, the pattern space is one line
of the input text, but more than one line can be read into the pattern space by using the N func­
tion described below.

The maximum number of allowable addresses is enclosed in parentheses.

(2) N

(fJ) D

(fJ) p

Next line. The next input line is appended to the current line in the pattern space;
a.n embedded newline separates the two input lines. Pattern matches may extend
across the embedded newline(s).

Delete first part of the pattern space. Delete up to and including the first newline
character in the current pattern space. If the pattern space becomes empty (the only
newline was the terminal newline), read another line from the input. In any case,
begin the list of editing commands again from its beginning.

Print or 'display' first part of the pattern space. Print up to and including the first
newline in the pattern space.

The P and D functions are equivalent to their lower-case counterparts if there are no embedded
newlines in the pattern space.

5.4,5. Hold and Get Functions

Four functions save and retrieve part of the input for possible later use.

(fJ) h

(2) H

{2} g

(fJ) G

5-10

Hold pattern space. The h function copies the contents of the pattern space into a
hold area, destroying the previous contents of the hold area.

Hold pattern space. The H function appends the contents of the pattern space to
the contents of the hold area.; the former and new contents are separated by a new­
line.

Get contents of hold area. The g function copies the contents of the hold area into
the pattern space, destroying the previous contents of the pattern space.

Get contents of hold area. The G function appends the contents of the hold area to
the contents of the pattern space; the former and new contents are separated by a
newline.

Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Using sed, the Stream Text Editor

{2} X Exchange. The exchange command interchanges the contents of the pattern space
and the hold area.

For example, if you want to add : In Xanadu to our standard example, create a file
called teat containing the following commands:

1h
18/ did,•//
1x
G

s/m/ :/

Then run that file on the kubla file:

hostname% sed -f test lrubla
In Xanadu did Kubla Khan :In Xanadu
A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu
hostname%

5.4. 6. Flow-of-Control Functions

These functions do not edit the input lines, but control the application of functions to the lines
that are addressed.

{2}

{2} {

{OJ label

{2} b label

Called 'Don't', the '!' function applies the next command, written on the same line,
to all and only those input lines not selected by the address part.

Grouping. The grouping command '{' applies (or does not apply) the next set of
commands as a block to the input lines that the addresses of the grouping command
select. The first of the commands under control of the grouping command may
appear on the same line as the { or on the next line.

A matching } standing on a line by itself terminates the group of commands.
Groups can be nested.

Place a label. The label function marks a place in the list of editing commands which
may be referred to by b and t functions. The label may be any sequence of eight or
fewer characters; if two different colon functions have identical labels, a compile time
diagnostic will be generated, and no execution attempted.

Branch to label. The branch function restarts the sequence of editing commands
being applied to the current input line immediately after the place where a colon
function with the same label was encountered. If no colon function with the same
label can be found after all the editing commands have been compiled, a compile
time diagnostic is produced, and no execution is attempted.

A b function with no label is taken to be a branch to the end of the list of editing
commands. Whatever should be done with the current input line is done, and
another input line is read. The list of editing commands is restarted from the begin­
ning on the new line.

Version D of 15 May 1985 5-11

Using sed, the Stream Text Editor Editing and Text Processing

(2) t label
Test substitutions. The t function tests whether any successful substitutions have
been made on the current input line; if so, it branches to label; if not, it does nothing.
Either reading a new input line or executing a t function resets the flag which indi­
cates that a successful substitution has occurred.

5.4. 7. Miscellaneous Functions

Two additional functions are:

(1) =

(1) q

5-12

Equals. The = function writes to the standard output the line number of the line
matched by its address.

Quit. The q function writes the current line to the output if it should be, writes
any appended or read text, and terminates execution.

Version D of 15 May 1985

0

0

0

0

0

0

Chapter 6

Pattern Scanning and Processing with awk

awk is a utility program that you can program in varying degrees of complexity. awk's hasic
operation is to search a set of files for patterns based on aelection criteria, and to perform
specified actions on lines or groups of lines which contain those patterns. Selection criteria can
be text pat.t,erns or regular expression•. awk makes data selection, transformation operations,
information retrieval and text manipulation easy to state and to perform.

Basic awk operation is to scan a set of input lines in order, searching for lines which match any
of a set of patterns tha.t you have specified. You can specify an action to be performed on each
line that matches the pattern.

awk patterns may include arbitrary Boolean combinations of regular expressions and of relational
and arithmetic operators on strings, numbers, fields, variables, and array elements. Actions may
include the same pattern-matching constructions as in patterns, as well as arithmetic and string
expressions and assignments, if-else, while, for statements, and multiple output streams.

If you are familiar with the grep utility (see the Commands Reference Manual for the Sun
Workstation), you will recognize the approach, although in awk, the patterns may be more gen­
eral than in grep, and the actions allowed are more involved than merely displaying the match­
ing line.

As some simple examples to give you the idea, consider a short file called sample, which contains
some idcntifying numbers and system names:

125.1303
125.0x0733
125.1313
125.19

krypton loghost
window
core
haley

If you want to display the second and first columns of information in that order, use the awk
program:

hostname% awk '{print $2, $1}' sample
krypton 125.1303
window 125.0x0733
core 125.1313
haley 125.19

This is good for reversing columns of tabular material for example. The next program shows all
input lines with an a, b, or c in the second field.

20 The material in this chapter is derived from Awk - A Pattern Scanning and Proce6iing Language, A
Aho, B.W. Kernighan, P. Weinberger, Bell Laboratories, Murray Hil1, New Jersey.

Version D of 15 May 1985 6-1

Pattern Scanning and Processing with awk Editing and Text Processing

hostname% awk '$2 • /alblc/' sample
125.1313 core
125.19 haley

6.1. Using awk

The general format for using awk follows. You execute the awk commands m a string that
we 'II call program on the set of named file,:

hostname% awlt program files

For example, to display all input lines whose length exceeds 13 characters, use the program:

hostname% awk 'length> 13' sample
125.1303 krypton loghost
125.0x0733 window
hostname%

In the above example, the program compares the length of the ,ample file lines to the number 13
and displays lines longer than 13 cha.racters.

awk usually takes its program as the first argument. To take a program from a file instead, use
the -f (file) option. For example, you ean put the same statement in a file called howlong, and
execute it on sample with:

hostname% awlt -f howlong hosts
125.1303 krypton loghost
125.0x0733 window

You can also execute awk on the standard input if there are no files. Put single quot.es around
the awk program because the shell duplicates most of awk's special characters.

6.1.1. Program Structure

A program can consist of just an action to be performed on all lines in a file, as in the howlong
example above. It can also contain a pattern that specifies the lines for the action to operate on.
This pattern/action order is represented in awk notation by:

pattern {action}

In other words, each line of input is matched against each of the patterns in turn. For ea.ch pat­
tern that matches, the associated action is executed. When all the patterns have been tested,
the next line is fetched and the matching starts over.

Either the pattern or the action may be left out, but not both. If there is no action for a pat­
tern, the matching line is simply copied to the output. Thus a line which matches several pat­
terns can be printed several times. If there is no pattern for an action, the action is performed
on every input line. A line which doesn't match any pattern is ignored. Since patterns and
actions are both optional, you must enclose actions in braces ({action}) to distinguish them from
patterns. See more about patterns in the "Specifying Patterns" section later in this chapter.

6-2 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Pattern Scanning and Processing with avk

6.1.2. Records and Fields

awk input is divided into recorda terminated by a record aeparator. The default record separa­
tor is a newline, so by default awk processes its input a line at a time. The number of the
current record is available in a variable named NR.

Each input record is considered to be divided into fie/da. Fields are separated by field aepara­
tora, normally blanks or tabs, but you can change the input field separator, as described in the
"Field Variables" section later in this chapter. Fields are referred to as $Xwhere $1 is the first
field, $2 the second, and so on as shown above. $0 is the whole input record itself. Fields
may be assigned to. The number of fields in the current record is available in a variable named
NF.

The variables FS and RS refer to the input field and record separators; you can change them at
any time to any single character. You may also use the optional command-line argument -F c
to set FS to any character c.

If the record separator is empty, an empty input line 1s taken as the record separator, and
blanks, tabs and newlines are treated as field separators.

The variable FILENAME contains the name of the current input file.

6.2. Displaying Text

The simplest action is to display (or print) some or all of a record with the awk command
print. print copies the input to the output intact. An action without a pattern is executed
for all lines. To display each record of the ,ample file, use:

hostname% awk '{print}' sample
125.1303 krypton loghost
125.0x0733 window
125.1313 core
125.19 haley
hostname%

Remember to put single quotes around the awk program as we show here.

More useful than the above example is to print a field or fields from each record. For instance,
to display the first two fields in reverse order, type:

hostname% awk '{print ,2, $1}' sample
krypton 125.1303
window 125.0x0733
core 125.1313
hostname%

Items separated by a comma in the print statement are separated by the current output field
separator when output. Items not separated by commas are concatenated, so to run the first and
second fields together, type:

Version D of 15 May 1985 6-3

Pattern Scanning and Processing with awk

hostname% awk '{print $1 $2)' sample
125.1303krypton
125.0x0733window
125.1313core
125.19haley
hostname%

Editing and Text Processing

You can use the predefined variables NF and NR; for example, to print each record preceded by
the record number and the number of fields, use:

hostname% awk '{ print NR, IIIF, $0)' sample
1 3 125.1303 krypton loghost
2 2 125.0x0733 window
3 2 125.1313
4 2 125.19
hostname%

core
haley

You may divert output to multiple files; the program:

hostname% awk '{print $1 >"foo1"; print $2 >"foo2")' filename

writes the first field, $1, on the file fool, and the second field on file foo2. You can also use the
>> notation; to append the output to the file Joo for example, say:

hostname% awk '{print $1 >>"foo")' filename

In each case, the output files are created if necessary. The filename can be a variable or a field
as well as a constant. For example, to use the contents of field 2 as a filename, type:

hostname% awk '{print 11 >$2)' filename
hostn;irne%

This program prints the contents of field 1 of filename on field 2.
file, four new files are created. There is a limit of 10 output files.

If you run this on our aamp/e

Similarly, you can pipe output into another process. For instance, to mail the output of an awk
program to henry, use:

hostname% awk '{ print NR, IIIF, SO)' sample I mail henry

(See the Mail Ueer'a Guide in the Beginner's Guide to the Sun Workatation for details on mail.)

To change the current output field separator and output record separator, use the variables OFS

and ORS. The output record separator is appended to the output of the print statement.

awk also provides the printf statement for output formatting. To format the expressions in
the list according to the specification in format and print them, use:

printf format, expr, expr, ...

To print $1 as a floating point number eight digits wide, with two after the decimal point, and
$2 as a 10-digit long decimal number, followed by a newline, use:

hostname% awk '{printf(""8,2f "10ld\n",11,,2))' filename

Notice that you have to specifically insert spaces or tab characters by enclosing them in quoted
strings. Otherwise, the output appears all scrunched together. The version of printf is ident­
ical to that provided in the C Standard 1/0 library (see print/ in C Library Standard I/ 0 (3S) in
the Syatem Interface Manual for the Sun Workatation).

6-4 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Pattern Scanning and Processing with awk

6.3. Specifying Patterns

A pattern in front of an action acts as a selector that determines whether the action is to be exe­
cuted. You may use a variety of expressions as patterns: regular expressions, arithmetic rela­
tional expressions, string-valued expressions, and arbitrary Boolean combinations of these.

6.3.1. BEGIN and END

awk has two builtcin pattern;, BEGIN and END. BEGIN matches the beginning of the input, before
the first record is read. The pattern END matches the end of the input, after the last record has
been processed. BEGIN and END thus provide a way to gain control before and after processing,
for initialization and wrapup.

As an example, the field separator can be set to a colon by:

BEGIN { FS = ":"}
... rest of program ...

Or the input lines may be counted by:

END { print NR}

If s-2BEGIN is present, it must be the first pattern; s-2END must be the last if used.

6.3.2. Regular Expressions

The simplest regular expression is a literal string of characters enclosed in slashes, like

/smith/

This is actually a complete awk program which displays all lines which contain any occurrence
of the name 'smith'. If a line contains 'smith' as part of a larger word, it is also displayed. Sup­
pose you have a file teatfile that contains:

summertime
smith
blacksmithing
Smithsonian
hammersmith

If you use awk on it, the display is:

hostname% awk /smith/ testfile
smith
blacksmithing
hammersmith

awk regular expressions include the regular expression forms found in the text editor ed and in
grep (see the Commands Reference Manual for the Sun Workstation). In addition, awk uses
parentheses for grouping, I for alternatives, + for 'one or more', and ? for 'zero or one', all as
m lex. Character classes may be abbreviated. For example:

/[a-zA-Z0-9]/

is the set of all letters and digits. As an example, to display all lines which contain any of the
names 'Adams,' 'West' or 'Smith,' whether capitalized or not, use:

Version D of 15 May 1985 6-5

Pattern Scanning and Processing with awk Editing and Text Processing

'l[Aa)damsl [Ww]estl [Ss)mithl'

Enclose regular expressions (with the extensions listed above) in slashes, just as in ed and sed.

For example:

hostname% awk '/[Sa]mith/' teatfile
smith
blacksmithing
Smithsonian
hammersmith

finds both 'smith' and 'Smith'.

Within a regular expression, blanks and the regular expression metacharacters are significant.
To turn off the magic meaning of one of the regular expression characters, precede it with a
backslash. An example is the pattern

I\I. *\II
which matches any string of characters enclosed in slashes.

Use the operators • and ! ~ to find if any field or variable matches a regular expression (or does
not match it). The program

$1 • l[sS)mithl

displays all lines where the first field matches 'smith' or 'Smith.' Notice that this will also match
'blacksmithing', 'Smithsonian', and so on. To restrict it to exactly [sS]mith, use:

hostname% awk '$1 - /A[sS]mith$/' testfile
smith
hostname%

The caret - refers to the beginning of a line or field; the dollar sign $ refers to the end.

6.3.3. Relational Expressions

An awk pattern can be a relational expression involving the usual relational and arithmetic
operators <, <=, , !=, >=, and >, the same as those in C. An example is:

'$2 > $1 + 100'

which selects lines where the second field is at least 100 greater than the first field.

In relational tests, if neither operand is numeric, a string comparison is made; otherwise it ts
numeric. Thus,

hostname% awk '81 >• •a•' testfile
smith

selects lines that begin with an 's', 't', 'u', etc. In the absence of any other information, fields are
treated as strings, so the program

$1 > $2

performs a string comparison between field 1 and field 2.

6-6 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Pattern Scanning and Processing with awk

6.S.4- Combinations of Patterns

A pattern can be any Boolean combination of patterns, using the operators J J (or), && (and),
and (not). For example, to select lines where the first field begins with 's', but is not 'smith',
use:

hostname% awk '$1 >• •a• && S1 < •t• &&. $1 I• "smith"' testfile
summertime

&& and J J guarantee that their operands will be evaluated from left to right; evaluation stops as
soon as the truth or falsehood is determined.

The program:

$1 !=prev {print; prev=$1}

displays all lines in which the first field is different from the previous first field.

6.8.5. Pattern Ranges

The pattern that selects an action may also consist of two patterns separated by a comma, as in

pattern!, pattern2 { ... }

In this case, the action is performed for each line between an occurrence of patternt and the
next occurrence of pattern!J inclusive. For example, to display all lines between the strings 'sum'
and 'black', use:

while

hostname% awk '/sum/, /black/' testfile
summertime
smith
blacksmithing
hostname%

NR == 100, NR == 200 { ... }

does the action for lines 100 through 200 of the input.

6.4. Actions

An awk action is a sequence of action statements terminated by newlines or semicolons. These
action statements can be used to do a variety of bookkeeping and string manipulating tasks.

6.4-1. Assignments, Variables, and Expressions

The simplest action is an aaaignment. For example, you can assign l to the variable z:

X = 1

The 'l' is a simple expression. awk variables can take on numeric (floating point) or string
values according to context. In

X = 1

Version D of 15 May 1985 6-7

Pattern Scanning and Processing with awk

z is clearly a number, while in

x = "smith"

Editing and Text Processing

it 1s clearly a string. Strings are converted
demands it. For instance, to assign 7 to z, use:

to numbers and vice versa whenever context

X = "3" + "4"

Strings that cannot be interpreted as numbers in a numerical context will generally have
numeric value zero, but it is unwise to count on this behavior.

By default, variables other than built-ins are initialized to the null string, which has numerical
value zero; this eliminates the need for most BEGIN sections. For example, the sums of the first
two fields can be computed by:

{ sl += $1; s2 += $2}
END { print sl, s2}

Arithmetic is done internally in floating point. The arithmetic operators are +,

(mod). For example:

NF%2==0

•, /, and %

displays lines with an even number of fields. To display all lines with an even number of fields,
use:

NF%2==0

The C increment ++ and decrement -- operators are also available, and so are the assignment
operators +=, -=, *=, /=, and %=.

An awk pattern can be a conditional expreBSion as well as a simple expression as in the 'x = l'
assignment above. The operators listed above may all be used in expressions. An awk program
with a conditional expression specifies conditional selection based on properties of the individual
fields in the record.

6.4, 2. Field Variables

Fields in awk share essentially all of the properties of variables - they may be used in arith­
metic or string operations, and may be assigned to.

To replace the first field of each line by its logarithm, say:

{ $1 = log($1); print}

Thus you can replace the first field with a sequence number like this:

{ $1 = NR; print}

or accumulate two fields into a third, like this:

{ $1 = $2 + $3; print $0}

or assign a string to a field:

6-8

{ if ($3 > 1000)

}

$3 = "too big"
print

Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Pattern Scanning and Processing with awk

which replaces the third field by 'too big' when it is, and in any case prints the record.

Field references may be numerical expressions, as in

{print $1, $(1+1), $(i+n)}

Whether a field is considered numeric or string depends on context; fields are treated as strings
in ambiguous cases like:

if ($1 == $2) ...

Each input line is split into fields automatically as necessary. It is also possible to split any vari­
able or string into fields. To split the string's' into 'array[l]' ... , 'array[n]', use:

n = split(s, array, sep)

This returns the number of elements found. If the sep argument is provided, it is used as the
field separator; otherwise FS is used as the separator.

6.4.s. String Concatenation

Strings may be concatenated. For example:

length ($1 $2 $3)

returns the length of the first three fields. Or in a print statement,

print $1 " is " $2

prints the two fields separated by ' is '. Variables and numeric expressions may also appear in
concatenations.

6.4-4. Built-in Functions

awk provides several built-in functions.

6.4-4.1. length Function

The length function computes the length of a string of characters. This program shows each
record, preceded by its length:

hostname% awk '{print length, $0}' teetfile
10 summertime
5 smith
13 blacksmithing
11 Smithsonian
11 hammersmith
hostname%

length by itself is a 'pseudo-variable' that yields the Ieng.th of the current record;
length (argument) is a function which yields the length of its argument, as in the equivalent:

Version D of 15 May 1985 6-9

Pattern Scanning and Processing with avk Editing and Text Processing

hostname% awk '{print length($0), $0}' teatfile o
10 summertime
5 smith
13 blacksmithing
11 Smithsonian
11 hammersmlth

The argument may be any expression.

avk also provides the arithmetic functions sqrt, log, exp, and int, for square root, base e
logarithm, exponential, and integer part of their respective arguments.

The name of one of these built-in functions, without argument or parentheses, stands for the
value of the function on the whole record. The program

length< 10 1 I length> 20

displays lines whose length is less than 10 or greater than 20.

6.,1.,1.2. substring Function

The function substr (s, m, n) produces the substring of• that begins at position m (origin
l) and is at most n characters long. If n is omitted, the substring goes to the end of a.

6.4.4.S. index Function

The function index (sl, s2) returns the position where the string a/2 occurs in Bl, or zero if
it does not.

6.4.4.4. sprintf Function

The function sprint f (/, el, e2, ...) produces the value of the expressions el, e2, and so on, in
the_ printf format specified by f Thus, for example, to set z to the string produced by format­
ting the values of $1 and $2, use:

x = sprintf("%8,2f %10ld", $1, $2)

6.4.s. Arrays

Array elements are not declared; they spring into existence by being mentioned. Subscripts may
have any non-null value, including non-numeric strings. As an example of a conventional
numeric subscript, the statement

x[NR] = $0

assigns the current input record to the NR -th element of the array z. In fact, it is possible in
principle though perhaps slow to process the entire input in a random order with the avk pro­
gram

END

6-10

{ x[NR] = $0}
{ ... program ... }

Version D of 15 May 1985

0

0

0

0

0

Editing and Text Processing Pattern Scanning and Processing with awk

The first action merely records each input line in the array x.

Array elements may be named by non-numeric values, which gives awk a capability rather like
the associative memory of Snobol tables. Suppose the input contains fields with values like
'apple', 'orange', etc.
Then the program

/apple/
/orange/
END

{ x["apple"]++ }
{ x["orange"]++}
{ print x["apple"], x["orange"] }

increments counts for the named array elements, and prints them at the end of the input.

6.,4. 6. Flow-of-Control Statements

awk provides the basic flow-of-control statements if-else, while, for, and statement
grouping with braces, as in C. We showed the if statement in the "Field Variables" section
without describing it. The condition in parentheses is evaluated; if it is true, the statement fol­
lowing the if is done. The else part is optional.

The while statement is exactly like that of C. For example, to print all input fields one per
line,

i = 1
while (i <= NF) {

print $1
++i

}

The for statement is also exactly that of C:

for (i = 1; i <= NF; i++)
print $1

does the same job as the while statement above.

There is an alternate form of the for statement which is suited for accessing the elements of an
associative array:

for (i in array)
statement

docs statement with i set in turn to each element of array. The elements are accessed in an
apparently random order. Chaos will ensue if i is altered, or if any new elements are accessed
during the loop.

The expression in the condition part of an if, while or for can include relational operators
like <, <=, >, >=, == ('is equal to'), and != ('not equal to'); regular expression matches with
the match operators • and ! ·; the logical operators I I, &&, and ! ; and of course parentheses
for grouping.

The break statement causes an immediate exit from an enclosing while or for; the con­
tinue statement causes the next iteration to begin.

The statement next causes awk to skip immediately to the next record and begin scanning the
patterns from the top. The statement exit causes the program to behave as if the end of the
input had occurred.

Version D of 15 May 1985 6-11

Pattern Scanning and Processing with awk Editir,g and Text Processing

You may put comments in awk programs: begin them with the character # and end them with
the end of the line, as in

print x, y # this is a comment

6-12 Version D of 15 May 1985

0

0

0

0

0

0

Chapter 7

Introduction to Document Preparation

The main document preparation programs in the Sun System are nroff and troff These pro­
grams handle one or more files containing both the text to be formatted and requests specifying
how the output should look. From this input, the programs produce formatted output: nroff on
typewriter-like terminals, and troff on a phototypesetter. Although they are separate programs,
nroff and troff are compatible; they share the same command language and produce their output
from the same input file. Descriptions here apply to both troff and nroff unless indicated other­
wise.

7.1. What Do Text Formatters Do?

You can type in the text of a document on lines of any length, and the text formatters produce
lines of uniform length in the finished document. This is called filling, which means that the for­
matter collects words from what you type in the input file, and places them on an output line
until no more will fit within a given line length. It hyphenates words automatically, so a line may
be completed with part of a word to produce the right line length. It also adjusts a line after it
has been filled by inserting spaces between words as necessary to bring the text exactly to the
right margin. Examples of filling and adjusting follow:

Unfilled text looks like: Filled and adjusted text looks like:

Filled but not adjusted text looks like:

Version D of 15 May 1985 7-1

Introduction to Document Preparation Editing and Text Processing

Given a file of input consisting only of lines of text without any formatting requests, the for­
matter simply produces a continuous stream of filled, adjusted and hyphenated output.

To obtain paragraphs, numbered sections, multiple column layout, tops and bottoms of pages,
and footnotes, for example, require the addition of formatting requests. Requests look like '.xx'
where xx is one or two lower-case letters or a lower-case letter and a digit. Refer to Formatting
Document, with 'nroff' and 'troff' for details.

7 .2. What is a Macro Package?

Nroff and troff provide a flexible, sophisticated command language for requesting operations like
those just mentioned. They are very flexible, but this flexibility can make them difficult to use
because you have to use several requests to produce a simple format. For this reason, it's a good
idea to use a macro package. A macro is simply a predefined ,equence of nroff request, or text
which you can use by including just one request in your input file. You can ,hen handle repeti­
tious tasks, such as starting paragraphs and numbering pages, by typing one macro request each
time instead of several. A macro looks like '.XX' where XX is one or two upper-case letters or
an upper-case letter and a digit.

A macro package also does a lot of things without the instructions that you have to give nroff,
footnotes and page transitions for example. Some packages set up a page layout style by default,
but you can change that style if you wish. Although a macro package offers only a limited subset
of the wide range of formatting possibilities that nroff provides, it is much easier to use. We
explain how to use a macro package in conjunction with nroff and troff in Displaying and Print­
ing Document,.

Sample input with both formatting requests, macros in this case, and text looks like:

.LP
Now is the time
for all good men
to come to the aid of their country .
. LP

Refer to Formatting Documents with the -m• Macro, and to Quick Reference, in this chapter
for more information on macros.

7.3. What is a Preprocessor?

A preproceuor is a program that you run your text file through first before passing it on to a
text formatter. You can put tables in a document by preprocessing a file with the table-builder
called tbl. You can add mathematical equations with their special fonts and symbols with the
equation formatters, eqn for troff files and neqn for nroff files. These preprocessors convert
material entered in their specific commaud languages to straight troff or nroff input. Those text
formatters then produce the tables or mathematical equations for the output.

What you type in a file is very much the same as for simple formatting. You include table or
equation material in your troff input file along with ordinary text and add several specific tbl or
eqn requests. Refer to Formatting Tab/ea with 'tbl' and Formatting Mathematics with 'eqn' for
details.

7-2 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Introduction to Document Preparation

7 .4. Typesetting Jargon

There are several printer's measurement terms that are borrowed from traditional typesetting.
These terms describe the size of the letters, the distance between lines and paragraphs, how long
each line is, where the text is placed on the page, and so on.

Point Points specify the size of a letter or type. A point measures about 1/72 of an inch,
which means that there are 72 points to the inch. This manual is in IO-point type,
for instance.

Ems and Ens
Ems and ens are measures of distance and are proportional to the type size being
used. An em is the distance equal to the number of points in the width of the letter
'm' in that point size. For examples, here's an em in several point sizes followed by
an em dash to show why this is a proportional unit of measure. You wouldn't want a
20-point dash if you are printing the rest of a document in 12-point. Here's 12-point:

m
I I
I I

And here's 20-point:

,m, ,-,
An en space is one half of an em or about the width of the letter 'n'. They are typically used for
indicating indention.

Vertical Spacing
Vertical spacing called leading (pronounced 'led-ing') is the distance between the
bottom of one line and the bottom of the next. This manual has 12-point vert.ical
spacing for example. The rule of thumb is that the spacing be 20% bigger than the
character size for easy readability. A printer would call the ratio for this manual
"Ten over twelve."

Paragraph Depth
As there is a specification for the distance between lines, there is also a term for the
space between paragraphs. This is the paragraph depth. If you are using the stan­
dard '.PP' macro, for instance, the paragraph depth is whatever one vertical space
has been set to.

Paragraph Indent

This is the amount of space that the first line is indented in relation to the rest of the para­
graph. If you use a '.PP' macro to format a standard indented paragraph, the indent is two em
spaces as shown by the first line in this paragraph.

Line Length
Line length specifies the width of text on a page. Here we use a 6 1/2-inch line
length. Shortening the line length generally makes text easier to read. Recall that
many magazines and newspapers have 2-1/4 inch columns for quick reading.

Page Offset
Page offset determines the left margin, that is how far in from the left edge of the
paper the text is set. On a normal 8-1/2 by 11 letter-size page, the page offset is nor­
mally 26/27 of an inch.

Version D of 15 May 1985 7-3

Introduction to Document Preparation Editing and Text Processing

Indent The indent of text is the distance the text is set in from the page offset. The indent
emphasizes the text by setting it off from the rest.

7 .5. Hints for Typing in Text

The following provides a few tricks for typing in text and for further online editing and format­
ting.

• A period (.) or apostrophe (') as the first character on a line indicates that the line con­
tains a formatting request. If you type a line of text beginning with either of these con­
trol characters, nroff tries to interpret them as a request, and the rest of the text on that
line disappears. If you have to print a period or an apostrophe as the first character,
escape their normal meanings by prefixing them with a backslash and an ampersand,
\& ... , for instance.

• Following the control character is a one- or two-character name of a formatting request.
As described earlier, nroff and troff names usually consist of one or two lower-case
letters or a lower-case letter and a digit. Macro package names usually consist of one or
two upper-case letters or one upper-case letter and a digit. For example, '.sp' is an nroff
request for a space and '.PP' is an -ms macro request for an indented paragraph.

• End a line of text with the end of a word along with any trailing punctuation. Nroff
inserts a space between whatever ends one line of input text and whatever begins the
next.

0

• Start lines in the input file with something other than a space. A space at the beginning
of an input line creates a break at that point in the output and nroff skips to a new out- o
put line, interrupting the process of filling and adjusting. This is the easiest way to get
spaces between paragraphs, but it does not leave much flexibility for changing things
later.

• Some requests go on a line by themselves, while others can take one or more additional
pieces of information on the same line. These extra pieces of information on the request
line are called argument,. Separate them from the request name and from each other by
one or more spaces. Sometimes the argument is a piece of text on which the request
operates; other times it can be some additional information about what the request is to
do. For example, the vertical space request '.sp 3' shows an nroff request with one argu­
ment. It requests three blank spaces.

7.6. Types of Paragraphs

There are several types of paragraphs. When should you use one type of paragraph instead of
another? Here are a few words about paragraphs, their characteristics, and formatting in gen­
eral. See the Types of Paragraphs figure that follows for examples.

Use regular indented and block paragraphs for narrative descriptions. It is a matter of style as
to which type you choose to use. In general, indented paragraphs remove the need for extra
space between paragraphs - the indent tells you where the start of the new paragraph is. Most
business communication is done with block paragraphs.

If you want to indicate a set of poi.nts without any specific order, use a bulleted list. For exam- 0
pie:

7-4 Version D of 15 May 1985

0

0

0

Editing and Text Processing Introduction to Document Preparation

There are many kinds of coffee:

• Jamaica Blue Mountain

• Colombian

• Java

• Mocha

• French Roast

• Major Dickenson's Blend

When you want to describe a set of things in some order, such as a step-by-step procedure, use a
numbered list:

To repair television, follow these steps:

1. Remove screws in rear casing.

2. Carefully slide out picture tube.

3. Gently smash with hammer.

Use description lists to explain a set of related or unrelated things, or sometimes to highlight
keywords. For instance,

Options

-v Verbose

-f filename Take script from filename

-o Use old format

In typographic parlance, anything that is not part of the "body text" - regular paragraphs and
such - is considered a diaplay, and often has to be specially handled. Generally a display is
"displayed" exactly as you type it or draw it originally, with no interference from the formatter.
Displays are used to set off important text, special effects, drawings, or examples, as we do
throughout this manual, The following paragraph is a display:

Tom appeared on the sidewalk with a bucket of whitewash and
a long-handled brush.
He surveyed the fence, and all gladness left him and
a deep melancholy settled down upon his spirit.
Thirty yards of board fence nine feet high.
Life to him seemed hollow, and
existence but a burden.

Quotations set off quoted material from the rest of the text for emphasis. For example,

" ... in the conversation between Alice and the Queen, we read this piece of homespun philoso­
phy:

"A slow sort of country!" said the Queen. "Now, here, you see, it takes all the run­
ning you can do, to keep in the same place. If you want to get somewhere else, you
must run at least twice as fast as that!"

Version D of 15 May 1985 7-5

Introduction to Document Preparation

Through the Looking Glaaa
Lewis Carroll

Editing and Text Processing

Examine the following thumbnail sketches of paragraph types to see how each can serve a special
function:

7-6 Version D of 15 May 1985

0

0

0

Editing and Text Processing Introduction to Document Preparation

0
Table 7-1: Types of Paragraphs

Indented - .PP
Description Lists - .IP " " n

Left Block - .LP

Display - .DS

0 Bulleted - .IP \(bu

•

.

• Quotation - .QP

Numbered - .IP 1.

1.

2.

0
Version D of 15 May 1985 7-7

Introduction to Document Preparation Editing and Text Processing

7. 7. Quick References

This section I provides some simple templates for producing your documents with the -ms
macro package. Remember that for a quick, paginated, and justified document, you can simply
type an '.LP' to start your document, and then type in the text separated by blank lines to pro­
duce paragraphs. Type a space and RETURN to get a blank line.

Throughout the examples, input is shown in

bold Times Roman font

while the output is shown in

this Times Roman font.

'l. 'l.1. Displaying and Printing Documents

Use the following to format and print your documents. You can use either nroff or troff depend­
ing on the output you desire. Use nroff to either display formatt.ed output on your workstation
screen or to print a formatted document. The default is to display on the standard output, your
workstation screen. For easy viewing, pipe your output to more or redirect the output to a file.

Using troff or your installation's equivalent prepares your output for phototypesetting.

1 Some or the material in this section is derived Crom A Guide to Prepan'ng Document6 with '-m1J 1
1 M.E.

Lesk, Bell Laboratories, Murray Hill, New Jersey.

7-8 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Introduction to Document Preparation

Table 7-2: How to Display and Print Documents

What You Want to Do
Display simple text

Display text with tables only

Display text with equations only

Display text with both tables and equations

Print raw text and requests

Print text

Print text with tables only

Print text with equations only

Print text with both tables and equations

Phototypeset simple text

Phototypeset text with tables

How to Do It
nroll' -option• file,

tbl filea I nroll' -option•

neqn file• I nroll' -option•

tbl file• I neqn I nroll' - options

pr files I !pr -Pprinter

nroll' -optiona filea I lpr -Pprinter

tbl files I nroll'-option• I lpr -Pprinter

neqn file• I nroll' -optiona j lpr -Pprinter

tbl files I neqn I nroll' -optiona I lpr -Pprinter

troll' - option• filea

tbl filea I troff' - optiona

Phototypeset text with equations eqn filea I troff' -option•

Phototypeset text with both tables and equations tbl filealeqn ltroff'-optiona

7. 7.2. Technical Memorandum

Here we provide a sample format for a technical memorandum.

Version D of 15 May 1985 7-9

Introduction to Document Preparation

Input:

.DA March 11, 1983

.TL
An Analysis of
Cucumbers and Pickles
.AU
A. B. Hacker
.AU
C. D. Wizard
.AI
Stanford University
Stanford, California
.AB
This abstract should be short enough to
fit on a single page cover sheet.
It provides a summary of memorandum
contents .
.AE
.NH
Introduction •
. PP
Now the first paragraph of actual text ...

Last line of text.
.NH
References

Output:

An Analysis of
Cucumbers and Pickles

A. B. Hacker
C. D. Wizard

Stanford University
Stanford, California

ABSTRACT

Editing and Text Processing

Date: March 11, 1983

This abstract should be short enough to fit on a single page cover sheet. It provides a
summary of memorandum contents.

1. Introduction.

Now the first paragraph of actual text ...

1. References

7-10 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Introduction to Document Preparation

7. 7.3. Section Headings for Documents

.NH
Introduction.
.PP
text text text

I. Introduction

text text text

7. 7.4- Changing Fonts

.SH
Appendix I
.PP
text text text

Appendix I

text text text

The following table shows the easiest way to change the default roman font to italic or bold. To
change the font of a single word, put the word on the same line as the macro. To change more
than one word, put them on the line following the macro.

Inout Outout

.I Hello Hello

.I
Puts this line in italics. Puts this line in italics.

.B Goodbye Goodbye

.B
Prints this line in bold . Prints this line in bold.

. R
Prints this line in roman. Puts this line in roman.

7. 7.5. Making a Simple List

Use the following template for a simple list.

Version D of 15 May 1985 7-11

Introduction to Document Preparation

Input:

.IPL
J. Pencilpusher and X. Hardwired,
.I
A New Kind of Set Screw,
.R
Proc. IEEE
.B 76
(1078), 23·266 .
. IP 2.
H. Nails a.nd R. Irons,
.I
Fasteners for Printed Circuit Boards,
.R
Proc.ASME
.B 23
(1074), 23·24 .
. LP (terminatu list)

Output:

Editing and Text Processing

1. J. Pencilpusher and X. Hardwired, A New Kind of Set Screw, Proc. IEEE 75 (1976), 23-255.

2. H. Nails and R. Irons, Fastener& /or Printed Circuit Board,, Proc. ASME 23 (1974), 23-24.

7. 7. 6. Multiple Indents for Lists and Outlines

This template shows how to format lists or outlines.

Input:

This is ordinary text to point out
the margins of the page .
. IPL
First level item
.RS
.IP a)
Second level .
. IP b)
Continued here with a.nother second
level item, but somewhat longer .
. RE
.IP 2.
Return to pre,·ious value of the
indenting at this point .
. IP a.
Another
line.

Output:

This is ordinary text to point out the margins of the page.

1. First level item

a) Second level.

b) Continued here with another second level item, but somewhat longer.

2. Return to previous value of the indenting a.t thi~ point.

3. Another line.

7-12 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Introduction to Document Preparation

7. 7. 7. Displays

A display does not fill or justify the text. It keeps the text together, and sets the lines off from
the rest.

Input:

te:d te%t te%t ted ted te:d
.DS
and now
for something
completely different
.DE
kd te:d te:d tut te:d te:tt

Output:
hoboken harrison newark: roseville avenue grove street ea.8t orange brick: church orange highland avenue mountain station south
orange maplewood millburn short hills summit new providence

and now
for something
completely different

murra.y hill berkeley heights gillette stirling millington Iyons ha.sling ridge bernardsville far hills pea.pa.de gladstone

Options: '.DS L': left-adjust; '.DSC': line-by-line center; '.DS B': make block, then center.

7. 7.8. Footnotes

For automatically-numbered footnotes, put the predefined string \ ** at the end of the text you
want to footnote like this:2

you want to footnote like this:\••
.FS
Here's a numbered footnote .
. FE

To mark footnotes with other symbols, put the symbol as the first argument to '.FS' and at the
end of the text you want to footnote like this:t

and at the end of the text you want tot footnote like this:\(dg
.FS \(dg
You can also use an asterisk ('") or a double dagger t (\(dd) .
. FE

7. 7.9. Keeping Text Together - Keeps

Lines bracketed by the following commands are kept together, and will appear entirely on one
page:

.KS not moved .KF may float

2 Here's a numbered footnote.

j You can also use an asterisk(*) or a double dagger t (\(dd).

Version D of 15 May 1985 7-13

Introduction to Document Preparation Editing and Text Processing

.KE through text .KE in text

7. 7.10. Double-Column Format

Put a '.2C' at the beginning of the material you want printed in two columns. To return to one
column, use '.lC'. Note that '.lC' breaks to a new page.

Input:

.TL
The Declaration of Independence
.2C
.PP
When in the course of human events, it become8 necessary for one people to dissolve the political bonds which have con•
nected them with another, and to a:,sume among the powerl!I of the earth the separate and equal station to which the laws
of Nature and of Nature's God entitle them, a. decent respect to the opinions of ..

7. 7.11. Sample Tables

Two sample table templates follow.

Input:

.TS

0

box center tab (/); 0
1B IB
I I.
Column Header Column Header

text/text
text/text
text/text
text/text
.TE

Output:

7-14

Column Header
text
text
text
text

Column Header
text
text
text
text

0
Version D of 15 May 1985

0

0

0

Editing and Text Processing Introduction tc Document Preparation

Input:

.TS
allbox tab (/);
C 8 8

CCC

n n n.
AT&T Common Stock
Year /Price/Dividend
1971/41-54/$2.60
2/41-54/2.70
3/46-55/2.87
4/40-53/3.24
5/45-52/3.40
6/51-59/.95*
.TE
• (first quarter only)

Output:

AT&T Common Stock

Year Price Dividend

1971 41-54 $2.60

2 41-54 2.70

3 46-55 2.87

4 40-53 3.24

5 45-52 3.40

6 51-59 .95*

* (first quarter only)

The meanings of the key-letters describing the alignment of each entry are:

Letter Meanine: Letter
c center n
r right-adjust a

left-ad iust s

Meanine:
numerical
sub column
snanned

The global table options are center, expand, box, double box, allbox, tab (x) and linesize (n).

Version D of 15 May 1985 7-15

Introduction to Document Preparation Editing and Text Processing

Input:

.TS
box, center tab(/);
C C

1 l.
Name/Definition
.sp
Gamma/$GAMMA (z) = int sub O sup inf t sup {z-1} e sup -t dt$
Sine/$sin (x) = 1 over 2i (e sup ix - e sup -ix)$
Error/$ roman erf (z) = 2 over sqrt pi int sub O sup z e sup {-t sup 2} dt$
Bessel/$ J sub O (z) = 1 over pi int sub O sup pi cos (z sin theta) d theta$
Zeta/$ zeta (s) = sum from k=l to inf k sup -s --(Re-s > 1)$
.TE

Output:

Na.me

Gamma

Sine

Error

Bessel

Zeta

7. 7.12. Writing Mathematical Equations

Definition
f(z)= J.00

1'- 1
,-• dt

sin(•)= ;i (e" -,-•)

2 r' • err(z)=,y; J, ,-• dt

IL' Jo(z)=- cos(zsinO)dO
,r 0

00

((•)=~k-' (Re •>I)
-

A displayed equation is marked with an equation number at the right margin by adding an argu­
ment to the '.EQ' line:

Input:

.EQ (1.3)
x sup 2 over a sup 2 -=- sqrt {p z sup 2 +qz+r}
.EN

A displayed equation is marked with an equation number at the right margin by adding an argu­
ment to the EQ line:

Output:

7-16

.. -~~-
2 = Vpz 2+qz+r
•

(1.3)

Version D of 15 May 1985

0

0

0

0

Editing and Text Processing Introduction to Document Preparation

Input:

.EQ I (2.2a.)
bold V bar sub nu-=-left [pile {a above b a.hove
c } right] + left [matrix { col { A(ll) a.hove •
a.hove . } col { . above • above . } col {. above •
above A(33) }} right] cdot left [pile { alpha
a.hove beta. above gamma. } right]
.EN

Output:

Input:

[•] [A (11) Vv= b+ .
C •

.EQ L
F hat (chi) - mark = - I del VI sup 2
.EN
.EQ L

(2.2a)

lineup =- {left ({partial V} over {partial x} right)} sup 2 + { left ({partial
V} over {partial y} right)} sup 2 ------ lambda.-> inf
.EN

o Output:

0

F(x) = 1vv1 2

Input:

S a. dot S, S b dotdotS, S xi tilde times y vecS.

Output:

•• "· (Xy.

(with delim $$ on).

7. 7.19. Registers You Can Change

Table 7-3: Registers You Can Change

Version D of 15 May 1985 7-17

Introduction to Document Preparation Editing and Text Processing

Controls Re,.ister Controls Reecister

0 Line length .nr LL 7i Title length .nrLT7i
Point size .nr PS 9 Vertical spacing .nr VS 11
Column width .nr CW3i lntercolumn spacing .nr GW .5i
Margins - head and foot .nr HM .75i Paragraph indent .nr Pl 2n

.nr FM .75i
Paragraph spacing .nr PD 0 Page offset .nr PO 0.5i
Page heading .ds CH Appendix Page footer .ds CF Draft

(center) .ds LF
similar ds RH 7-25-76 .ds RF

(right)
.ds LH Private

(left)
Page numbers .nr % 3

0

7-18 Version D of 15 May 1985

0

0

0

Chapter 8

Formatting Documents with the -ms Macros

This chapter3 describes the new -ms macro package for preparing documents with nroff and
troff on the Sun system. The -ms Request Summary at the end of this chapter provides a
quick reference for all the -ms macros and for useful displaying and printing commands. If you
are acquainted with -ms, there is a quick reference for the new requests and string definitions
as well. The differences between the new and the old -ms macro packages are described in the
section entitled "Changes in the New -ms Macro Package". Displaying and Printing Documents
with -ms describes how you can produce documents on either your workstation, printer, or
phototypesetter without changing the text and formatting request input.

8.1. Changes in the New -ms Macro Package

The old -ms macro package has been revised, and the new macro package assumes the name
-ms. There are some extensions to previous -ms macros and a number of new macros, but all
the previously documented -ms macros still work exactly as they did before, and have the same
names as before. The new -ms macro package includes several bug fixes, including a prohlem
with the single-column . lC macro, minor difficulties with boxed text, a break induced by . EQ
before initialization, the failure to set tab stops in displays, and several bothersome errors in the
refer bibliographic citation macros. Macros used only at Bell Laboratories have been removed
from the new version. We list them at the end of this chapter in "-ms Request Summary".

8.2. Displaying and Printing Documents with -ms

After you have prepared your document with text and -ms formatting requests and stored it in
a file, you can display it on your workstation screen or print it with nroff or troff with the
-ms option to use the -ms macro package. A good way to start is to pipe your file through
more for viewing:

hostname% nroff -ms filename . . . I more

If you forget the -ms option, you get continuous, justified, unpaginated output in which -ms
requests are ignored. You can format more than one file on the command line at a time, in
which case nroff simply processes all of them in the order they appear, as if they were one file.
There are other optiona to use with nroff and troff; see the Commands Reference Manual
for the Sun Workstation for details.

8 The material in this chapter is derived Crom A Ret1ised Veraion of '-ms', B. Tuthill, Unit1ersity of Cal­
i/ornici, Berkeley; Typing Documents on the UNIX System: Ueing the '-ms' Ma.croa with 'troff' and 'nroff',
M.E. Leak, Bell Laboratories, Murray Hill, New Jersey; and Document Formatting on UNIX: Using
the '-ms' Macros, Joel Kies, University ot California., Berkeley.

Version D of 15 May 1985 8-1

Formatting Documents with the -ms Macros

You can get preview and final output of various sorts with the
nroff output to the line printer, type:

hostname% nroff -ms filename lpr -Riprinter

To produce a file with tables, use:

hostname% tbl filename I nroff -ms lpr -printer

To produce a file with equations, type:

hostname% neqn filename l nroff -ms I lpr -printer

Editing and Text Processing

following commands. To send

To produce a file with tables and equations, use the following order:

hostname% tbl filename I neqn I nroff -ms I lpr -printer

To print your document with troff, use:

hostname% troff -ms filename I lpr -t -printer

See lpr in the Commands Reference Manual for the Sun Workstation for details on printing.

8.3. What Can Macros Do?

Macros can help you produce paragraphs, lists, sections (optionally with automatic numbering),
page titles, footnotes, equations, tables1 two-column format, a table of contents, endnotes, run­
ning heads and feet, and cover pages for papers. As with other formatting utilities such as
nroff and troff, you prepare text interspersed with formatting requests. However, the
macro package, which itself is written in troff commands, provides higher-level commands
than those provided with the basic troff program. In other words, you can do a lot more with
just one macro than with one troff request.

8.4. Formatting Requests

An -ms request usually consists of one or two upper-case characters, and usually in the form
.xx

The easiest way to produce simple formatted text is to put an . LP request at the start of the
document and add your text, leaving just a blank line to separate paragraphs. The . LP request
produces a left-blocked paragraph, as we used throughout this chapter. Your output will have
paragraphs and be paginated with right and left-justified margins.

When you use a macro package, you type in text as you normally do and intersperse it with for­
matting reque.ta. For example, instead of spacing in with the space bar or typing a tab to
indent for paragraphs, type a line with the . PP request before each paragraph. When format­
ted, this leaves a space and indents the first line of the following paragraph.

Note: You cannot just begin a document with a line of text. You must include some -ms
request before any text input. When in doubt, use . LP to properly initialize the file, although
any of the requests .PP, .LP, .TL, .SH, .NH is good enough. See the section "Cover Sheets
and Title Pages" later in this chapter for the correct arrangement of requests at the start of a
document.

8-2 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with the -ms Macros

8.,4.1. Paragraphs

You can produce several different kinds of paragraphs with the -ms macro package: standard,
left-block, indented, labeled, and quoted.

8.4 .1.1. Standard Paragraph - . PP

To get an ordinary paragraph, use the . PP request, followed on subsequent lines by the text of
the paragraph. For example, you type:

.PP
Tom appeared on the sidewalk with a bucket of whitewash and a long-handled
brush.
He surveyed the fence, and all gladness left him and a deep melancholy
settled down upon his spirit.
Thirty yards of board fence nine feet high.
Life to him seemed hollow, and
existence but a burden.

to produce:

Tom appeared on the sidewalk with a bucket of whitewash and a long-handled brush. He
surveyed the fence, and all gladness left him and a deep melancholy settled down upon his spirit.
Thirty yards of board fence nine feet high. Life to him seemed hollow, and existence but a bur­
den.

8.4.1.2. Left-Block Paragraph - .LP

You can also produce a left-block paragraph, like those in this manual, with .LP. The first line
is not indented as it is with the . PP request. For example, you type:

.r..P
Tom appeared ...

to produce:

Tom appeared on the sidewalk with a bucket of whitewash and a long-handled brush. He sur­
veyed the fence, and all gladness left him and a deep melancholy settled down upon his spirit.
Thirty yards of board fence nine feet high. Life to him seemed hollow, and existence but a bur­
den.

There are default values for the vertical spacing before paragraphs and for the width of the
indentation. To change the paragraph spacing, see the section "Modifying Default Features".

8.4.1.s. Indented Paragraph - . IP

Another kind of paragraph is the indented paragraph, produced by the . IP request. These
paragraphs can have hanging numbers or labels. For example:

Version D of 15 May 1985 8-3

Formatting Documents with the -ms Macros Editing and Text Processing

. IP [1]
Text for first paragraph, typed
normally for as long as you would
like on as many lines as needed .
. IP [2]
Text for second paragraph, ...
. LP

produces

[l] Text for first paragraph, typed normally for as long as you would like on as many lines as
needed.

[2] Text for second paragraph, ...

A series of indented paragraphs may be followed by an ordinary paragraph beginning with . pp
or . LP, depending on whether you wish indenting or not. Here we used the . LP request.

More sophisticated uses of . IP are also possible. If the label is omitted, for example, you get a
plain block indent:

Tom appeared on the sidewalk with a bucket of whitewash and a long-handled
brush .
. IP

He surveyed the fence, and all gladness left him and a deep melancholy
settled down upon his spirit.
Thirty yards of board fence nine feet high.
Life to him seemed hollow, and
existence but a burden.
.LP

which produces

Tom appeared on the sidewalk with a bucket of whitewash and a long-handled brush.

He surveyed the fence, and all gladness left him and a deep melancholy settled down upon
his spirit. Thirty yards of board fence nine feet high. Life to him seemed hollow, and
existence but a burden.

If a non-standard amount of indenting is required, specify it after the label in character positions.
It remains in effect until the next .PP or .LP. Thus, the general form of the . IP request con­
tains two additional fields: the label and the indenting length. For example,

.IP "Example one:" 15
Notice the longer label, requiring larger
indenting for these paragraphs .
. IP "Example two:"

And so forth .
. LP

produces this:

Example one:

Example two:

Notice the longer label, requiring larger indenting for these paragraphs.

And so forth.

Notice that you must enclose the label in double quote marks because it contains a space; other­
wise, the space signifies the end of the argument. The indentation request above is in the
number of ena, a unit of dimension used in typesetting. An en is approximately the width of a
lowercase 'n' in the particular point size you are using.

8-4 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with the -ms Macros

The . IP macro adjusts properly by causing a break to the next line if you type in a label longer
than the space you allowed for. For example, if you have a very long label and have allowed 10
n spaces for it, your input looks like:

.IP "A very, very, long and verbose label" 10

And now here's the text that you want.
And now here's the text that you want.

And now here's the text that you want.
And now here's the text that you want.
And now here's the text that you want.

And your output is adjusted accordingly with a break between the label and the text body:

A very, very, long and verbose label
And now here's the text that you want. And now here's the text that you want.
And now here's the text that you want. And now here's the text that you want.
And now here's the text that you want.

8 . .J.LJ. Nested Indentation - . RS and . RE

It is also possible to produce multiple (or relative) nested indents; the .RS request indicates that
the next . IP starts its indentation from the current indentation level. Each .RE undoes one
level of indenting, so you should balance . RS and . RE requests. Think of the . RS request as
'move right' and the .RE request as 'move left'. As an example:

.IP I.
South Bay Area Restaurants
.RS
.IP A.
Palo Alto
.RS
.IP 1.
La Terrasse
.RE
.IP B.
Mountain View
.RS
.IP 1.
Grand China
.RE
.IP C.
Menlo Park
.RS
.IP 1.
Late for the Train
.IP 2.
Flea Street Cafe
.RE
.RE
.LP

results in

Version D of 15 May 1985 8-5

Formatting Documents with the -ms Macros Editing and Text Processing

I. South Bay Area Restaurants

A. Palo Alto

1. La Te rrasse

B. Mountain View

1. Grand China

C. Menlo Park

1. Late for the Train

2. Flea Street Cafe

Note the two . RE requests in a row at the end of the list. Remember that you need one end for
each atart.

8.4.1.5. Quoted Paragraph - . QP

All of the variations on . LP leave the right margin untouched. Sometimes, you need a a para­
graph indented on both right and left sides. To set off a quotation as such, use:

.QP
Precede each paragraph that you want offset as a quotation
with a .QP. This produces a paragraph like this.
Notice that the right edge is also indented from the right margin.

to produce

Precede each paragraph that you want offset as a quotation with a . QP. This pro­
duces a paragraph like this. Notice that the right edge is also indented from the right
margm.

8.4-2. Section Headings - . SH and . NH

There are two varieties of section headings, unnumbered with . SH and numbered with .NH. In
either case, type the text of the section heading on one or more lines following the request. End
the section heading by typing a subsequent paragraph request or another section heading
request. When printed, one line of vertical space precedes the heading, which begins at the left
margin. nroff offsets the heading with blank lines, while troff sets it in boldface type .
. NH section headings are numbered automatically. The macro takes an argument number
representing the level-number of the heading, up to 5. A third-level section number is one like
'1.2.1 '. The macro adds one to the section number at the requested level, as shown in the follow­
ing example:

8-6 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing

.NH
Bay Area Recreation
.NH 2
Beaches
.NH 3
San Gregorio
.NH 3

Half Moon Bay
.NH 2
Parks
.NH 3
Wunderlich
.NH 3
Los Trances
.NH 2
Amusement Parks
.NH 3
Marine World/Africa USA

generates:

2. Bay Area Recreation

2.1 Beaches

2.1.1 San Gregorio

2.1.2 Half Moon Bay

2.2 Parks

2.2.1 Wunderlich

2.2.2 Los Trances

2.3 Amusement Parks

2.3.1 Marine World/Africa USA

Formatting Documents with the -ms Macros

. NH without a level-number means the same thing as . NH 1, and . NH O cancels the number­
ing sequence in effect and produces a section heading numbered 1.

8 .. 4,3. Cover Sheets and Title Pages

-ms provides a group of macros to format items that typically appear on the cover sheet or title
page of a formally laid-out paper. You can use them selectively, but if you use several, you must
put them in the order shown below, normally at or near the beginning of the input file.

The first line of a document signals the general format of the first page. In particular, if it is
.RP (released paper), a cover sheet with title and abstract is prepared. The default format is
useful for scanning drafts.

Sample input is:

Version D of 15 May 1985 8-7

Formatting Documents with the -ms Macros

.RP {Optionol; use for released paper format)

.TL
Title of document {one or more lines}
.AU
Author{s} {may also be several lines}
.AI
Author'• institution(s)
.AB

Editing and Text Processing

Abstract; to be placed on the cover sheet of a paper.
Line length is 5/6 of normal; use .11 here to change .
. AE {abstract end}
text... {begins with .PP)

(See Order of Requests in Input for a quick example of this scheme.)

If the . RP request precedes . TL, the title, author, and abstract material are printed separately
on a cover sheet. The title and author information (not the abstract) is then repeated automati­
cally on page one (the title page) of the paper, without your having to type it again. If you do
not include an . RP request, all of this material appears on page one, followed on the same page
by the main text of the paper.

To omit some of the standard headings (such as no abstract, or no author's institution), just omit
the corresponding fields and command lines. To suppress the word ABSTRACT type .AB no
rather than . AB. You can intersperse several . AU and . AI lines to format for multiple
authors.

These macros are optional; you may begin a paper simply with a section heading or paragraph

0

request. When you do precede the main text with cover sheet and title page material, include a 0
paragraph or section heading between the last title page request and the beginning of the main
text. Don't forget that some -ms request must precede any input text.

8.4.4, Running Heads and Feet - LH, CH, RH

The -ms macros, by default, print a page heading containing a page number (if greater than 1).
You can make minor adjustments to the page headings and footings by redefining the strings LH,
CH, and RH which are the left, center and right portions of the page headings, respectively; and
the strings LF, CF, and RF, which are the left, center and right portions of the page footer. For
nroff output, there are two default values: CH is the current page number surrounded on
either side by hyphens, and CF contains the current date as supplied by the computer. For
troff CH also contains the page number, but CF is empty. The other four registers are empty
by default for both nroff and troff. You can use the . ds request to assign a value to a
string register. For example:

.ds RF Draft Only \(em Do Not Distribute

This prints the character string

Draft Only - Do Not Distribute

at the bottom right of every page. You do not need to enclose the string in double quote marks.
To remove the contents of a string register, simply redefine it as empty. For instance, to clear
string register CH, and make the center header blank on the following pages, use the request:

.ds CH

To put the page number in the right header, use:

8-8 Version D of 15 May 1985

0

0

0

0

Editing and Text Processing Formatting Documents with the -ms Macros

.ds RH%

In a string definition, '%' is a special symbol referring to nroff's automatic page counter. If
you want hyphens on either side of the page number, place them on either side of the '%' in the
command, that is:

.ds RH-%-

Remember that putting the page number in the right header as shown above does not remove it
from the default CF; you still have to clear out CF.

If you want requests that set the values of string and number registers to take effect on the first
page of output, put them at or near the beginning of the input file, before the initializing macro,
which in turn must precede the first line of text. Among other functions, the initializing macro
causes a 'pseudo page break' onto page one of the paper, including the top-of-page processing for
that page. Be sure to put requests that change the value of the PO (page o!Iset), HM (top or
head margin), and FM (bottom or foot margin) number registers and the page header string
registers before the transition onto the page where they are to take effect.

For more complex formats, you can redefine the macros PT (page top) and BT (page bottom),
which are invoked respectively at the top and bottom of each page. The margins (taken from
registers HM and FM for the top and bottom margin respectively) are normally 1 inch; the page
header /footer are in the middle of that space. If you redefine these macros, be careful not to
change parameters such as point size or font without resetting them to default values.

8.,t.5. Custom Headers and Footers - .OH, .EH, .OF, and .EF

You can also produce custom headers and footers that are different on even and odd pages. The
. OH and . EH macros define odd and even headers, while . OF and . EF define odd and even
footers. Arguments to these four macros are specified as with the nroff .tl, that is, there
are three fields (left, center and right), each separated by a single apostrophe. For example, to
get odd-page headers with the chapter name followed by the page number and the reverse on
even pages, use:

.OH 'For Whom the Bell Tolls''Page %'

.EH 'Page %''For Whom the Bell Tolls'

Note that it is an error to have an apostrophe in the header text; if you need an apostrophe, use
a backslash and apostrophe (') or a delimiter other than apostrophe around the left, center, and
right portions of the title. You can use any character as a delimiter, provided it doesn't appear
elsewhere in the argument to .OH, .EH, .OF, or .EF.

You can use the .Pl (Pone) macro to print the header on page l. If you want roman numeral
page numbering, use an . a f PN i request.

8.4,6. Multi-column Formats - . 2C and .MC

If you place the request . 2C in your document, the document will be printed in double column
format beginning at that point. This is often desirable on the typesetter. Each column will have
a width 7 /15 that of the text line length in single-column format, and a gutter (the space
between the columns) of 1/15 of the full line length. Remember that when you use the two­
column . 2C request, either pipe the nroff output through col or make the first line of the input
'.pi /usr/bin/col.'

Version D of 15 May 1985 8-9

Formatting Documents with the -ms Macros Editing and Text Processing

The . 2C request is actually a special case of the . MC request that produces formats of more
than two spaces:

.MC [column width [gutter width])

This formats output in as many columns of column width as will fit across the page with a gap of
gutter width. You can specify the column width in any unit of scale, but if you do not specify a
unit, the setting defaults to ens. . MC without any column width is the same thing as . 2C. For
example:

.MC
Tom appeared on the sidewalk with a bucket of whitewash and a long-handled
brush.
He surveyed the fence, and all gladness left him and a deep melancholy
settled down upon his spirit.

To return to single-column output, use . lC. Switching from double to single-column always
causes a skip to a new page.

8-10 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with the -ms Macros

8.4- 7. Footnotes - . FS and . FE

Material placed between lines with the commands .FS (footnote) and .FE (footnote end) is col­
lected, remembered, and placed at the bottom of the current page.* The formatting of the foot­
note is:

.FS
• Like this .
. FE

By default, footnotes are ll/12th the length of normal text, but you can modify this by changing
the FL register (see the "Modifying Default Features" section). When typeset, footnotes appear
in smaller size type.

Because the macros only save a passage of text for printing at the bottom of the page, you have
to mark the footnote reference in some way, both in the text preceding the footnote and again as
part of the footnote text. We use a simple asterisk, but you can use anything you want.

You can also produce automatically-numbered footnotes. Footnote numbers are printed by a
pre-defined string(**), which you invoke separately from .FS and .FE. Each time this string
is used, it increases the footnote number by one, whether or not you use . FS and . FE in your
text. Footnote numbers are superscripted on the phototypesetter and on daisy-wheel terminals,
but on low-resolution devices (such as the lpr and a crt), they are bracketed. If you use \ ** to
indicate numbered footnotes, the . FS macro automatically includes the footnote number at the
bottom of the page.

This footnote, for example, was produced as follows: 4

This footnote, for example, was produced as follows:**
.FS

.FE

If you are using '\ **' to number footnotes, but want a particular footnote to be marked with an
asterisk or a dagger, then give that mark as the first argument to . FS: t

then give that mark as the first argument to .FS: \(dg
.FS \(dg

.FE

Footnote numbering is temporarily suspended, because the '\ **' string is not used. Instead of a
dagger, you could use an asterisk* or double dagger i, represented as '\(dd'.

• • Like this.

4 Ir you never use the '\ **' string, no tootnote numbers will appear anywhere in the text, in­
cluding down here. The output footnotes will look exactly like footnotes produced with -mos,
the old -ms macro package.

t In the footnote, the dagger will appear where the footnote number would otherwise appear,
as shown here.

Version D of 15 May 1985 8-11

Formatting Documents with the -ms Macros Editing and Text Processing

8.4-8. Endnotes

If you want to produce endnotes rather than footnotes, put the references in a file of their own.
This is similar to what you would do if you were typing the paper on a conventional typewriter.
Note that you can use automatic footnote numbering without actually having the . FS and . FE
pairs in your text. If you place footnotes in a separate file, you can use . IP macros with \ ** as
a hanging tag; this gives you numbers at the left-hand margin. With some styles of endnotes,
you would want to use . PP rather than . IP macros, and specify \ ** before the reference
begins.

8.4-0. Displays and Tables - .DS and .DE

To prepare displays of lines, such as tables, in which the lines should not be re-arranged or bro­
ken between pages, enclose them in the requests . DS and . DE:

.DS
lines, like the
examples here, are placed
between . DS and . DE
.DE

which produces:

lines, like the
examples here, are placed
between .DS and .DE

By default, lines between . DS and . DE are indented from the left margin.

If you don't want the indentation, use . DS L to begin and . DE to produce a left-justified
display:

to get
something like
this

You can also center lines with the . DS C and . DE requests:

This is an
example

of a centered display.

Note that each line is centered individually.

A plain .DS is equivalent to .DS I, which indents and left-adjusts. An extra argument to the
.DS I or .DS request is taken as an amount to indent. For example, .DS I 3 or .DS 3
begins a display to be indented 3 ens from the margin.

There is a variant . DS B that makes the display into a left-adjusted block of text, and then
centers that entire block.

Normally a display is kept together on one page. If you wish to have a long display which may
be split across page boundaries, use . CD, . LD, and . BD in place of the requests . DS C, . DS
L, and .DS B respectively. Use . ID for either a plain .DS or .DS I. You can also specify
the amount of indention with the . ID macro.

8-12 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with the -ms Macros

Use the following table as a quick reference:

Table 8-1: Display Macros

Macro with Keeo Macro without Keeo
.DS I .ID
.DS L .LD
.DSC .CD
.DS B .BD
.DS .ID

Note: It is tempting to assume that . DS R will right adjust lines, but it doesn't work.

B.4-10. Keeping Text Together - . KS, . KE and . KF

If you wish to keep a table or other block of lines together on a page, there are 'keep - release'
requests. If a block of lines preceded by . KS and followed by . KE does not fit on the
remainder of the current page, it will begin on a new page. There is also a 'keep floating'
request. If the block to be kept together is preceded by . KF instead of . KS and does not fit on
the current page, it will be moved down through the text to the top of the next page. nroff
fills in the current page with the ordinary text that follows the keep in the input file to avoid
leaving blank space at the bottom of the page preceding the keep. Thus, no large blank space
will be introduced in the document.

In multi-column output, the keep macros attempt to place all the kept material in the same
column.

If the material enclosed in a keep requires more than one page, or more than a column in multi­
column format, it will start on a new page or column and simply run over onto the following
page or column.

B.4-11. Boxing Words or Lines - . BX and . Bl and . B2

To draw rectangular boxes around words, use the request

.BX word

to print I word I as shown.

You can box longer pieces of text by enclosing them with .Bl and .B2:

.Bl
Tom appeared on the sidewalk with a bucket of whitewash and a long-handled
brush.
He surveyed the fence, and all gladness left him and a deep melancholy
settled down upon his spirit.
Thirty yards of board fence nine feet high.
Life to him seemed hollow, and
existence but a burden .
. B2

This produces:

Version D of 15 May 1985 8-13

Formatting Documents with the -ms Macros Editing and Text Processing

Tom appeared on the sidewalk with a bucket of whitewash and a long-handled brush. He sur­
veyed the fence, and all gladness left him and a deep melancholy settled down upon his spirit.
Thirty yards of board fence nine feet high. Life to him seemed hollow, and existence but a bur-

~""

8.4-12. Changing Fonts - . I, . B, .Rand . UL

To get italics on the typesetter or reverse display on the workstation, say:

.I
as much text as you want
can be typed here
.R

as was done for theae three worda. The .R request restores the normal (usually Roman) font. If
only one word is to be italicized, you can put it on the line with the . I request:

.I word

and in this case you do not need to use an . R to restore the previous font.

You can print boldface font by

.B
Text to be set in boldface
goes here
.R

0

As with . I, you can place a single word in boldface font by putting it on the same line as the o
. B request. Also, when . I or . B is used with a word as an argument, it can take as a second
argument any trailing punctuation to be printed immediately after the word but set in normal
typeface. For example:

.B word)

prints

word)

that is, the word in boldface and the closing parenthesis in normal Roman directly adjacent to
the word.

If you want actual uoderlioiog as opposed to italicizing on the typesetter, use the request

.UL word

to underline a :wm:d.. There is no way to underline multiple words on the typesetter.

8.,t.19. Changing the Type Size - . LG, . SM and . NL

You can specify a few size changes in troff output with the requests .LG (make larger), .SM
(make smaller), and .NL (return to normal size). The size change is two points (see the "Dimen­
sions" section for a discussion of point size); you can repeat the requests for increased efl?ct (here
one . NL canceled two . SM requests). These requests are primarily useful for temporary size
changes for a small number of words. They do not affect vertical spacing of lines of text. See
the section on "Modifying Default Features" for other techniques for changing the type size and o
vertical spacing of longer passages.

8-14 Version D of 15 Ma.y 1985

0

0

0

Editing and Text Processing Formatting Documents with the -ms Macros

8.4-14- Dates - .DA and .ND

When you use -ms, nroff prints the date at the bottom of each page, but troff does not.
Both nroff and troff print it on the cover sheet if you have requested one with .RP. To
make troff print the date as the center page footer, say .DA (date). To suppress the date, say
.ND (no date). To lie about the date, type .DA July 4, 1776, which puts the specified date
at the bottom of each page. The request:

.ND September 16, 1959

m .RP format places the specified date on the cover sheet and nowhere else. Place either .ND
or .DA before the .RP Notice this is one instance that you do not need to put double quote
marks around the arguments.

8.4"15. Thesis Format Mode - . TM

To format a paper as a thesis, use the . TM macro (thesis mode). It is much like the . th macro
in the -me macro package. It puts page numbers in the upper right-hand corner, numbers the
first page, suppresses the date, and doublespaces everything except quotes, displays, and keeps.
Use it at the top of each file making up your thesis. Calling . TM defines the . CT macro for
chapter titles, which skips to a new page and moves the page number to the center footer. You
can use the .Pl (Pone) macro even without thesis mode to print the header on page one, which
is suppressed except in thesis mode. If you want roman numeral page numbering, use an
. a f PN i request.

B.4.16. Bibliography - . XP

To format bibliography entries, use the . XP macro, which stands for e:zdented paragraph. It
exdents the first line of the paragraph by \n(PI units, usually Sn, the same as the indent for the
first line of a . PP. An example of exdented paragraphs is:

.XP
Lumley, Lyle S., \fISex in Crustaceans: Shell Fish Habits,\fP\•
Harbinger Press, Tampa Bay and San Diego, October 1979.
243 pages.
The pioneering work in this field .
. XP
Leffadinger, Harry A., ''Mollusk Mating Season: 52 Weeks, or All Year?''
in \fIActa Biologica,\fP\. vol. 42, no. 11, November 1980.
A provocative thesis, but the conclusions are wrong.

which produces:

Lumley, Lyle S., Se:z in Cruataceana: Shell Fiah Habita, Harbinger Press, Tampa Bay and San
Diego, October 1979. 243 pages. The pioneering work in this field.

Leffadinger, Harry A., "Mollusk Mating Season: 52 Weeks, or All Year?" in Acta Biologica, vol.
42, no. 11, November 1980. A provocative thesis, but the conclusions are wrong.

You do have to italicize the book and journal titles and quote the title of the journal article.
You can change the indentation and exdentation by setting the value of number register PL

Version D of 15 May 1985 8-15

Formatting Documents with the -ms Macros Editing and Text Processing

8.4.11. Table of Contents - .XS, .XE, .XA, .PX

There are four macros that produce a table of contents. Enclose table of contents entries in
. XS and . XE pairs, with optional . XA macros for additional entries. Arguments to . XS and
.XA specify the page number, to be printed at the right. A final .PX macro prints out the table
of contents. A sample of typical input and output text is:

.XS ii
Introduction
.XA 1
Chapter 1: Review of the Literature
.XA 23

Chapter 2: Experimental Evidence
.XE
.PX

Table or Contents

Introduction ... 11

Chapter 1: Review of the Literature ... 1
Chapter 2: Experimental Evidence ... 23

You can also use the . XS and . XE pairs in the text, after a section header for instance, in
which case page numbers are supplied automatically. However, most documents that require a
table of contents are too long to produce in one run, which is necessary if this method is to work.
It is recommended that you make the table of contents after finishing your document. To print
out the table of contents, use the . PX macro or nothing will happen.

8.4-18. Defining Quotation Marks

To produce quotation marks and dashes that format correctly with both nroff and troff,
there are some string definitions for each of the formatting programs. The\•- string yields two
hyphens in nroff, and produces an em dash - like this one in troff. The \•Q and \•U
strings produce" and" in troff, but" in nroff.

8.4"19. Accent Marks

To simplify typing certain foreign words, the -ms macro package defines strings representing
common accent marks. There are a large number of optional foreign accent marks defined by
the -ms macros. All the accent marks available in -mos are present, and they all work just as
they always did.

For the old accent marks, type the string before the letter over which the mark is to appear.
For example, to print 'telephone with the old macros, you type:

t\• 'el\• 'ephone

0

0

Unlike the old accent marks, the new accent strings should be placed after the letter being
accented. Place .AM (accent mark) at the beginning of your document, and type the accent
strings after the letter being accented. A list of both sets of diacritical marks and examples of o
what they look like follows. Note: Do not use the tbl macros . TS and . TE with any of the

8-16 Version D of 15 May 1985

0

0

0

Editing and Text Processing Formatting Documents with the -ms Macros

accent marks as the marks do not line up correctly.

Table 8-2: Old Accent Marks

Accent Name Input Output

acute \ *, e e
grave \ *' e e
umlaut *:u " u
circumflex \ *'e e
tilde *-a a
hacek *Cr

V

r
cedilla \ *,c r

Table 8-3: Accent Marks

Accent Name Input Output

acute e\•, " grave e\•, e
circumflex o\•· 0
cedilla c\•, 9
tilde n\•- n
question \•? J
exclamation \•!
umlaut u\•: u
digraph es \•8 /3
ha~ek c\•v

V
C

macron a\•- a
o-slash o\•I c/
yogh kni\•3t kni3t
angstrom a\•o ' a
Thorn \•(Th p
thorn \•(th p
Eth \•(D- D
eth \•(d- 8
hooked o \•q '?
ae ligature \•(ae re
AE ligature \•(Ae IE
oe ligature \•(oe ce
OE ligature \•(Oe (E

If you want to use these new diacritical marks, don't forget the . AM at the top of your file.
Without it, some of these marks will not print at all, and others will be placed on the wrong
letter.

Version D of 15 May 1985 8-17

Formatting Documents with the -ms Macros Editing and Text Processing

8.5. Modifying Default Features

The -ms macro package supplies a standard page layout style. The text line has a default
length of six inches; the indentation of the first line of a paragraph is five ens; the page number
is printed at the top center of every page after page one; and so on for standard papers. You
can alter many of these default features by changing the values that control them.

The computer memory locations where these values are stored are called number registers and
string registers. Number and string registers have names like those of requests, one or two char­
acters long. For instance, the value of the line length is stored in a number register named LL.
Unless you give a request to change the value stored in register LL, it will contain the standard
or default value assigned to it by -ms. The "Summary of -ms Number Registers table lists the
number registers you can change along with their default values.

8.5.1. Dimensions

To change a dimension like the line length from its default value, reset the associated number
register with the troff request .nr (number register):

.nr LL Si

The first argument, LL, is the name of a number register, and the second, Si is the value being
assigned to it. In the case above, the line length is adjusted from the default six inches to five
inches. As another example, consider:

.nr PS 9

which makes the default point size 9 point.

The value may be expressed as an integer or may contain a decimal fraction. When setting the
value of a number register, it is almost always necessary to include a unit of scale immediately
after the value. In the example above, the 'i' as the unit of scale lets troff know you mean
five inches and not five of some other unit of distance. But the point size (PS) and vertical spac­
ing (VS) registers are exceptions to this rule; ordinarily they should be assigned a value as a
number of points without indicating the unit of scale. For example, to set the vertical spacing to
24 points, or one-third of an inch (double-spacing), use the request:

.nr VS 24

In the unusual case where you want to set the vertical spacing to more than half an inch (more
than 36 points), include a unit of scale in setting the VS register. The "Units of Measurement in
nroff and troff" table explains the units of measurement.

8-18 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with the -ms Macros

Table 8-4: Units of Measurement in nroff and troff

Unit Abbr nroff troff

point p 1/72 inch 1/72 inch
pica p 1/6 inch 1/6 inch
em m width of one character distance equal to number of

points in the current typesize
en n width of one character half an em
vertical space V amount of space in same

which each line of
text is set, measured
baseline to baseline

inch inch inch
centimeter C centimeter centimeter
machine unit u 1 /240 inch 1/432 inch

The units point, pica, em, and en are units of measurement used by tradition in typesetting.
The vertical apace unit also corresponds to the typesetting term leading, which refers to the dis­
tance from the base line of one line of type to the base line of the next. Em and en are particu­
lary interesting in that they are proportional to the type size currently in use (normally
expressed as a number of points). An em is the distance equal to the number of points in the
type size (roughly the width of the letter 'm' in that point size), while an en is half that (about
the width of the letter 'n'). These units a.re convenient for specifying dimensions such as inden­
tation. In troff, em and en have their traditional meanings, that is one em of distance is equal
to two ens. For nroff, on the other hand, em and en both mean the same quantity of distance,
the width of one typewritten character.

The machine unit is a special unit of dimension used by nroff and troff internally. This is
the unit to which the programs convert almost all dimensions when storing them in memory, and
is included here primarily for completeness. In using the features of -ms, it is sufficient to
know that such a unit of measure exists.

Note that a change to a number register such as LL does not immediately change the related
dimension at that point in the output. Instead, in the case of the line length for example, the
change takes place at the beginning of the next paragraph, where -ms resets various dimensions
to the current values of the related number registers.

Ir you need the effect immediately, use the normal troff command in addition to changing the
number register. For example, to control the vertical spacing immediately, use:

.vs

This takes effect at the place where it occurs in your input file. Since it does not change the VS
register, however, its effect lasts only until the beginning of the next paragraph. As a general
rule, to make a permanent change, or one that will last for several paragraphs until you want to
change it again, alter the value of the -ms register. If the change must happen immediately,
somewhere other than the point shown in the table, use the troff request. If you want the
change to be both immediate and lasting, do both.

Version D of 15 May 1985 8-19

Formatting Documents with the -ms Macros Editing and Text Processing

Table 8-5: Summary of -ms Number Registers

Register Controls Takes Default
Effect

PS point size next para. 10
VS line spacing next para. 12 pts
LL line length next para. 6"
LT title length next para. 6"
PD para. spacmg next para. 0.3 VS
PI para. indent next para. 5 ens
FL footnote length next FS 11/12 LL
cw column width next 2C 7 /15 LL
GW intercolumn gap next 2C 1/15 LL
PO page offset next page 26/2711

HM top margin next page l"
FM bottom mar~in next oa~e l"

You may also alter the strings LH, CH, and RH which are the left, center, and right headings
respectively; and similarly LF, CF, and RF which are strings in the page footer. Use the troff
. ds (define string) request to alter the string registers, as you use the . nr request for number
registers. The page number on output is taken from register PN, to permit changing its output
style. For more complicated headers and footers, you can redefine the macros PT and BT, as
explained earlier. See the "Register Names" section for a full list.

8.6. Using nroff and troff Requests

You can use a small subset of the troff requests to supplement the -ms macro package.

Use . nr and . ds requests to manipulate the -ms number and string registers as described in
the "Modifying Default Features" section. You can also freely use the other following requests in
a file for processing with the -ms macro package. They all work with both typesetter and
workstation or terminal output .

. ad b Adjust both margins. This is the default adjust mode .

. bp Begin new page .

. br 'Break' line; start a new output line whether or not the current one has been com­
pletely filled with text .

. ce n Center the following n input text lines individually in the output. If n is omitted, only
the next (one) line of text is centered .

. ds XX Define string register named XX .

. na Turn off adjusting of right margins to produce ragged right .

. nr XX Define number register named XX .

. sp n Insert n blank lines. If n is omitted, one blank line is produced (the current value of

0

0

the unit v). You can attach a unit of dimension to n to specify the quantity in units

0 other than a number of blank lines.

8-20 Version D of 15 May 1985

0

0

0

Editing and Text Processing Formatting Documents with the -ms Macros

Note: The macro package executes sequences of troff requests on its own, in a manner invisi­
ble to you. By inserting your own troff requests, you run the risk of introducing errors. The
most likely result is simply for your troff requests to be ignored, but in some cases the results
can include fatal troff errors and garbled typesetter output.

As a simple example, if you try to produce a centered heading with the input:

.ce

.SH
Text of section heading

you will discover that the heading comes out left-adjusted; the . SH macro, appearing after the
. ce request overrules it and forces left-adjusting. But consider the following sequence:

.sp

.ce

.B
Line of text

which successfully produces a centered, boldface heading preceded by one line of vertical space.
There are lots of tricks like this, so be careful.

To learn more about troff see the chapter on "Formatting Documents with nroff and
troff".

8.7. Using -ms with tbl to Format Tables

Similar to the eqn macros are the macros . TS and . TE defined to separate tables from text
with a little space (see the chapter "Formatting Tables with tbl "). A very long table with a
heading may be broken across pages by beginning it with . TS H instead of . TS, and placing
the line . TH in the table data after the heading. If the table has no heading repeated from page
to page, just use the ordinary . TS and . TE macros.

8.8. Using -ms with eqn to Typeset Mathematics

If you have to print Greek letters or mathematical equations, see the chapter "Typesetting
Mathematics with eqn" for equation setting. To aid eqn users, -ms provides definitions of
. EQ and . EN which normally center the equation and set it off slightly. An argument to . EQ is
taken to be an equation number and placed in the right margin near the equation. In addition,
there are three special arguments to . EQ: the letters C, I, and L indicate centered (default),
indented, and left adjusted equations, respectively. If there is both a format argument and an
equation number, give the format argument first, as in

.EQ L (1.3a)

for a left-adjusted equation numbered (1.3a).

Version D of 15 May 1985 8-21

Formatting Documents with the -ms Macros Editing and Text Processing

8.9. Register Names

The -ms macro package uses the following register names internally. Independent use of these
names in your own macros may produce incorrect output. Note that there are no lower-case
letters in any -ms internal name.

Number Re~isters Used in -ms
DW GW HM IQ LL NA OJ PO T. TV

#T EF HI HT IR LT NC PD PQ TB VS
T. FC H2 IF IT MF ND PE PS TC WF
IT FL H3 IK KI MM NF PF PX TD YE
AV FM H4 IM LI MN NS PI RO TN yy
CW FP H5 IP LE MO 01 PN ST TO ZN

· Strin11: Re11:isters Used in -ms
I A5 CB DW EZ I KF MR RI RT TL
' AB cc DY FA 11 KQ ND R2 so TM . AE CD El FE 12 KS NH R3 SI TQ
- Al CF E2 FJ 13 LB NL R4 S2 TS

AU CH E3 FK 14 LD NP R5 SG TT

'
B CM E4 FN 15 LG OD RC SH UL

IC BG cs E5 FO ID LP OK RE SM WB
2C BT CT EE FQ IE ME pp RF SN WH
Al C D EL FS IM MF PT RH SY WT
A2 Cl DA EM FV IP MH PY RP TA XD
A3 C2 DE EN FY IZ MN QF RQ TE XF
A4 CA DS EO HO KE MO R RS TH XK

8-22 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with the -ms Macros

8.10. Order of Requests in Input

The following diagram provides a quick reference on how to order requests when using the -ms
macro package to format a document in released format. For simpler documents, start with an
. LP initializing request.

• I,

TL

t
AU

l
I

Vercion D of 1.5 l\fay Jn85

"' RP
I

"
AB

t
AE

I

,

' NH, SH
I

'

PP, P

t
text ...

8-2:.l

Formatting Documents with the -ms Macros Editing and Text Processing

8.11. -ms Request Summary

This section includes tables of the old Bell Laboratories that have been removed from the new
-ms package, of new -ms requests and string definitions, and of useful printing and displaying
commands. It also includes a complete -ms request and string summary for easy reference.

8-24

Table 8-6: Bell Laboratories Macros (deleted from -ms)

Macro Request Exnlanation
.cs
.EG
. HO
. IH
.IM
.MF
. MH
.MR
.ND
.OK
. PY
.SG
.TM
.TR
. WH

Cover sheet
BTL Engineer's Notes
Bell Labs, Holmdel, N.J .
Bell Labs, Naperville, Ill .
BTL internal memo
BTL file memo
Bell Labs, Murray Hill, N.J .
BTL record memo
BTL date
BTL keywords for tech memo
Bell Labs, Piscataway, N.J .
Signatures for tech memo
BTL technical memo
BTL report format
Bell Labs, Whinnanv, N.J .

Table 8-7: New -ms Requests

Macro Reauest
. AM
. CT
. EH
. EF
. FE
. FS
.IP**
. IX
. OF
.OH
. Pl
. PX
. TM
.XS
. XE
. XA
. PX
.XP

Exnlanation
New accent mark definitions .
Chapter title in . TM format .
Define even three-part page header .
Define even three-part page footer .
End automatically numbered footnote .
Begin automatically numbered footnote .
Number endnotes.
Index words .
Define odd three-part page footer .
Define odd three-part page header .
Put header on page one in . TM format .
Print table of contents.
Thesis format .
Start table of contents entry .
End table of contents entry .
Additional table of contents entry .
Prints table of contents.
Exdented oaragraoh.

Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with the -ms Macros

Macro
Request

. lC

. 2C

. AB

. AE

. Al

.AM

.AT

. AU

.B z

. Bl

. 82

.BT

. BX z

.CM

. CT

.DA z

. DE

.DS z

.EF z

.EN

Table 8-8: New String Definitions

Definition

\ ·­
\ *Q
\ •u

In nroff'
Two hyphens -­
Open quote ''
Closed quote ''

In troff'
Em dash­
Open quote "
Closed quote "

Table 8-9: -ms Macro Request Summary

Initial Cause Explanation
Value Break?

yes yes One column format on a new page .
no yes Two column format .
no yes Begin abstract .

yes End abstract .
no yes Author's institution follows .

no

no
no

no
no
date

no

date

no

no
yes

yes
no

yes
yes
no

no
no

yes

no

yes
yes

no
yes

New accent mark definitions
Print ' ... Attached' and turn off line
filling.
Author's name follows .
Print z in boldface; if no argument
switch to boldface.
Begin text to be enclosed in a box .
End text to be boxed and print it .
Bottom title, automatically invoked
at foot of page. May be redefined.
Print z in a box .
Cut mark between pages (only if
troff).
Chapter title in thesis mode only .
Page number moved to CF.
'Date line' at bottom of page 1s z
(only in nroff). Default is today.
End displayed text. Implies . KE .
Start of displayed text to appear ver­
batim liine-by-line. x=I for
indented display (default), z=L for
left-adjusted on the page, z=C for
centered, •=B for make left-justified
block, then center whole block.
Implies . KS.
Even three-part page footer z
Space after equation produced by
eqn or neqn.

Version D of 15 May 1985 8-25

Formatting Documents with the -ms Macros

8-26

Macro
Request

Initial Cause
Value Break?

.EQ X y

. FE

.FS X

J z

.IP X y

.KE

.KF

. KS

. LG

. LP

.ND date

.NH n

no

no

no

no
no
yes

. NL yes

.IX x y

. OF X

. OH header

.Pl

.PP no

.PT pg#

.PX X

.QP

. R yes

yes

yes
no

no

yes

yes

yes

yes
yes
yes
no

yes

no
yes

no
no
no

yes

yes

yes

no

Editing and Text Processing

Explanation

Precede equation; break out and add
space. Equation number is y. The
optional argument x may be I to
indent equation (default), L to
left-adjust the equation, or C to
center it.
End footnote .
Start footnote. x is optional footnote
label. The note will be printed at
the bottom of the page.
Italicize x; if x is missing, italic text
follows.
Start indented paragraph, with hang­
mg tag z. Indentation 1s y ens
(default 5).
End keep. Put kept text on next
page if not enough room.
Start floating keep. If the kept text
must be moved to the next page,
float later text back to this page.
Start keeping following text .
Make letters larger .
Start left-blocked paragraph .
Use date supplied if any as page
footer; only in special format posi­
tions.
Same as . SH with section number
supplied automatically. Numbers are
multilevel, like 1.2.3, where n tells
what level is wanted (default is 1).
Make letters normal size .
Index entries w and y and so on up
to 5 levels. Make letters normal size.
Odd three-part page footer .
Odd three-part page header .
Print header on first page (only m
thesis mode).
Begin paragraph. First line
indented.
Page title, automatically invoked at
top of page. May be redefined.
Print table of contents; z=no
suppresses title.
Begin single paragraph which 1s
indented and shorter.
Roman text follows .

Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing

Macro
Request

.RE

.RP

. RS

.SH

. SM

. TA x ...

. TE

. TH

. TL

. TM

.TS X

. UL X

J(A X y

.XE

.XS X y

. UL X

Initial
Value

no

no
5 ...

no
off

Cause
Break?

yes

yes

yes

no
no
yes
yes
yes
no
yes

yes
yes

yes

yes

ves

Formatting Documents with the -ms Macros

Explanation

End relative indent level.
Cover sheet and first page for
released paper. Must precede other
requests.
Start level of relative indentation .
Following . IPs are measured from
current indentation.
Section head follows, font automati­
cally bold.
Make letters smaller .
Set tabs in ens. Default is 5 10 15 ...
End table .
End heading section of table .
Title follows .
Thesis mode format .
Begin table; if x
repeated heading
pages.

1s H, table has
on subsequent

Underline argument, even in troff .
Another index entry; x=page for no
for none, y=indent.
End index entry or series of . IX
entries.
Begin index entry; x=page or no for
none, y=indent.
Underline ar~ument, even in troff .

Table 8-10: -ms String Definitions

Name Definition In nroff In troff

quote *Q
,,

"
unquote *U " "
dash \ ·-
month of year *(MO April April
current date *(DY April 6, 1985 April 6, 1985
automatically-numbered footnote \ ..

Version D of 15 May 1985 8-27

Formatting Documents with the -ms Macros Editing and Text Processing

The following table summarizes command lines you use to print and display documents. Use the 0
same order with troff for preprocessing files with tb 1 and eqn. ,

If you use the two-column . 2C request, either pipe the nroff output through col or make
the first line of the input . pi /usr /bin/col.

8-28

Table 8-11: Printing and Displaying Documents

What You Want to Do
Display a file

Print a file on the line printer

Print a file with tables

Print a file with equations

How to Do it
nroff -ms file ...

nroff -ms file I lpr
-printer

tbl file I nroff -ms
lpr -printer

neqn file I nroff -ms
lpr -printer

more

Print a file with tables and equations tbl file I neqn I nroff
-ms I lpr -printer

Print a file document with troff troff -ms file I lpr -t
-printer

Version D of 15 May 1985

0

0

0

0

0

Chapter 9

The -man Macro Package

The -man macro package is used to format the manual pages to look like those in the Com­
mands Reference Manual for the Sun Workstation, for example.

9.1. Parts of a Manual Page

A manual page consists of several parts:

• The first part is the . TH line. This line identifies the manual page and sets up the titles and
other information to print the page headers and footers.

• The next few sections are all introduced by . SH macro requests.

A skeleton command file would look something like this:

.TH XX 1 "7 November 1984"

.SH NAME

.SH SYNOPSIS

.SH DESCRIPTION

.SH OPTIONS

.SH FILES

.SH "SEE ALSO"

.SH DIAGNOSTICS

.SH BUGS

The sections have the following meanings:

NAME The name of the command and
a short description.

SYNOPSIS A short synopsis of the com­
mand and its options and argu­
ments.

DESCRIPTION A brief narrative description of
what the command does.

OPTIONS

FILES

SEE ALSO

BUGS

Version D of 15 May 1985

A list of the options in terse
itemized list format.
Names of files that this com­
mand uses or creates.
Other relevant commands and
files and so on
Known deficiencies in the com­
mand.

9-1

The -man Macro Package Editing and Text Processing

Occasionally there may be other sections you can add. For instance, a couple of the manual
pages have a section called RESTRICTIONS, which contains the notice that this software is not dis- o
tributed outside of the United States of America.

Leave out sections that do not apply - it is not necessary to have a title without any content to
go with it. Definitely avoid sections that read:

BUGS
None.

9.2. Coding Conventions

The following subsections compose a fairly detailed description of what the different sections of
the manual page contain.

9.2.1. The . TH Line - Identifying the Page

The • TH macro is the macro that identifies the page. The format is

.TH nczvm

This means, for example: Begin page named n of chapter c. The :,; argument is for extra com­
mentary for the center page footer. The v argument alters the left portion of the page footer.
The m argument alters the center portion of the page header. The . TH command line also 0
incidentally sets the prevailing indent and tabs to .5i.

To code a manual page called troff(l), for example, you would code a . TH macro like:

. TH TROFF 1 "today's date"

The third parameter to the • TH macro is the date on which you created or last changed the
manual page. You code today'a date in the form

numerical day ape/led-out month numerical year

So if today is September 3rd, 1984, you code the • TH macro like:

.TH TROFF 1 "3 September 1984"

This form of coding the date ensures that people who do not live in the United States are not
confused by a date written in the form 9/3/84 and think that this means the 9th of March
instead of the 3rd of September.

9.2.2. The NAME Line

The NAME line is a one-liner that identifies the command or program. You code the informa­
tion like this:

9-2 Version D of 15 May 1985

0

0

0

0

Editing and Text Processing The -man Macro Package

.SH NAME
troff\- typeset or format documents

This line must be typed all in the Roman font with no font changes or point-size changes or any
other text manipulation. Typing the command line all in Roman with no text manipulation is for
the permuted index generator. It gets all confused if there is anything in that line other than
plain text.

Note the \- in there - why do we type a \-? Well, in troff jargon, a simple - sign gets you a
hyphen. We actually would like a en-dash (like -) instead of a hyphen, in lieu of actually having
a em-dash (like -). This use of the\- to get a - is a UNIXt tradition.

9.2.3. The SYNOPSIS Section

The SYNOPSIS line(s) show the user what options and arguments can be typed. The conven­
tions for the SYNOPSIS have varied wildly over the years. Nonetheless, here are the guidelines:

• Literal text (that is, what the user types) is coded in bold face.

• Variables (that is, things someone might wbstitute for) are typed in italic text.

• Optional things are enclosed in brackets - that is the characters [and] .

• Alternatives are separated by the vertical bar sign (I) .

The synopsis should show what the options are - some manual pages used to read like this:

SYNOPSIS
troff [option• J filename ...

but it should read:

SYNOPSIS
troff [-opagelist J [-nN] [-m name J ... [filename J

9.2 .. ,/. The DESCRIPTION Section

The DESCRIPTION section of a manual page should contain a brief description of what the
command does for the uaer, in terms that the user cares about.

Within the DESCRIPTION and OPTIONS sections, italic text is used for filenames and command
names. The rationale here is that UNIX commands are simply files. When referring to other
manual pages, you type the name in italics and the following parenthesized section number in
Roman, as in make(l). Use the -man macro . IR to get alternating words joined in italic and
Roman fonts. Note that the macros that join alternating words in different fonts (. IR, . IB,,,
.BR, .BI, .RI, .RB) all accept only six parameters. See the section on how to format a manual
page for more formatting rules.

Part of the description in the grep manual page used to read:

4 t UNIX is a trademark or Bell Laboratories.

Version D of 15 May 1985 9-3

The -man Macro Package Editing and Text Processing

..... grep patterns are limited regular expressions in the style of ed(l); it uses a compact non­
deterministic algorithm. egrep patterns are full regular expressions; it uses a fast deterministic 0
algorithm that sometimes needs exponential space. fgrep patterns are fixed strings; it is fast and
compact.

Most users do not care that egrep uses a fast deterministic algorithm. As an example of a more
useful way of describing a command for the user, here is how that sentence in the grep manual
page currently reads .

. grep patterns are limited regular expressions in the style of ed(l). egrep patterns are full
regular expressions including alternation. fgrep searches for lines that contain one of the
(newline-separated) strings. fgrep patterns are fixed strings - no regular expression metacharac­
ters are supported.

Here's another bad example: the lpr(l) command used to tell you that the -s option uses the
symlink(2) system call to make a symbolic link to the data file instead of copying the data file to
the spool area. The user may not know what this means or how to use the information. The
description was changed to just tell you that the -s option makes a symbolic link to the data
file. How it is done is of little concern to some poor blighter who just wants to print a file.

9.2.5. The OPTIONS Section

The OPTIONS section of a manual page contains an itemized list of the options that the com­
mand recognizes, and how the options affect the behavior of the command. The general format
for this section is

-option Description of what the option does.

A specific example from the troff manual page looks like this:

9-4 Version D of 15 May 1985

0

0

0

0

0

Editing and Text Processing The -ma.n Macro Package

OPTIONS
Options may appear in any order as long as they appear before the files.

-oli,t
Print only pages whose page numbers appear in the comma-separated
list of numbers and ranges. A range N-M means pages N through M;
an initial -N means from the beginning to page N; and a final N- means
from N to the end.

-nN
Number first generated page N.

-mname
Prepend the macro file /usr/lib/tmac/tmac.name to the input files.

-raN

-i

-q

-t

-a.

Set register a (one-character) to N.

Read standard input after the input files are exhausted.

Invoke the simultaneous input-output mode of the rd request.

Direct output to the standard output instead of the
phototypesetter. In general, you will have to use this option
if you don't have a typesetter attached to the system.

Send a printable ASCII approximation of the results to the standard
output.

Some options of troff only apply if you have a C/A/T typesetter
attached to your system. These options are here for historical reasons:

-sN

-f

-w

-b

Stop every N pages. troff stops the phototypesetter
every N pages, produces a trailer to allow changing
cassettes, and resumes when the typesetter's start button is pressed.

Refrain from feeding out paper and stopping phototypesetter at the
end of the run.

Wait until phototypesetter is available, if currently busy.

Report whether the phototypesetter is busy or available. No text
processing is done.

Version D of 15 May 1985 9-5

The -man Macro Package Editing and Text Processing

-pN
Print all characters in point size N while retaining all
prescribed spacings and motions, to reduce phototypesetter elasped time.

9.2.6. The FILES Section

The FILES section of a manual page contains a list of the files that the program accesses,
creates, or modifies. Obviously, you can leave this section out if the program uses no files.

The example from the troff manual page looks like this:

If the file /usr/adm/tracct is writable, troff keeps phototypesetter
accounting records there. The integrity of that file may be secured by
making troff a 'set user-id' program.

FILES
/tmp/ta* temporary file
/usr/lib/tmac/tmac.* standard macro files
/usr/lib/term/* terminal driving tables for nroff
/usr/lib/font/* font width tables for troff
/dev/cat phototypesetter
/usr/adm/tracct accounting statistics for /dev/cat

9.2. 7. The SEE ALSO Section

The SEE ALSO section of a manual page contains a list of references to other programs, files,
and manuals relating to this program. For example, on the troff manual page, the SEE ALSO
section looks like this:

SEE ALSO
Formatting Document• with nroff and troff in
Editing and Text Processing on the Sun Workstation
nroff(!), eqn(l), tbl(l), ms(7), me(7), man(7), col(l)

Contrary to the convention used everywhere else, the names in this section do not follow the
convention of italic name followed by Roman section number - you just type the whole thing
like make(!) all in Roman. This is a UNIX tradition.

Make sure that the references are u.e/u/ - the rm(l) command references the un/ink(2) system
call. Does the user care what system call is used to get rid of a file? It's not intuitive that you
use a function called unlink to remove a file.

Leave this section out if there are no interesting references.

9-6 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing The -man Macro Package

9.2.8. The BUGS Section

The BUGS section of a manual page is supposed to convey limitations of the command or bad
behavior of the command to the reader. Please limit bugs lo these categories. Too often, the
BUGS section contains WIBNis. A WIBNI is a 'Wouldn't It Be Nice If ... ' - this is not the place
for them.

Leave this section out altogether if there are no bugs worth noting.

9.3. New Features of the -man Macro Package

9.3.1. New Number Registers

Recent enhancements to the -man macro package facilitate including manual pages in manuals.
The major new features are number registers that can be set from the itroff, iroff, troff, ditroff,
or nroff command line. The number registers are:

Version D of 15 May 1985

D Format the document for
double-sided printing if the D
number register is set to 1.
Double-sided printing means
that the page numbers appear
in different locations on odd and
even pages. Page numbers
appear in the running footers in
the lower right corner of odd­
numbered pages and in the
lower left corner of even­
numbered pages.

C Number pages contiguously -
pages are numbered 1, 2, 3, •••
even when you format more
than one manual page at a time.
Every new topic used to start
numbering at page 1.

Pnnn Start Page numbering at page
nnn - page numbering starts at
page 1 if not otherwise
specified.

9-7

The -man Macro Package Editing and Text Processing

Xnnn Number pages as nnna, nnnb,
etc when the current page
number becomes nnn. This
feature is for generating update
pages to slot in between existing
pages. For example, if a new
page called skyversion(8) should
be included in an interim
release, we can number that
page as page '26a' and drop it
into the existing manual m a
reasonable fashion.

0.3.2. Using the Number Registers

Number registers are set from the itroff, iroff, troff, ditroff, or nroff command line by the -r
(set register) option, followed immediately by the one-letter name of the register, followed
immediately by the value to put into the number register:

hostname% /usr/local/itroff -man -rD1 manpage.1
hostname%

This example shows how to request a format suitable for double-sided printing.

If your grab(l) manual page used to be three pages long and is now five pages long, you need the

0

pages numbered l, 2, 3, 3a, and 3b instead of l, 2, 3, 4, and 5. You get this effect by using the o
-rX option on the command line, setting the X register to 3:

hostname% /usr/local/itroff -man -rX3 grab.I
hostname%

We introduced the screendump(l) and screenload(l) manual pages in the 1.2 release. screen­
dump(l) and acreenload(l) come immediately after the accsdiff(l) manual page. accadiff's last
page number is page 250, so we get screendump(l) and screen/oad(l) formatted with this com­
mand to start page numbering at 250 and to start putting in extra page letters at 250 as well:

hostname% /usr/local/itroff -man -rP260 -rX260 screendump.1 screenload.1
hostname%

9.4. IIow to Format a Manual Page

Any text argument t to a macro request may be from zero to six words. Quotes my be used to
include blanks in a 'word'. If the text field is empty, the macro request is applied to the next
input line with text to be printed. In this way, .I italicizes an entire line, and .SM followed on a
separate line by .B creates small, bold letters.

A prevailing indent distance is remembered between successive indented paragraphs, and is reset
to the default value upon reaching a non-indented paragraph. Default units for indents i are ens.

Type font and size are reset to the default values before each paragraph, and after processing
font- and size-setting macros. 0

9-8 Version D of 15 May 1985

0

0

0

Editing and Text Processing The -man Macro Package

These strings are predefined by -man:

\•R ®, '(Reg)' in nroff.
\•S Change to default type size.

9.5. Summary of the -man Macro Package Requests

Request

.B t

.Bl t

.BR t

. DT

. HP i

. .I t
.IB t

.IP X j

.IR I

. LP

. PD d

.PP

.RE

.RB t

.RI t

.RS i

. SH t

.SM t

Cause If no Explanation
Break Argument

no /=next text line Text t is bold.
no /=next text line Join words of I alternating

bold and italic.
no

no
yes

no
no

yes
no

yes
no
yes

yes

no

no

yes

yes
yes

t=next text line Join wordsof I alternating
bold and Roman .

. 5i Ii... Restore default tabs .
i=prevailing indent Set prevailing indent to , .

Begin paragraph with hang­
ing indent.

/=next text line Text t is italic .
l=next text line Join words of talternating

italic and bold.
ttll

X=

/=next text line
Same as .TP with tag z .
Join words of t alternating
italic and Roman.
Same as .PP .

d=.4v Interparagraph distance is d .
Begin paragraph. Set pre­
vailing indent to .5i.
End of relative indent. Set
prevailing indent to amount
of starting .RS.

l=next text line Join words of t alternating
Roman and bold.

/=next text line Join words of t alternating
Roman and italic.

i=prevailing indent Start relative indent, move
left margm m distance ,.
Set prevailing indent to .5i
for nested indents.

l=next text line Subheading .
/=next text line Text t 1s two point sizes

smaller than surrounding
text.

Version D of 15 May I 985 9-9

The -man Macro Package Editing and Text Processing

Request
Cause If no Explanation
Break Argument

. TH n c x v m yes

.TP i yes

Begin page named n of
chapter c. The z argument
is for extra commentary for
the center page footer. The
v argument alters the left
portion of the page footer.
The m argument alters the
center portion of the page
header. The . TH command
line also incidentally sets the
prevailing indent and tabs to

i=prevailing indent Set the prevailing indent to
i. Begin indented paragraph
with hanging tag given by
the next text line. If the tag
does not fit, place it on a
separate line.

To learn how to format manual pages on your terminal or workstation screen, refer to the

9-10 Version D of 15 May 1985

0

0

0

0

0

0

Chapter 10

Formatting Tables with tbl

This chapter5 provides instructions for preparing tbl input to format tables and for running the
tbl preprocessor on a file. It also supplies numerous examples after which to pattern your own
tables. The description of instructions is precise but technical, and the newcomer may prefer to
glance over the examples first, as they show some common table arrangements.

Tbl turns a simple description of a table into a troff or nroff program that prints the table.
From now on, unless noted specifically, we'll refer to both troff and nroff as troff since tbl treats
them the same. Tb/ makes phototypesetting tabular material relatively simple compared to nor­
mal typesetting methods. You may use tbl with the equation formatting program eqn or various
layout macro packages, as tbl does not duplicate their functions.

Tables are made up of columns which may be independently centered, right-adjusted, left­
adjusted, or aligned by decimal points. Headings may be placed over single columns or groups of
columns. A table entry may contain equations, or may consist of several rows of text. Horizon­
tal or vertical lines may be drawn as desired in the table, and any table or element may be
enclosed in a box. For example:

1970 Federal Budget Transfers
fin billions or dollarsl

State
Taxes Money

Net
collected spent

New York 22.91 21.35 -1.56
New Jersey 8.33 6.96 -1.37
Connecticut 4.12 3.10 -1.02
Maine 0.74 0.67 -0.07
California 22.29 22.42 +0.13
New Mexico 0.70 1.49 +0.79
Georgia 3.30 4.28 +0.98
Mississippi 1.15 2.32 +1.17
Texas 9.33 11.13 +1.80

The input to tbl is text for a document, with the text preceded by a • TS (table start) command
and followed by a • TE (table end) command. Tb/ processes the tables, generating troff format­
ting commands, and leaves the remainder of the text unchanged. The • TS and • TE lines are

6 The material in this chapter is derived from Tbl - A Program to Format Table,, M.E. Lesk,
Bell Laboratories, Murray Hill, New Jersey.

Version D of 15 May 1985 10-1

Formatting Tables with tbl Editing and Text Processing

copied, too, so that troff page layout macros, such as the formatting macros, can use these lines
to delimit and place tables as necessary. In particular, any arguments on the • TS or • TE lines
are copied but otherwise ignored, and may be used by document layout macro commands.

The format of the input is as follows:

ordinary tezt of your document

• TS
first table
• TE

ordinary tezt of your document

• TS
second table
• TE

ordinary tezt of your document

where the format of each table is as follows:

• TS
options for the table ;
format describing the layout of the table
data to be laid out in the table

data to be laid out in the table
• TE

Each table is independent, and must contain formatting information, indicated by format
describing the layout of the table, followed by the data to be laid out in the table. You may pre­
cede the formatting information, which describes the individual columns and rows of the table,
by options for the table that affect the entire table.

10.1. Running tbl

You can run tbl on a simple table by p1pmg the tbl output to troff (or your installation's
equivalent for the phototypesetter) with the command:

tutorial% tbl Ji.le I troff -options

where file is the name of the file you want to format. For more complicated use, where there are
several input files, and they contain equations and -m• macro package requests as well as tables,
the normal command is:

tutorial% tbl file! file/J • • . I eqn I troff -ma

10-2 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Tables with tbl

You can, of course, use the usual options on the troff and eqn commands. The usage for nroff is
similar to that for troff, but only printers such as the TELETYPE® Model 37 and Diablo­
mechanism (DASI or GS!) or other printers that can handle reverse paper motions can print boxed
tables directly. If you are running tbl on a line printer that does not filter reverse paper motions,
use the col processor to filter the multicolumn output.

If you are using an IBM 1403 line printer without adequate driving tables or post-filters, there is
a special -TX command line option to tbl which produces output that does not have fractional
line motions in it. The only other command line options recognized by tbl are -ms and -mm,
which are turned into commands to fetch the corresponding macro files; usually it is more con­
venient to place these arguments on the troff part of the command line, tbl accepts them as
well.

Caveats: Note that when you use eqn and tbl together on the same file, put tbl first. If there are
no equations within tables, either order works, but it is usually faster to run tbl first, since eqn
normally produces a larger expansion of the input than tbl. However, if there are equations
within tables, using the delim mechanism in eqn, you must put tbl first or the output will be
scrambled. Also, beware of using equations in n-style columns; this is nearly always wrong, since
tbl attempts to split numerical format items into two parts, and this is not possible with equa­
tions. To avoid this, use the delim (zz) table option to prevent splitting numerical columns
within the delimiters.

For example, if the eqn delimiters are $$, giving delim($$) a numerical column such as
'1245±16' will be divided after 1245, not after 16.

Tb/ limits tables to twenty columns; however, use of more than 16 numerical columns may fail
because of limits in troff, producing the 'too many number registers' message. Avoid using troff
number registers used by tbl within tables; these include two-digit names from 31 to 99, and
names of the forms #z, z+, z :, ·z, and z-, where z is any lower-case letter. The names ##,
#-, and #' are also used in certain circumstances. To conserve number register names, the n
and a formats share a register; hence the restriction that you may not use them in the same
column.

For aid in writing layout macros, tbl defines a number register TW which is the table width; it is
defined by the time that the • TE macro is invoked and may be used in the expansion of that
macro. More importantly, to assist in laying out multi-page boxed tables the macro . T# is
defined to produce the bottom lines and side lines of a boxed table, and then invoked at its end.
Use of this macro in the page footer boxes a multi-page table. In particular, you can use the
-ms macros to print a multi-page boxed table with a repeated heading by giving the argument
H to the • TS macro. If the table start macro is written

• TS H

a line of the form

• TH

must be given in the table after any table heading, or at the start if there aren't any. Material
up to the • TH is placed at the top of each page of table; the remaining lines in the table are
placed on several pages as required. For example:

Version D of 15 May 1985 10-3

Formatting Tables with tbl

.TS H
center box tab (/);
C S

1 1 .
Employees

Name/Phone

.TH
Jonathan Doe/123-4567
< etc. >
.TE

Note that this is not a feature of tbl, but of the -ms layout macros.

10.2. Input Commands

Editing and Text Processing

As indicated above, a table contains, first, global options, then a format section describing the
layout of the table entries, and then the data to be printed. The format and data are always
required, but not the options. The sections that follow explain how to enter the various parts of
the table.

10.2.1. Options that Affect the W'hole Table

There may be a single line of options affecting the whole table. If present, this line must follow
the '. TS' line immediately, must contain a list of option names separated by spaces, tabs, or
commas, and must be terminated by a semicolon. The allowable options are:

center

expand

box

allbox

doublebox

tab(z)

center the table (default is left-adjusted).

make the table as wide as the current line length.

enclose the table in a box.

enclose each item in the table in a box.

enclose the table in two boxes - a frame.

use x instead of tab to separate data items.

linesize (n) set lines or rules (such as from box) in n point type.

delim (zy) recognize x and y as the eqn delimiters.

A standard option line is:

center box tab (/) ;

which centers the table on the page, draws a box around it, and uses the slash '/' character as
the column separator for data items.

The tbl program tries to keep boxed tables on one page by issuing appropriate troff 'need' (• ne)
commands. These requests are calculated from the number of lines in the tables, so if there are
spacing commands embedded in the input, these requests may be inaccurate. Use normal troff

10-4 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Tables with tbl

procedures, such as keep-release macros, in this case. If you must have a multi-page boxed table,
use macros designed for the purpose, as explained above under Running 'tbl'.

10.2.2. Key Letters - Format Describing Data Items

The format section of the table specifies the layout of the columns. Each line in this section
corresponds to one line of the table, except that the last ·line corresponds to all following lines up
to the next , T&, if present as shown below. Each line contains a key-letter for each column of
the table. It is good practice to separate the key le.tters for each column by spaces, tabs, or a
visible character such as a slash'/'. Each key-letter is one of the following: "1 - left adjusted"

Lor 1

R or r

C or c

Norn

A or a

S or s

indicates a left-adjusted column entry.

indicates a right-adjusted column entry.

indicates a centered column entry.

indicates a numerical column entry, to line up the units digits of numerical entries.

indicates an alphabetic subcolumn; all corresponding entries are aligned on the left,
and positioned so that the widest is centered within the column (see the 'Some Lon­
don Transport Statistics' example).

indicates a spanned heading; that is, it indicates that the ·entry from the previous
column continues across this column; not allowed for the first column.

indicates a vertically spanned heading; that is, it indicates that the entry from the
previous row continues down through this row; not allowed for the first row of the
table.

When you specify numerical alignment, tbl requires a location for the decimal point. The right­
most dot (.) adjacent to a digit is used as a decimal point; if there is no dot adjoining a digit, the
rightmost digit is used as a units digit; if no alignment is indicated, the item is centered in the
column. However, you may use the special non-printing character string\& to override uncondi­
tionally dots and digits, or to align alphabetic data; this string lines up where a dot normally
would, and then disappears from the final output: In the example below, the items shown at the
left will be aligned in a numerical column as shown on the right:

13 13
4,2 4.2
26, 4 .12 26.4.12
abc abc
abc\& abc
43\&3.22 433.22
749, 12 749.12

Note: If numerical data are used in the same column with wider L or r type table entries, the
widest number is centered relative to the wider L or r items (we use L here instead of 1 for
readability; they have the same meaning as key-letters). Alignment within the numerical items
is preserved. This is similar to the way a type data are formatted, as explained above. How­
ever, alphabetic subcolumns (requested by the a key-letter) are always slightly indented relative
to L items; if necessary, the column width is increased to force this. This is not true for n type
entries.

Version D of 15 May 1985 10-5

Formatting Tables with tbl Editing and Text Processing

Note: Do not use the n and a items in the same column.

For readability, separate the key-letters describing each column with spaces. Indicate the end of 0
the format section by a period. The layout of the key-letters in the format section resembles the
layout of the actual data in the table. Thus a simple format is:

.TS
C S S

1 n n

text
.TE

which specifies a table of three columns. The first line of the table contains a centered heading
that spans across all three columns; each remaining line contains a left-adjusted item in the first
column followed by two columns of numerical data. A sample table in this format is:

Overall title
Item-a 34.22 9.1
ltem-b 12.65 .02
Items: c,d,e 23 5.8
Total 69.87 14.92

10.2.3. Optional Features of Key Letters

There may be extra information following a key-letter that modifies its basic behavior. Addi­
tional features of the key-letter system follow:

Horizontal line,
- A key-letter may be replaced by'-' (underscore) to indicate a horizontal line in place of
the corresponding column entry, or by '=' to indicate a double horizontal line. You can also
type this in the data portion. If an adjacent column contains a horizontal line, or if there
are vertical lines adjoining this column, this horizontal line is extended to meet the nearby
lines. If any data entry is provided for this column, it is ignored and a warning message is
displayed.

Vertical line,
- A vertical bar may be placed between column key-letters. This draws a vertical line
between the corresponding columns of the table. A vertical bar to the left of the first key­
letter or to the right of the last one produces a line at the edge of the table. If two vertical
bars appear between key-letters, a double vertical line is drawn.

Space between column•
- A number may follow the key-letter. This indicates the amount of separation between
this column and the next column. The number normally specifies the separation in ena (one
en is about the width of the letter 'n')6. If the 'expand' option is used, these numbers are
multiplied by a constant such that the table is as wide as the current line length. The
default column separation number is 3. If the separation is changed, the worst case, that is
the largest space requested, governs.

8 More precisely, an en is a number or points (1 point = 1/72 inch) equal to halt the current
type size.

10..6 Version D of 15 May 1985

0

0

0

0

0

Editing and Text Processing Formatting Tables with tbl

Vertical spanning
- Normally, vertically spanned items extending over several rows of the table are centered
in their vertical range. If a key-letter is followed by t or T, any corresponding vertically
spanned item begins at the top line of its range.

Font changes
- A key-letter may be followed by a string containing a font name or number preceded by
the letter for F. This indicates that the corresponding column should be in a different font
from the default font, which is usually Roman. All font names are one or two letters; a one­
letter font name should be separated from whatever follows by a space or tab. The single
letters B, b, I, and i are shorter synonyms for fB and fI. Font change commands given
with the table entries override these specifications.

Point aize change,
- A key-letter may be followed by the letter p or P and a number to indicate the point size
of the corresponding table entries. The number may be a signed digit, in which case it is
taken as an increment or decrement from the current point size. If both a point size and a
column separation value are given, one or more blanks must separate them.

Vertical spacing change•
- A key-letter may be followed by the letter v or V and a number to indicate the vertical
line spacing to be used within a multi-line corresponding table entry. The number may be a
signed digit, in which case it is taken as an increment or decrement from the current vertical
spacing. A column separation value must be separated by blanks or some other specification
from a vertical spacing request. This request has no effect unless the corresponding table
entry is a text block (see Text Block, below).

Column width indication
- A key-letter may be followed by the letter w or W and a width value in parentheses. This
width is used as a minimum column width. If the largest element in the column is not as
wide as the width value given after the w, the largest element is considered to be that wide.
If the largest element in the column is wider than the specified value, its width is used. The
width is also used as a default line length for included text blocks. Normal troff units can be
used to scale the width value; if none is used, the default is ens. If the width specification is
a unitless integer, you may omit the parentheses. If the width value is changed in a column,
the laat one given controls.

Equal width column•
- A key-letter may be followed by the letter e or E to indicate equal width columns. All
columns whose key-letters are followed by e or E are made the same width. In this way,
you can format a group of regularly spaced columns.

Note:
The order of the above features is immaterial; they need not be separated by spaces, except
as indicated above to avoid ambiguities involving point size and font changes. Thus a
numerical column entry in italic font and 12-point type with a minimum width of 2.5 inches
and separated by 6 ens from the next column could be specified as

np12w (2. 51) fl 6

Alternative notation
- Instead of listing the format of successive lines of a table on consecutive lines of the for­
mat section, separate successive line formats on the same line by commas. The format for
the sample table above can be written:

Version D of 15 May 1985 10-7

Formatting Tables with tbl Editing and Text Processing

c s s, 1 n n •

Default
- Column descriptors mISsmg from the end of a format line are assumed to be L. The
longest line in the format section, however, defines the number of columns in the table; extra
columns in the data are ignored silently.

10.2.4- Data to be Formatted in the Table

Type the data for the table after the format line. Normally, each table line is typed as one line
of data. Break very long input lines by typing a backslash ' \' as a continuation marker at the
end of the run-on line. That line is combined with the following line upon formatting and the '
\' vanishes. The data for different columns, that is, the table entries, are separated by tabs, or
by whatever character has been specified in the option taba option. We recommend using a visi­
ble character such as the slash character '/'. There are a few special cases:

Troff command• within table•
- An input line beginning with a '.' followed by anything but a number is assumed to be a
command to troff and is passed through unchanged, retaining its position in the table. So,
for example, you can produce space within a table by' .sp' commands in the data.

Full width horizontal line•
- An input line containing only the character'-' (underscore) or'=' (equal sign) represents
a single or double line, respectively, extending the full width of the table.

Single column horizontal line•
- An input table entry containing only the character '-' or '=' represents a single or double
line extending the full width of the column. Such lines are extended to meet horizontal or
vertical lines adjoining this column. To obtain these characters explicitly in a column, either
precede them by '\&' or follow them by a space before the usual tab or newline.

Short horizontal line•
- An input table entry containing only the string '\-' represents a single line as wide as the
contents of the column. It is not extended to meet adjoining lines.

Vertically spanned item•
- An input table entry containing only the character string '\ - ' indicates that the table
entry immediately above spans downward over this row. It is equivalent to a table format
key-letter of'''.

Text block,

10-8

- To include a block of text as a table entry, precede it by T{ and follow it by T}. To
enter, as a single entry in the table, something that cannot conveniently be typed as a simple
string between tabs, use:

• • .. T{
block of text

T} '

Note that the T} end delimiter must begin a line; additional columns of data may follow
after a tab on the same line. See the 'New York Area Rocks' example for an illustration of
included text blocks in a table. If you use more than twenty or thirty text blocks in a table,
various limits in the troff program are likely to be exceeded, producing diagnostics such as

Version D of 15 May 1985

0

0

0

0

Editing and Text Processing Formatting Tables with tbl

'too many text block diversions.'

Text blocks are pulled out from the table, processed separately by troff, and replaced in the
table as a solid block. If no line length is specified in the block of text itself, or in the table
format, the default is to use LXC/(N+l) where L is the current line length, C is the number
of table columns spanned by the text, and N is the total number of columns in the table.
The other parameters (point size, font, etc.) used in setting the block of text are those in
effect at the beginning of the table (including the effect of the '. TS' macro) and any table
format specifications of size, spacing and font, using the p, v and f modifiers to the column
key-letters. Commands within the text block itself are also recognized, of course. However,
troff commands within the table data but not within the text block do not affect that block.

Note:
Although you can put any number of lines in a table, only the first 200 lines are used in cal­
culating the widths of the various columns. Arrange a multi-page table as several single­
page tables if this proves to be a problem. Other difficulties with formatting may arise
because, in the calculation of column widths all table entries are assumed to be in the font
and size being used when the • TS command was encountered, except for font and size
changes indicated (a) in the table format section and (b) within the table data (as in the
entry \s+3\fidata\fP\sO). Therefore, although arbitrary troff requests may be sprin­
kled in a table, use requests such as • ps (set the point size) with care to avoid confusing the
width calculations.

10.2.5. Changing the Format of a Table

0 If you must change the format of a table after many similar lines, as with sub-headings or sum­
marizations, use the • T& (table continue) command to change column parameters. The outline
of such a table input is:

0
Version D of 15 May 1985 10-9

Formatting Tables with tbl

• TS

options afecting the whole table;
format of the columns •
data to be formatted in the table

data to be formatted in the table
• T&

format of the columns •
data to be formatted in the table

data to be formatted in the table

• T&
format of the columns •
data to be formatted in the table

data to be formatted in the table
• TE

Editing and Text Processing

start of the table

indicates a new format for the table

indieates a new format for the table

end of the table

as in the 'Composition of Foods' and 'Some London Transport Statistics' examples. Using this
procedure, each table line can be close to its corresponding format line.

Note: It is not possible to change the number of columns, the space between columns, the global
options such as box, or the selection of columns to be made equal width.

10.3. Examples

Here are some examples illustrating features of tbl. Glance through them to find one that you
can adapt to your needs.

Although you can use a tab to separate columns of data, a visible character is easier to read.
The standard column separator here is the slash '/'. If a slash is part of the data, we indicate a
different separator, as in the first example.

10-10 Version D of 15 May l 985

0

0

0

0

0

0

Editing and Text Processing

Input:

• TS

tab (%) box;

C C C

1 1 1 •

LanguageXAuthorsXRuns on

Fortran%Many%,Almost anything

PL/1%IBM%360/370

C%BTL%ll/45,H6000,370

BLISS%Carnegie-Mellon%PDP-l0,11

IDS%Honeyvell%H6000

Pascal%Stanford%370

• TE

Input:

• TS

tab (/) allbox;

C S S

C C C

n n n.
AT&T Comm.on Stock

Year/Price/Dividend

1971/41-54/$2. 60

2/41-54/2 • 70

3/46-55/2 • 87

4/40-53/3 • 24

5/45-52/3 • 40

6/51-59/ • 95*

• TE
* (first quarter only)

Version D of 15 May 1985

Formatting Tables with tbl

Output:

Language Authors Runs on

Fortran Many Almost anything
PL/1 IBM 360/370
C BTL 11/45,H6000,370
BLISS Carnegie-Mellon PDP-10,11
IDS Honeywell H6000
Pascal Stanford 370

Output:

AT&T Common Stock
Year Price Dividend

1971 41-54 $2.60

2 41-54 2.70

3 46-55 2.87

4 40-53 3.24

5 45-52 3.40

6 51-59 .95*

* (first quarter only)

10-11

Formatting Tables with tbl

Input:

• TS

tab (/) box;

C S S

C I C I C

1 I 1 I n.
Major Nev York Bridges

=
Bridge/Designer/Length

Brooklyn/J, A. Roebling/1595

Manhattan/G, Lindenthal/1470

Wi 11 iamsburg/L • L , Buck/1600

Queensborough/Palmer &/118l

/ Hornbostel

//1380

Tr iborough/0 • H • Ammann/_

//383

Bronx Whitestone/0. H. Amm.ann/2300

Throgs Neck/0 • H • Ammann/1800

George Washington/a , H. Ammann/3500

• TE

Input:

• TS

tab (/)

C C

np-2 I n I
/Stack

1-
1/46
/_
2/23
/_
3/15
/_
4/6. 5
/_
5/2, l
/_
• TE

10-12

Editing and Text Processing

Output:

Ma;or New York Bridues 0
Bridee Desiener Leneth

Brooklyn J. A. Roebling 1595
Manhattan G. Lindenthal 1470
Williamsbure L. L. Buck 1600
Queens borough Palmer & 1182

Hornbostel
1380

Tri borough 0. H. Ammann
383

Bronx Whitestone 0. H. Ammann 2300
Throgs Neck 0. H. Ammann 1800
Georee Washineton 0. H. Ammann 3500

0
Output:

Stack
I 46
2 23
3 15
4 6.5
5 2.1

0
Version D of 15 May 1985

0

0

0

Editing and Text Processing

Input:

• TS

tab (/) box;

L L L
L L _

LL I LB
L L _

L L L.

january/february/march

april/may

june/july/Months

august/september

october/november/december

• TE

Input:

• TS

tab (/) box;

cfB s s s.

Composition of Foods

• T&

C f C S 6

C I C s s

C IC IC I c.
Food/Percent by Weight

\"/_
\-/Protein/Fat/Carbo­

\"/\"/\"/hydrate

• T&

l I n I n I n.

Apples/. 4/. 5/13. O

Halibut/18. 4/5. 2/. •

Lima beans/7. 5/. 8/22. 0

Milk/3 • 3/4. 0/5 • 0

Mushrooms/3 • 5/ • 4/6 • 0

Rye bread/9 • 0/. 6/52 • 7

• TE

Version D of 15 May 1985

Formatting Tables with tbl

Output:

January february march
april may
June july Months
august september
october november december

Output:

Com ,osition of Foods
Per cent b Wei ht

Food
Protei Fat

Carbo-
n

h drate

Apples .4 .5 13.0
Halibut 18.4 5.2
Lima beans 7.5 .8 22.0
Milk 3.3 4.0 5.0
Mushrooms 3.5 .4 6.0
Rve bread 9.0 .6 52.7

10-13

Formatting Tables with tbl Editing and Text Processing

Input:

• TS

Output:

New York Area Rocks
tab (/) allbox;
cf! s s

c cv(11) cv(11)
Jp9 Jp9 lp9.
Nev York Area Rocks

Era/Formation/Age (years)
Precambrian/Reading Prong/>l billion

Paleozoic/Manhattan Prong/400 million

Masozoic/T{
• na

Newark Basin, incl.

Stockton, Lockatong, and Brunswick

formations; also Watchungs

and Palisades.

T}/200 million

Cenozoic/Coastal Plain/T{

On Long Island 30,000 years;

Cretaceous sediments redeposited

by recent glaciation •

• ad

T}

• TE

Era
Precambrian

Paleozoic

Mesozoic

Cenozoic

Formation Ae:e !vears)
Rea.dim::: Pron,: >J billion

Manhattan Prone- 400 million

Newark Basin, 200 million
incl. Stockton,
Lockatong, and
Brunswick Corm~
tions; also
Watchungs and
Palisades .

Coastal Plain On Long Island
30,000 years; Cre·
taceous sediments
redeposited by
recent vlaciation.

Input: Output:

10..14

• EQ
delim $$

• EN

• TS
tab (/) doublebox;
C C

l I •

Name/Definition

• sp
• vs +2p

Name

Gamma

Sine

Error

Bessel

Zeta

Definition

r(z)= J.00

1•->e-• dt

sin(,)= ;i (e•-,-•)

2 ' 2
erf(z)="y; J. ,-, dt

1 •
Jo(z)=-L cos(zsinO)dO

" 0
00

«•)= I;k-' (Re •>I)

Gamma/$GAMMA (z) = int sub O sup inf t sup {z-1} a sup -t dtO

Sine/$sin (x) =lover li (e sup ix - e sup -ix)$
Error/$ roman arf (z) = l over sqrt pi int sub O sup z e sup {-t sup l} dte
Bassel/$ J sub O (2) =lover pi int sub O sup pi cos (z sin theta) d theta$
Zeta/$ zeta (s) = sum from k=l to inf k sup -s --(Ra-s > 1)$
• vs -2p

• TE

Version D of 15 May 1985

0

0

0

0

0

Editing and Text Processing

Input:

• TS

box, tab(:);

cb s s s s

cp-2 s s s s

C 11 C I C

C 11 C I C

r2 11 n2 n2

C I C

C I C

I n2
Readability of Text

I n.

Line Width & Leading for 10-Pt. Type

=
L1ne:Set:l-Po1nt:2-Point:4-Po1nt

Width:Solid:Leading:Leading:Leading

9 Pica:\-9. 3:\-6 .0:\-5. 3:\-7 .1

14 Pica: \-4 . 5: \-0 • 6: \-0 • 3: \-1 • 7

19 Pica:\-5.0:\-5.1: 0.0:\-2.0

31 Pica:\-3.7:\-3.8:\-2.4:\-3.6

43 Pica:\-9.1:\-9.0:\-5.9:\-8.8

• TE

Version D of 15 May 1985

Formatting Tables with tbl

Output:

Readability of Text
Line Width & Leadinr for 10-Pt. T e

Line Set I-Point 2-Point 4-Point
Width Solid Leadine: Leadine: Leadine:
9 Pica -9.3 -6.0 -5.3 -7.1

14 Pica -4.5 -0.6 -0.3 -1.7
19 Pica -5.0 -5.1 0.0 -2.0
31 Pica -3.7 -3.8 -2.4 -3.6
43 Pica -9.1 -9.0 -5.9 -8.8

10-15

Formatting Tables with tbl

Input:

10-16

• TS

tab (/)

< •

clp-l •

l n

• n •
So- London rransport Statistic•

(l'.,.r 1964)

J.allvay route •lle•/244

Tube/66

Sub-surface/22

Surface/156

• •P • 5 ...
l r

• r •
Passenger traffic\- railvay

Journeys/674 ailllon

Average length/4. • 55 all••

Passenger alles/3,066 allllon

•••
l r ...
Paaaonger traffic\- road

Journeys/J,2Sl allllon

Average length/ 2 • 26 all es

Pasaongor allaa/5,094 allllon ...
l n

• n •
• •p • s

Yohlchs/1.2. SJl

J.allvay aotor cara/2.905

J.allvay trailer cara/1.269

Total rallvay/4, 174

O.nlbuaea/8, 3t7

•••
l n

• n •
• •p • 5

Staff/73,739

Acbllnlatratlva, etc • /8,SS3

Clvll englnoorlng/5,134

!lectrlcal ang • /1,714

Nech• ong • \- rallvay/4. :UO

Nech• eng • \- road/9,152

J.allvay oparatlona/8,930

J.oad oporatlona/JS,946 ...

Editing and Text Processing

Output:

Some London Transport Statistics
{Year 1964)

Railway route miles 244
Tube 66
Sub-surface 22
Surface 156

Passenger traffic - railway
Journeys 674 million
Average length 4.55 miles
Passenger miles 3,066 million

Passenger traffic - road
Journeys 2,252 million
Average length 2.26 miles
Passenger miles 5,094 million

Vehicles 12,521
Railway motor cars 2,905
Railway trailer cars 1,269
Total railway 4,174
Omnibuses 8,347

Staff 73,739
Administrative, etc. 5,553
Civil engineering 5,134
Electrical eng. 1,714
Mech. eng. - railway 4,310
Mech. eng. - road 9,152
Railway operations 8,930
Road operations 35,946

Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing

Input:

• P• 8

• v• 10p

• TS

tab (/) center box:

C O 0

cl••

C C C

18 l n •
lev Jeraey Repreaentatlvo•

(Doaocrat•)

• •P • 5
••-/Office addresa/Phone

• •P • S
Ja-• J • f"lorlo/23 S • Vhlto llorae Plko, so-rdaho 08083/609-6.n-82l2

Willia• J • llughos/29%0 Atlantic Ave• • Atlantic City 08ol01/609-MS-'1944

J•-• J • Boward/801 l!an,pi Ave•. Aabury Park 077U/201-774-1600

frank Thoapaon, Jr • /10 l.utgora Pl • , !'rent.on 08618/609-599-1619

Androv Nagulro/115 W • Paaaalc St • , J.ocholle Park 07662/201-843-0.HO

:t.obort A• l:oe/U • S • P • 0 •. 194 Ward St•. Patoraon 07510/201-SJl-5152

llonry llolstoakl/666 Patoraon Ave • • l!aat l.uthorford 07073/.ZOl-939-9090

Poter W • J.odlno. Jr • /Sult• 1435A. 970 Broad St • • lovark 07102/%01-645-3213

Joaoph O • Nlnlsh/308 Naln St • • Orange 010S0/201-61S-6l6J

llelen S • Meyner/32 Bridge St•. Laabertvllle 08SJ0/609-l91-18l0

Doalnlek V • Danlel•/89S Bergen Ave• • Jer•ey City 01l06/20l-6S9-1100

!dvard J • Patten/latl • Bank Bldg• , Porth Amboy 08861/201-826-1610

• •P • S ...
el••

18 l n •

(l.epublleana)

• •p • Sv
Nlllleent fenvlek/11 I • Bridge St • • so-rvllle 08876/201-7.U-8200

Edvln B • forsythe/301 11111 St• , Hoore•tovn 080S7/609-23S-66U

llatthov J • l.inaldo/1961 llorrb Ave • , Union 07083/201-687-4J3S

• ft

• p• 10

• vs 12p

Output:

Name

James J. Florio
William J. Hughes
James J. Boward
Frank Thompson, Jr.
Andrew Maguire
Robert A, Roe
Henry Helstoski
Peter W. Rodino, Jr.
Joseph G. Minish
Helen S. Meyner
Dominick V. Daniels
Edward J. Patten

Millicent Fenwick
Edwin B. Forsythe
Matthew J, Rinaldo

New Jersey Representatives
{Demoerats)

Office address

23 S. White Horse Pike, Somerdale 08083
2920 Atlantic Ave., Atlantic City 08401
801 Bangs Ave., Asbury Park 07712
10 Rutgers Pl., Trenton 08618
115 W. Passaic St., Rochelle Park 07662
U.S.P.O., 194 Ward St., Paterson 07510
666 Paterson Ave., Ea.st Rutherford 07073
Suite 1435A, 970 Broad St., Newark 07102
308 Main St., Orange 07050
32 Bridge St., Lambertville 08530
gg5 Bergen Ave., Jen1ey City 07306
Natl. Bank Bldg., Perth Amboy 08861

{Rtpu6ti,an,J

41 N. Bridge St., Somerville 08876
301 Mill St., Moorestown 08057
1961 Morrie Ave .. Union 07083

Formatting Tables with tbl

Phone

609-627-8222
609-345-48H
201-774-1600
609-599-1619
201-843-0240
201-523-5152
201-939-9090
201-645-3213
201-645-6363
609-397-1830
201-659-7700
201-826--4610

201-722-8200
609-235-6622
201-687-4235

This is a paragraph of normal text placed here only to indicate where the left and right margins are.
Examine the appearance of centered tables or expanded tables, and observe how such tables are format·
ted.

V crsion D of 15 May 1985 10-17

Formatting Tables with tbl Editing and Text Processing

Input:

• TS

center tab (/)

C S S S

C S S S

CCC C

n n n n.

LYKE WAKE WALJC

Successful Crossings 1959-1966

Year/First Croaainga/Repeata/Total

1959/89/23/112

1960/222/33/255

1961/650/150/800

1962/1100/267/1367

1963/1054/409/1463

1964/1413/592/2005

1965/2042/771/2813

1966/2537/723/3260

• TE

Output:

10-18

LYKE WAKE WALK
Successful Crossings 1959-1966

Year First Crossings Repeats Total
1959 89 23 112
1960 222 33 255
1961 650 150 800
1962 1100 267 1367
1963 1054 409 1463
1964 1413 592 2005
1965 2042 771 2813
1966 2537 723 3260

Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing

Input:

• TS
tab (/) box:

ob •

C I C I •
lth,(ll} I 1tv(ll) I lp& I lv(l • 6t)pa.

So- Interesting Place•

••-/Do•crlptlon/Practlcal Inforaatlon

T{

American Nu•eua of latural l[lstory

T}/T{

Tho colloctlon• fill 11 • S acres (Nlcholln) or 25 acres {NTA)

of exhibition halls on four floors• !here l• a full-sized r ... pllca

of a blue vhale and tho vorld'• largest star sapphire {stolen in 1964)

T}/llours/10-5. ax • Sun 11-5, Wed• to 9

\·J\·/Loc11Uon/T{
Centr•l Park Wost .Ii 79th St•

T)

\•/\' /AdD.isalon/Donatlont •t • 00 asked

\'/\./Subvay/AA to &ht St.

,·;,·;rolophona/212-873-4225

Bronx Zoo/T{

About a 111110 long and • 6 mtlo vlde, this i. tho largest xoo ln A9erlca •

A lion oats 18 pounds

of aoat a day while a ••• llon oats 15 pounds of fllih •

T}/Boun/T{

lO-of1JO vlnter, to 5100 -r

T)

\·J\·/Location/T{

185th St • ,lo Southern Blvd, the Bronx •

T)

\·J\./Adal .. lon/tl • 00, but Tu,Ve.fto frH

\•;\·/Subvay/l, S to l!aat Treaont Av••

\ • J\ • /Telephone/lll-933-1759

Brooklyn Nuaeu./T{

five floor• of gallerlea contain Aaorican and ancient art•

Thera ar• ,._.rlcan period roo .. and archltoctural orna .. nt• aaved

fro• vreckera, auch aa a classical figure fro• Pennsylvania Station•

T}(f)Boura/Ved-Sat, 10-S, Sun U-5

\·;,·;Location/T{

l!aatern Parkvay ,lo Washington Ava • • Brooklyn •

T)

\ • /\ • / Adaladon/l!rH

\·J\·/Subvay/l.J to !aatern Parkvay •

\•;\·/Telephona/lll-638-5000

r{

lev-York Blatorlcal Society

T}/T{

All the oi-lglnal painting• for Audubon'•

. '
!!.lrda of America

••
are here. as are exhibit• of Alllarlcan decorative art•. lev York history,

ludson liver school palntlnga, carrlaqea, and glaaa paporvolghta •

T} /Boura/T{

Tuas-!rl & Sun. 1-S: Sat 10-S

•>
\·;,·;Locatlon/T{

Central Park Vaat & 77th St •

T)
\•;\·/Adalsalon/!rea

\•j\•/Subvay/AA to Slat St•

\ • /\ • /Telephone/lll-873- 3400 ...

Version D of 15 May 1985

Formatting Tables with tbl

10-19

Formatting Tables with tbl Editing and Text Processing

Output:

0 Some Interestin11t Places
Name Descriotion Practical Information

American Muae- The collections fill 11.5 acres Hours 10-5, ex. Sun 11-5, Wed. to 9

um of Natural (Michelin) or 25 acres (MTA) Location Central Park West & 79th St.

History of exhibition halls on four Admission Donation: $1.00 asked

floors. There IS a full-sized Subway AA to 81st St.

replica of a blue whale and Telephone 212-873-4225

the world's largest star sap-
oh ire (stolen in 1964).

Bronx Zoo About a mile long and .6 mile Hour::, 10--1::30 winter, to 5:00 iiummcr

wide, this is the largest zoo in Location 185th St. & Southern Blvd, the

America. A lion eats 18 Bronx.

pounds of meat a day while a Admi:,sion $1.00, but Tu,Wc,Th free

sea lion eats 15 pounds of Subway 2, 5 to Ea.st Tremont Ave.

fish. Telephone 212-933-1759

Brooklyn Museum Five floors of galleries contain Hours Wed-Sat, 10-5, Sun 12-5

American and ancient art. Location Ea.stern Parkway & Wa.ahington

There are American period Ave., Brooklyn.

rooms and architectural orna- Admission Free

ments saved from wreckers, Subway 2,3 to Eutcrn Parkway.

such as a classical figure from Telephone 212-638-5000

Pennsvlvania Station.
New-York Histor- All the original paintings for Hours Tues-Fri & Sun, 1-5; Sat 10-5

ical Society Audubon's Bird, of America Location Central Park West & 77th St.

are here, as are exhibits of Admi::1sion Free
0

American decorative arts, Subway AA to 8ht St.

New York history, Hudson Telephone 212-873-3400

River school paintings, car-
riages, and glass paper-
weights.

0
10-20 Version D of 15 May 1985

0

0

0

Editing and Text Processing Formatting Tables with tbl

10.4. Tbl Commands

Table 10-1: tbl Command Characters and Words

Command

a A
al lbox
b B
box
c C

center
doublebox
e E
expand
f F

i I
1 L
n N
nnn
p p

r R
s s
t T
tab (z)
T{ T}

V V

" w
. zz
I
II

\-
=

_

Version D of 15 May 1985

Meaning

Alphabetic subcolumn
Draw box around all items
Boldface item
Draw box around table
Centered column

Center table in page
Doubled box around table
Equal width columns
Make table full line width
Font change

Italic item
Left adjusted column
Numerical column
Column separation
Point size change

Right adjusted column
Spanned item
Vertical spanning at top
Change data separator character
Text block

Vertical spacing change
Minimum width value
Included troff command
Vertical line
Double vertical line

Vertical span
Vertical span
Double horizontal line
Horizon ta! line
Short horizontal line

10-21

0

0

01

0

0

0

Chapter 11

PIC - A Graphics Language for Typesetting

Pie is a language for describing how to draw simple figures on devices such as typesetters. Pie
acts as a preprocessor to troff. The basic objects in Pie are boxes, circles, ellipses, lines, arrows,
arcs, spline curves, and text. These objects may be placed anywhere, at positions specified abso­
lutely or in terms of previous objects. The example below illustrates the general capabilities of
the language.

document I----"" PIC

r------,
!TBL/EQNI f---, (optional) !-I ----i TROFF L--~typesetter

L----~ L------~ L----....J

This picture was created with the input

ellipse "document"
arrow
box "PIC"
arrow
box "TBL/EQN" "(optional)" dashed
arrow
box II TROFF"
arrow
ellipse "typesetter"

Pie is another troff processor; it passes most of its input through untouched, but translates com­
mands between . PS and . PE into troff commands that draw the pictures.

e This User Manual was derived from a paper written by Brian W. Kernighan, Bell Labora­
tories, Murray Hill, New Jersey.

Version D of 15 May 1985 11-1

11.1. Introduction

Pie is a language for drawing simple pictures. It operates as yet another troff[l] preprocessor,
(in the same style as eqn [2], tbl [3] and refer [4]), with pictures marked by . PS and . PE.

Pie was inspired partly by Chris Van Wyk's early work on idea/[5]; it has somewhat the same
capabilities, but quite a different flavor. In particular, Pie is much more procedural-a picture
is drawn by specifying (sometimes in painful detail) the motions that one goes through to draw
it. Other direct influences include the picture language [BJ and the V viewgraph language [7].

This paper is primarily a user's manual for pie; a discussion of design issues and user experience
may be found in [8].

The next section shows how to use Pie in the most simple way. Subsequent sections describe
how to change the sizes of objects when the defaults are wrong, and how to change their posi­
tions when the standard positioning rules are wrong. An appendix describes the language suc­
cinctly and more or less precisely.

11.2. Basics

Pie provides boxes, lines, arrows, circles, ellipses, arcs, and splines (arbitrary smooth curves),
plus facilities for positioning and labeling them. The picture below shows all of the fundamental
objects (except for splines) in their default sizes:

0

l J, F. Ossanna, "NROFF/TROFF User's Manual," UNIX Programmer', Manual, vol. 2, Bell Labora­
tories, Murray Hill, N.J., January 1979. Section 22

0

2 Brian W. Kernighan and Lorinda L. Cherry, "A System for Typesetting Mathematics," Communica­
tion, of the ACM, vol. 18, no. 3, pp. 151-157, 1975.

0

3 DNL, M. E. Lesk, "Thi -- A Program to Format Tables/' UNIX Programmer's Manual, vol. 2, Bell La­
boratories, Murray Hill, N.J., January 1979. Section 10

0

4 DNL, M. E. Lesk, "Some Applications of Inverted Indexes on the UNIX System," UNIX Programmer',
Manual, vol. 2, Bell Laboratories, Murray Hill, N.J., January 1979. Section 11

0

6 Christopher J. Van Wyk and C. J. Van Wyk, "A Graphics Typesetting Language," SIGPLAN Sympo,i·
um on Tezt l1Janiptdation, Portland, Oregon, June, 1981.

0

O John C. Beatty, "PICTURE - A picture-drawing language for the Trix/Red Report Editor,"
Lawrence Livermore Labm·atory Report UCID-30156, April 1977.

0

7 Anon., BV - A viewgraph generating language," Bell Laboratories internal memorandum, M3.y 1979.
0

8 B. W. Kernighan, "PlC - A Language for Typesetting Graphics," Software Practice 8 Ezpen·enc.e, vol.
12, no. 1, pp. 1-21, January, 1982.

Version D of 15 May 1985 11-2

0

0

0

0

0

0

PIC - A Graphics Language for Typesetting Editing and Text Processing

line arrow 8 8
Each picture begins with . PS and ends with . PE; between them are commands to describe the
picture. Each command is typed on a line by itself. For example

.PS
box "this ls" "a box"
.PE

creates a standard box (% inch wide, 'h inch high) and centers the two pieces of text in it:

this is
a box

Each line of text is a separate quoted string. Quotes are mandatory, even if the text contains no
blanks. Of course there needn't be any text at all. Each line is printed in the current size and
font, centered horizontally, and separated vertically by the current troff line spacing.

Pie does not center the drawing itself, but the default definitions of . PS and . PE in the -ms

macro package do.

You can use circle or ellipse in place of box:

this is
a box

Text is centered on lines and arrows; if there is more than one line of text, the lines are centered
above and below:

.PS
arrow "this is" "an arrow"
.PE

produces

and

line "this is" "a line"

gives

11-3

this is
an arrow

this is
a hne

Version D of 15 May 1985

Editing and Text Processing P!C - A Graphics Language for Typesetting

Boxes and lines may be dashed or dotted; just add the word dashed or dotted after box or
line.

Arcs by default turn 90 degrees counterclockwise from the current direction; you can make them
turn clockwise by saying arc cw. So

line; arc; arc cw; arrow

produces

__ f
..

A spline might well do this job better; we will return to that shortly.

As you might guess,

arc; arc; arc; arc

draws a circle, though not very efficiently.

Objects are normally drawn one after another, left to right, and connected at the obvious places.
Thus the input

arrow; box "input"; arrow; box "process"; arrow; box "output"; arrow

produces the figure

---<•"'II input I • I process I • I output ..

If you want to leave a space at some place, use move:

box; move; box; move; box

produces

DOD
Notice that several commands can be put on a single line if they are separated by semicolons.

Although objects are normally connected left to right, this can be changed. If you specify a
direction (as a separate object), subsequent objects are joined in that direction. Thus

down; box; arrow; ellipse; arrow; circle

produces

Version D of 15 May 1985 11-4

0

0

0

0

0

0

PIC - A Graphics Language for Typesetting Editing and Te.xt Processing

and

left; box; arrow; ellipse; arrow; circle

produces

Each new picture begins going to the right.

Normally, figures are drawn at a fixed scale, with objects of a standard size. It is possible, how­
ever, to arrange that a figure be expanded to fit a particular width. If the .PS line contains a
number, the drawing is forced to be that many inches wide, with the height scaled propor­
tionately. Thus

.PS 3.51

makes the picture 3.5 inches wide.

Pie is pretty dumb about the size of text in relation to the size of boxes, circles, and so on.
There is as yet no way to say "make a box that just fits around this text" or "make this text fit
inside this circle" or "draw a line as long as this text." All of these facilities are useful, so the
limitations may go away in the fullness of time, but don't hold your breath. In the meantime,
tight fitting of text can generally only be done by trial and error.

Speaking of errors, if you make a grammatical error in the way you describe a picture, Pie com­
plains and try to indicate where. For example, the invalid input

box arrow box

draws the message

11-5 Version D of 15 May 1985

Editing and Text Processing PIC - A Graphics Language for Typesetting

pie: syntax error near line 5, file -
context is

box arrow box

The caret - marks the place where the error was first noted; it typically Jo/Iowa the word in er­
ror.

11.3. Controlling Sizes of Objects

This section deals with how to control the sizes of objects when the 'default' sizes are not what is
wanted. The next section deals with positioning them when the default positions are not right.

Each object that Pie knows about (boxes, circles, etc.) has associated dimensions, like height,
width, radius, and so on. By default, Pie tries to choose sensible default values for these dimen­
sions, so that simple pictures can be drawn with a minimum of fuss and bother. All of the
figures and motions shown so far have been in their default sizes:

Table 11-1: PIC Objects and their Standard Sizes

Object

box
circle
ellipse
arc
line or arrow
move

Standard Size

3/,/1 wide X 'I:!' high
'h.'1 diameter
%!' wide X 'h!' high
1h11 radius
'I:!' long
1h11 in the current direction

When necessary, you can make any object any size you want. For example, the input

box width 31 height O.li

draws a long, flat box

3 inches wide and 1/10 inch high. There must be no space between the number and the "i"
that indicates a measurement in inches. In fact, the "i" is optional; all positions and dimensions
are taken to be in inches.

Giving an attribute like width changes only the one instance of the object. You can also
change the default size for all objects of a particular type, as discussed later.

The attributes of height (which you can abbreviate to ht) and width (or wid) apply to boxes,
circles, ellipses, and to the head on an arrow. The attributes of radius, (or rad) and
diameter (or diam) can be used for circles and arcs if they seem more natural.

Lines and arrows are most easily drawn by specifying the amount of motion from where one is
right now, in terms of directions. Accordingly the words up, down, left and right and an op­
tional distance can be attached to line, arrow, and move. For example,

Version D of 15 May 1985 11-6

0

0

0

0

0

PIC - A Graphics Language for Typesetting

draws

.PS
line up li right 2i
arrow left 2i
move left O.li
line<-> down li "height"
.PE

hei ht

Editing and Text Processing

The notation <-> indicates a two-headed arrow; use -> for a head on the end and<- for one on
the start. Lines and arrows are really the same thing; in fact, arrow is a synonym for line ->.

If you don't put any distance after up, down, etc., Pie uses the standard distance. So

line up right; line down; line down left; line up

draws the parallelogram

Warning: a very common error (which hints at a language defect) is to say

line 3i

A direction is needed:

line right 3i

Boxes and lines may be dotted or dashed:

comes from

c::i box dotted; line dotted; move; line dashed

11-7 Version D of 15 May 1985

Editing and Text Processing PIC - A Graphics Language for Typesetting

If there is a number after dot, the dots are that far apart. You can also control the size of the
dashes (at least somewhat): if there is a length after the word dashed, the dashes are that long,
and the intervening spaces are as close as possible to that size. So, for instance,

comes from the inputs (as separate pictures)

line right Si dashed
line right Si dashed 0.251
line right Si dashed O.Si
line right Si dashed li

Sorry, but circles and arcs can't be dotted or dashed yet, and probably never will be.

You can make any object invisible by adding the word invis (ible) after it. This is particu­
larly useful for positioning things correctly near text, as we will see later.

Text may be positioned on lines and arrows:

.PS
arrow "on top
arrow 11 above"
arrow "above"
arrow "below"
arrow "above"
.PE

produces

OB te~11tf

of"; move
"below"; move
above; move
below; move
"on top of"

above
beioJ'

"below"

above
belo~

above
OB t8J3 lif

below

The "width" of an arrowhead is the distance across its tail; the "height" is the distance along
the shaft. The arrowheads in this picture are default size.

As we said earlier, arcs go 90 degrees counterclockwise from where you are right now, and arc
cv changes this to clockwise. The default radius is the same as for circles, but you can change it
with the rad attribute. It is also easy to draw arcs between specific places; this is described in
the next section.

To put an arrowhead on an arc, use one of<-, ->or<->.

In all cases, unless an explicit dimension for some object is specified, you get the default size. If
you want an object to have the same size as the previous one of that kind, add the word same.

Version D of 15 May 1985 11-8

0

0

0

0

0

0

PIC - A Graphics Language for Typesetting Editing and Text Processing

Thus in the set of boxes given by

down; box ht 0.21 wid 1.51; move down 0.151; box same; move same; box same

the dimensions set by the first box are used several times; similarly, the amount of motion for
the second move is the same as for the first one.

11.8.1. Variables for Controlling Size of Objects

It is possible to change the default sizes of objects by assigning values to certain variables:

boxwid, boxht
linewid, lineht
dashwid
circlerad
arcrad
ellipsewid, ellipseht
movewld~ moveht
arrowwid, arrowht (These refer to the arrowhead.)

So if you want all your boxes to be long and skinny, and relatively close together,

boxwid = 0.li; boxht = li
movewid ~ 0.21
box; move; box; move; box

Pie works internally in what it thinks are inches. Setting the variable scale to some value
causes all dimensions to be scaled down by that value. Thus, for example, scale=2. 54 causes
dimensions to be interpreted as centimeters.

The number given as a width in the .PS line overrides the dimensions given in the picture; this
can be used to force a picture to a particular size even when coordinates have been given in
inches. Experience indicates that the easiest way to get a picture of the right size is to enter its
dimensions in inches, then if necessary add a width to the . PS line.

II-9 Version D of 15 May 1985

Editing and Text Processing PIO - A Graphics Language for Typesetting

11.4. Controlling Positions of Objects

You can place things anywhere you want; Pie provides a variety of ways to talk about places.
Pie uses a standard Cartesian coordinate system, so any point or object has an :i and y position.
The first object is placed with its start at position 0,0 by default. The x,y position of a box, cir­
cle or ellipse is its geometrical center; the position of a line or motion is its beginning; the posi­
tion of an arc is the center of the corresponding circle.

Position modifiers like from, to, by and at are followed by an x,y pair, and can be attached to
boxes, circles, lines, motions, and so on, to specify or modify a position.

You can also use up, down, right, and left with line and move. Thus

.PS 2
box ht 0.2 wid 0.2 at 0,0 11 1"
move to 0.5,0 # or "move right 0.5 11

box 11 2 11 same # use same dimensions as last box
move same # use same motion as before
box 11 3 11 same
.PE

draws three boxes, like this:

Note the use of same to repeat the previous dimensions instead of reverting to the default
values.

Comments can be used in pictures; they begin with a# and end at the end of the line.

Attributes like ht and wid and positions like at can be written out in any order. So

box ht 0.2 wid 0.2 at 0,0
box at 0,0 wid 0.2 ht 0.2
box ht 0.2 at 0,0 wid 0.2

are all equivalent, though the last is harder to read and thus less desirable.

The from and to attributes are particularly useful with arcs, to specify the endpoints. By de­
fault, arcs are drawn counterclockwise,

arc from O.Si,O to 0,0.Si

is the short arc and

arc from 0,0.51 to 0.51,0

is the long one:

Version D of 15 May 1985 11-10

0

0

0

0

0

0

PIC - A Graphics Language for Typesetting Editing and Text Processing

If the from attribute is omitted, the arc starts where you are now and goes to the point given by
to. The radius can be made large to provide flat arcs:

arc-> cw from 0,0 to 2i,O rad 151

produces

We said earlier that objects are normally connected left to right. This is an over-simplification.
The truth is that objects are connected together in the direction specified by the most recent up,
down, left or right (either alone or as part of some object). Thus, in

arrow left; box; arrow; circle; arrow

the left implies connection towards the left:

This could also be written as

left; arrow; box; arrow; circle; arrow

Objects are joined in the order determined by the last up, down, etc., with the entry point of
the second object attached to the exit point of the first. Entry and exit points for boxes, circles
and ellipses are on opposite sides, and the start and end of lines, motions and arcs. It's not en­
tirely clear that this automatic connection and direction selection is the right design, but it
seems to simplify many examples.

If a set of commands is enclosed in braces { ... }, the current position and direction of motion
when the group is finished is exactly where it was when entered. Nothing else is restored. There
is also a more general way to group objects, using [and] , which is discussed in a later section.

11.5. Labels and Corners

Objects can be labelled or named so that you can talk about them later. For example,

11-11 Version D of 15 May 1985

Editing and Text Processing PIC - A Graphics Language for Typesetting

.PS
Boxl:

.PE

box .. .
... other stuff
move to Boxl

Place names have to begin with an upper case letter (to distinguish them from variables, which
begin with lower case letters). The name refers to the "center" of the object, which is the
geometric center for most things. It's the beginning for lines and motions.

Other combinations also work:

line from Boxl to Box2
move to Boxl up 0.1 right 0.2
move to Boxl + 0.2,0.1 # same as previous
line to Boxl - 0.5,0

The reserved name Here may be used to record the current position of some object, for example
as

Boxl: Here

Labels are variables - they can be reset several times in a single picture, so a line of the form

Boxl: Boxl + 11,11

is perfectly legal.

You can also refer to previously drawn objects of each type, using the word
given the input

box "A"; circle "B"; box "C"

1 ast. For example,

then 'last box' refers to box C, 'last circle' refers to circle B, and '2nd last box' refers
to box A. Numbering of objects can also be done from the beginning, so boxes A and Care '1st
box' and '2nd box' respectively.

To cut down the need for explicit coordinates, most objects have "corners" named by compass
points:

B B.n B .nw ,----------, .ne

B.w B.c B.e

B.sw ~---~
8
----~ B.se .s

The primary compass points may also be written as . r, . b, . 1, and . t, for right, bottom, left,
and top. The box above was produced with

Version D of 15 May 1985 11-12

0

0

0

0

0

0

PIC - A Graphics Language for Typesetting

.PS
B: box "B.c"
"B.e• at B.e ljust
11 B.ne" at B.ne ljust
"B.se" at B.se ljust
"B.s 11 at B.s below
"B.n 11 at B.n above
"B.sw II at B.sw rjust
"B.w" at B.w rjust
"B.nw II at B.nw rjust
.PE

Editing and Text. Processing

Note the use of ljust, rjust, above, and below to alter the default positioning of text, and
of a blank with some strings to help space them away from a vertical line.

Lines and arrows have a start, an end and a center in addition to corners. Arcs have only a
center, a start, and an end. There are a host of (that is, too many) ways to talk about the
corners of an object. Besides the compass points, almost any sensible combination of left,
right, top, bottom, upper and lower works. Furthermore, if you don't like the '.' nota­
tion, as in

last box.ne

you can instead say

upper right of last box

Prolixity like

line from upper left of 2nd last box to bottom of 3rd last ellipse

begins to wear after a while, but it is descriptive. This part of the language is probably fat that
will get trimmed.

It is sometimes easiest to position objects by positioning some part of one at some part of anoth­
er, for example the northwest corner of one at the southeast corner of another. The with attri­
bute in Pie permits this kind of positioning. For example,

box ht 0.75i wid 0.75i
box ht O.Si wid O.Si with.swat last box.se

produces

Notice that the corner after with is written . sw.

As another example, consider

11-13 Version D of 15 May 1985

Editing and Text Processing PIC - A Graphics Language for Typesetting

ellipse; ellipse with .nw at last ellipse.se

which makes

Sometimes it is desirable to have a line intersect a circle at a point which is not one of the eight
compass points that Pie knows about. In such cases, the proper visual effect can be obtained by
using the attribute chop to chop off part of the line:

circle "a"
circle "b" at 1st circle - (0.751, 11)
circle "c" at 1st circle + (0.751, -11)
line from 1st circle to 2nd circle chop
line from 1st circle to 3rd circle chop

produces

By default the line is chopped by circlerad at each end. This may be changed:

line ... chop r

chops both ends by r, and

line . . . chop r 1 chop r2

chops the beginning by r1 and the end by r2.

There is one other form of positioning that is sometimes useful, to refer to a point some fraction
of the way between two other points. This can be expressed in Pie as

fraction of the way between position} and position£

fraction is any expression, and poaition1 and poaition2 are any positions. You can abbreviate
this rather windy phrase; 'of the way' is optional, and the whole thing can be written instead as

Version D of 15 May 1985 11-14

0

0

0

0

0

0

PIC - A Graphics Language for Typesetting

fraction < positionl , position2 >

As an example,

box

Editing and Text Processing

arrow right from 1/3 of the way between last box.ne and last box.se
arrow right from 2/3 <last box.ne, last box.se>

produces

:
Naturally, the distance given by fraction can be greater than 1 or less than 0.

11.6. Variables and Expressions

It's generally a bad idea to write everything in absolute coordinates if you are likely to change
things. Pie variables let you parameterize your picture:

a = 0.5; b = 1

box wid a ht b
ellipse wid a/2 ht 1.S*b
move to Boxl - (a/2, b/2)

Expressions may use the standard operators +, - , •, /, and %, and parentheses for grouping.

Probably the most important variables are the predefined ones for controlling the default sizes of
objects, listed in Section 3. These may be set at any time in any picture, and reta,in their values
until reset.

You can use the height, width, radius, and z and y coordinates of any object or corner in an ex­
press10n:

Boxl.x # the z coordinate of Boxl
Boxl.ne.y #they coordinate of the northeast corner of Boxl
Boxl. wid # the width of Boxl
Boxl.ht # and its height
2nd last circle.rad # the radius of the 2nd last circle

Any pair of expressions enclosed in parentheses defines a position; furthermore such positions
can be added or subtracted to yield new positions:

z ' y >
z, , V1) + (Z2 , V2)

H p1 and p2 are positions, then

11-15 Version Dor 15 May 1985

Editing and Text Processing PIC -- A Graphics Language for Typesetting

(P, , P,)

refers to the point

(p,.x ' p,.y

11.7. More on Text

Normally, text is centered at the geometric center of the object it is associated with. The attri­
bute ljust causes the left end to be at the specified point (which means that the text lies to the
right of the specified place!), and rjust puts the right end at the place. above and below
center the text one half line space in the given direction.

At the moment you can not compound tezt attributea: however natural it might aeem, it is illegal
to say " ... " above 1 just. This will be fixed eventually.

Text is most often an attribute of some other object, but you can also have self-standing text:

"this is some text" at 1,2 ljust

11.8. Lines and Splines

A "line" may actually be a path, that is, it may consist of connected segments like this:

This line was produced by

line right li then down .Si left li then right li

A spline is a smooth curve guided by a set of straight lines just like the line above. It begins at
the same place, ends at the same place, and in between is tangent to the mid-point of each guid­
ing line. The syntax for a spline is identical to a (path) line except for using spline instead of
line. Thus:

line dashed right li then down .Si left 11 then right 11
spline from start of last line\

right li then down .Si left 11 then right 11

produces

Version D of 15 May 1985 11-16

0

0

0

0

0

0

PIC - A Graphics Language for Typesetting Editing and Text Processing

Long input lines can be split by ending each piece with a backslash.

The elements of a path, whether for line or spline, are specified as a series of points, either in ab­
solute terms or by up, down, etc. If necessary to disambiguate, the word then can be used to
separate components, as in

spline right then up then left then up

which is not the same as

spline right up left up

At the moment, arrowheads may only be put on the ends of a line or spline; splines may not be
dotted or dashed.

11.9. Blocks

Any sequence of Pie statements may be enclosed in brackets [...] to form a block, which can
then be treated as a single object, and manipulated rather like an ordinary box. For example, if
we say

we get

box 11 1"
(box "2"; arrow "3" above; box "4"] with .n at last box.s - (0,0.1)
"thing" at last [] . s

Notice that "last"-type constructs treat blocks as a unit and don't look inside for objects: "last
box. s" refers to box 1, not box 2 or 4. You can use last [], etc., just like last box.

Blocks have the same compass corners as boxes (determined by the bounding box). It is also pos­
sible to position a block by placing either an absolute coordinate (like 0, 0) or an internal label
(like A) at some external point, as in

[... ; A: ... ; ...] with .A at ...

Blocks join with other things like boxes do (that is, at the center of the appropriate side). It's
not clear that this is the right thing to do, so it may change.

Names of variables and places within a block are local to that block, and thus do not affect vari­
ables and places of the same name outside. You can get at the internal place names with con­
structs like

11-17 Version D of 15 May 1985

Editing and Text Processing PIC - A Graphics Language for Typesetting

last [] .A

or

B.A

where B is a name attached to a block like so:

B : [. , , ; A: , , , ;]

When combined with de fine statements (next section), blocks provide a reasonable simulation
of a procedure mechanism.

Although blocks nest, it is currently possible to look only one level deep with constructs like
B. A, although A may be further qualified (that is, B. A. sv or top of B. A are legal).

The following example illustrates most of the points made above about how blocks work:

h = .Si
dh = .02i
dv = .li
[

Ptr: [

l
Block:

boxht = h; boxvid = dv
A: box

[

B: box
C: box
box wid 2'boxwid"
D: box

boxht = 2*dv; boxvid
movewid = 2*dh
A: box; move
B: box; move
C: box; move

II

= 2*dw

box invis ".,." wid 2*boxwid; move
D: box

l

] with.tat Ptr.s - (O,h/2)
arrov from Ptr.A to Block.A.nv
arrov from Ptr.B to Block.B.nv
arrov from Ptr.C to Block.C.nv
arrov from Ptr.D to Block.D.nv

box dashed ht last [] .ht+dv vid last [].vid+dv at last []

This produces

Version D of 15 May 1985 11-18

0

0

0

0

0

0

PIC - A Graphics Language for Typesetting Editing and Text Processing

,--------------,
I I
I I
I I
I I
I I
I I
I I
I I
I I
L,; _____________ :.J

11.10. Macros

Pie provides a rudimentary macro facility, the simple form of which is identical to that in eqn:

define name X replacement tezt X

defines name to be the replacement text; X is any character that does not appear in the replace­
ment. Any subsequent occurrence of name is replaced by replacement text.

Macros with arguments are also available. The replacement text of a macro definition may con­
tain occurrences of $1 through $9; these are replaced by the corresponding actual arguments
when the macro is invoked. The invocation for a macro with arguments is

name(argl, arg2, ...)

Non-existent arguments are replaced by null strings.

As an example, one might define a square by

define square X box ht $1 wid $1 $2 X

Then

square(li, "one" "inch")

calls for a one inch square with the obvious label, and

square (0. Si)

calls for a square with no label:

one
inch

Coordinates like z,y may be enclosed in parentheses, as in (z,y), so they can be included in a
macro argument.

11-19 Version D of 15 May 1985

Editing and Text Processing PIC - A Graphics Language for Typesetting

11.11. TROFF Interface

Pie is usually run as a troff preprocessor:

tutorial% pie -Tdeuice file I iroff -mmacro_package
tutorial%

where device is the device you're formatting for. In the Sun installation, the device is coded as
-Timp (imp for impress). Run pie before eqn and tbl ir they are also present.

Ir the . PS line looks like

.PS <file

then the contents or file are inserted in place or the .PS line (whether or not the file contains
.PS or .PE).

Other than this file inclusion facility, Pie copies the . PS and . PE lines from input to output in­
tact, except that it adds two things right on the same line as the . PS:

.PS h w

h and w are the picture height and width in units. The -ms macro package has simple
definitions for . PS and . PE that cause pictures to be centered and offset a bit from surrounding
text.

0

Ir" .PF" is used instead or .PE, the position after printing is restored to where it was before the 0
picture started, instead or being at the bottom. ("F" is for "flyback.") .

Any input line that begins with a period is assumed to be a troff command that makes sense at
that point; it is copied to the output at that point in the document. It is asking for trouble to
add spaces or in any way fiddle with the line spacing here, but point size and font changes are
generally harmless. So, for example,

.ps 24
circle radius .41 at 0,0
.ps 12
circle radius .21 at 0,0
.ps 8
circle radius .11 at 0,0
.ps 6
circle radius .051 at 0,0
.ps 10 \" don't forget to restore size

gives

Version D or 15 May 1985 11-20

0

0

0

0

PJC - A Graphics Language for Typesetting Editing and Text Processing

It is also safe to muck about with sizes and fonts and local motions within quoted strings
(" ... ") in pie, as long as the changes made are changed back before exiting the string. For ex­
ample, to print Italic text in 8-point type, use

ellipse "\s8\fISmile!\fP\sO"

This produces

G
This is essentially the same rule as applies in eqn.

There is a subtle problem with complicated equations inside Pie pictures - they come out
wrong if eqn has to leave extra vertical space for the equation. If your equation involves more
than subscripts and superscripts, you must add to the beginning of each equation the extra infor­
mation space O:

arrow
box "$space O {H(omega)} over {1 - H(omega)}$ 11

arrow

This produces

__ .,I H(w)
. 1-H(w)

..

Pie normally generates commands for a new version of troff that has operators for drawing
graphical objects like lines, circles, and so on. As distributed, Pie assumes that its output is go­
ing to the Mergenthaler Linotron 202 unless told otherwise with the -T option. At present, the
other alternatives are -Teat (the Graphic Systems CAT, which does slanted lines and curves
badly) and -Taps (the Autologic APS-5). It is likely that the option will already have been set
to the proper default for your system, unless you have a choice of typesetters.

11.12. Some Examples

Herewith a handful of larger examples:

11-21 Version D of 15 May 1985

Editing and Text Processing PIG - A Graphics Language for Typesetting

ndtable:

hashtab:

The input for the picture above was:

define ndblock X
box wid boxwid/2 ht boxht/2
down; box same with.tat bottom of last box; box same

X
boxht = .21; boxvid = .31; circlerad = .31
down; box; box; box; box ht 3*boxht " " " " " "
L: box; box; box lnvls w!d 2*boxwid "hashtab:" with .e at 1st box .v
right
Start: box wld .51 with .swat 1st
Nl: box wld .21 "nl"; Dl: box wld
N3: box wld .41 "n3"; 03: box wld
box w!d . 41 " "

box.ne +
. 31 "dl"
. 31 "d3"

N2: box wid . 51 "n2"; 02: box wld . 21 "d2"
arrow right from 2nd box
ndblock

(.41, .21) " "

spline-> right .21 from 3rd last box then to Nl.sw + (0.051,0)
spline-> right .31 from 2nd last box then to 01.sw + (0.051,0)
arrow right from last box
ndblock
spline-> right .21 from 3rd last box to N2.sw-(0.051, .21) to N2.sw+(0.051,0)
spline-> right .31 from 2nd last box to D2.sw-(0.051, .21) to D2.sw+(0.051,0)
arrow right 2*11new1d from L
ndblock
spline-> right .21 from 3rd last box to N3.sw + (0.051,0)
spline-> right .31 from 2nd last box to D3.sw + (0.051,0)
circle 1nv1s 11ndblock" at last box.e + (. 71,. 21)
arrow dotted from last circle to last box chop
box invis wid 2*boxw1d "ndtable:" with .eat Start.w

This is the second example:

Version D of 15 May 1985 11-22

0

0

0

0

0

0

PIC - A Graphics Language for Typesetting

diagnostic

message

printer

'

lexical syntactic

corrector corrector

source lexical tokeIU1 ntcrmedia.t~

code analyzer
parser

code

This is the input for the picture:

.PS 5

.ps 8

LA:

P:

Sem:

LC:

Syn:

DMP:

ST:

.PE

arrow 11 source" "code"
box "lexical" "analyzer"
arrow "tokens" above
box "parser"
arrow "intermediate" "code"
box "semantic" "checker"
arrow

arrow<-> up from top of LA
box "lexical" "corrector"
arrow<-> up from top of P
box "syntactic" "corrector"
arrow up
box "diagnostic11 "message" "printer"
arrow<-> right from right of DMP
box "symbol" "table"
arrow from LC.ne to DMP.sw
arrow from Sem.nw to DMP.se
arrow<-> from Sam.top to ST.bot

Editing and Text Processing

tymbol

table

semantic

checker

There are eighteen objects (boxes and arrows) in the picture, and one line of Pie input for each;
this seems like an acceptable level of verbosity.

The next example is the following:

11-23 Version D of 15 May 1985

Editing and Text Processing PJC - A Graphics Language for Typesetting

input

DISK character CPU
e ns (16-bit mini)

Basic Digital Typesetter

This is the input for example 3:

.KS

.PS Si
circle "DISK"
arrow "character" "defns"
box "CPU" "(16-bit mini)"

CRT

{arrow<- from top of last box up "input" rjust}
arrow
CRT: II CRT" ljust
line from CRT - 0,0.075 up 0.15 \
then right 0.5 \
then right 0.5 up 0.25 \
then down 0.5+0.15 \
then left 0.5 up 0.25 \
then left 0.5

Paper: CRT+ 1.0+0.05,0
arrow from Paper+ 0,0.75 to Paper - 0,0.5
{ move to start of last arrow down 0.25

{ move left 0.015; circle rad 0.05}

00 rollers

· · · · · paper

{ move right 0.015; circle rad 0.05; 11 rollers" ljust}
}
11 paper" ljust at end of last arrow right 0.25 up 0.25
line left 0.2 dotted
.PE
.ce
Basic Digital Typesetter
.sp
.KE

11.13. Final Observations

Pie is not a sophisticated tool. The fundamental approach - Cartesian coordinates and real
measurements - is not the easiest thing in the world to work with, although it does have the
merit of being in some sense sufficient. Much of the syntactic sugar (or corn syrup) - corners,

Version D of 15 May 1985 11-24

0

0

0

0

0

0

PIC - A Graphics Language for Typesett.ing Editing and Text Processing

joining things implicitly, etc. - is aimed at making positioning and sizing automatic, or at least
relative to previous things, rather than explicit.

Nonetheless, Pie does seem to offer some positive values. Most notably, it is integrated with the
rest of the standard Unix document preparation software. In particular, it positions text correct­
ly in relation to graphical objects; this is not true of any of the interactive graphical editors that
I am aware of. It can even deal with equations in a natural manner, modulo the space O non­
sense alluded to above.

A standard question is, "Wouldn't it be better if it were interactive?" The answer seems to be
both yes and no. If one has a decent input device (which I do not), interaction is certainly better
for sketching out a figure. But if one has only standard terminals (at home, for instance), then a
linear representation of a figure is better. Furthermore, it is possible to generate Pie input from
a program: I have used awk [9] to extract numbers from a report and generate the Pie commands
to make histograms. This is hard to imagine with most of the interactive systems I know of.

In any case, the issue is far from settled; comments and suggestions are welcome.

11.13.1. Acknowledgements

I am indebted to Chris Van Wyk for ideas from several versions of ideal. He and Doug Mcilroy
have also contributed algorithms for line and circle drawing, and made useful suggestions on the
design of pie. Theo Pavlidis contributed the basic spline algorithm. Charles Wetherell pointed
out reference [2] to me, and made several valuable criticisms on an early draft of the language
and manual. The exposition in this version has been greatly improved by suggestions from Jim
Blinn. I am grateful to my early users - Brenda Baker, Dottie Luciani, and Paul Tukey - for
their suggestions and cheerful use of an often shaky and clumsy system.

0

g A. V. Aho, P. J. Weinberger, and B. W. Kernighan, "AWK · A Pattern Scanning and Processing
Language," Software Practice and Ezperience, vol. g, pp. 267·280, April 1979.

I 1-25 Version D of 15 May 1985

Editing and Text Processing

11.14. PIO Reference Manual

11.14-1. Pictures

The top-level object in Pie is the "picture":

picture:
. PS optional-width
element-list
.PE

PIC - A Graphics Language for Typesetting

If optional-width is present, the picture is made that many inches wide, regardless of any dimen­
sions used internally. The height is scaled in the same proportion.

If instead the line is

.PS <f

the file f is inserted in place of the . PS line.

If .PF is used instead of .PE, the position after printing is restored to what it was upon entry.

11.Lf.2. Elements

An element-/iat is a list of elements (what else?); the elements are

element:
primitive attribute-list
placename : element
placename : position
variable = expression
direction
troff-command
{ element-list }
[element-list]

Elements in a list must be separated by newlines or semicolons; a long element may be continued
by ending the line with a backslash. Comments are introduced by a # and terminated by a new­
line.

Variable names begin with a lower case letter; place names begin with upper case. Place and
variable names retain their values from one picture to the next.

The current position and direction of motion are saved upon entry to a { ... } block and re­
stored upon exit.

Elements within a block enclosed in [...] are treated as a unit; the dimensions are determined
by the extreme points of the contained objects. Names, variables, and direction of motion within
a block are local to that block.

0

0

troff-command is any line that begins with a period. Such lines are assumed to make sense in o
the context where they appear; accordingly, if it doesn't work, don't call.

Version D of 15 May 1985 11-26

0

0

0

PIC - A Graphics Language for Typesetting

11.14-s. Primitives

The primitive objects are

primitive:
box
circle
ellipse
arc
line
arrow
move
spline
"any text at all"

arrow is a synonym for line ->.

11.Lf4- Attributes

Editing and Text Processing

An attribute-list is a sequence of zero or more attributes; each attribute consists of a keyword,
perhaps followed by a value. In the following, e is an expression and opt-e an optional expres­
sion.

attribute:
h(eigh)t e
rad(ius) e
up opt-e
right opt-e
from position
at position
by e, e
dotted opt-e
chop opt-e
same
text-list

wid(th) e
diam(eter) e
down opt-e
le ft opt-e
to position
with corner
then
dashed opt-e
-> <- <->
invis

Missing attributes and values are filled in from defaults. Not all attributes make sense for all
primitives; irrelevant ones are silently ignored. These are the currently meaningful attributes:

11-27 Version D of 15 May 1985

Editing and Text Processing PIC - A Graphics Language for Typesetting

box:
height, width, at, dotted, dashed, invis, same, text

circle and ellipse:
radius, diameter, height, width, at, invis, same, text

arc:
up, down, left, right, height, width, from, to, at, radius,
invis, same, cw, <-, ->, <->, text

line,arrow

spline:

move:

up, down, left, right, height, width, from, to, by, then,
dotted, dashed, invis, same, <-, ->, <->, text

up, down, left, right, height, width, from, to, by, then,
invis, <-, ->. <->, te::et

up, down, left, right, to, by, same, text
"text . .. ":

at, text

The attribute at implies placing the geometrical center at the specified place. For lines, splines
and arcs, height and width refer to arrowhead size.

11.14,5. Text

Text is normally an attribute or some primitive; by default it is placed at the geometrical center
or the object. Stand-alone text is also permitted. A text-li•t is a list of text items; a text item is
a quoted string optionally followed by a positioning request:

text-item:

" "
" " center

" " ljust

" " rjust

" " above

" " below

Ir there are multiple text items for some pr1m1t1ve, they are centered vertically except as
qualified. Positioning requests apply to each item independently.

Text items can contain troff commands for size and font changes, local motions, etc., but make
sure that these are balanced so that the entering state is restored before exiting.

11. LJ. 6. Positions and places

A position is ultimately an x,y coordinate pair, but it may be specified in other ways.

Version D of 15 May 1985 11-28

0

0

0

0

0

0

PIC - A Graphics Language for Typesetting

position:
e, e
place ± e, e
(position, position)
e {of the way/ between position and position
e < position , position >

The pair e, e may be enclosed in parentheses.

place:
placename optional-corner
corner placename
Here
corner of nth primitive
nth primitive optional-corner

Editing and Text Processing

A corner is one of the eight compass points or the center or the start or end of a primitive.
(Not text!)

corner:
.n .e .w .s .ne .se .nw .sw
.t .b .r .1
.c .start .end

Each object in a picture has an ordinal number; nth refers to this.

nth:
nth
nth last

Since barbarisms like 1th are barbaric, synonyms like 1st and 3st are accepted as well.

11. LJ. 7. Variables

The built-in variables and their default values are:

boxwld 0.751
clrclerad 0.251
elllpsewld 0.751
arcrad O. 251
linewld 0.51
movewld 0.51
arrowht 0.11
dashwld 0.11
scale 1

boxht 0.51

elllpseht 0.51

lineht 0.51
movewld 0.51
arrowwld 0.051

These may be changed at any time, and the new values remain in force until changed again. Di­
mensions are divided by scale during output.

11-29 Version D of 15 May 1985

Editing and Text Processing PIC - A Graphics Language for Typesetting

11.1,t.8. Expressions

Expressions in Pie are evaluated in floating point. All numbers representing dimensions are tak­
en to be in inches.

expression:
e + e
e - e
e • e
e / e
e % e (modulus)
- e
(e)
variable
number
place . x
place . y
place .ht
place • wid
place • rad

11.1,t.9. Definitions

The de fine statement is not part of the grammar.

define:
. define name X replacement text X

Occurrences of $1 through $9 in the replacement text is replaced by the corresponding argu­
ments if name is invoked as

name(argl, arg2, .•.)

Non-existent arguments are replaced by null strings. Replacement text may contain newlines.

Version D of 15 May 1985 11-30

0

0

0

0

0

0

Chapter 12

Typesetting Mathematics with eqn

This chapter7 explains how to use the eqn preprocessor for printing mathematics on a photo­
typesetter and provides numerous examples after which to model equations in your documents.

You describe mathematical expressions in an English-like language that the eqn program
translates into troff commands for final troff formatting. In other words, eqn sets the mathemat­
ics while troff does the body of the text. Eqn provides accurate and relatively easy mathematical
phototypesetting, which is not easy to accomplish with normal typesetting machines. Because
the mathematical expressions are imbedded in the running text of a manuscript, the entire docu­
ment is produced in one process. For example, you can set in-line expressions like

Jim (tan x)'In 2" = 1 or display equations like
z-1r/2

(s,z') s 11, G(z) = elnG(z) = exp ~-- = TI e •
k2:1 k k2:1

Eqn knows relatively little about mathematics. In particular, mathematical symbols like +, -,
X, parentheses, and so on have uo special meanings. Eqn is quite happy to set these symbols,
and they will look good.

Eqn also produces mathematics with nroff. The input is identical, but you have to use the pro­
grams neqn instead of eqn and troff. Of course, some things won't look as good because your
workstation or terminal does not provide the variety of characters, sizes and fonts that a photo­
typesetter does, but the output is usually adequate for proofreading.

12.1. Displaying Equations - '.EQ' and '.EN'

To tell eqn where a mathematical expression begins and ends, mark it with lines beginning '.EQ'
and '.EN'. Thus if you type the lines:

7 The material in this chapter is derived from A System f()r Typuetting Mathematic,, B.\V. Kernighan,
L. L. Cherry and Type,etting Mathematic, - Uaer', Guide, B.W. Kernighan, L.L. Cherry, Bell Labora­
tories, Murray Hill, New Jersey.

Version D of 15 May 1985 12-1

Typesetting Mathematics with eqn

.EQ
x=y+z
.EN

your output will look like:

Editing and Text Processing

z=y+z

Eqn copies '.EQ' and '.EN' through untouched. This means that you have to take care of things
like centering, numbering, and so on yourself. The common way is to use the troff and nroff
macro package package '-ms', which provides macros for centering, indenting, left-justifying
and making numbered equations.

With the -ms package, equations are centered by default. To left-justify an equation, use
'.EQ L' instead of '.EQ'. To indent it, use '.EQ I'.

You can also supplement eqn with troff commands as desired; for example, you can produce a
centered display with the input:

.ce

.EQ
x sub i = y sub i ...
. EN

which produces

0

You can call out any of these by an arbitrary 'equation number,' which will be placed at the

0 right margin. For example, the input

.EQ I (3.la)
X = f(y/2) + y/2
.EN

produces the output

z=f(y/2)+y/2 (3.la)

There is also a shorthand notation so you can enter in-line expressions like 1r? without '.EQ 'and
'.EN'. This is described in Shorthand for In-line Equationa.

12.2. Running eqn and neqn

To print a document that contains mathematics on the phototypesetter, use:

logo% eqn file a I troll' - optiona I !pr -t -Printer
logo%

Troff or your installation's equivalent does the formatting, which is sent to your phototypesetter
as indicated by -Printer. If you use the -ms macro package for example, type:

logo% eqn filea I troll' -ms -t I lpr -t -Printer
logo%

To display equations on the standard output, your workstation screen, use nroff as follows:

12-2 Version D of 15 May 1985

0

0

0

0

Editing and Text Processing Typesetting Mathematics with eqn

logo% neqn file• l nroff' - optiona

The language for equations recognized by neqn is identical to that of eqn, although of course the
output is more restricted. You can use the online rendition of the mathematical formulae for
proofing, but the output does not accurately represent the symbols and fonts. You can of course
pipe the output through more for easier viewing:

logo% neqn files I nroff' - optiona lmore

or redirect it to a file:

logo% neqn files I nroff - option, >newfile

To use a GSI or DASI terminal as the output device, type:

logo% neqn file• I nroff -Tz

where is the terminal type you are using, such as 900 or SOOS. To send neqn output to the
printer, type:

logo% neqn file I nroff -optiona I lpr -Pprinter

You can use eqn and neqn with the tbl program for setting tables that contain mathematics. Use
tbl before eqn or neqn, like this:

or

logo% tbl file, I eqn I troff -option,
logo%

logo% tbl files neqn nroff -option,

12.3. Putting Spaces in the Input Text

Eqn throws away spaces and newlines within an expression and leaves normal text alone. Thus
between '.EQ' and '.EN',

and

and

.EQ
x=y+z
.EN

.EQ
x=y+z
.EN

.EQ
X = y

+z
.EN

all produce the same output:

x=y+z

You should use spaces and newlines freely to make your input equations readable and easy to

Version D of 15 May 1985 12-3

Typesetting Mathematics with eqn Editing and Text Processing

edit. In particular, very long lines are a bad idea, since they are often hard to fix if you make a
mistake.

The only way eqn can deduce that some sequence of letters might be special is if that sequence is
separated from the letters on either side of it. To do this, surround a special word by ordinary
spaces (or !,abs or newlines), as shown in the previous section.

You can also make special words stand out by surrounding them with tildes or circumflexes:

.EQ
x-= -rpi-int-sin-c omega -t-r dt
.EN

is much the same as the last example, except that the tildes not only separate the magic words
like ain, omega, and so on, but also add extra spaces, one space per tilde:

z = 2 ,r J sin (w t) dt

You can also use braces '{ }' and double quotes ' " ... " ' to separate special words; these charac­
ters which have special meanings are described later.

Remembering that a blank is a delimiter can be a problem. For instance, a common mistake is
typing:

.EQ
f{x sub i)
.EN

which produces

f(z,)

instead of

f (x,)

Eqn cannot tell that the right parenthesis is not part of the subscript. Type instead:

.EQ
f(x sub i)
.EN

12.4. Producing Spaces in the Output Text

To force extra spaces into the output, use a tilde ,-, for each space you want:

gives

.EQ
x-=-y-+-z
.EN

x=u+z

You can also use a circumflex''', which gives a space half the width of a tilde. It is mainly use­
ful for fine-tuning. Use tabs to position pieces of an expression, but you must use troff com­
mands to set the tab stops.

12-4 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Typeset.ting Mathematics with eqn

12.5. Symbols, Special Names, and Greek Letters

Eqn knows some mathematical symbols, some mathematical names, and the Greek alphabet. For
example,

.EQ
x=2 pi int sin (omega t)dt
.EN

produces

z=2ir Jsin(wt)dt

Here the spaces in the input are necessary to tell eqn that int, pi, ain and omega are separate
entities that should get special treatment. The ain, digit 2, and parentheses are set in roman
type instead of italic; pi and omega are made Greek; and int becomes the integral sign.

When in doubt, leave spaces around separate parts of the input. A very common error is to type
/{pi) without leaving spaces on both sides of the pi. As a result, eqn does not recognize pi as a
special word, and it appears as /(pi) instead of /(ir).

A complete list of eqn names appears in Precedence, and Keywords. You can also use special
characters available in troff for anything eqn doesn't know about.

12.6. Subscripts and Superscripts - 'sub' and 'sup'

To obtain subscripts and superscripts, use the words aub and aup.

.EQ

gives

x sup 2 + y sub k
.EN

z2+Y;

Eqn takes care of all the size changes and vertical motions needed to make the output look right.
You must surround the words aub and sup by spaces; z aub2 gives you zsub 2 instead of z2• As
another example, consider:

.EQ
x sup 2 + y sup 2 = z sup 2
.EN

which produces:

Furthermore, don't forget to leave a space (or a tilde, etc.) to mark the end of a subscript or su­
perscript. A common error is to say something like

.EQ
y = (x sup 2)+1
.EN

which causes

Version D of 15 May 1985 12-5

Typesetting Mathematics with eqn

instead of the intended

which is produced by:

.EQ
y = (x sup 2)+ 1
.EN

y=(:,;2}H

y=(x2)+I

Subscripted subscripts and superscripted superscripts also work:

.EQ

lS

x sub i sub 1
.EN

Editing and Text Processing

A subscript and superscript on the same thing are printed one above the other if the subscript
comes fir.t:

lS

.EQ
x sub i sup 2
.EN

x•
'

Other than this special case, aub and aup group to the right, so x aup y sub z means x", not x' ,.

12.7. Grouping Equation Parts - '{'and'}'

Normally, the end of a subscript or superscript is marked simply by a blank, tab, tilde, and so
on. If the subscript or superscript is something that has to be typed with blanks in it, use the
braces '{' and '}' to mark the beginning and end of the subscript or superscript:

lS

.EQ
e sup {i omega t}
.EN

You can alway• use braces to force eqn to treat something as a unit, or just to make your intent
perfectly clear. Thus:

IS

12-6

.EQ
x sub {i sub 1} sup 2
.EN

Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Typesetting Mathematics with eqn

with braces, but

.EQ

IS

x sub i sub 1 sup 2
.EN

which is rather different.

Braces can occur within braces if necessary:

IS

.EQ
e sup {i pi sup {rho +l}}
.EN

x2
'1

X 2
'1

The general rule is that anywhere you could use some single entry like x, you can use an arbi­
trarily complicated entry if you enclose it in braces. Eqn looks after all the details of positioning
it and making it the right size.

In all cases, make sure you have the right number of braces. Leaving one out or adding an extra
causes eqn to complain bitterly.

Occasionally you have to print braces. To do this, enclose them in double quotes, like ' "{" '.
Quoting is discussed in more detail in Quoted Text.

12.8. Fractions - 'over'

To make a fraction, use the word over:

.EQ

gives

a+b over 2c =l
.EN

a+h =l
2c

The line is made the right length and positioned automatically .

. EQ
a+b over c+d+e = 1
.EN

produces

Version D of 15 May 1985

a+h 1
c+d+e

12-7

Typesetting Mathematics with eqn

Use braces to clarify what goes over what:

.EQ

is

{ alpha + beta} over {sin (x)}
.EN

..!!.±L
sin(z)

Editing and Text Processing

When there is both an over and a aup in the same expression, eqn does the aup before the over,
so

.EQ
-b sup 2 over pi
.EN

2 2
is .=!_ instead of -b-;- The rules which decide which operation is done first in cruses like this are

" summarized in Precedencea and Keyworda. When in doubt, however, use bracea to make clear
what goes with what.

12.9. Square Roots - 'sqrt'

To draw a square root, use aqrt:

.EQ
sqrt a+b
.EN

produces

and

IS

.EQ
sqrt a+b + 1 over sqrt {ax sup 2 +bx+c}
.EN

Va+b + 1
Yaz 2+bz+c

Note: Square roots of tall quantities look sloppy because a root-sign big enough to cover the
quantity is too dark and heavy:

is

.EQ
sqrt { a sup 2 over b sub 2}
.EN

0

0

Big square roots are generally better written rus something to a power: 0

12-8 Version D of 15 May 1985

0

0

0

Editing and Text Processing Typesetting Mathematics with eqn

which is

.EQ
(a sup 2 /b sub 2) sup {I over 2}
.EN

12.10. Summation, Integral, and Other Large Operators

To produce summations, integrals, and similar constructions, use:

.EQ
sum from i=O to {i= inf} x sub i
.EN

which produces

Notice that you use braces to indicate where the upper part i=oo begins and ends. No braces
are necessary for the lower part i=O, because it does not contain any blanks. The braces will
never hurt, and if the from and to parts contain any blanks, you must use braces around them.

The from and to parts are both optional, but if both are used, they have to occur in that order.

Other useful characters can replace the sum in our example:

.EQ
int prod union inter
.EN

become, respectively,

J II u n
Since the thing before the from can be anything, even something in braces, from-to can often be
used in unexpected ways:

IS

.EQ
lim from {n -> inf} x sub n =0
.EN

12.11. Size and Font Changes

lim x.=O
•-=

By default, equations are set in IO-point type with standard mathematical conventions to deter­
mine what characters are in roman and what in italic. Although eqn makes a valiant attempt to
use aesthetically pleasing sizes and fonts, it is not perfect. To change sizes and fonts, use size n
and roman, italic, bold and fat. Like aub and sup, size and font changes affect only the thing

Version D of 15 May 1985 12-9

Typesetting Mathematics with eqn Editing and Text Processing

that follows them; they revert to the normal situation at the end of it. Thus

.EQ

IS

and

gives

bold X y
.EN

.EQ
size 14 bold x = y +

size 14 { alpha + beta}
.EN

xy

X=y+a+,8
As always, you can use braces if you want to affect something more complicated than a single
letter. For example, you can change the size of an entire equation by

.EQ
size 12 { ... }
.EN

Legal sizes which may follow size are the same as those allowed in troff: 6, 7, 8, 9, 10, 11, 12, 14,
16, 18, 20, 22, 24, 28, 36. You can also change the size by a given amount; for example, you can
say size -+2 to make the size two points bigger, or eize--9 to make it three points smaller. This
is easier because you don't have to know what the current size is.

If you are using fonts other than roman, italic and bold, you can say font X where X is a one
character troff name or number for the font. Since eqn is tuned for roman, italic a,nd bold, other
fonts may not give quite as good an appearance.

The fat operation takes the current font and widens it by overstriking: fat grad is V and fat { z
sub 1} is z;.

If an entire document is to be in a non-standard size or font, it is a severe nuisance to have to
write out a size and font change for each equation. Accordingly, you can set a 'global' size or
font which thereafter affects all equations. At the beginning of any equation, you might say, for
instance,

.EQ
gsize 16
gfont R

.EN

to set the size to 16 and the font to roman thereafter. In place of R, you can use any of the troff
font names. The size after gsize can be a relative change with '+' or '-'.

Generally, gsize and gfont will appear at the beginning of a document but they can also appear
throughout a document: you can change the global font and size as often as needed. For exam­
ple, in a footnote8 you will typically want the size of equations to match the size of the footnote

8 Like this one, in which we have a. few random expressions like 2:
1

and ,r2• The sizes for these were set

12-10 Version D of 15 May 1985

0

0

0

0

0

Editing and Text Processing Typesetting Mathematics with eqn

text, which is two points smaller than the main text. Don't forget to reset the global size at the
end of the footnote.

12.12. Diacritical Marks

To get funny marks on top of letters, there are several words:

X dot %

x dotdot %

X hat i
X tilde x·

x vec :t
X dyad y

x bar %

x under z

The diacritical mark is placed at the right height. The bar and under are made the right length
for the entire construct, as in x+y+z; other marks are centered. For example

.EQ
x dot under + x hat + y tilde
+ X hat + Y dotdot = z+Z bar
.EN

produces

i+i+y+X+Y=z+Z

12.13. Quoted Text

Any input entirely within quotes (" ... ") is not subject to any of the font changes and spacing ad­
justments that you normally set. This provides a way to do your own spacing and adjusting if
needed:

IS

.EQ
italic "sin(x)" + sin (x)
.EN

sin(x)+sin(x)

You also use quotes to get braces and other eqn keywords printed:

.EQ

IS

"{ size alpha}"
.EN

{ size alpha } o by the command gaize ~-D.

Version D of 15 May 1985 12-11

Typesetting Mathematics with eqn

and

IS

.EQ
roman "{ size alpha}"
.EN

Editing and Text Processing

{ size alpha }

The construction ' "" ' is often used as a place-holder when grammatically eqn needs something,
but you don't actually want anything in your output. For example, to make "He, you can't just
type sup 2 roman He because a sup has to be a superscript on something. Thus you must say

.EQ
"" sup 2 roman He
.EN

To get a literal quote use '\"'. Troff characters like \{bs can appear unquoted, but more compli­
cated things like horizontal and vertical motions with \hand\ v should always be quoted.

12.14. Lining Up Equations - 'mark' and 'lineup'

Sometimes it's necessary to line up a series of equations at some horizontal position, often at an
equals sign. To do this, use the two operations called mark and lineup.

The word mark may appear once at any place in an equation. It remembers the horizontal posi­
tion where it appeared. Successive equations can contain one occurrence of the word lineup.
The place where lineup appears is made to line up with the place marked by the previous mark
if at all possible. Thus, for example, you can say

.EQ I
x+y mark= z
.EN
.EQ I
x lineup= I
.EN

to produce

z+y=z

Z=l

For reasons out of the scope of this chapter, when you use eqn and '-ms', use either '.EQ I' or
'.EQ L', as mark and lineup don't work with centered equations. Also bear in mind that mark
doesn't look ahead;

.EQ
x mark =l

x+y lineup =z
.EN

isn't going to work, because there isn't room for the z+y part after the mark has processed the
z.

12-12 Version D of 15 May 1985

0

0

0

0

0

Editing and Text Processing Typesetting Mathematics with eqn

12.15. Big Brackets

To get big brackets '[]', braces '{ }', parentheses '()', and bars 'I I' around things, use the left
and right commands:

lS

.EQ
left { a over b + 1 right }
-= - left (c over d right)
+ left [e right J

.EN

The resulting brackets are made big enough to cover whatever they enclose. Other characters
can be used besides these, but they are not likely to look very good. One exception is the floor
and ceiling characters:

.EQ
left floor x over y right floor
<= left ceiling a over b right ceiling
.EN

produces

Several warnings about brackets are in order. First, braces are typically bigger than brackets
and parentheses, because they are made up of three, five, seven, etc., pieces, while brackets can
be made up of two, three, etc. Second, big left and right parentheses often look poor, because
the character set is poorly designed.

The right part may be omitted: a 'left something' need not have a corresponding 'right some­
thing'. If the right part is omitted, put braces around the thing you want the left bracket to en­
compass. Otherwise, the resulting brackets may be too large.

If you want to omit the left part, things are more complicated, because technically you can't
have a right without a corresponding left. Instead you have to say

]ft 'ht) e rig

for example. The left"'' means a 'left nothing'. This satisfies the rules without hurting your out­
put.

12.16. Piles - 'pile'

There is a general facility for making vertical piles of things; it comes in several flavors. For ex­
ample:

Version D of 15 May 1985 12-13

Typesetting Mathematics with eqn

.EQ
A·=· left [

pile { a above b above c }
•• pile { x above y above z }

right I
.EN

will make

Editing and Text Processing

The elements of the pile are centered one above another at the right height for most purposes.
There can be as many elements as you want. The keyword above is used to separate the pieces;
put braces around the entire list. The elements of a pile can be as complicated as needed, even
containing more piles.

Three other forms of pile exist: /pile makes a pile with the elements left-justified; rpi/e makes a
right-justified pile; and cpile makes a centered pile, just like pile. The vertical spacing between
the pieces is somewhat larger for 1-, r- and cpiles than it is for ordinary piles. For example:

makes

.EQ
roman sign (xr = -
left {

!pile {l above O above -1}
•• !pile
{if"x>O above if"x=O above if"x<O}

.EN

sign(x) = 1~
-1

Notice the left brace without a matching right one.

12.17. Matrices - 'matrix'

if x>O
if X=O

if x<O

It is also possible to make matrices. For example, to make a neat array like

you have to type

.EQ
matrix {

}

ecol { x sub i above y sub i }
ecol { x sup 2 above y sup 2 }

.EN

Y, y2

This produces a matrix with two centered columns. The elements of the columns are then listed

12-14 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Typesetting Mathematics with eqn

just as for a pile, each element separated by the word above. You can also use /col or rcol to left
or right adjust columns. Each column can be separately adjusted, and there can be as many
columns as you like.

The reason for using a matrix instead of two adjacent piles, by the way, is that if the elements of
the piles don't all have the same height, they won't line up properly. A matrix forces them to
line up, because it looks at the entire structure before deciding what spacing to use.

A word of warning about matrices: each column must have the same number of elements in it.
Otherwise, results are unpredictable.

12.18. Shorthand for In-line Equations - 'delim'

In a mathematical document, it is necessary to follow mathematical conventions not just in
display equations, but also in the body of the text. For example you need variable names like x

to be in italics. Although you can do this by surrounding the appropriate parts with '.EQ' and
'.EN', the continual repetition of '.EQ' and '.EN' is a nuisance. Furthermore, with '-ms', '.EQ'
and '.EN' imply a displayed equation.

Eqn provides a shorthand for short in-line expressions. You can define two characters to mark
the left and right ends of an in-line equation, and then type expressions in the middle of text
lines. To set both the left and right characters to dollar signs, for example, add to the beginning
of your document the three lines

.EQ
delim $$
.EN

Having done this, you can then say things like

Let $alpha sub i$ be the primary variable, and let $beta$ be zero. Then we can show
that $x sub 1$ is $>=0$.

This works as you might expect; spaces, newlines, and so on are significant in the text, but not in
the equation part itself. Multiple equations can occur in a single input line.

Enough room is left before and after a line that contains in-line expressions that something like
$sum from i=l to n x sub i$ does not interfere with the lines surrounding it.

The printed result looks like: Let a, be the primary variable, and let /3 be zero. Then we can
show that x1 is ~O.

To turn off the delimiters, use:

.EQ
delim off
.EN

Note: Don't use braces, tildes, circumflexes, or double quotes as delimiters; chaos will result.

12.19. Definitions - 'define'

Eqn provides a string-naming facility so you can give a frequently-used string of characters a
name, and thereafter just type the name instead of the whole string. For example, if the se­
quence

Version D of 15 May 1985 12-15

Typesetting Mathematics with eqn Editing and Text Processing

.EQ
x sub i sub 1 + y sub i sub 1
.EN

appears repeatedly throughout a paper, you can save re-typing it each time by defining it like
this:

.EQ
define xy 'x sub i sub 1 + y sub i sub 1'
.EN

This makes xy a shorthand for whatever characters occur between the single quotes in the
definition. You can use any character instead of quote to mark the ends of the definition, so long
as it doesn't appear inside the definition.

Now you can use xy like this:

.EQ
f(x) = xy ...
. EN

and so on. Each occurrence of xy will expand into what it was defined as. Be sure to leave
spaces or their equivalent around the name when you actually use it, so eqn will be able to iden­
tify it as special.

There are several things to watch out for. First, although definitions can use previous
definitions, as in

.EQ
define xi ' x sub i '
define xil ' xi sub 1 '
.EN

don't define 8omething in term8 of it8elf. A favorite error is to say

.EQ
define X ' roman X '
.EN

This is a guaranteed disaster, since X ia now defined in terms of itself. If you say

.EQ
define X ' roman ''X" '
.EN

however, the quotes protect the second X, and everything works fine.

You can redefine eqn keywords. You can make '/' mean over by saying

.EQ
define / ' over '
.EN

or redefine over as '/' with

12-16

.EQ
define over ' / '
.EN

Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Typesetting Mathematics with eqn

If you need things to print on a workstation or terminal as well as on the phototypesetter, it is
sometimes worth defining a symbol differently in neqn and eqn. To do this, use ndefine and
tdefine. A definition made with ndefine only takes effect if you are running neqn; if you use
/define, the definition only applies for eqn. Names defined with plain define apply to both eqn
and neqn.

12.20. Tuning the Spacing

Although eqn tries to get most things at the right place on the paper, it isn't perfect, and occa­
sionally you will need to tune the output to make it just right. You can get small extra horizon­
tal spaces with tilde and circumflex. You can also say back n and fwd n to move small amounts
horizontally. The n is how far to move in 1/lOO's of an em (an em is about the width of the
letter 'm'.) Thus back 50 moves back about half the width of an m. Similarly you can move
things up or down with up n and down n. As with sub or sup, the local motions affect the next
thing in the input, and this can be anything if it is enclosed in braces.

12.21. Troubleshooting

If you make a mistake in an equation, like leaving out a brace, having one too many, or having a
wp with nothing before it, eqn tells you with the message:

syntax error between lines x and y, file z

where x and y are approximately the lines between which the trouble occurred, and z is the
name of the file in question. The line numbers are approximate; look nearby as well. There are
also self-explanatory messages that arise if you leave out a quote or try to run eqn on a non­
existent file.

If you want to check a document before actually printing it, run:

logo% eqn files >/dev/null

to throw away the output but display the messages.

If you use something like dollar signs as delimiters, it is easy to leave one out. You may also oc­
casionally forget one half of a pair of macros or have an unbalanced font change. These can
cause problems, but you can check for balanced pairs of delimiters and macros with checkeq and
checknr. For instance, to run checkeq on this chapter called eqn.ug to check for unbalanced
pairs of '.EQ' and '.EN', type:

Version D of 15 May 1985 12-17

Typesetting Mathematics with eqn

logo% checkeq eqn.ug
eqn.ug:

New delims , line 2
in EQ, line 2

Spurious EN, line 46
Delim off, line 1254
New delims , line 1278
New de lims , line 1635
in EQ, line 1635

New delims ##, line 1991
De Jim off, line 1999

logo%

Editing and Text Processing

We left out the '.EQ' before the '.EN' on line 46 to show you some sample output. This also re­
ports on the delimiters. You can also use checknr with specific options to check specifically for a
particular macro pair. For example, to run checknr to check that there is an '.EQ' for every
'.EN', type:

logo% checknr -s -r -a.EQ.EN eqn.ug
46: Unmatched .EN
logo%

Specify the macro pair you want to check for with the -& option and the six characters in the
pair. The -s option ignores size changes and the -/ option ignores font changes. See the user's
manual on checknr for more details.

0

In-line equations can only be so big because of an internal buffer in troff. If you get a message 0
'word overflow,' you have exceeded this limit. If you print the equation as a displayed equation, .
that is, offset from the body of the text with '.EQ' and '.EN', this message will usually go away.
The message 'line overflow' indicates you have exceeded an even bigger buffer. The only cure
for this is to break the equation into two separate ones.

On a related topic, eqn does not break equations by itself; you must split long equations up
across multiple lines by yourself, marking each by a separate '.EQ EN' sequence. Eqn does
warn about equations that are too long to fit on one line.

12.22. Precedences and Keywords

If you don't use braces, eqn will do operations in the order shown in this list.

dyad vec under bar tilde hat dot dotdot
fwd back down up
fat roman italic bold size
sub sup sqrt over
from to

The operations that group to the left are:

over sqrt left right

All others group to the right. For example, in the expression

12-18 Version D of 15 May 1985

0

0

0

0

Editing and Text Processing Typesetting Mathematics with eqn

.EQ
a sup 2 over b
.EN

2

sup is defined to have a higher precedence than over, so this construction is parsed as t instead

.i..
of ab. Naturally, you can always force a particular parsing by placing braces around expres-
sions.

Digits, parentheses, brackets, punctuation marks, and the following mathematical words are con­
verted to Roman font when encountered:

sin cos tan sinh cash tanh arc
max min lim log In exp
Re Im and if for det

The following character sequences are recognized and translated as shown.

Table 12-1: Character Sequence Transalation

You Tvne Translation

>= :2:
<= :5

-
!= "' +- ±
-> -+

<- -<< <<
>> >>
inf 00

partial {)

prime
approx ""
nothing
cdot
times X
de! V
grad V

, ... , ' ... '
sum I':
int J
prod II
Unton u
inter n

Version D of 15 May 1985 12-19

Typesetting Mathematics with eqn Editing and Text Processing

To obtain Greek letters, simply spell them out in whatever case you want:

Table 12-2: Greek Letters 0
You Tvoe Translation You Tvoe Translation
DELTA CJ. iota ' GAMMA r kappa IC

LAMBDA A lambda >.
OMEGA 0 mu µ
PHI 4> nu " PI 11 omega w
PSI "' omicron 0

SIGMA E phi ,p
THETA 0 pt "
UPSILON T psi ,p
XI 8 rho p

alpha " sigma O'

beta p tau r
chi X theta 0

delta Ii upsilon tJ

epsilon f XI e
eta ,, zeta >
e:amma 'Y

0

0
12-20 Version D of 15 May 1985

Editing and Text Processing Typesetting Mathematics with eqn

0
The eqn keywords, except for characters with names, follow.

Table 12-3: eqn Keywords

above !pile
back mark
bar matrix
bold ndefine
ecol over
col pile
cpile rcol
define right
delim roman

dot rpile
dotdot size
down sqrt
dyad sub
fat sup
font tdefine
from tilde
fwd to
gfont under
gs1ze up

0
hat vec
italic '
!col { }
left " "
lineup

0
Version D of 15 May 1985 12-21

Typesetting Mathematics with eqn Editing and Text Processing

12.23. Several Examples

Here is the complete source for several examples and for the three display equations in the intro­
duction to this chapter.

Squareroot

Input:

Output:

.EQ
x = {-b + - sqrt{b sup 2-4ac}} over 2a
.EN

Summation, Integral, and Other Large Operators

Input:

Output:

Input:

Output:

Input:

Output:

12-22

.EQ
lim from {x -> pi /2} (tan-x) = inf
.EN

lim (tan z)=oo
:r,-1t/2

.EQ
sum from i=O to infinity x sub i = pi over 2
.EN

.EQ

"" ,r Ez=­
i::e I 2

lim from {x-> pi /2} (tan-x) sup{sin-2xr=-l
.EN

lim (tan z)•Ill 2• - 1
z-11/2

Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing

input:

Output:

.EQ
define emx "{ e sup mx}"
define mab "{m sqrt ab}"
define sa "{sqrt a}"
define sb "{sqrt b}"
int dx over { a ernx - be sup -rnx}-= -
left { !pile {

1 over {2 mab} -log-
{sa emx - sb}over{sa emx + sb}

above
1 over mab-tanh sup -1 (sa over sb emx)

above
-1 over mab -coth sup-1 (sa over sb emx)
}
.EN

Quoted Text

Input:

Ouput:

.EQ
lim- ron1an "sup" -x sub n = 0
.EN

Big Brackets

Input:

Output:

.EQ
left I x+y over 2a right r = -1
.EN

Version D of 15 May 1985

lim sup x.=O

Typesetting Mathematics with eqn

12-23

Typesetting Mathematics with eqn

Fractions

Input:

Output:

Input:

Output:

Input:

Output:

12-24

.EQ
a sub O + b sub 1 over
{ a sub 1 + b sub 2 over
{ a sub 2 + b sub 3 over
{a sub 3 + ... }}}

.EN

.EQ I
G(zrmark = - e sup { In - G(z)}
-= - exp left (
sum from k>=l {S sub k z sup k} over k right)

prod from k>=l e sup {S sub k z sup k /k}
.EN

(S,z') s z'f, G(z) = eln G(,) = exp I;-- = TI e'
k~l k k~l

.EQ I
lineup = left (1 + S sub 1 z +
{ S sub 1 sup 2 z sup 2 } over 2! + ... right)
left (l+ { S sub 2 z sup 2 } over 2
+ { S sub 2 sup 2 z sup 4 } over { 2 sup 2 cdot 2! }
+ ... right) ...
. EN

= l+S z+-1 -+ · · · l+-2 -+-2 -+ · · · · · · (
S

2
z

2
)(S z

2
S

2
z')

1 2! 2 22·2!

Editing and Text Processing

0

0

0
Version D of 15 May 1985

0

0

0

Editing and Text Processing Typesetting Mathematics with eqn

Input:

.EQ I
lineup = sum from m>=O left (
sum from
pile { k sub 1 ,k sub 2 , ... , k sub m >=O
above
k sub 1 +2k sub 2 + ... +mk sub m =m}
{ S sub 1 sup {k sub l} } over {l sup k sub 1 k sub 1 ! } •
{ S sub 2 sup {k sub 2} } over {2 sup k sub 2 k sub 2 ! } ·

{ S sub m sup {k sub m} } over {m sup k sub m k sub m ! }
right) z sup m
.EN

Output:

Shorthand for In-line Equations

Input:

.EQ
delim ##
.EN

Let #x sub i#, #y# and #alpha# be positive

Output:

Let x,, y and c, be positive

Version D of 15 May 1985

~ m
'm ' l

12-25

0

0

0

0

0

0

Chapter 13

Refer - A Bibliography System

13.1. Introduction
Refer is a bibliography system that supports data entry, indexing, retrieval, sorting, runoff, con­
venient citations, and footnote or endnote numbering. You can enter new bibliographic data
into the database, index the selected data, and retrieve bibliographic references from the data­
base. This document assumes you know how to use a Unix editor, and that you are familiar with
the nroff and troff text formatters.

The refer program is a preprocessor for nroff and troff, and works like like eqn and tbl. Refer
is used for literature citations, rather than for equations and tables. Given incomplete but
sufficiently precise citations, refer finds references in a bibliographic database. The complete
references are formatted as footnotes, numbered, and placed either at the bottom of the page, or
at the end of a chapter.

A number of related programs make refer easier to use. The addbib program is for creating
and extending the bibliographic database; sortbib sorts the bibliography by author and date, or
other selected criteria; and roftbib runs off the entire database, formatting it not as footnotes,
but as a bibliography or annotated bibliography.

Once a full bibliography has been created, access time can be improved by making an index to
the references with indxbib. Then, the lookbib program can be used to quickly retrieve indivi­
dual citations or groups of citations. Creating this inverted index will speed up refer, and look­
bib will allow you to verify that a citation is sufficiently precise to deliver just one reference.

13.2. Features

Taken together, the refer programs constitute a database system for use with variable-length in­
formation. To distinguish various types of bibliographic material, the system uses labela com­
posed of upper case letters, preceded by a percent sign and followed by a space. For example,
one document might be given this entry:

%A Joel Kies
%T Document Formatting on Unix Using the -ms Macros
%I Computing Services
%C Berkeley
%D 1980

Each line is called a field, and lines grouped together are called a record; records are separated
from each other by a blank line. Bibliographic information follows the labels. This field contains
data to be used by the refer system. The order of fields is not important, except that authors
should be entered in the same order as they are listed on the document. Fields can be as long as
necessary, and may even be continued on the following line(s).

Version D of 15 May 1985 13-1

Refer - A Bibliography System Editing and Text Processing

The labels are meaningful to nroff and troff macros, and, with a few exceptions, the refer pro-
gram itself does not pay attention to the labels. This implies that you can change the label o.
codes, if you also change the macros used by nroff and troff. The macro package takes care of
details like proper ordering, underlining the book title or journal name, and quoting the article's
title. Here are the labels used by refer, with an indication of what they represent:

%II Header commentary, printed before reference
%A Author's name
%Q Corporate or foreign author (unreversed)
%T Title of article or book
%S Series title
%J Journal containing article
%B Book containing article
%R Report, paper, or thesis (for unpublished material)
%V Volume
%N Number within volume
%E Editor of book containing article
%P Page number(s)
%1 Issuer (publisher)
%C City where published
%D Date of publication
%0 Other commentary, printed at end of reference
%K Keywords used to locate reference
%L Label used by -k option of refer
%X Abstract (used by roff'bih, not by refer)

Only relevant fields (lines) should be supplied. Except for %A, the author field, each field should o
be given only once. In the case of multiple authors, the senior author should be entered first.
Your entry in such a case, might look like this:

%A Brian W. Kernighan
%AP. J. Plauger
%T Software Tools in Pascal
%I Addison-Wesley
%C Reading, Massachusetts
%D 1981

The %Q is for organizational authors, or authors with Japanese or Arabic names, in which cases
there is no clear last name. Books should be labeled with the %T, not with the %B, which is
reserved for books containing articles. The %J and %B fields should never appear together,
although if they do, the %J will override the %B. If there is no author, just an editor, it is best
to type the editor in the %A field, as in this example:

%A Bertrand Bronson, ed.

The %E field is used for the editor of a book (%BJ containing an article, which has its own au­
thor. For unpublished material such as theses, use the %R field; the title in the %T field will be
quoted, but the contents of the %R field will not be underlined. Unlike other fields, %H, %0,
and %X should contain their own punctuation. Here is an example:

13-2 Version D of 15 May 1985

0

0

0

0

Editing and Text Processing Refer - A Bibliography System

%A Mike E. Lesk
%T Some Applications of Inverted Indexes on the Unix System
%B Unix Programmer's Manual
%I Bell Laboratories
%C Murray Hill, NJ
%D 1978
~ 2a
%K refer mkey inv hunt
%X Difficult to read paper that dwells on indexing strategies,
giving little practical advice about using \fBrefer\fP.

Note that the author's name is given in normal order, without inverting the surname; inversion is
done automatically, except when %Q is used instead of %A. We use %X rather than %0 for
the commentary because we do not want the comment printed every time the reference is used.
The %0 and %H fields are printed by both refer and roflbib; the %X field is printed only by
roflbib, as a detached annotation paragraph.

13.3. Data Entry with Addbib

The addbib program is for creating and extending bibliographic databases. You must give it
the filename of your bibliography:

hostname% addbib database

Every time you enter add bib, it asks if you want instructions. To get them, type y; to skip
them, type RETURN. Addbib prompts for various fields, reads from the keyboard, and writes
records containing the refer codes to the database. After finishing a field entry, you should end
it by typing RETURN. If a field is too long to fit on a line, type a backslash (\) at the end of the
line, and you will be able to continue on the following line. Note: the backslash works in this
capacity only inside addbib.

A field will not be written to the database if nothing is entered into it. Typing a minus sign as
the first character of any field will cause addbib to back up one field at a time. Backing up is
the best way to add multiple authors, and it really helps if you forget to add something impor­
tant. Fields not contained in the prompting skeleton may be entered by typing a backslash as
the last character before RETURN. The following line will be sent verbatim to the database and
addbib will resume with the next field. This is identical to the procedure for dealing with long
fields, but with new fields, don't forget the % key-letter.

Finally, you will be asked for an abstract (or annotation), which will be preserved as the %X
field. Type in as many lines as you need, and end with a control-D (hold down the CTRL button,
then press the "d" key). This prompting for an abstract can be suppressed with the -& com­
mand line option.

After one bibliographic record has been completed, addbib will ask if you want to continue. If
you do, type RETURN; to quit, type q or n (quit or no). It is also possible to use one of the sys­
tem editors to correct mistakes made while entering data. After the "Continue?" prompt, type
any of the following: edit, ex, vi, or ed - you will be placed inside the corresponding editor,
and returned to addbib afterwards, from where you can either quit or add more data.

If the prompts normally supplied by addbib are not enough, are in the wrong order, or are too
numerous, you can redefine the skeleton by constructing a promptfile. Create some file, to be
named after the -p command line option. Place the prompts you want on the left side, followed
by a single TAB (control-I), then the refer code that is to appear in the bibliographic database.

Version D of 15 May 1985 13-3

Refer - A Bibliography System Editing and Text Processing

Addbib will send the left side to the screen, and the right side, along with data entered, to the
database.

13.4. Printing the Bibliography

Sortbib is for sorting the bibliography by author (%A) and date (%D), or by data in other
fields. Sortbib is quite useful for producing bibliographies and annotated bibliographies, which
are seldom entered in strict alphabetical order.

Sortbib takes as arguments the names of up to 16 bibliography files, and sends the sorted records
to standard output (the terminal screen), which may be redirected through a pipe or into a file.

The -sKEYS flag to sortbib will sort by fields whose key-letters are in the KEYS string, rath­
er than merely by author and date. Key-letters in KEYS may be followed by a '+' to indicate
that all such fields are to be used. The default is to sort by senior author and date (printing the
senior author last name first), but -sA+D will sort by all authors and then date, and -sATD
will sort on senior author, then title, and then date.

Roffbib is for running off the (probably sorted) bibliography. It can handle annotated bibliogra­
phies - annotations are entered in the %X (abstract) field. Roffbib is a shell script that calls
refer -B and nroff -mbib. It uses the macro definitions that reside in
/usr/lib/tmac/tmac.bib, which you can redefine if you know nroff and troff. Note that refer
will print the %H and %0 commentaries, but will ignore abstracts in the %X field; roffbib will
print both fields, unless annotations are suppressed with the -x option.

The following command sequence will lineprint the entire bibliography, organized alphabetically
by author and date:

hostname% sortbib database I roffbib I lpr

This is a good way to proofread the bibliography, or to produce a stand-alone bibliography at the
end of a paper. Incidentally, roffbib accepts all flags used with nroff. For example:

hostname% sortbib database I roffbib -Txerox -s1

will make accent marks work on a Xerox printer, and stop at the bottom of every page for
changing paper. The -n and -o flags may also be quite useful, to start page numbering at a
selected point, or to produce only specific pages.

Roffbib understands four command-line number registers: N, V, L, and 0. These are some­
thing like the two-letter number registers in -ms. The -rNl argument will number references
beginning at one (I); use another number to start somewhere besides one. The -rV2 flag will
double-space the entire bibliography, while -rVl will double-space the references, but single­
space the annotation paragraphs. Finally, specifying -rL6i changes the line length from 6.5
inches to 6 inches, and saying -rOli sets the page offset to one inch, instead of zero. (That's a
capital O after -r, not a zero.)

13.5. Citing Papers with Refer

The refer program normally copies input to output, except when it encounters an item of the
form:

13-4 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Refer - A Bibliography System

. [
partial citation

. l

The partial citation may be just an author's name and a date, or perhaps a title and a keyword,
or maybe just a document number. Refer looks up the citation in the bibliographic database,
and transforms it into a full, properly-formatted reference. If the partial citation does not
correctly identify a single work (either finding nothing, or more than one reference), a diagnostic
message is given. If nothing is found, it will say "No such paper." If more than one reference is
found, it will say "Too many hits." Other diagnostic messages can be quite cryptic; if you are in
doubt, use checknr to verify that all your .[shave matching.] s.

When everything goes well, the reference will be brought in from the database, numbered, and
placed at the bottom of the page. This citation, for example, was produced by:

This citation,
. [
lesk inverted indexes
.]
for example, was produced by

The .[and .] markers, in essence, replace the .FS and .FE of the -ms macros, and also provide a
numbering mechanism. Footnote numbers will be bracketed on the lineprinter, but superscript­
ed on daisy-wheel terminals and in troff. In the reference itself, articles will be quoted, and
books and journals will be underlined in nroff, and italicized in troff.

Sometimes you need to cite a specific page number along with more general bibliographic materi­
al. You may have, for instance, a single document that you refer to several times, each time giv­
ing a different page citation. This is how you could get "p. 10" in the reference:

. [
kies document formatting
%P 10
.]

The first line, a partial citation, will find the reference in your bibliography. The second line will
insert the page number into the final citation. Ranges of pages may be specified as "%P 56-78".

When the time conies to run off a paper, you will need to have two files: the bibliographic data­
base, and the paper to format. Use a command line something like one of these:

hostname% refer -p database paper nroff -ms
hostname% refer -p database paper I tbl I nroff -ma
hostname% refer -p database paper I tbl I neqn I nroff -ms

If other preprocessors are used, refer should precede tbl, which must in turn precede eqn or
neqn. The -p option specifies a "private" database, which most bibliographies are.

8

10 Mike E. Lesk, "Some Applications or Inverted Indexes on the Unix System," in Uniz Programmer',
Manual, Bell Laboratories, Murray Hill, NJ, IQ78.

Version D of 15 May 1985 13-5

Refer - A Bibliography System Editing and Text Processing

13.6. Refer' s Command-line Options

Many people like to place references at the end of a chapter, rather than at the bottom of the
page. The -e option will accumulate references until a macro sequence of the form

. [
$LIST$
.]

is encountered (or until the end of file). Refer will then write out all references collected up to
that point, collapsing identical references. Warning: there is a limit (currently 200) on the
number of references that can be accumulated at one time.

It is also possible to sort references that appear at the end of text. The -sKEYS flag will sort
references by fields whose key-letters are in the KEYS string, and permute reference numbers in
the text accordingly. It is unnecessary to use -e with the -sKEYS flag, since -s implies -e.
See the section Printing the Bibliography for additional features of the -sKEYS flag.

Refer can also make citations in what is known as the Social or Natural Sciences format. In­
stead of numbering references, the -I (letter ell) flag makes labels from the senior author's last
name and the year of publication. For example, a reference to the paper on Inverted Indexes
cited above might appear as [Leskl978a]. It is possible to control the number of characters in
the last name, and the number of digits in the ctate. For instance, the command line argument
-16,2 might produce a reference such as [Kernig78c].

Some bibliography standards shun both footnote numbers and labels composed of author and
date, requiring some keyword to identify the reference. The -k flag indicates that, instead of
numbering references, key labels specified on the %L line should be used to mark references.

The -n flag means to not search the default reference file, located in /usr/dict/papers/Rv7man.
Using this flag may make refer marginally faster. The -an flag will reverse the first n author
names, printing Jones, J. A. instead of J. A. Jones. Often -al is enough; this will reverse the
first and last names of only the senior author. In some versions of refer there is also the -f flag
to set the footnote number to some predetermined value; for example, -(23 would start number­
ing with footnote 23.

13.7. Making an Index

Once your database is large and relatively stable, it is a good idea to make an index to it, so that
references can be found quickly and efficiently. The indxbib program makes an inverted index
to the bibliographic database (this program is called pubindex in the Bell Labs manual). An in­
verted index could be compared to the thumb cuts of a dictionary - instead of going all the way
through your bibliography, programs can move to the exact location where a citation is found.

lndxbib itself takes a while to run, and you will need sufficient disk space to store the indexes.
But once it has been run, access time will improve dramatically. Furthermore, large databases
of several million characters can be indexed with no problem. The program is exceedingly simple
to use:

hostname% indxbib database

Be aware that changing your database will require that you run indxbib over again. If you
don't, you may fail to find a reference that really is in the database.

13-6 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Refer - A Bibliography System

Once you have built an inverted index, you can use lookbib to find references in the database.
Look bib cannot be used until you have run indxbib. When editing a paper, lookbib is very
useful to make sure that a citation can be found as specified. It takes one argument, the name of
the bibliography, and then reads partial citations from the terminal, returning references that
match, or nothing if none match. Its prompt is the greater-than sign.

hostname% lookbib database
> leak inverted indezea
%A Mike E. Lesk
%T Some Applications of Inverted Indexes on the Unix System
%J Unix Programmer's Manual
%I Bell Laboratories
%C Murray Hill, NJ
%D 1978
~ 2a
%X Difficult to read paper that dwells on indexing strategies,
giving little practical advice about using \fBrefer\fP.

>

If more than one reference comes back, you will have to give a more precise citation for refer.
Experiment until you find something that works; remember that it is harmless to overspecify.

To get out of the lookbib prol',ram, type a control-D alone on a line; lookbib then exits with an
"EOT" message.

Lookbib can also be used to extract groups of related citations. For example, to find all the pa­
pers by Brian Kernighan found in the system database, and send the output to a file, type:

hostname% lookbib /usr/dict/papers/Ind > kern,refs
> kernighan
> <CTRL-D>EOT
hostname% cat kern.refa

Your file, "kern.refs", will be full of references. A similar procedure can be used to pull out all
papers of some date, all papers from a given journal, all papers containing a certain group of
keywords, etc.

13.8. Refer Bugs and Some Solutions

13.8.1. Blanks at Ends of Lines

The refer program will mess up if there are blanks at the end of lines, especially the %A author
line. Addbib carefully removes trailing blanks, but they may creep in again during editing. Use
an ez editor command -

g/ •$/s///

- or similar method to remove trailing blanks from your bibliography.

Version D of 15 May 1985 13-7

Refer - A Bibliography System Editing and Text Processing

13.8.2. Interpolated Strings

Having bibliographic fields passed through as string definitions implies that interpolated strings
(such as accent marks) must have two backslashes, so they can pass through copy mode intact.
For instance, the word "telephone" would have to be represented:

te\ \•'le\ \•'phone

in order to come out correctly. In the %X field, by contrast, yon will have to use single
backslashes instead. This is because the %X field is not passed through as a string, but as the
body of a paragraph macro.

13.8.3. Interpreting Foreign Surnames

Another problem arises from authors with foreign names. When a name like "Valery Giscard
d'Estaing" is turned around by the -a option of refer, it will appear as "d'Estaing, Valery Gis­
card," rather than as "Giscard d'Estaing, Valery." To prevent this, enter names as follows:

%A Vale\\•'ry Giscard\Od'Estaing
%A Alexander Csoma\Ode\OKo\\•:ro\\•:s

(The second is the name of a famous Hungarian linguist.) The backslash-zero is an nroff and troff
request meaning to insert a digit-width space. Because the second argument to the %A field
contains no blank spaces to confuse the refer program, refer will treat the second field as a sin­
gle word. This protects against faulty name reversal, and also against mis-sorting.

13.8.,S. Footnote Numbers

Footnote numbers are placed at the end of the line before the .[macro. This line should be a
line of text, not a macro. As an example, if the line before the .[is a .R macro, then the .R will
eat the footnote number. (The .R is an -ms request meaning change to Roman font.) In cases
where the font needs changing, it is necessary to use the following method immediately before
the citation:

\fiet al. \fR
. [
awk aho kernighan weinberger

. J
Now the reference will be to Aho et a/. 11 The \fi changes to italics, and the \m changes back
to Roman font. Both these requests are nroff and troff requests, not part of -ms. If and when
a footnote number is added after this sequence, it will indeed appear in the output.

8

11 Alfred V. Aho, Brian W. Kernig:ha.n, and Peter J. Weinberger, Awk - A Pattern Stanning and Tezt
Proce,,ing Language, Bell Laboratories, Murray Hill, NJ.

13-8 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Refer - A Bibliography System

13.9. Internal Details of Refer

You have already read everything you need to know in order to use the refer bibliography sys­
tem. The remaining sections are provided only for extra information, and in case you need to
change the way refer works.

The output of refer is a stream of string definitions, one for each field in a reference. To create
string names, percent signs are simply changed to an open bracket, and an [F string is added,
containing the footnote number. The %X, %Y and %Z fields are ignored; however, the anno­
bib program changes the %X to an .AP (annotation paragraph) macro. The Lesk citation used
above yields this intermediate output:

.ds [F 1

.] -

.ds [A Mike E. Lesk

.ds [T Some Applications of Inverted Indexes on the Unix System

.ds [J Unix Programmer's Manual

.ds [I Bell Laboratories

.ds [C Murray Hill, NJ

.ds [D 1978

.ds [V 2a

.nr [T O

.nr [A 0

.nr [O 0

.][1 journal-article

These string definitions are sent to nroff, which can use the -ms macros defined in
/usr/lib/mx/ms.xref to take care of formatting things properly. The initializing macro .]- pre­
cedes the string definitions, and the labeled macro .][follows. These are changed from the input
.[and .) so that running a file twice through refer is harmless.

The .][macro, used to print the reference, is given a type-number argument, which is a numeric
label indicating the type of reference involved. Here is a list of the varic)Us kinds of references:

Field Value Kind of Reference

%J 1 Journal Article
%B 3 Article in Book
lG 4 Report, Government Report
%1 2 Book
%M 5 Bell Labs Memorandum (undefined)
none 0 Other

The order listed above is indicative of the precedence of the various fields. In other words, a
reference that has both the %J and %B fields will be classified as a journal article. If none of
the fields listed is present, then the reference will be classified as "other."

The footnote number is flagged in the text with the following sequence, where number is the
footnote number:

\ • ([.number\• (.]

The \ *([. and \ *(.) stand for bracketing or superscripting. In nroff with low-resolution devices
such as the !pr and a crt, footnote numbers will be bracketed. In troff, or on daisy-wheel
printers, footnote numbers will be superscripted. Punctuation normally comes before the refer­
ence number; this can be changed by using the -P (postpunctuation) opt.ion of refer.

Version D of 15 May 1985 13-9

Refer - A Bibliography System Editing and Text Processing

In some cases, it is necessary to override certain fields in a reference. For instance, each time a
work is cited, you may want to specify different page numbers, and you may want to change cer­
tain fields. This citation will find the Lesk reference, but will add specific page numbers to the
output, even though no page numbers appeared in the original reference .

. [
lesk inverted indexes
%P 7-13
%I Computing Services
%0 UNX 12.2.2 .
.]

The %I line will also override any previous publisher information, and the %0 line will append
some commentary. The reter program simply adds the new %P, %1, and %0 strings to the
output, and later strings definitions cancel earlier ones.

It is also possible to insert an entire citation that does not appear in the bibliographic database.
This reference, for example, could be added as follows:

. [
%A Brian Kernighan
%TA troff Tutorial
%I Bell Laboratories
%D 1978
.]

This will cause refer to interpret the fields exactly as given, without searching the bibliographic
database. This practice is not recommended, however, because it's better to add new references
to the database, so they can be used again later.

If you want to change the way footnote numbers are printed, signals can be given on the .[and
.) lines. For example, to say "See reference (2)," the citation should appear as:

See reference
. [(
partial citation
. l) '

Note that blanks are significant on these signal lines. If a permanent change in the footnote for­
mat is desired, it is best to redefine the [. and .] strings.

13.10. Changing the Refer Macros

This section is provided for those who wish to rewrite or modify the refer macros. This is
necessary in order to make output correspond to specific journal requirements, or departmental
standards. First there is an explanation of how new macros can be substituted for the old ones.
Then several alterations are given as examples.

The refer macros for nroff and troff supplied by the -ms macro package reside in
/usr/lib/ms/ms.xref; they are reference macros, for producing footnotes or endnotes. The refer
macros used by roftbib, on the other hand, reside in /usr/lib/tmac/tmac.bib; they are for pro­
ducing a stand-alone bibliography.

To change the macros used by roftbib, you will need to get your own version of this shell script
into the directory where you are working. These two commands will get you a copy of roftbib
and the macros it uses:

13-10 Version D of 15 May 1985

0

0

I
01

0

0

0

Editing and Text Processing Refer - A Bibliography System

hostname% cp /uar/lib/tmac/tmac.bib bibmac

You can proceed to change bibmac as much as you like. Then when you use ro!Thib, you should
specify your own version of the macros, which will be substituted for the normal ones

hostname% roffbib -m bibmac filename

where filename is the name of your bibliography file. Make sure there's a space between -m

and bibmac.

If you want to modify the refer macros for use with nroff and the -ms macros, you will need to
get a copy of "ms.ref":

hostname% cp /uar/lib/ma/ma.ref refmac

These macros are much like "bibmac ", except they have .FS and .FE requests, to be used in con­
junction with the -ms macros, rather than independently defined .XP and .AP requests. Now
you can put this line at the top of the paper to be formatted:

.so refmac

Your new refer macros will override the definitions previously read in by the -ms package.
This method works only if "refmac" is in the working directory.

Suppose you didn't like the way dates are printed, and wanted them to be parenthesized, with
no comma before. There are five identical lines you will have to change. The first line below is
the old way, while the second is the new way:

. if ! "\ * ([D'"' , \ * ([D\c

. if I"* ([D"" \& (\ \ • ([D) \c

In the first line, there is a comma and a space, but no parentheses. The "\c" at the end of each
line indicates to nroff that it should continue, leaving no extra space in the output. The "\&" in
the second line is the do-nothing character; when followed by a space, a space is sent to the out­
put.

If you need to format a reference in the style favored by the Modern Language Association or
Chicago University Press, in the form (city: publisher, date), then you will have to change the
middle of the book macro [2 as follows:

\& (\c
.if !"*([C"" *([C:
* ([I\c
. if I"* ([D"" , \ \ * ([D\c
)\c

This would print (Berkeley: Computing Services, 1982) if all three strings were present. The first
line prints a space and a parenthesis; the second prints the city (and a colon) if present; the third
always prints the publisher (books must have a publisher, or else they're classified as other); the
fourth line prints a comma and the date if present; and the fifth line closes the parentheses. You
would need to make similar changes to the other macros as well.

Version D of 15 May 1985 13-11

0

0

0

0

0

Chapter 14

Formatting Documents with the -me Macros

This chapterg describes the -me macro package text processing facility. The first part of each
section presents the material in user's guide format and the second part lists the macro requests
for quick reference. The chapter contents include descriptions of the basic requests, displays, an­
notations, such as footnotes, and how to use -me with nroff and troff.

We assume that you are somewhat familiar with nroff and troff and that you know something
about breaks, fonts, point sizes, the use and definition of number registers and strings, and scal­
ing factors for ens, points, vertical line spaces (v's), etc. If you are a newcomer, try out the basic
features as you read along.

All request names in -me follow a naming convention. You may define number registers,
strings, and macros, provided that you use single-character, upper-case names or double charac­
ter names consisting of letters and digits with at least one upper-case letter. Do not use special
characters in the names you define. The word argument in this chapter means a word or
number which appears on the same line as a request and which modifies the meaning of that re­
quest. Default parameter values are given in brackets. For example, the request

.sp

spaces one line, and

.sp 4

spaces four lines. The number '4' is an argument to the '.sp' request; it modifies '.sp' to produce
four lines instead of one. Spaces separate arguments from the request and from each other.

14.1. Using -me

When you have your raw text ready, run the nroff formatter with the -me option to send the
output to the standard output, your workstation screen. Type:

logo% nroff -me -Ttype filea

where type describes the type of terminal you are outputting to. Common values are dtc for a
DTC 300s (daisy-wheel type) printer and /pr for the line printer. If you omit the -T flag, a
'lowest common denominator' terminal is assumed; this is good for previewing output on most
terminals.

For easier viewing, pipe the output to more or redirect it to another file.

For formatting on the phototypesetter with troff (or your installation's equivalent), use:

g The material in this chapter is derived Crom Writing Paper, with 'nroff' Uaing '-me', E.P. Allman and
'-me' Reference Manual, E.P. Allman, University of California, Berkeley.

Version D of 15 May 1985 14-1

Formatting Documents with the -me Macros Editing and Text Processing

logo% troff -me file

14.2. Basic -me Requests

The following sections provide descriptions and examples of the basic -me requests.

14. 2.1. Paragraphs

The -me package has requests for formatting standard, left block, and indented paragraphs.

1,1.2.1.1. Standard Paragraph - '.pp'

Begin standard paragraphs by using the '.pp' request. For example, the input:

.pp
Now is the time for all good men
to come to the aid of their party.
Four score and seven years ago, ...

produces

Now is the time for all good men to come to the aid of their party. Four score and seven
years ago1 •••

that is, a blank line followed by an indented first line.

Do not begin the sentences of a paragraph with a space, since blank lines and lines beginning
with spaces cause a break. For example, if you type:

•PP
Now is the time for all good men

to come to the aid of their party.
Four score and seven years ago, ...

The output is:

Now is the time for all good men
to come to the aid of their party. Four score and seven years ago, ...

A new line begins after the word 'men' because the second line begins with a space character.

Because the first call to one of the paragraph macros defined in a section or the '.H' macro (see
Section Headings) initializes the macro processor, do not use any of the following requests: '.sc',
'.lo', '.th', or '.ac'. Also, avoid changing parameters, notably page length and header and footer
margins, which have a global effect on the format of the page.

14-2 Version D of 15 May 1985

0

0

0

0

Editing and Text Processing Formatting Documents with the -me Macros

14.2.1.2. Left Block Paragraphs - '.Ip'

A formatted paragraph can start with a blank line and with the first line indented. You can get
left-justified block-style paragraphs as shown throughout this manual by using '.lp' (left para­
graph) instead of '.pp'.

14.2.1.s. Indented Paragraph, - '.ip' and '.np'

Sometimes you want to use paragraphs that have the body indented, and the first line exdented,
that is, the opposite of indented, with a label. Use the '.ip' request for this. A word specified on
the same line as '.ip' is printed in the margin, and the body is lined up at a specified position.
For example, the input:

.ip one
This is the first paragraph.
Notice how the first line
or the resulting paragraph lines up
with the other lines in the paragraph .
. ip two
And here we are at the second paragraph already.
You may notice that the argument to '.ip'
appears in the margin .
.Ip
We can continue text ...

0 produces as output:

one This is the first paragraph. Notice how the first line of the resulting paragraph lines up
with the other lines in the paragraph.

0

two And here we are at the second paragraph already. You may notice that the argument to
'.ip' appears in the margin.

We can continue text without starting a new indented paragraph by using the '.lp' request.

If you have spaces in the label of an '.ip' request, use an 'unpaddable space' instead of a regular
space. This is typed as a backslash character ' \ ' followed by a space. For example, to print
the label 'Part l', type:

.ip "Part\ l"

If a label of an indented paragraph, that is, the argument to '.ip', is longer than the space allo­
cated for the label, '.ip' begins a new line after the label. For example, the input:

.ip longlabel
This paragraph has a long label.
The first character or text on the first line
will not line up with the text on second and subsequent lines,
although they will line up with each other.

produces:

longlabel
This paragraph has a long label. The first character of text on the first line will not line
up with the text on second and subsequent lines, although they will line up with each oth-

Version D of 15 May 1985 14-3

Formatting Documents with the -me Macros Editing and Text Processing

er.

You can change the size of the label by using a second argument which is the size of the label. 0
For example, you can produce the above example correctly by saying:

.ip longlabel 10

which will make the paragraph indent 10 spaces for this paragraph only. For example:

longlabel
This paragraph has a long label. The first character of text on the first line will not
line up with the text on second and subsequent lines, although they will line up with
each other.

If you have many paragraphs to indent all the same amount, use the number register ii. For ex­
ample, to leave one inch of space for the label, type:

.nr ii 1i

somewhere before the first call to '.ip'.

If you use '.ip' without an argument, no hanging tag is printed. For example, the input:

.ip (a]
This is the first paragraph of the example.
We have seen this sort of example before .
. ip
This paragraph is lined up with the previous paragraph,
but it does not have a tag in the margin.

produces as output:

[aJ This is the first paragraph of the example. We have seen this sort of example before.

This paragraph is lined up with the previous paragraph, but it does not have a tag in the
margin.

A special case of '.ip' is '.np', which automatically numbers paragraphs sequentially from 1. The
numbering is reset at the next '.pp', '.Ip', or '.H' request. For example, the input:

.np
This is the first point .
. np
This is the second point.
Points are just regular paragraphs
which are given sequence numbers automatically
by the '.np' request .
. Ip
This paragraph will reset numbering by '.np' .
. np
For example,
we have reverted to numbering from one now.

generates:

(I) This is the first point.

14-4 Version D of 15 May 1985

0

0

0

0

0

Editing and Text Processing Formatting Documents with the -me Macros

(2) This is the second point. Points are just regular paragraphs which are given sequence
numbers automatically by the '.np' request.

This paragraph will reset numbering by '.np'.

(1) For example, we have reverted to numbering from one now.

14.2.L/. Paragraph Reference

.Ip

.pp

.ip TI

.np

Begin left-justified paragraph. Centering and underlining are turned off if they were
on, the font is set to \n(pf [I], the type size is set to \n(pp [lOp], and a \(nps space
is inserted before the paragraph (0.35v in troff, Iv or 0.5v in nroff depending on dev­
ice resolution). The indent is reset to \n(Sl [OJ plus \n(po [OJ unless the paragraph
is inside a display (see '.ba' in Miacellaneoua Requeata). At least the first two lines of
the paragraph are kept together on a page.

Like '.Ip', except that it puts \n(pi [5n] units of indent. This is the standard para­
graph macro.

Indented paragraph with hanging tag. The body of the following paragraph is indent­
ed / spaces (or \n(ii [5n] spaces if/ is not specified) more than a non-indented para­
graph is (such as with '.Ip'). The title Tis exdented. The result is a paragraph with
an even left edge and T printed in the margin. Any spaces in T must be unpaddable.
if Twill not fit in the space provided, '.ip' starts a new line.

An '.ip' variant that numbers paragraphs. Numbering is reset after an '.Ip', '.pp', or
'.H'. The current paragraph number is in \nSp.

14.3. Headers and Footers - '.he' and '.fo'

You can put arbitrary headers and footers at the top and bottom of every page. Two requests of
the form '.he title' and '.fo title' define the titles to put at the head and the foot of every page,
respectively. The titles are called three-part titles, that is, there is a left-justified part, a cen­
tered part, and a right-justified part. The first character of title (whatever it may be) is used as
a delimiter to separate these three parts. You can use any character but avoid the backslash
and double quote marks. The percent sign is replaced by the current page number whenever it
is found in the title. For example, the input:

.he '' % ''

.ro 'Jane Jones'' My Book'

results in the page number centered at the top of each page, 'Jane Jones' in the lower left
corner, and 'My Book' in the lower right corner.

If there are two blanks adjacent anywhere in the title or more than eight blanks total, you must
enclose three-part titles in single quotes.

Headers and footers are set in font \n(tf [3] and size \n(tp [!Op]. Each of the definitions applies
as of the next page.

Three number registers control the spacing of headers and footers. \n(hm [4v] is the distance
from the top of the page to the top of the header, \n(fm [3v] is the distance from the bottom of
the page to the bottom of the footer, \n(tm [7v] is the distance from the top of the page to the
top of the text, and \n(bm [6v] is the distance from the bottom of the page to the bottom of the

Version D of 15 May 1985 14-5

Formatting Documents with the -me Macros Editing and Text Processing

text (nominal). You can also specify the space between the top of the page and the header, the
header and the first line of text, the bottom of the text and the footer, and the footer and the O,
bottom of the page with the macros '.ml', '.m2', '.m3', and '.m4'.

14-3.1. Headers and Footers Reference

.he 'I 'm 'r '
Define three-part header, to be printed on the top of every page .

.fa "l'm'r'
Define footer, to be printed at the bottom of every page .

. eh "I "m 'r'
Define header, to be printed at the top of every even-numbered page .

. oh 'I 'm 'r'
Define header, to be printed at the top of every odd-numbered page .

. ef 'l 'm 'r "
Define footer, to be printed at the bottom of every even-numbered page .

. of 'I 'm "'r '
Define footer, to be printed at the bottom of every odd-numbered page .

. hx Suppress headers and footers on the next page .

. ml +N Set the space between the top of the page and the header [4v].

.m2 +N Set the space between the header and the first line of text [2v] .

. m3 +N Set the space between the bottom of the text and the footer [2v] .

. m4 +N Set the space between the footer and the bottom of the page [4v] .

. ep End this page, but do not begin the next page. Useful for forcing out footnotes.
Must be followed by a '.bp' or the end of input .

. $h Called at every page to print the header. May be redefined to provide fancy headers,
such as, multi-line, but doing so loses the function of the '.he', '.fo', '.eh', '.oh', '.ef',
and '.of' requests, as well as the chapter-style title feature of '.+c' .

. $f Print footer; same comments apply as in '.$h' .

. $H A normally undefined macro which is called at the top of each page after processing
the header, initial saved floating keeps, etc.; in other words, this macro is called im­
mediately before printing text on a page. Used for column headings and the like.

14-3.2. Double Spacing - '.ls 2'

Nroff will double space output text automatically if you use the request '.Is 2', as is done in this

section. You can revert to single spaced mode by typing '.Isl'.

14-6 Version D of 15 May 1985

0

0

0

0

0

Editing and Text Processing Formatting Documents with the -me Macros

Lf.3.3. Page Layout

You can change the way the printed copy looks, sometimes called the layout of the output page
with the following requests. Most of these requests adjust the placing of 'white space' (blank
lines or spaces). In these explanations, replace characters in italics with values you wish to use;
bold characters represent characters which you should actually type.

Use '.bp' (break page) to start a new page.

The request '.sp N leaves N lines of blank space. You can omit N to skip a single line or you
can use the form 'Ni' (for N inches) or 'N c' (for N centimeters). For example, the input:

.sp 1.6i
My thoughts on the subject
.sp

leaves one and a half inches of space, followed by the line 'My thoughts on the subject', followed
by a single blank line.

The '.in +N (indent) request changes the amount of white space on the left of the page. The
argument N can be of the form '+ N (meaning leave N spaces more than you are already leav­
ing), '- N (meaning leave less than you do now), or just N (meaning leave exactly N spaces). N
can be of the form 'Ni' or N c' also. For example, the input:

initial text
.in 6
aome text
.in +li
more text
.in -2c
final text

produces 'some text' indented exactly five spaces from the left margin, 'more text' indented five
spaces plus one inch from the left margin (fifteen spaces on a pica typewriter), and 'final text' in­
dented five spaces plus one inch minus two centimeters from the margin. That is, the output is:

initial text
some text

more text
final text

The '.ti +N (temporary indent) request is used like '.in +N when the indent should apply to
one line only, after which it should revert to the previous indent. For example, the input:

.in 1i

.ti 0
Ware, James R. The Best or Confucius,
Halcyon House, 1960.
An excellent book containing translations of
most of Confucius ' most delightful sayings.
A definite must for anyone interested in the early foundations
of Chinese philosophy.

produces:

Version D of 15 May 1985 14-7

Formatting Documents with the -me Macros Editing and Text Processing

Ware, James R. The Best of Confucius, Halcyon House, 1950. An excellent book contammg
translations of most of Confucius' most delightful sayings. A definite must for
anyone interested in the early foundations of Chinese philosophy.

You can center text lines with the '.ce' (center) request. The line after the '.ce' is centered hor­
izontally on the page. To center more than one line, use '.ce N, where N is the number of lines
to center, followed by the N lines. If you want to center many lines but don't want to count
them, type:

.ce 1000
lines to center
.ce 0

The '.ce O' request tells nroff to center zero more lines, in other words, to stop centering.

All of these requests cause a break; that is, they always start a new line. If you want to start a
new line without performing any other action, use '.br' (break).

1,4.3.,t. Underlining - '. ul'

Use the '.ul' (underline) request to underline text. The '.ul' request operates on the next input
line when it is processed. You can underline multiple lines by stating a count of input lines to
underline, followed by those lines, the same as with the '.ce' request. For example, the input:

.ul 2
The quick brown fox
jumped over the lazy dog.

underlines those words in nroff. In troff they are italicized.

1,t.3.5. Displays

Use displays to set off sections of text from the body of the paper. Major quotes, tables, and
figures are types of displays, as are all the examples used in this manual. All displays except cen­
tered text blocks are single spaced.

14,S.5.1. Major Quotea - '.(q' and '.)q'

Major quotes are quotes which are several lines long, and hence are set in from the rest of the
text without quote marks around them. Use '.(q' and '.)q' to surround the quote. For example,
the input:

As Weizenbaum points out:
.(q
It is said that to explain is to explain away.
This maxim is nowhere so well fulfilled
as in the areas of computer programming, ...
.)q

generates as output:

As Weizenbaum points out:

14-8 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with the -me Macros

It is said that to explain is to explain away. This maxim is nowhere so well fulfilled as
in the areas of computer programming, ...

Lj.S.S.2. Li,t. - '.(/' and '.)/'

A list is an indented, single-spaced, unfilled display. You should use lists when the material to be
printed should not be filled and justified like normal text. This is useful for columns of figures,
for example. Surround the list text by the requests '.(l' and '.)l'. For example, type:

Alternatives to avoid deadlock are:
.(I
Lock in a specified order
Detect deadlock and back out one process
Lock all resources needed before proceeding
.)I

to produce:

Alternatives to avoid deadlock are:
Lock in a specified order
Detect deadlock and back out one process
Lock all resources needed before proceeding

1.J.S.5.9. Keeps - '.(b' and '.)b', '.{z' and '.)z'

A keep is a display of lines which are kept on a single page if possible. Keeps are useful for
printing diagrams, for example. Keeps differ from lists in that lists may be broken over a page
boundary, whereas keeps will not.

Blocks are the basic kind of keep. They begin with the request '.(b' and end with the request
'.)b'. If there is not enough room on the current page for everything in the block, a new page is
begun. This has the unpleasant effect of leaving blank space at the bottom of the page. When
this is not appropriate, you can use the alternative called a floating keep.

Floating keepa move relative to the text. Hence, they are good for things which will be referred
to by name, such as 'See figure 3'. A floating keep will appear at the bottom of the current page
if it will fit; otherwise, it will appear at the top of the next page. Floating keeps begin with the
line '.(z' and end with the line '.)z'. An example of a floating keep is:

.(z

.hi
Text of keep to be floated .
. sp
.ce
Figure 1. Example of a Floating Keep .
. hi
.)z

The '.hi' request draws a horizontal line so that the figure stands out from the text.

Version D of 15 May 1985 14-9

Formatting Documents with the -me Macros Editing and Text Processing

14.4. Fancy Displays

Keeps and lists are normally collected in nofi/1 mode, so that they are good for tables and such.
If you want a display in fill mode (for text), type '.(IF'. Throughout this section, comments ap­
plied to '.(I' also apply to '.(b' and '.(z'. This kind of display produced by '.(I' is indented from
both margins. For example, the input:

.(1 F
And now boys and girls,
a newer, bigger, better toy than ever before!
Be the first on your block to have your own computer!
Yes kids, you too can have one of these modern
data processing devices.
You too can produce beautifully formatted papers
without even batting an eye!
.)I

will be formatted a.s:

And now boys and girls, a newer, bigger, better toy than ever before! Be the first on
your block to have your own computer! Yes kids, you too can have one of these
modern data processing devices. You too can produce beautifully formatted papers
without even batting an eye!

Lists and blocks are also normally indented, while floating keeps are normally left justified. To
get a left-justified list, type '.(l L'. To center a list line-for-line, type '.(IC'. For example, to get
a filled, left-justified list, use:

.(IL F
text of block
.)1

The input:

.(1
first line of unfilled display
more lines
.)1

produces the indented text:

first line of unfilled display
more lines

Typing the character 'L' after the '.(l' request produces the left-justified result:

first line of unfilled display
more lines

Using 'C' instead of 'L' produces the line-at-a-time centered output:

first line of unfilled display
more lines

0

0

Sometimes you may want to center several lines a.s a group, rather than centering them one line
at a time. To do this use centered blocks, which are surrounded by the requests '.(c' and '.)c'.
All the lines are centered a.s a unit, such that the longest line is centered, and the rest are lined o
up around that line. Notice that lines do not move relative to each other using centered blocks,

14-10 Version D of 15 May 1985

0

0

0

Editing and Text Processing Formatting Documents with the -me Macros

whereas they do using the 'C' keep argument.

Centered blocks are not keeps, and you may use them in conjunction with keeps. For example,
to center a group of lines as a unit and keep t,hem on one page, use:

.(b L

.(c
first line of unfilled display
more lines
.)c
.)b

to produce:

first line of unfilled display
more lines

the result would have been the same, but with no guarantee that the lines of the centered block
would have all been on one page. Note the use of the 'L' argument to '.(b'; this centers the cen­
tered block within the entire line rather than within the line minus the indent. Also, you must
nest the center requests inside the keep requests.

14.4.1. Display Reference

All displays except centered blocks and block quotes are preceded and followed by an extra
\n(bs (same as \n(ps) space. Quote spacing is stored in a separate register; centered blocks
have no default initial or trailing space. The vertical spacing of all displays except quotes and
centered blocks is stored in register \n(SR instead of \n(Sr .

. (1 m f

.)1

. (q

.)q

. (b mf

Begin list. Lists are single spaced, unfilled text. If/ is F, the list will be filled. If m
[I] is I the list is indented by \n(bi [4n]; if it is M, the list is indented to the left mar­
gin; if it is L, the list is left justified with respect to the text (different from M only if
the base indent (stored in \n(Si and set with '.ba') is not zero); and if it is C, the list
is centered on a line-by-line basis. The list is set in font \n(df [OJ. You must use a
matching '.)l' to end the list. This macro is almost like '.DS' except that no attempt
is made to keep the display on one page .

End list .

Begin major quote. The lines are single-spaced, filled, moved in from the main body
of text on both sides by \n(qi [4nJ, preceded and followed by \n(qs (same as \n(bs)
space, and are set in point size \n(qp, that is, one point smaller than the surrounding
text .

End major quote .

Begin block. Blocks are a form of keep, where the text of a keep is kept together on
one page if possible. Keeps are useful for tables and figures which should not be bro­
ken over a page. If the block will not fit on the current page a new page is begun,
unless that would leave more than \n(bt [OJ white space at the bottom of the text.
If \n(bt is zero, the threshold feature is turned off. Blocks are not filled unless f is
F, when they are filled. The block will be left-justified if mis L, indented by \n(bi
[4n] if m is I or absent, centered (line-for-line) if m is C, and left justified to the mar­
gin, not to the base indent, if m is M. The block is set in font \n(df [OJ.

Version D of 15 May 1985 14-11

Formatting Documents with the -me Macros Editing and Text Processing

.)b End block.

.(z m f Begin floating keep. Like '.(b' except that the keep is floated to the bottom of the
page or the top of the next page. Therefore, its position relative to the text changes.
The floating keep is preceded and followed by \n(zs [lv] space. Also, it defaults to
mode M .

.)z End floating keep .

. (c Begin centered block. The next keep is centered as a block, rather than on a line­
by-line basis as with '.(b C'. This call may be nested inside keeps .

.)c End centered block.

Lf.,S.2. Annotations

There are a number of requests to save text for later printing. Footnotes are printed at the bot­
t,om of the current page. Delayed tezt is intended to be a variant form of footnote; the text is
printed only when explicitly called for, such as at the end of each chapter. lndezea are a type of
delayed text having a tag, usually the page number, attached to each entry after a row of dots.
Indexes are also saved until explicitly called for.

Lf.,S.3. Footnotes - '.(f' and '.)!'

Footnotes begin with the request '.(f' and end with the request '.)f'. The current footnote
number is maintained automatically, and can be used by typing ' \ **', to produce a footnote
number. 1 The number is automatically incremented after every footnote. For example, the in­
put:

.(q
A man who is not upright
and at the same time is presumptuous;
one who is not diligent and at the same time is ignorant;
one who is untruthful and at the same time is incompetent;
such men I do not count among acquaintances.\••
.(f
**James R. Ware,
.ul
The Best of Confucius,
Halcyon House, 1950.
Page 77 .
.)f
.)q

generates the result:

A man who is not upright and at the same time is presumptuous; one who is not dili­
gent and at the same time is ignorant; one who is untruthful and at the same time is
incompetent; such men I do not count among acquaintances.2

g lLike this.

14-12 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with the -me Macros

Make sure that the footnote appears inside the quote, so that the footnote will appear on the
same page as the quote.

L/.4-4- Delayed Text

Delayed text is very similar to a footnote except that it is printed when explicitly called for. Use
this feature to put a list of references at the end of each chapter, as is the convention in some
disciplines. Use ' \ *#' on delayed text instead of' \ **' as on footnotes.

If you are using delayed text as your standard reference mechanism, you can still use footnotes,
except that you may want to refer to them with special characters* rather than numbers.

14-4.5. Indexes - '.(x' '.)x' and '.xp'

An index resembles delayed text, in that it is saved until called for. It is actually more like a
table of contents, since the entries are not sorted alphabetically. However, each entry has the
page number or some other tag appended to the last line of the index entry after a row of dots.

Index entries begin with the request '.(x' and end with '.)x'. An argument to the '.)x' indicates
the value to print as the 'page number.' It defaults to the current page number. If the page
number given is an underscore (_), no page number or line of dots is printed at all. To get the
line of dots without a page number, type .)x ••, which specifies an explicitly null page number.

The '.xp' request prints the index.

For example, the input:

.(x
Sealing wax
.)x g
.(x
Cabbages and kings
.)x -
.(x
Why the sea is boiling hot
.)x 2.5a
.(x
Whether pigs have wings
.)x ••
. (x
This is a terribly long index entry, such as might be used
for a list of illustrations, tables, or figures; I expect it to
take at least two lines .
.)x g
.xp

generates:

9 2James R. Ware, The B«t of Gon/uciu,, Halcyon House, 1950. Page 77.
9 *Such as a.n asterisk.

Version D of 15 May 1985 14-13

Formatting Documents with the -me Macros Editing and Text Processing

Sealing wax 9

Cabbages and kings

<etc.>

The '.(x' request may have a single character argument, specifying the name of the index; the
normal index is x. Thus, you can maintain several indiciea simultaneously, such as a list of
tables and a table of contents.

Notice that the index must be printed at the end of the paper, rather than at the beginning
where it will probably appear (as a table of contents); you may have to rearrange the pages after
printing.

14-4. 6. Annotations Reference

.(d Begin delayed text. Everything in the next keep is saved for output later with '.pd'
in a manner similar to footnotes .

.)d n End delayed text. The delayed text number register \n(Sd and the associated string
\ *# are incremented if*# has been referenced .

. pd Print delayed text. Everything diverted via '.(d' is printed and truncated. You
might use this at the end of each chapter.

.(f

.)f n

. $s

. (x "

.)x PA

.xp "

Begin footnote. The text of the footnote is floated to the bottom of the page and set
in font \n(ft' [1] and size \n(fp [8p]. Each entry is preceded by \n(fs [0.2v] space, is
indented \n(fi [3n] on the first line, and is indented \n(fu [OJ from the right margin.
Footnotes line up underneath two-columned output. If the text of the footnote will
not all fit on one page, it will be carried over to the next page.

End footnote. The number register \n(Sf and the associated string \ ** are incre­
mented if they have been referenced .

The macro to generate the footnote separator. You may redefine this macro to give
other size lines or other types of separators. It currently draws a 1.5-inch line.

Begin index entry. Index entries are saved in the index z until called up with '.xp' .
Each entry is preceded by a \n(xs [0.2v] space. Each entry is 'undented' by \n(xu
[0.5i]; this register tells how far the page number extends into the right margin.

End index entry. The index entry is finished with a row of dots with A [null] right
justified on the last line, such as for an author's name, followed by P [\n%]. If A is
specified, P must be specified; \n% can be used to print the current page number.
If Pis an underscore, no page number and no row of dots are printed.

Print index z [x]. The index is formated in the font, size, and so forth in effect at the
time it is printed, rather than at the time it is collected.

14.5. Fancy Features

A large number of fancier requests exist, notably requests to provide other sorts of paragraphs,
numbered sections of the form 'l.2.3', such as those used in this manual, and multicolumn out­
put.

14-14 Version D of 15 May 1985

0

0

0

0

0

Editing and Text Processing Formatting Documents with the -me Macros

1,S.5.1. Section Headings - '.sh' and '.uh'

You can automatically generate section numbers, using the '.sh' request. You must tell '.sh' the
depth of the section number and a section title. The depth specifies how many numbers separat­
ed by decimal points are to appear in the section number. For example, the section number
'4.2.5' has a depth of three.

Section numbers are incremented if you add a number. Hence, you increase the depth, and the
new number starts out at one. If you subtract section numbers, or keep the same number, the
final number is incremented. For example, the input:

.sh 1 •The Preprocessor•

.sh 2 ·aasic Concepts•

.sh 2 •control Inputs•

.sh 3

.sh 3

.sh 1 •code Generation•

.sh 3

produces as output the result:

1. The Preprocessor
1.1. Basic Concepts
1.2. Control Inputs
1.2.1.
1.2.2.
2. Code Generation
2.1.1.

You can specify the beginning section number by placing the section number after the section ti­
tle, using spaces instead of dots. For example, the request:

.sh 3 •Another section· 7 3 4

will begin the section numbered '7.3.4'; all subsequent '.sh' requests will be numbered relative to
this number.

There are more complex features which indent each section proportionally to the depth of the
section. For example, if you type:

.nr si Nz

each section will be indented by an amount N. N must have a scaling factor attached, that is, it
must be of the form Nz, where z is a character telling what units N is in. Common values for z
are 'i' for inches, 'c' for centimeters, and 'n' for 'ens,' the width of a single character. For exam­
ple, to indent each section one-half inch, type:

.nr si 0.5i

The request indents sections by one-half inch per level of depth m the section number. As
another example, consider:

.nr si 3n

which gives three spaces of indent per section depth. o You can produce section headers without automatically generated numbers using:

Version D of 15 May 1985 14-15

Formatting Documents with the -me Macros Editing and Text Processing

.uh "Title"

which will do a section heading, but will not put a number on the section.

Ll,5.1.1. Sectio11 Headi11g Reference

.sh+NTabcde/

.sx +N

. uh T

Begin numbered section of depth N. If N is missing, the current depth (maintained
in the number register \n(SO) is used. The values of the individual parts of the sec­
tion number are maintained in \n(Sl through \n(S8. There is a \n(ss [lv] space be­
fore the section. Tis printed as a section title in font \n(sf [8] and size \n(sp [!Op].
The 'name' of the section may be accessed via\ *(Sn. If \n(si is non-zero, the base
indent is set to \n(si times the section depth, and the section title is exdented (see
'.ba'in Mi•cella11eoua Requests}. Also, an additional indent of \n(so [OJ is added to
the section title but not to the body of the section. The font is then set to the para­
graph font, so that more information may occur on the line with the section number
and title. A '.sh' insures that there is enough room to print the section head plus the
beginning of a paragraph, which is about 3 lines total. If you specify a through f, the
section number is set to that number rather than incremented automatically. If any
of a through / are a hyphen that number is not reset. If T is a single underscore (_
), the section depth and numbering is reset, but the base indent is not reset and noth­
ing is printed. This is useful to automatically coordinate section numbers with
chapter numbers.

Go to section depth 'N [-1]', but do not print the number and title, and do not in­
crement the section number at level N. This has the effect of starting a new para­
graph at level N .

Unnumbered section heading. The title Tis printed with the same rules for spacing,
font, etc., as for '.sh' .

. $p T B N Print section heading. May be redefined to get fancier headings. T is the title
passed on the '.sh' or '.uh' line; Bis the section number for this section, and N is the
depth of this section. These parameters are not always present; in particular, '.sh'
passes all three, '.uh' passes only the first, and '.sx' passes three, but the first two are
null strings. Be careful if you redefine this macro, as it is quite complex and subtle .

. $0 TB N Callled automatically after every call to '.$p'. It is normally undefined, but may be
used to automatically put every section title into the table of contents or for some
similar function. T is the section title for the section title which was just printed, B
is the section number, and N is the section depth .

. $1 - .$6 Traps called just before printing that depth section. May be defined to give variable
spacing before sections. These macros are called from '.$p', so if you redefine that
macro you may lose this feature.

14-16 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with the -me Macros

L/.5.2. Parts of the Standard Paper

There are some requests which assist in setting up papers. The '.tp' request initializes for a title
page. There are no headers or footers on a title page, and unlike other pages, you can space
down and leave blank space at the top. For example, a typical title page might appear as:

.tp

.sp 2i

.(IC
A BENCHMARK FOR THE NEW SYSTEM
.sp
by
.sp
J, P. Hacker
.)I
.bp

The request '.th' sets up the environment of the nroff processor to do a thesis. It defines the
correct headers, footers, a page number in the upper right-hand corner only, sets the margins
correctly, and double spaces.

Use the '.+c 1' request to start chapters. Each chapter is automatically numbered from one,
and a heading is printed at the top of each chapter with the chapter number and the chapter
name T. For example, to begin a chapter called Conclusiona, use the request:

.+c "CONCLUSIONS"

CONCLUSIONS

with appropriate spacing for a thesis. Also, the header is moved to the foot of the page on the
first page of a chapter. Although the '.+c' request was not designed to work only with the '.th'
request, it is tuned for the format acceptable for a standard PhD thesis.

II the title parameter Tis omitted from the '.+c' request, the result is a chapter with no head­
ing. You can also use this at the beginning of a paper.

Although papers traditionally have the abstract, table of contents, and so forth at t.he front, it is
more convenient to format and print them last when using nroff. This is so that index entries
can be collected and then printed for the table of contents. At the end of the paper, give the
'.++ P' request, which begins the preliminary part of the paper. After using this request, the
'.+c' request will begin a preliminary section of the paper. Most notably, this prints the page
number restarted from one in lower-case Roman numbers. You may use '.+c' repeatedly to be­
gin different parts of the front material for example, the abstract, the table of contents, ack­
nowledgments, list of illustrations, and so on. You may also use the request'.++ B' to begin the
bibliographic section at the end of the paper. For example, the paper might appear as outlined
below. (In this figure, comments begin with the sequence'\"'.)

Version D of 15 May 1985 14-17

Formatting Documents with the -me Macros Editing and Text Processing

.th \" set for thesis mode 0

.fo ''DRAFT'' \" define footer for each page .

. tp \" begin title page

.(1 C \" center a large block
A BENCHMARK FOR THE NEW SYSTEM
.sp
by
.sp
J.P. Hacker
.)1
.+c INTRODUCTION
.(x t
Introduction
.)x
text of chapter one
.+c "NEXT CHAPTER"
.(x t
Next Chapter
.)x
text of chapter two
.+c CONCLUSIONS
.(x t
Conclusions
.)x
text of chapter three
.++ B
.+c BIBLIOGRAPHY
.(x t
Bibliography
.)x
text of bibliography

\" end centered part
\" begin chapter named 'INTRODUCTION'
\" make an entry into index 't'

\" end of index entry

\" begin another chapter
\" enter into index 't' again

\" begin bibliographic information
\" begin another 'chapter'

.++ P \" begin preliminary material

.+c "TABLE OF CONTENTS"

.xp t

.+c PREFACE
text of preface

\" print index 't' collected above
\" begin another preliminary section

Outline of a Sample Paper

1.j.5.f!.1. Standard Paper Reference

.tp

.th

14-18

Begin title page. Spacing at the top of the page can occur, and headers and footers
are suppressed. Also, the page number is not incremented for this page.

Set thesis mode. This defines the modes acceptable for a doctoral dissertation. It
double spaces, defines the header to be a single page number, and changes the mar­
gins to be 1.5 inch on the left and one inch on the top. Use '.++' and '.+c' with it.
This macro must be stated before initialization, that is, before the first call of a para,-

Version D of 15 May 1985

0

0

0

0

0

Editing and Text Processing Formatting Documents with the -me Macros

.++ m H

graph macro or '.H'.

This request defines the section of the paper which you are typing. The section type
is defined by ,n: 'C' means that you are entering the chapter portion of the paper, 'A'
means that you are entering the appendix portion of the paper, 'P' means that the
material following should be the preliminary portion (abstract, table of contents, etc.)
portion of the paper, 'AB' means that you are entering the abstract (numbered in­
dependently from 1 in Arabic numerals), and 'B' means that you are entering the bi­
bliographic portion at the end of the paper. You can also use the variants 'RC' and
'RA', which specify renumbering of pages from one at the beginning of each chapter
or appendix, respectively. The H parameter defines the new header. If there are any
spaces in it, the entire header must be quoted. If you want the header to have the
chapter number in it, use the string ' \\ \\n(ch '. For example, to number appen­
dixes 'A.I' etc., type .++ RA "' \ \ \ \n(ch.% '. Precede each section (chapter,
appendix, etc.) by the '.+c' request. When using troff, it is easier to put the front
material at the end of the paper, so that the table of contents can be collected and
generated; you can then physically move this material to the beginning of the paper .

. +c T Begin chapter with title T. The chapter number is maintained in \n(ch. This regis­
ter is incremented every time '.+c' is called with a parameter. The title and chapter
number are printed by '.$c'. The header is moved to the footer on the first page of
each chapter. If Tis omitted, '.$c' is not called; this is useful for doing your own 'ti­
tle page' at the beginning of papers without a title page proper. '.$c' calls '.$C' as a
hook so that chapter titles can be inserted into a table of contents automatically.
The footnote numbering is reset to one.

.$c T Print chapter number (from \n(ch) and T. You can redefine this macro to your lik­
ing. It is defined by default to be acceptable for a standard PhD thesis. This macro
calls '$C', which can be defined to make index entries, or whatever .

. $CK NT
This macro is called by '.$c'. It is normally undefined, but can be used to automati­
cally insert index entries, or whatever. K is a keyword, either 'Chapter' or 'Appen­
dix' (depending on the '.++' mode); N is the chapter or appendix number, and Tis
the chapter or appendix title .

. ac A N This macro (short for '.acm') sets up the nroff environment for photo-ready papers as
used by the Associattion for Computing Machines (ACM). This format is 25% larger,
and has no headers or footers. The author's name A is printed at the bottom of the
page, but off the part which will be printed in the conference proceedings, together
with the current page number and the total number of pages N. Additionally, this
macro loads the file /uar/lib/me/acm.me, which may later be augmented with other
macros for printing papers for ACM conferences. Note that this macro will not work
correctly in troff, since it sets the page length wider than the physical width of the
phototypesetter roll.

1,4.5.3. Two-Column Output - '.2c'

You can get two column output automatically by using the request '.2c'. This produces every­
thing after it in two-column form. The request '.be' will start a new column; it differs from '.bp'
in that '.bp' may leave a totally blank column when it starts a new page. To revert to single

Version D of 15 May 1985 14-19

Formatting Documents with the -me Macros Editing and Text Processing

column output, use '.le'.

11.5.9.1. Columned Output Reference

.2c +SN
Enter two-column mode. The column separation is set to +S [4n, 0.5i in ACM mode]
(saved in \n(Ss). The column width, calculated to fill the single column line length
with both columns, is stored in \n(Sl. The current column is in \n($c. You can test
register \n($m [I] to see if you are in single column or double column mode. Actual­
ly, the request enters N [2] columned output .

. le Revert to single-column mode .

. be Begin column. This is like '. bp' except that it begins a new column on a new page
only if necessary, rather than forcing a whole new page if there is another column left
on the current page.

14,5.4. Defining Macros - '.de'

A macro is a collection of requests and text which you may use by stating a simple request.
Macros begin with the line '.de xx' where xx is the name of the macro to be defined, and end
with the line consisting of two dots. After defining the macro, stating the line '.xx' is the same as
stating all the other lines. For example, to define a macro that spaces 3 lines and then centers
the next input line, type:

.de SS

.sp 3
,Ce

and use it by typing:

.ss
Title Line
{beginning of text)

Macro names may be one or two characters. In order to avoid conflicts with command names in
-me, always use upper-case letters as names. Avoid the names 'TS', 'TH', 'TE', 'EQ', and 'EN'.

14,5.5. Annotations Inside Keeps

Sometimes you may want to put a footnote or index entry inside a keep. For example, if you
want to maintain a 'list of figures', you will want to use something like:

14-20 Version D of 15 May 1985

0

0

0

0

Editing and Text Processing

.(z

.(c
Text of figure
.)c
.ce
Figure 5.
\!.(x r
\!Figure 5
\!.)x
.)z

Formatting Documents with the -me Macros

which will give you a figure with a label and an entry in the index'[', presumably a list of figures
index. Because the index entry is read and interpreted when the keep is read, and not when it is
printed, you have is to use the magic string ' \ !' at the beginning of all the lines dealing with the
index. Otherwise, the page number in the index is likely to be wrong. This defers index process­
ing until the figure is generated, and guarantees that the page number in the index is correct.
The same comments apply to blocks with '.(b' and '.)b'.

14.6. Using 'troff' for Phototypsetting

You can prepare documents for either displaying on a workstation or for phototypesetting using
the troff formatting program.

Q 14-6.1. Fonts

0

A font is a style of type. There are three fonts that are available simultaneously, Times Roman,
Times Italic, and Times Bold, plus the special math font for use with the eqn and neqn
mathematical equation processors. The normal font is Roman. Text which would be underlined
in nroff with the '.ul' request is set in italics in troff.

There are ways of switching between fonts. The requests '.r', '.i', and '.b' switch to Roman, ital­
ic, and bold fonts respectively. You can set a single word in some font by typing for example:

.i word

which will set word in italics but does not affect the surrounding text. In nroff, italic and bold
text is underlined.

Notice that if you are setting more than one word in whatever font, you must surround that
word with double quote marks ('" ') so tha.t it will appear to the nroff processor as a single word.
The quote marks will not appear in the formatted text. If you do want a quote mark to appear,
quote the entire string even if a single word, and use two quote marks where you want one to ap­
pear. For example, if you want to produce the text:

"Master Control"

in italics, you must type:

•
111111M t C t 1\1""" .1 as er on ro 1

The ' \:' produces a very narrow space so that the 'l' does not overlap the quote sign in troff.

Version D of 15 May 1985 14-21

Formatting Documents with the -me Macros Editing and Text Processing

There are also several paeudo-fonta available. For example, the input:

.u underlined

generates

underlined

and

. bx "words in a box"

roduces
words in a box

You can also get bold italics with

. bi "bold italics"

Notice that pseudo font requests set only the single parameter in the pseudo font; ordinary font
requests will begin setting all text in the special font if you do not provide a parameter. No
more than one word should appear with these three font requests in the middle of lines. This is
because of the way troff justifies text. For example, if you were to give the requests:

. bi "some bold italics"
and
. bx "words in a box"

in the middle of a line, troff would overwrite the first and the box lines on the second would be
poorly drawn.

0

The second parameter of all font requests is set in the original font. For example, the font re- 0
quest:

.b bold face

generates 'bold' in bold font, but sets 'face' in the font of the surrounding text, resulting in:

boldface

To set the two words 'bold' and 'face' both in bold face, type:

.b "bold face"

You can mix fonts in a word by using the special sequence '\c' at the end of a line to indicate
'continue text processing'; you can join input lines together without a space between them. For
example, the input:

.u under \c

.i italics

generates .u.n.d.i:ntalica , but if you type:

.u under

.i italics

the result is .llillW: ita/ica as two words.

14-22 Version D of 15 May 1985

0

0

0

0

Editing and Text Processing Formatting Documents with the -me Macros

14,6.2. Point Sizes - '.sz'

The phototypesetter supports different sizes of type, measured in points. The default point size
is 10 points for most text and eight points for footnotes. To change the point size, type:

,SZ +N

where N is the size wanted in points. The 'vertical spacing,' that is, the distance between the
bottom of most letters (the baaeline) and the adjacent line is set to be proportional to the type
size.

Note: Changing point sizes on the phototypesetter is a slow mechanical operation. Consider size
changes carefully.

1,l.6.2.1. Fonts and Sizes Reference

.sz +P

.r WX

.i wx

.b wx

The point size is set to P [lOp], and the line spacing is set proportionally. The ratio
of line spacing to point size is stored in \n(Sr. The ratio used internally by displays
and annotations is stored in \n(SR, although '.sz' does not use this.

Set Win roman font, appending X in the previous font. To append different font re­
quests, use 'X = \c'. If no parameters, change to roman font.

Set Win italics, appending X in the previous font. If no parameters, change to italic
font. Underlines in nroff.

Set Win bold font and append X in the previous font. If no parameters, switch to
bold font. Underlines in nroff.

.rb W X Set W in bold font and append X in the previous font. If no parameters, switch to
bold font. '.rb' differs from '.b' in that '.rb' does not underline in nroff .

. u W X Underline Wand append X. This is a true underlining, as opposed to the '.ul' re­
quest, which changes to 'underline font' (usually italics in troff). It won't work right
if Wis spread or broken, which includes being hyphenated, so in other words, it is
only safe in nofill mode .

. q W X Quote Wand append X. In nroff this just surrounds W with double quote marks ('
"" '), but in troff uses directed quotes .

. bi W X Set Win bold italics and append X. Actually, sets Win italic and overstrikes once.
Underlines in nroff. It won't work right if Wis spread or broken, which includes be­
ing hyphenated, so in other words, it is only safe in nofill mode .

. bx W X Sets Win a box, with X appended. Underlines in nroff. It won't work right if Wis
spread or broken, which includes being hyphenated, so in other words, it is only safe
in nofill mode.

14,6.3. Quotes - \ *(lq' and \ *(rq'

It looks better to use pairs of grave and acute accents to generate double quotes, rather than the
double quote character (' "') on a phototypesetter. For example, compare "quote" to "quote". In
order to make quotes compatible between the typesetter and the workstation or a terminal, use
the sequences ' \ *(lq' and ' \ *(rq' to stand for the left and right quote respectively. These both

Version D of 15 May 1985 14-23

Formatting Documents with the -me Macros Editing and Text Processing

appear as ' " ' on most terminals, but are typeset as ' " ' and ' " ' respectively. For example,
use:

\ *(lqSome things aren't true
even if they did happen.\ *(rq

to generate the result:

"Some things aren't true even if they did happen."

As a shorthand, the special font request:

.q "quoted text"

which generates "quoted text". Notice that you must surround the material to be quoted with
double quote marks if it is more than one word.

14. 7. Adjusting Macro Parameters

You may adjust a number of macro parameters. You may set fonts to a font number only. In
nroff font 8 is underlined, and is set in bold font in troff (although font 3, bold in troff, is not
underlined in nroff). Font O is no font change; the font of the surrounding text is used instead.
Notice that fonts O and 8 are p•e«do-fonta; that is, they are simulated by the macros. This
means that although it is legal to set a font register to zero or eight, it is not legal to use the es­
cape character form, such as:

\f8

0

All distances are in basic units, so it is nearly always necessary to use a scaling factor. For ex- 0
ample, the request to set the paragraph indent to eight one-en spaces is:

.nr pi 8n

and not

.nr pi 8

which would set the paragraph indent to eight basic units, or about 0.02 inch.

You may use registers and strings of the form '$ z' in expressions but you should not change
them. Macros of the form '$ z' perform some function as described and may be redefined to
change this function. This may be a sensitive operation; look at the body of the original macro
before changing it.

On daisy wheel type printers in twelve pitch, you can use the '-rxl' flag to make lines default to
one eighth inch, which is the normal spacing for a newline in twelve-pitch. This is normally too
small for easy readability, so the default is to space one sixth inch.

14-24 Version D of 15 May 1985

0

0

0

0

Editing and Text Processing Formatting Documents with the --me Macros

14.8. Roff Support

. ix+N

. bl N

. pa+N

. ro

. ar

. n I

. n2 N

.sk

Indent, no break. Equivalent to '' in N .

Leave N contiguous white spaces, on the next page i£ not enough room on this page .
Equivalent to a '.sp N inside a block.

Equivalent to '.bp' .

Set page number in Roman numerals. Equivalent to '.a£% i' .

Set page number in arabic. Equivalent to '.a£% I' .

Number lines in margin from one on each page .

Number lines from N, stop i£ N = 0 .

Leave the next output page blank, except for headers and footers. Use this to leave
space for a full-page diagram which is produced externally and pasted in later. To
get a partial-page paste-in display, say '.sv N, where N is the amount or space to
leave; this space will be generated immediately i£ there is room, and will otherwise be
generated at the top or the next page. However, be warned: i£ N is greater than the
amount of available space on an empty page, no space will ever be generated.

14.9. Preprocessor Support

.EQ m T Begin equation. The equation is centered if m is 'C' or omitted, indented \n(bi [4n]
if m is 'I', and left justified if mis 'L'. Tis a title printed on the right margin next
to the equation. See the Typeaetting Mathematica with 'eqn' chapter in this manual.

.ENC

.TS h

. TH

.TE

End equation. If c is 'C', the equation must be continued by immediately following
with another '.EQ', the text of which can be centered along with this one. Other­
wise, the equation is printed, always on one page, with \n(es [0.5v in troff, Iv in
nroff'i space above and below it.

Table start. Tables are single spaced and kept on one page if possible. If you have a
large table which will not fit on one page, use h = H and follow the header part to be
printed on every page of the table with a '.TH'. See the Formatting Table, with 'tbl'
chapter in this manual.

With '.TS H', ends the header port.ion of the table .

Table end. Note that this table does not float, in fact, it is not even guaranteed to
stay on one page if you use requests such as '.sp' intermixed with the text of the
table. If you want it to float (or if you use requests inside the table), surround the
entire table (including the '.TS' and '.TE' requests) with '.(z' and '.)z'.

Version D of 15 May 1985 14-25

Formatting Documents with the -me Macros Editing and Text Processing

14.10. Predefined Strings

**

\"#
\ "[

\ "]
*<

*>
\"(dw

*(mo

\ *(td

\ *(lq

*(rq

\"-

Footnote number, actually\ *[\n($f\ *]. This macro is incremented after each call
to '.)f'.

Delayed text number. Actually [\n(Sd].

Superscript. This string gives upward movement and a change to a smaller point size
if possible, otherwise it gives the left bracket character (' ['). Extra space is left
above the line to allow room for the superscript. For example, to produce a super­
script you can type x\ *[2\ *], which will produce x2.
Unsuperscript. Inverse of \ • [.

Subscript. Defaults to '<' if half-carriage motion not possible. Extra space is left
below the line to allow for the subscript.

Inverse to*<.

The day of the week, as a word.

The month, as a word.

Today's date, directly printable. The date is of the form September 16, 1983. Other
forms of the date can be used by using \n(dy (the day of the month; for example,
16), \ *(mo (as noted above) or \n(mo (the same, but as an ordinal number; for ex­
ample, September is 9), and \n(yr (the last two digits of the current year).

Left quote marks; double quote in nroff.

Right quote marks; double quote in nroff.

An em dash in troff; two hyphens in nroff.

14.11. Miscellaneous Requests

.re Reset tabs. Set to every 0.5i in troff and every 0.8i in nroff .

. ba +N Set the base indent to +N [OJ (saved in \n(Si). All paragraphs, sections, and displays
come out indented by this amount. Titles and footnotes are unaffected. The '.H' re­
quest performs a '.ba' request if \n(si [OJ is not zero, and sets the base indent to
\n(si*\n(SO .

. xi +N Set the line length to N [6.0iJ. This differs from '.II' because it only affects the
current environment .

. II +N Set line length in all environments to N [6.0iJ. Do not use this after output has be­
gun, and particularly not in two-columned output. The current line length is stored
in \n(Sl.

.hi

.lo

14-26

Draws a horizontal line the length of the page. This is useful inside floating keeps to
differentiate between the text and the figure.

This macro loads another set of macros in /uar/lib/me/local.me which is a set of lo­
cally defined macros. These macros should all be of the form'.* X', where Xis any
letter (upper or lower case) or digit.

Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with the -me Macros

14.12. Special Characters and Diacritical Marks - '.sc'

There are a number of special characters and diacritical marks, such as accents, available with
-me. To use these characters, you must call the macro '.sc' to define the characters before us­
ing them .

. sc Define special characters and diacritical marks. You must state this macro before in­
itialization.

The special characters available are listed below.

Table 14-1: Special Characters and Diacritical Marks

Name Usa~e Examole
Acute accent *' a\•, a
Grave accent \ *' e\ *' e
Umlaut \ *: u\ *: :u
Tilde \ .- n\ •- -n
Caret \ .. e\ •·

,
e

Cedilla \ •, c\ *, ,c
Czech *v e\ *v e
Circle *o A*o A
There exists \ *(qe
For all \ *(aa

Version D of 15 May 1985 14-27

Formatting Documents with the -me Macros Editing and Text Processing

14.13. '-me' Request Summary

Request

Request

.(C

.(d

.(f

.(!

.(q

.(x z

.(z

.)c

.)d

.)f

.)l

.)q

.)x

.)z

.++mH

.+c T

. le

. 2c

.EN

.EQ z y

. TE

. TH

.TS z

14-28

Initial Value

1
1

Cause
Break

Table 14-2: -me Request Summary

Cause Break
If no
Argument

yes
no
no
yes
yes
no
no
yes
yes
yes
yes
yes
yes
yes
no

yes

yes
yes
yes

yes

yes
yes
yes

Explanation

Explanation

Begin centered block.
Begin delayed text.
Begin footnote.
Begin list.
Begin major quote.
Begin indexed item in index z.
Begin floating keep.
End centered block.
End delayed text.
End footnote.
End list.
End major quote.
End index item.
End floating keep.
Define paper section. m defines the
part of the paper and can be C
(chapter), A (appendix), P (prelim­
inary, for example, abstract, table of
contents, etc.), B (bibliography), RC
(chapters renumbered from page one
each chapter), or RA (appendix
renumbered from page one).
Begin chapter (or appendix, etc., as
set by'.++'). Tis the chapter title.
One column format on a new page .
Two column format .
Space after equation produced by
eqn or neqn.
Precede equation; break out and add
space. Equation number is y. The
optional argument z may be I to in­
dent equation (default), L to left­
adjust the equation, or C to center
the equation.
End table .
End heading section of table .
Begin table; if z is H, table has re­
peated heading.

Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing

.ac AN

.b X

. ba +n

. be

. bi X

. bx X

.er 'z'y'z'

.eh 'x'y'z'

. fo 'z'y'z'

. he 'x'y' z'

. hi

.hx

.1 X

.lp X !/

. Ip

.lo

.np

. of 'z'y'z'

. oh 'z'y'z'

. pd

.pp

.r

. re
,SC

. sh n x

.sk

.sz + n

. th

. tp

.u z

. uh

no

0

no
no
no
''"
""
''" ,,,,

no

no

yes

1 ,,,,

'"'

no

yes

no

lOp
no

no

Version D of 15 May 1985

no

yes

yes

yes
no
no
no
no
no
no
yes
no

no

yes

yes
no

yes
no
no
yes
yes

no
no
no

yes

no

no
no

yes
no

yes

Formatting Documents with the -me Macros

Set up for ACM style output. A is
the Author's name(s), N is the total
number of pages. Must be given be­
fore the first initialization.
Print x in boldface; if no argument
switch to boldface.
Augments the base indent by n .
This indent is used to set the indent
on regular text (like paragraphs).
Begin new column .
Print z in bold italics (nofill only) .
Print x in a box (nofill only) .
Set even footer to x y z.
Set even header to x y z.
Set footer to x y z .
Set header to x y z .
Draw a horizontal line .
Suppress headers and footers on next
page.
Italicize x; if x is missing, italic text
follows.
Start indented paragraph, which
hanging tag x. Indentation 1s y ens
(default 5).
Start left-block paragraph .
Read in a file of local macros of the
form '.*x'. Must be given before ini­
tialization.
Start numbered paragraph.
Set odd footer to x y z .
Set odd header to x y z .
Print delayed text .
Begin paragraph. First line indent­
ed.
Roman text follows.
Reset tabs to default values .
Read in a file of special characters
and diacritical marks. Must be given
before initialization .
Section head follows, font automati­
cally bold. n is level of section, x is
title of section.
Leave the next page blank. Only
one page is remembered ahead.
Increase the point size by n points.
Produce the paper in thesis format .
Must be given before initialization.
Begin title page .
Underline argument (even m troff)
(nofill only).
Like '.sh' but unnumbered .

14-29

Formatting Documents with the -me Macros Editing and Text Processing

.xp z no Print index z.

0

0

0

14-30 Version Dor 15 May 1985

0

0

0

Chapter 15

Formatting Documents with nroff and troff

15.1. Introduction to nroff and troff
•,

nroff and troff are text processing utilities for the Sun system. nroff formats text for
typewriter-like terminals (such as Diablo printers). troff is specifically oriented to formatting
text for a phototypesetter. nroff and troff accept lines of text (to be printed on the final output
device) interspersed with lines of format control information (to specify how the text is to be laid
out on the page) and format the text into a printable, paginated document having a user­
designed style. nroff and troff offer unusual freedom in document styling, including:

•
•
•
•
•
•
•

detailed control over page layout;

arbitrary style headers and footers;

arbitrary style footnotes;

multiple automatic sequence numbering for paragraphs, sections, etc;

multiple column output;

dynamic font and point-size control;

arbitrary horizontal and vertical local motions at any point;

• a family of a!1tomatic overstriking, bracket construction, and line drawing functions.

nroff and troff are highly compatible with each other and it is almost always possible to prepare
input acceptable to both. The formatters provide requests (conditional input) so that you can
embed input expressly destined for either nroff or troff. nroff can prepare output directly for a
variety of terminal types and is capable of utilizing the full resolution of each terminal.

This paper! provides a user's guide and reference section for nroff and troff. Note that
throughout the text we refer to nroff and troff more-or-less interchangeably - places where the
narrative refers specifically to one or the other processor are noted.

You should be aware that using nroff or troff 'in the raw' requires a detailed knowledge of the
way that these programs work and a certain knowledge of typographical terms. nroff and troff
don't do a great deal of work for you - for example, you have to explicitly tell them how to do
paragraph indents and page numbers and things like that. If what you are trying to do is just
get a job done (like writing a memo), you shouldn't be reading this chapter at all, but instead
should be reading the chapter in this manual entitled Formatting Documenta with the -ms
Macro Package. If, on the other hand, you would like to learn the fine details of a programming

1 The material in this chapter evolved trom A troff Tutorial, by Brian Kernighan or Bell La.bora.tories,
and from nroff/troff User 1

6 Manual, originally written by Joseph Ossanna ot Bell Laboratories.

Version D of 15 May 1985 15-1

Formatting Documents with nroff and troff Editing and Text Processing

language designed to control a typesetter, this is the place to start reading. In many ways,
nroff's and troff's control language resembles an assembly language for a computer - a
remarkably powerful and flexible one - but nonetheless such that many operations must be
specified at a level of detail and in a form that is too hard for most people to use effectively.
The single most important rule of using troff is not to use it directly, but through some
intermediary such as one of the macro packages described previously, or via one of the various
preprocessors. In the few cases where existing packages don't do the whole job, the solution is
not to write an entirely new set of troff instructions from scratch, but to make small changes to
adapt packages that already exist. In accordance with this philosophy of letting someone else do
the work, the part of troff described here is only a small part of the whole, although it tries to
concentrate on the more useful parts. In any case, there is no attempt to be complete. Rather,
the emphasis is on showing how to do simple things, and how to make incremental changes to
what already exists.

15.1.1. Text Formatting Versus Word Processing

Many newcomers to the UNIXt system are surprised to find that there are no word processors
available. This is largely historical - the types of documents (such as the Sun manuals) that
people do with the UNIX system's text formatting packages just can't be done with existing word
processors. Before you get into the details of nroff and troff, here is a short discussion on the
differences between text formatters and word processors, and their relative strengths and
weaknesses.

A word processor is a program that to some extent simulates a typewriter - text is edited and
formatted by one program. You type text at a computer terminal, and the word processor for­
mats the text on the screen for you as you go. You usually get special effects like underlining
and boldfacing by typing control indicators, and the word processor shows this by inverting the
screen or something like that. The document is displayed on the terminal screen in the same
format as it will appear on the printing device. The effects of this are often termed 'What You
See Is What You Get' (usually called WYSIWIG and pronounced 'wizzi-wig'). Unfortunately, as
has been pointed out, the problem with many WYSIWIG editors is that 'What You See Is All You
Get'. In general, word processors cannot handle large documents. In principle it is possible to
write large manuals and even whole books with word processors, but the process gets painful for
large manuscripts. Sometimes a change, such as deleting a sentence or inserting a new one, in
the early part of a document can require that the whole document has to be reformatted. A
change in the overall structure of the formatting requirements (for example, a changed indenta­
tion depth) will also mean that the whole document has to be reformatted. Word processors, in
general, don't cope with automatic chapter and section numbering (of the kind you see in the
Sun manuals), neither can they generate tables of contents and indices automatically. These
tasks have to be done manually, and are a potential source of error. Word processors are
eminently suitable for memos and letters, and can handle short documents. But large docu­
ments, or formatting documents for sophisticated devices like modern phototypesetters, requires
a text formatter.

A tezt formatter such as nroff or troff does not in general do any editing functions - its only
job in life is reading text from a file and formatting that text ready for printing on some print­
ing device. Entering the text into the file, and formatting the text from that file ready for print­
ing are two separate and independent operations. You prepare your file full of text using a text

1 t UNIX is a trademark of Bell Laboratories.

15-2 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

editor such as vi (described elsewhere in this manual). The file contains text to be formatted,
interspersed with formatting instructions which control the layout of the final text. The text for­
matter reads this file of text, and obeys the formatting instructions contained in the file. The
results of the formatting process is a finished document. The disadvantage of a text formatter is
that you have to run them to find out what the final result will look like. Many people find the
idea of embedded 'formatting commands' foreign, as they do the idea of two separate processes
(an edit followed by a run of the formatter) to get the final document.

Notwithstanding all of the above, the UNIX system has had text formatting utilities since the
very beginning, and the UNIX system has many documents written all using the capabilities of
nroff or troff.

15.1. 2. The Evolution of nroff and troff

One of the very first text formatting programs was called runoff and was a utility for the Com­
patible Time Sharing System (CTSS) at MIT in the early 1960's. Runoff was named for the way
that people would say 'I'll just run off a document'.

When the UNIX system came to have a text formatter, the text formatter was called roff,
because UNIX people like to call things by short and cryptic names. Roff was a simple program
that was easy to work with as long as you were writing very small and simple documents for a
line-printer. In some ways, roff is easier to use than nroff or troff because roff had built in
facilities such as being able to specify running headers and footers for a document with simple
commands.

nroff stands for 'Newer roff'. troff is an adaptation of nroff to drive a phototypsetting machine.
Although troff is supposed to mean 'typesetter roff', some people have formed the theory that
troff actually stands for 'Times Romanoff' because of troff's penchant for the Times Roman
typeface.

nroff and troff are much more flexible (and much more complicated) programs - it's safe to say
that they don't do a lot for you - for instance, you have to manage your own pagination,
headers, and footers. The way that nroff and troff ease the burden is via facilities to define
your own text formatting commands (macros), define strings, and store and manipulate numbers.
Without these facilities, you would go mad (many people have - the author of this document
among them). In addition, there are supporting packages for doing special effects such as
mathematics and tabular layouts.

15.1.3. Preprocessors and Postprocessors

Because troff or nroff are so hard to use 'in the raw', various tools have evolved to convert from
human-oriented ways of specifying things into codes that troff or nroff can understand. Tools
that do translations for troff or nroff before the fact are called preproceaaora. There are also
tools that hack over the output of nroff for different devices or for other requirements. Tools
that do conversions of troff or nroff output after the fact are called poatproceuora.

Two of the major preprocessors available for troff or nroff are called tbl (for assisting with lay­
ing out tables), and eqn (a language for specifying mathematical constructs). In traditional
typesetting, tables and equations are two forms of copy layout that cause a lot of trouble and
cost a bunch of money to do. Tab/ea where stuff must be laid out in columns, maybe with boxes
and lines around them, seem to give typographers fits. The UNIX system supplies a preprocessor
called tb/ where you describe what a table should look like in general terms, and then tbl and

Version D of 15 May 1985 15-3

Formatting Documents with nroff and troff Editing and Text Processing

nroff or troff together work out how to lay out the tabular material on the page. Mathematics
is known in the typesetting business as 'penalty copy' because it is hard to do in the traditional o
way and so you must pay a penalty for the fact that the typesetting business hasn't got its act
together. The UNIX system supplies a preprocessor called neqn (for use with nroff) and eqn
(for use with troff) with which you can describe equations in a kind of English-like language, and
then neqn and nroff or eqn and troff together work out how to lay out the equations on the
page.

So much for the preprocessors. There are also postprocessors to hack over the output of nroff
or troff when the printing device can't handle what the text formatting program is trying to do.
When you use nroff to format tables with vertical lines, or to generate multiple-column output,
nroff generates what are called 'reverse paper motions'. Not all printers can feed the paper in
the reverse direction, and so there is a postprocessor called col which works out how to handle
the reverse paper movements with only forward motions.

15.1.4, troff, Typesetters, and Special-Purpose Formatters

Please be sure to read this bit: this section covers some aspects of troff that are gen­
erally glossed over in the traditional UNIX manuals. troff was originally designed as a text for­
matter targeted to one specific machine - that machine was called a Graphics Systems Incor­
porated (GS!) C/A/T (Computer Assisted Typesetter). The C/A/T is a strange and wonderful
device with strips of film mounted on a revolving drum, lenses, and light pipes. The C / A/T
flashes character images on film which you then develop to produce page proofs for your book or
manual or whatever. The C/ A/T is almost extinct now except for some odd niches like Berke­
ley.

troff was written very much with the C/A/T in mind. The internal units of measurement that
troff uses are C / A/T units, troff only understands four fonts at a time, and so on. Throughout
this chapter, much of the terminology is based on troff's intimate relationship with the C/A/T.

15.1.5. Using the nroff and troff Text Formatters

To use nroff or troff you first prepare your file of text with nroff or troff requests embedded in
the file to control the formatting actions. The remainder of this document contains a discussion
on the formatting commands. Then you run the formatter at the UNIX command level like this:

hostname% nroff options files

or, of course:

hostname% troff options files

where options represents any of a number of option arguments and files represents the list of
files containing the document to be formatted.

An argument consisting of a single minus (-) is taken to be a file name corresponding to the
standard input. If no file names are given, input is taken from the standard input.

Options may appear in any order so long as they appear before the files. There are three parts
to the list of options below: the first list of options are common to both nroff and troff; the
second list of options are only applicable to nroff; the third list of options are only applicable to

0

troff. 0

15-4 Version D of 15 May 1985

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

Each option is typed as a separate argument - for example,

hostname% nroff -04,8-10 -T300S -msun filel file!!

formats pages 4, 8, 9, and 10 of a document contained in the files named file1 and file!!, specifies
the output terminal as a DAS1-300S, and invokes the sun macro package.

15.1.5.1. Options Common to nroff and troff

-olist
Print only pages whose page numbers appear in list, which consists of comma-separated
numbers and number ranges. A number range has the form N-M and means pages N
through M; a initial -N means from the beginning to page N; and a final N- means from N
to the end.

-nN
Number first generated page N.

-sN
Stop every N pages. nroff will halt prior to every N pages (default N=l) to allow paper
loading or changing, and will resume upon receipt of a newline.

-mname
Prepends the macro file /usr/lib/tmae/tmae.name to the input files.

-raN
Register a (one-character) is set to N.

-i Read standard input after the input files are exhausted.

-q Invoke the simultaneous input-output mode of the rd request.

-z Suppress formatted output. The only output you get are messages from .tm (terminal mes-
sage) requests, and from diagnostics.

15.1.5.2. Options Applicable Only to nroff

-h Output tabs used during horizontal spacing to speed output as well as reduce byte count.
Device tab settings assumed to be every 8 nominal character widths. Default settings of
input (logical) tabs is also initialized to every 8 nominal character widths.

-Tname
Specifies the name of the output terminal type. Currently defined names are 37 for the
(default) Model 37 Teletype®, tn300 for the GE TermiNet 300 (or any terminal without
half-line capabilities), 300S for the DAS1-300S, 300 for the DASI-300, and 450 for the DASl-
450 (Diablo Hyterm).

-e Produce equally-spaced words in adjusted lines, using full terminal resolution.

Version D of 15 May 1985 15-5

Formatting Documents with nroff and troff Editing and Text Processing

15.1.5.S. Option• Applicable Only to troff

-t Direct output to the standard output instead of the phototypesetter.

-a Send a printable (ASCII) approximation of the results to the standard output.

-pN
Print all characters in point size N while retaining all prescribed spacings and motions, to
reduce phototypesetter elasped time.

15.1.6. General Explanation of troff and nroff Source Files

This section of the nroff/troff manual covers generic topics related to the format of the input
file, how requests are formed, and how numeric parameters to requests are stated.

To use troff you have to prepare not only the actual text you want printed, but some informa­
tion that tells how you want it printed. For troff the text and the formatting information are
often intertwined. Most commands to troff are placed on a line separate from the text itself,
beginning with a period (one command per line). For example:

Here is some text in the regular size characters, but we want
to make some of the text in a
.ps 14
larger size to emphasize something

changes the 'point size', that is, the size of the letters being printed, to '14 point' (one point is
1/72 inch) like this:

Here is some text in the regular size characters, but we want to make
some of the text in a larger size to emphasize something

Occasionally, though, something special occurs in the middle of a line - to produce Area= irr 2

you have to type

Area= \(*p\fir\fR\l\s8\u2\d\sO

(which we will explain shortly). The backslash character\ introduces troff commands and spe­
cial characters within a line of text.

To state the above more formally, an input file to be processed by troff or nroff consists of text
line,, which are destined to be printed, interspersed with control linea, which set parameters or
otherwise control subsequent processing. A control line is usually called a reque.t.

A request begins with a control character - normally • (period) or ' (apostrophe or acute
accent) - followed by a one or two character name. A request is either:

a baaic requeat
(also called a command) which is one of the many predefined things that nroff or troff can
do. For example, .ll 6.5i is a basic request to set the line-length to 6.5 inches, and .in 5 is a
basic request to indent the left margin by 5 en-spaces.

0

0

a macro reference
specifies substitution of a user-defined macro in place of the request. A macro is a 0
predefined collection of basic requests and (possibly) other macros. Macros are defined in

15-6 Version D of 15 May 1985

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

terms of basic requests. For example, in the -ms macro package discussed elsewhere in this
manual, .LP is a macro to start a new left-blocked paragraph.

The • (apostrophe or acute accent) control character suppresses the break function- the forced
output of a partially filled line- caused by certain requests.

The control character may be separated from the request or macro name by white space (spaces
and/or tabs) for esthetic reasons. Names must be followed by either space or newline. nroff or
troff IGNORES control lines whose names are unrecognized.

Various special functions may be introduced anywhere in the input by means of an eacape char­
acter, normally\. For example, the function \nR interpolates the contents of the number regia­
ter whose name is R in place of the function. Here R is either a single character name in which
case the escape sequence has the form \nz, or else R is a two-character name, in which case the
escape sequence must have the form \n(zz. In general, there are many escape sequences whose
one-character form is \fz and whose two-character form is \f(zz, where f is the function and z or
zz is the name.

15.1.6.1. Backapacing

Unless in copy mode, the ASCII backspace character is replaced by a backward horizontal motion
having the width of the space character. Underlining as a form of line-drawing is discussed in
the section on Arbitrary Motion& and Drawing Linea and Character&. A generalized overstriking
function is also described in the above- mentioned section.

15.1.6.2. Comment&

Comments may be placed at the end of any line by prefacing them with \ ". A comment line
cannot be continued by placing a \ at the end of the line - see the discussion on continuation
lines below.

A line beginning with \" appears as a blank line and behaves like a .sp 1 request:

Here is a line of text
\" and here is a comment on a line by itself
here is another line of text

when we format the above lines we get this:

Here is a line of text

and here is another line of text

If you want a comment on a line by itself but you don't want it to appear as a blank line, type it

\ .. as • :

Here is a line of text
.\" and here is a comment on a line by itself
and here is another line of text

when we format the above lines we get this:

Version D of 15 May 1985 15-7

Formatting Documents with nroff and troff Editing and Text Processing

Here is a line of text
and here is another line of text

15.1.6.3. Continuation Linea

An uncomfortably long input line that must stay one line (for example, a string definition, or
unfilled text) can be split into many physical lines by ending all but the last one with the escape
\. The sequence \(newline) is alway• ignored - except in a comment - see below. This pro­
vides a continuation line facility. The \ at the end of the line is called a concealed newline in
the jargon.

15.1.6 . .j. Transparent Throughput

An input line beginning with a\! is read in copy mode and tranaparently output (without the ini­
tial \!); the text processor is otherwise unaware of the line's presence. This mechanism may be
used to pass control information to a post-processor or to embed control lines in a macro created
by a diversion.

15.1.6.5. Formatter and Device Reaolution

troff internally uses 432 units/inch, corresponding to the phototypesetter which has a horizontal

0

resolution of 1/432 inch and a vertical resolution of 1/144 inch. nroff internally uses 240 0
units/inch, corresponding to the least common multiple of the horizontal and vertical resolutions •
of various typewriter-like output devices. troff rounds horizontal/vertical numerical parameter
input to the actual horizontal/vertical resolution of the Graphic Systems typesetter. nroff simi-
larly rounds numerical input to the actual resolution of the output device indicated by the -T
option (default Model 37 Teletype).

15.1.6.6. Specifying Numerical Parameter,

Many requests can have numerical arguments. Both nroff and troff accept numerical input in a
variety of units. The general form of such input is

.xx nnnnunits

where .xx is the request, nnnn is the number, and units is the acale indicator.

Scale indicators are shown in the following table, where Sis the current type size in points, Vis
the current vertical line spacing in basic units, and C is a nominal character width in basic units.

15-8 Version D of 15 May 1985

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

Table 15-1: Scale Indicators for Numerical Input

Scale
Meaning

Number of baaic unita
Indicator troff nroff

i Inch 432 240
C Centimeter 432X50/127 240X50/127
p Pica= 1/6 inch 72 240/6
m Em = S points 6XS C
n En= Em/2 3XS C, aame aa Em
p Point = 1/72 inch 6 240/72
u Basic unit 1 1
V Vertical line space V V

none Default, see below

In nroff, both the em and the en are taken to be equal to the C, which is output-device depen­
dent; common values are 1/10 and 1/12 inch. Actual character widths in nroff need not be all
the same and constructed characters such as -> (-+) are often extra wide. The default scaling
is ems for the horizontally-oriented requests and functions II, in, ti, ta, It, po, me, \h, and \I;
Vs for the vertically-oriented requests and functions pl, wh, ch, dt, sp, sv, ne, rt, \ v, \x, and
\L; p for the vs request; and u for the requests nr, ir, and ie. All other requests ignore any
scale indicators. When a number register containing an already appropriately scaled number is
interpolated to provide numerical input, the unit scale indicator u may need to be appended to
prevent an additional inappropriate default scaling. The number, N, may be specified in
decimal-fraction form but the parameter finally stored is rounded to an integer number of basic
units.

The ab,olute poaition indicator : may be prepended to a number N to generate the distance to
the vertical or horizontal place N. For vertically-oriented requests and functions, : N becomes
the distance in basic units from the current vertical place on the page or in a diveraion (see the
section on diversions) to the vertical place N. For all other requests and functions, : N becomes
the distance from the current horizontal place on the input line to the horizontal place N. For
example,

.sp 13.2c

will space in the required direction to 3.2 centimeters from the top of the page.

15.1.6. 7. Numerical Expreaaiona

Wherever numerical input is expected, you can type an arithmetic expression. An expression
involves parentheses and the arithmetic operators and logical operators shown in the table below

Version D of 15 May 1985 15-9

Formatting Documents with nroff and troff Editing and Text Processing

Table 15-2: Arithmetic Operators and Logical Operators for Expressions

Arithmetic Operator Meaning

+ Addition
- Subtraction

I Division

• Multiplication
% Modulo

Logical Operator Meaning

< Less than
> Greater than

<= Less than or equal to
>= Greater than or equal to

=or== Equal to
& and
: or

Except where controlled by parentheses, evaluation of expressions is left-to-right - there is no
operator precedence.

0

In certain requests, an initial + or - is stripped and interpreted as an increment or decrement 0
indicator respectively. In the presence of default scaling, the desired scale indicator must be ·
attached to every number in an expression for which the desired and default scaling differ. For
example, if the number register x contains 2 and the current point size is 10, then

.11 (4.25i+\nxP+3)/2u

will set the line length to 1/2 the sum of 4.25 inches + 2 picas + 30 points.

15.1. 7. Notation Used in this Manual

Numerical parameters are indicated in this manual in two ways. ±N means that the argument
may take the forms N, + N, or -N and that the corresponding effect is to set the affected param­
eter to N, to increment it by N, or to decrement it by N respectively. Plain N means that an
initial algebraic sign is not an increment indicator, but merely the sign of N. Generally, unrea­
sonable numerical input is either ignored or truncated to a reasonable value. For example, most
requests expect to set parameters to ilon-negative values; exceptions are sp, wh, ch, nr, and it.
The requests ps, rt, po, vs, Is, II, in, and It restore the previoua parameter value in the absence
of an argument.

Single character arguments are indicated by single lower case letters and one/two character
arguments are indicated by a pair of lower case letters. Character string arguments are indi­
cated by multi-character mnemonics.

15-10 Version D of 15 May 1985

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

15.1.8. Output and Error Messages

The output from tm, pm, and the prompt from rd, as well as various error messages are written
onto UNIX's standard error meuage output. The latter is different from the atandard output,
where nroff formatted output goes. By default, both are written onto the user's terminal, but
they can be independently redirected - in the case of troff, the standard output should always
be redirected unless the -a option is in effect, because troff's output is a strange binary format
destined to drive a typesetter.

Various error conditions may occur during the operation of nroff and troff. Certain less serious
errors having only local impact do not stop processing. Two examples are word overflow, caused
by a word that is too large to fit into the word buffer (in fill mode), and line overflow, caused by
an output line that grew too large to fit in the line buffer; in both cases, a message is printed, the
offending excess is discarded, and the affected word or line is marked at the point of truncation
with a • in nroff and a u in troff. The philosophy is to continue processing, if possible, on the
grounds that output useful for debugging may be produced. If a serious error occurs, processing
terminates, and an appropriate message is printed. Examples are the inability to create, read, or
write files, and the exceeding of certain internal limits that make future output unlikely to be
useful.

Version D of 15 May 1985 15-11

Formatting Documents with nroff and troff Editing and Text Processing

15.2. Filling and Adjusting Lines of Text

Perhaps the most important reason for using troff or nroff is to use its filling and adjusting capa­
bilities. Here is a summary of what filling and adjusting mean:

Filling means that troff or nroff collects word, from your input text lines and assembles the
collected words into an output text line until some word doesn't fit. An attempt is
then made to hyphenate the word in an effort to assemble a part of it into the output
line. Filling continues until something happens to break the filling process, such as a
blank line in the text, or one of the troff or nroff requests that break the line -
things that break the filling process are discussed later on.

Adjusting means that once the line has been filled as full as possible, spaces between words on
the output line are then increased to spread out the line to the current line-length
minus any current indent. The paragraphs you have just been reading are both filled
and adjusted. Justification implies filling - it makes no sense to adjust lines without
also filling them.

In the absence of any other information, troff's or nroff's standard behavior is to fill lines and
adjust for straight left and right margins, so it is quite possible to create a neatly formatted
document which only contains lines of text and no formatting requests. Given this as a starting
point, the simplest document of all contains nothing but blocks of text separated by blank lines
- troff or nroff will fill and justify those blocks of text into paragraphs for you. To get further
control over the layout of text, you have to use reque.ta and functiona embedded in the text,
and that is the subject of this entire paper on using troff.

0

A word is any string of characters delimited by the apace character or the beginning or end of 0
the input line. Any adjacent pair of words that must be kept together (neither split across out-
put lines nor spread apart in the adjustment process) can be tied together by separating them
with the unpaddable •pace character '\ ' (backslash-space) - also called a 'hard blank' in other
systems. The adjusted word spacings are uniform in troff and the minimum interword spacing
can be controlled with the .ss (space size) request. In nroff, interword spaces are normally
nonuniform because of quantization to character-size spaces, but the -e command line option
requests uniform spacing to the full resolution of the output device. Multiple inter-word space
characters found in the input are retained, except for trailing spaces.

Filling and adjusting and hyphenation can all be prevented or controlled by requests that are dis­
cussed later in this part of the manual.

An input text line ending with ., ?, or ! is taken to be the end of a aentence, and an additional
space character is automatically provided during filling.

A text input line that happens to begin with a control character can be made to not look like a
control line by prefacing it with the non-printing, zero-width filler character \&. Still another
way is to specify output translation of some convenient character into the control character
using the .tr (translate) request - see the relevant section.

The text length on the last line output is available in the .n number register, and text base-line
position on the page for this line is in the nl number register. The text base-line high-water
mark (lowest place) on the current page is in the .h number register.

15-12 Version D of 15 May 1985

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

15.2.1. Controlling Line Breaks

When filling is turned on, words of text are taken from input lines and placed on output lines to
make the output lines as long as they can be without overflowing the line length, until something
happens to break the filling process. When a break occurs, the current output line is printed
just as it is, and a new output line is started for the following input text. There are various
things that cause a break to occur:

Construct

Blank /ine{s}

Space•

A .br request

Table 15-3: Constructs that Break the Filling Process

Explanation

If your input text contains any completely blank lines, troff or nroff as­
sumes you mean them. So it prints the current output line, then your
blank lines, then starts the following text on a new line.

at the beginning of a line are significant. If there are spaces at the
start of a line, troff or nroff assumes you know what you are doing
and that you really want spaces there. Obviously, to achieve this, the
current output line must be printed and a new line begun. Avoid us­
ing tabs for this purpose, since they do not cause a break.

A .br request (break) request can be used to make sure that the fol­
lowing text is started on a new line.

troff or nroff requests Some troff or nroff requests cause a break in the filling process. How­
ever, there is an alternate format of these requests which does not
cause a break. That is the format where the initial period character
(.) in the request is replaced by the apostrophe or single quote charac­
ter ('). The list of requests that cause a break appears in the table
below this one.

A \p Function

End of file

When filling is in effect, the in-line \p function may be embedded or
attached to a word to cause a break at the end of the word and have
the resulting output line spread out to fill the current line length.

Filling stops when the end of the input file is reached.

Breaks caused by blank lines or spaces at the beginning of a line enable you to take advantage of
the filling and justification features provided by troff or nroff without having to use any troff or
nroff requests in your text.

As mentioned in the table above in the item entitled troff or nroff requests, there are some
requests that cause a break when they are encountered. The list of requests that break lines is
short and natural:

Version D of 15 May 1985 15-13

Formatting Documents with nroff and troff Editing and Text Processing

Table 15-4: Formatter Requests that Cause a Line Break

Command Explanation

.bp Begin a new page

.br Break the current output line

.ce Center line(s)

.fi Start filling text lines

.nr Stop filling text lines

.sp Space vertically

.in Indent the left margin

.ti Temporary indent the left margin for the next line only

No other requests break lines, regardless of whether you use a • or a' as the control character.
If you really do need a break, add a .br (break) request at the appropriate place, as described
below.

15.2.1.1. .br - Break Line•

The .br (break) request breaks the current output line and stops filling that line. Any new out­
put will start on a new line.

Summary of the .br Request
Item Deacription

Form of Request:

Initial Value:

If No Argument:

Explanation:

.br

Not Applicable

This request doesn't require an argument.

Stop filling the line currently being collected and output the line
without adjustment. Text lines beginning with space characters and
empty text lines (blank lines) also cause a break.

15.2.2. Continuation Lines and Interrupted Text

The copying of an input line in nofill (non-fill) mode (see below) can be interrupted by terminat­
ing the partial line with a \c. The next encountered input text line will be considered to be a
continuation of the same line of input text. Similarly, a word within filled text may be inter­
rupted by terminating the word (and line) with \c; the next encountered text will be taken as a
continuation of the interrupted word. If the intervening control lines cause a break, any partial
line will be forced out along with any partial word.

The next section talks about the different ways of getting text adjusted.

15-14 Version D of 15 May 1985

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

15.2.3. .ad - Specify Adjusting Styles

To change the style of adjusting text, you use the .ad (adjust) request to specify one of the four
different methods for adjusting text:

Adju.ting
Indicator

.ad I

.ad r

.ad C

.ad b

.ad n

. ad

Table 15-5: Adjusting Styles for Filled Text

Adjuating
Style

Left

Right
Center

Both
Normal
Reset

Deacription

Produces flush-left, ragged-right output, which 1s
the same as filling with no adjustment.
Produces flush-right, ragged-left output.
Centers each output line, giving both left and right
ragged margins.

Justifies both left and right margins.

Resumes adjusting lines in the last mode requested .

It makes no sense to try to adjust lines when they are not being filled, so if filling is off when a
.ad request is seen, the adjusting is deferred until filling is turned on again.

Summary of the .ad Request
Item Deacription

Form of Requeat:

Initial Value:

If No Argument:

.ad C

.ad b - that is, adjust both margins.

Adjust in the last specified adjusting mode.

Explanation: Adjust lines - if fill mode is off, adjustment is be deferred until fill
mode is back on. If the type indicator c is present, the adjustment
type is changed as shown in the following table.

Notea: E

The current adjustment indicator c can be obtained from the .j number register.

Version D of 15 May 1985 15-15

Formatting Documents with nroff and troff Editing and Text Processing

The figure below illustrates the different appearances of filled and justified text.

This paragraph is filled and adjuated on both margins. This is the easiest formatting
style to achieve using nroff or troff because you don't have to place any requests in
your text - you just type the blocks of text into the input file and the formatter
does something reasonably sane with them. Although we specified nothing to get the
paragraph filled and adjusted, we could have used an .ad b (adjust both) request, or
an .ad n (adjust normal) request - they both mean the same thing, namely, fill
lines and adjust both margins.

This paragraph is an example of 'flush left, ragged right', which is what you get when
you have filling without adjusting - words are placed on the line to fill lines out as
far as possible, but no interword spaces are inserted so the right-hand margin looks
ragged. This paragraph was formatted using an .ad I (adjust left) request, which
has the same effect as using a .na (no adjust) request described later.

Then this paragraph is an illustration of text formatted as 'flush right, ragged left' -
words are placed on the line to fill lines out as far as possible, then the lines are

made to line up on the right-hand margin, no interword spaces are inserted, and so
the left-hand margin looks ragged. This paragraph was formatted using an .ad r

(adjust right) request.

Finally, this paragraph is an instance of a formatting style called 'centered' adjust­
ing, also known as 'ragged lelt, ragged right' - words are placed on the line to fill
lines out as far as possible, then the lines are centered so that both margins look
ragged. This paragraph was formatted using an .ad c (adjust center) request.

Figure 15-1: Filling and Adjusting Styles

15.2 .. ,S. .na - No Adjusting

If you don't specify otherwise, troff or nroff justifies you, text so that both left and right margins
are straight. This can be changed if necessary - one way, as we showed above, is to use the .ad
I request to get left adjusting only so that the left margin is straight and the right margin is
ragged. Another way to achieve this same effect is to use the .na (no adjust) request. Output
lines are still filled, providing that filling hasn't also been turned off - see the .nf (no fill)
request below. If filling is still on, troff or nroff produces flush left, ragged right output.

15-16 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

Summary of the . na Request
Item

Form of Request: .na

Initial Value: Adjusting is on by default

De,cription

If No Argument: No argument required - adjustiung is turned off

Explanation: Turn off adjustment - the right margin will be ragged. The adjust­
ment type for the .ad request is not changed. Output lines are still
filled if fill mode is on.

Notea: E

15.2.5. ,nf and ,fi - Turn Filling Off and On

The .nf (no fill) request turns off filling. Lines in the result are neither filled nor adjusted. The
output text appears exactly as it was typed in, complete with any extra spaces and blank lines
you might type - this is often called 'as-is text', or 'verbatim'. No filling is mainly used for
showing examples, especially in computer books where you want to show examples of program
source code.

You should be aware that traditional typesetting people have trouble with the concept of no
filling, because their typesetting systems are geared up to fill and adjust text all the time. When
you ask for stuff to be printed exactly the way you typed it, they have problems, especially when
you want blank lines left in the unfilled text exactly where you put them. In the world of typog­
raphy, things that don't fit into the Procrustean mold of filled text are often called 'displays' and
have to be handled specially.

The ,fi (fill) request turns on filling. If adjusting has not been turned off by a .na request, out­
put lines are also adjusted in the prevailing mode set by any previous .ad request.

Summary of the .Ji Request
Item

Form of Request: .ri

Initial Value: Filling is on by default

Deuription

If No Argument: No argument required - filling is turned on

Explanation: Fill subsequent output lines. The register .u is 1 in fill mode and O in
nofill mode.

Notea: E,B

Version D of 15 May 1985 15-17

Formatting Documents with nroff and troff Editing and Text Processing

Summary of the . nf Request
Item Deuription

Form of Requeat:

Initial Value:

If No Argument:

Explanation:

Notea:

15.2.6. Hyphenation

.nf
Filling is on by default

No argument required - filling is turned off

Subsequent output lines are neither filled nor adjusted. Input text
lines are copied directly to output lines without regard for the current
line length. The register .u is 1 in fill mode and O in nofill mode.

E,B

When troff or nroff fills lines, it takes each word in turn from the input text line, and puts the
word on the output text line, until it finds a word which will not fit on the output line. At this
point troff or nroff tries to hyphenate the word. If possible, the first part of the hyphenated
word is put on the output line followed by a-, and the remainder of the word is put on the next
line. At this point we should emphasize that, although we have been showing the examples both
filled and justified, it is during filling that troff or nroff hyphenates words, not adjusting.

0

If you have in your input text words containing a hyphen (such as jack-in-the-box, or co-worker),

0 troff or nroff will if necessary split these words over two lines, regardless of whether hyphenation
is turned off.

15.2.6.1. .nh and .hy - Control Hyphenation

Normally, when you invoke troff or nroff, hyphenation is turned on, but you can change this.
The .nh (no hyphenation) request turns off automatic hyphenation. The only words that are
split over more than one line are those which already contain '-'. Hyphenation can be turned
on again with the .hy (hyphenate) request .

. hy can be given an argument to restrict the amount of hyphenation that troff or nroff does.
The argument is numeric. The request .hy 2 stops troff or nroff from hyphenating the last word
on a page . • hy 4 instructs troff or nroff not to split the last two characters from a word; so, for
example, 'repeated' will never be hyphenated 'repeat-ed' . • hy 8 requests the same thing for the
first two characters of a word; so, for example, 'repeated' will not be hyphenated 're-peated'.

The values of the arguments are additive: .hy 12 makes sure that words like 'repeated' will
never be hyphenated either as 'repeat-ed' or as 're-peated' . • hy 14 calls up all three restrictions
on hyphenation.

A .hy 1 request is the same as the simple .hy request - it turns on hyphenation everywhere.
Finally, a .hy O request is the same as the .nh request - it turns off automatic hyphenation
altogether.

Only words that consist of a central alphabetic string surrounded by (usually null) non-
alphabetic strings are considered candidates for automatic hyphenation. Words that were input 0
containing hyphens (minus), em-dashes (\(em), or hyphenation indicator characters -such as

15-18 Version D of 15 May 1985

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

mother-in-law - are alwaya subject to splitting after those characters, whether or not automatic
hyphenation is on or off.

Summary of the . nh Request
Item

Form of Requeat: .nh

Initial Value: Hyphenation is on by default

Deacription

If No Argument:

Explanation:

No argument required - hyphenation is turned off

Turn automatic hyphenation off.

Notea: E

Summary of the .hy Request
Item

Form of Requeat:

Initial Value:

If No Argument:

.by N

Hyphenation is on by default

N=l.

Deacription

Explanation: Turn automatic hyphenation on for N>l, or off for N=O. If N=2, do
not hyphenate 1a81 lines (ones that cause a trap). If N=4, do not hy­
phenate the laat two characters of a word. If N=8, do not hyphenate
the firat two characters of a word. These values are additive - that
is, N =14 invokes all three restrictions.

Notea: E

15.2.6.2 . • hw - Specify Hyphenation Word Liat

If there are words that you want troff or nroff to hyphenate in some special way, you can specify
them with the .hw (hyphenate words) request. This request tells troff or nroff that you have
special cases it should know about, for example:

.hw pre-empt ant-eater

Now, if either of the words 'preempt' or 'anteater' need to be hyphenated, they will appear as
specified on the .hw request, regardless of what troff or nroff's usual hyphenation rules would
do. If you use the .hw request, be aware that there is a limit of about 128 characters in total,
for the list of special words.

Version D of 15 May 1985 15-19

Formatting Documents with nroff and troff

Summary of the .hw Request
Item

Form of Requeat:

Initial Value:

If No Argument:

.hw word1 ...

None

Ignored

Editing and Text Processing

Deacription

Explanation: Specify hyphenation points in words with embedded minus signs. Ver­
sions of a word with terminal • are implied - that is, dig-it implies
dig-ita. This list is examined initially and after each suffix stripping.
The space available is small - about 128 characters.

15.2.6.9. • he - Specify Hyphenation Character

A hyphenation indicator character may be embedded in a word to specify desired hyphenation
points, or may be prepended to suppress hyphenation.

Summary of the .he Request
Item

Form of Requeat:

Initial Value:

If No Argument:

.he C

\%
\%

Deacription

Explanation: Set hyphenation indicator character to c or to the default \ %. The
indicator does not appear in the output.

Notea: E

15.2. 7. , ce - Center Lines of Text

When we described Filling and Adjuating, we showed how the text produced by nroff or troff
could be centered by using the .ad c request. Setting text adjustment for centering is a fairly
unusual way of getting centered text, because the text is being filled at the same time. The
more usual use for centering is to have unfilled lines that are centered - that is, each line that
you type is centered within the output line. You get lines centered via the .ce (center) request,
which centers lines of text.

If you just use a .ce request without an argument, troff or nroff centers the next line of text:

.ce

centers the following line of text, whereas:

.ce 6

15-20 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

centers the following five lines of text. Filling is temporarily turned off when lines are centered,
so each line in the input appears as a line in the output, centered between the left and right
margins. For centering purposes, the left margin includes both the page offset (see later) and
any indentation (also see later) that may be in effect.

An argument of zero to the .ce request simply stops any centering that might be in progress.
So, if you don't want to count how many lines you want centered, you can ask for some large
number of lines to be centered, then follow the last of the lines with a .ce O request:

.ce 100

line• of text to be centered

.ce 0

The '100' in the example above could be any large number that you think is bigger than the
number of lines to center.

Note that the argument to the .ce request only applies to following text lines in the input. Lines
containing nroff or troff requests are not counted.

Summary of the .ce Request
Item De,cription

Form of Requeat:

Initial Value:

If No Argument:

Explanation:

Note.:

.ce N

Centering is off by default.

N=l

Center the next N input text lines within the current line (line-length
minus indent). If N=O, any residual count is cleared. A break occurs
after each of the N input lines. If the input line is too long, it is left
adjusted.

E,B

15.2.8. • ul and • cu - Underline or Emphasize Text

There are times when you want to lend empha,i• to a word in a piece of text. The normal way
to do this is to place the word or piece of text in italic, if you have an italic font, or underline
the word if you don't have an italic font. The .ul (underline) request underlines alphanumeric
characters in nroff, and prints those characters in the italic font in troff. As with the .ce
request, a .ul request with no argument underlines a single line of text, so:

.ul

simply underlines the following line of text. A numeric argument to the .ul request specifies the
number of text lines you want underlined, so:

Version D of 15 May 1985 15-21

Formatting Documents with nroff and troff Editing and Text Processing

.ul 3

underlines the next three lines of text. As with centering, an argument of zero .ul O cancels the
underlining process.

Another form of underlining is called up with the .cu request, and asks for continuous underlin­
ing. This is the same as the .ul request, except that all characters are underlined. Again, if
you are using troff the characters are printed in the italic font instead of underlined. There is a
way to get characters underlined in troff, and this technique is explained later in this manual.

As with .ce, only lines of text to be underlined are counted in the number given to the underline
request. nroff or troff requests interspersed with the text lines are not counted.

15.2. 9. Underlining

nroff automatically underlines characters in the underline font, specifiable with a .uC (underline
Cont) request. The underline font is normally Times Italic and is mounted on font position 2 In
addition to the .Ct (Cont) request and the \CF, the underline font may be selected by the .ul
(underline) request and the .cu (continuous underline) request. Underlining is restricted to an
output-device-dependent subset of rea,onable characters.

Summary of the . ul Request
Item Description

Form of Requeat:

Initfol Value:

If No Argument:

Explanation:

Notea:

15-22

.ul N

Underlining is off by default.

N=l

Underline in nroff (italicize in troff) the next N input text lines. Actu­
ally, switch to underline font, saving the current font for later restora­
tion; other font changes within the span of a .ul will take effect, but
the restoration will undo the last change. Output generated by a .ti
request ia affected by the font change, but does not decrement N. If
N> 1, there is the risk that a trap interpolated macro may provide
text lines within the span - environment switching can prevent this.

E

Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing

Summary of the .cu Request
Item

Form of Reque,t:

Initial Value:

If No Argument:

.cu N

Underlining is off by default.

N=l

Formatting Documents with nroff and troff

Deacription

Explanation: A variant or ul that underlines every character in nroff. Identical to
ul in troff.

Notea: E

Summary of the . uf Request
Item

Form of Reque,t:

Initial Value:

If No Argument:

.uf F

Italic

Italic

Deacription

Explanation: Set underline font to F. In nroff, F may not be on position l (initially
Times Roman).

Version D of 15 May 1985 15-23

Formatting Documents with nroff and troff Editing and Text Processing

15.3. Controlling Page Layout

Now we get into the subject of altering the physical dimensions of the layout of text on a page.
There are two major parts to page· control, and they can be roughly divided into controlling the
horizontal aspects of lines, and controlling the vertical aspects of the page dimensions.

Horizontal page control
Deals with subjects such as the location of the left margin, the location of the right margin
(the length of the line), and indentation of lines.

Vertical page control
Deals with the physical length of the page, when pages get started, and whether there's
enough room on the current page for a block of text. Page numbering is also covered in this
area.

These topics are covered in this section. We deal first with horizontal page control, then with
the vertical aspects of page control.

We should explain how troff thinks of a page. The next page contains a diagram of a page of
text, and here we explain what some of the terms mean:

Page Offset
is the distance from the physical edge of the paper to the place where all text begins. In
normal-world terms, this distance is called the 'left margin'. Normally you only set the
page-offset at the very start of a formatting job and you never change it again.

Line Length
is the distance from the left margin (or page-offset) to the right edge of the text. The line­
length is relative to the page-offset. In some respects, 'line-length' is a bit of a misnomer,
because once you have set the page-offset at the start of the document (and assuming you
never change it), the line-length really nails down the position of the right margin and has
little to do with the length of the line.

Indent
is where the left edge of your text starts. Normally the indent is zero, so that the edge of
the text is where the page-offset is, but you can change the indent so that the text starts
somewhere else. Note that the line-length is not affected by the indent - that is, indenting
the text doesn't change the position of the right margin.

Page Length
is the distance from the extreme top of the page to the extreme bottom of the page, that is,
the page length is the physical length of the paper.

15-24 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

The figure below is a diagram of a page of text with the relevant parts pointed out. This
diagram is a scale-model of an 8.5 X 11-inch sheet of paper, so while the numbers quoted in the
text below are expressed in 'real' units, the actual dimensions are scaled.

Version D of 15 May 1985 15-25

Formatting Documents with nroff and troff Editing and Text Processing

15-26

left header center header right header

This paragraph has the page-offset set to give a left margin of approximately one
inch (scaled). The line-length is set to 6.5 inches (scaled). This means there is a
one-inch (scaled) left margin and a one-inch (scaled) right margin. The indent is
set to zero so that the current left margin is at the same place as the page-offset.

This paragraph has the page-offset and the line-length the same as the
last paragraph, but we've used a .In +0.51 request to indent the left
margin by half an inch - the current left margin is now page­
offset + indent. Note that the position of the right margin remains the
same as in the previous paragraph - only the left margin moved, so the
effective length of the lines is shorter.

This paragraph now has the left margin back to the original position because we
inserted a .In -0.51 request before it.

This paragraph has the left margin moved, not by indenting, but by changing the
page-offset. via a .po +0.51 request. Now all text is moved to the left and be­
cause the line-length hasn't changed, the right margin moves as well.

This is the regular old paragraph where the first line is indented and the rest
of the text in the paragraph is flushed to the left margin. The first line was in­
dented via a .ti +0.251 request to give a temporary indent of the first line.

• This paragraph is an example of an 'item' or 'bulletted' or 'hanging' para­
graph, where the left margin is moved to the right, and the 'bullet' or 'tag' is
moved back to the old left margin. This effect was achieved via a .In +0.251
request to move the left margin rightwards, and then the 'bullet' was pre­
ceced by a .ti -0.251 request to get a temporary indent to the old position of
the left margin.

Finally, you should note that tab stops are relative to the current left margin as
we shall show with a couple of blocks of text with different indents. Note that
the positions of the tab stops are shown with ! characters:
! ! ! ! !
You can see by the line of ! marks above where the tab stops are.

Now we have another block of text here but with the indent moved over
a half-inch. As you can see by the line of ! marks below, the tab stops
have moved with the left margin:
! ! !

left footer center footer right footer

Figure 15-2: Layout of a Page

Version D of 15 May 1985

0

0

I
01

'

0

0

0

Editing and Text Processing ·Formatting Documents with nroff and troff

15.3.1. Margins and Indentations

As we said above, the positions of the left-hand and right-hand margins are controlled via the
page-offset and the line-length. After that, any movements o{ the left-hand margin are con­
trolled via indent and temporary indent requests. These topics are discussed in the following
subsections.

15.9.1.1. .po - Set Page Off,et

The page-off,et is the distance from the extreme left-hand edge of the paper to the left margin
of your text. When you use 'standard' 8.5Xl I-inch paper, it is customary to have the left and
right margins be one inch each, so that the physical length of the printed lines are 6.5 inches -
or you'd say that the measure was 39 picas if you're a typographer and can't handle inches.

In general, you only set the page-offset once in the course of formatting a document. Setting the
page-offset determines the position of the physical left margin for the text, and then you (almost)
never change the page-offset again - all indentation is done via .in (indent) requests and .ti
(temporary indent) requests. We talk about these requests later in this part of the manual.

The position of the physical right margin for the text is determined by the line-length relative to
the page-offset. The .II (line length) request is discussed below.

Summary of the .po Request
Item

Form of Request:

Initial Value:

If No Argument:

.po ±N

0 in nroff, 26

Previous value

Deacription

Explanation: Set the current left margin to ±N. In troff the initial value is
26/27 inch, which provides about one inch of paper margin including
the physical typesetter margin of 1/27 inch. In troff the maximum
(Iine-length)+(page-offset) is about 7.54 inches. In nroff the initial
page-offset is zero.

Note&: V

The current page-offset is available in the .o register.

15.9.1.2. .11 - Set Line Length

troff gives you full control over the length of the printed lines. By the way, typographers don't
use mundane phrases like 'line-length', they use the word 'measure' to mean the length of a line.
They get confused if you talk inches or centimeters at them, instead they always talk in 'picas'.

Nevertheless, to set the line-length in troff, use the .II (line length) request, as in

.11 61

Version D of 15 May 1985 15-27

Formatting Documents with nroff and troff Editing and Text Processing

As with the .sp request, the actual length can be specified in several ways - inches are probably
the most intuitive unless you live in one of the very few places in the world where they don't use 0
inches.

The maximum line-length provided by the typesetter is 7.5 inches, by the way. To use the full
width, you will have to reset the default physical left margin ('page-offset'), which is normally
slightly less than one inch from the left edge of the paper. This is done by the .po (page offset)
request discussed above .

. po 0

sets the offset as far to the left as it will go.

Note that the line-length include• indent space but not page-offset space. The line-length minus
the indent is the basis for centering with the .ce request. The effect of the .II request is delayed,
if a partially collected line exists, until after that line is output. In fill mode the length of text on
an output line is less than or equal to the line-length minus the indent. The current line-length
is available in the .I number register. The length of three-part titles produced by a .ti request
(see the section on Tit/ea, Page•, and Numbering) is independent of the line-length set by the .II
request - the length of a tree-part title is et by the .It request.

Summary of the .ll Request
Item Deacription

Form of Requeat:

Initial Value:

If No Argument:

Explanation:

Notea:

.II ±N

6.5 inches

Use previous value

Set the line-length to N where is the value of the line length, or an in­
crement or decrement for the line-length. In troff the maximum (Iine­
length)+(page-offset) is about 7.54 inches.

E,m

15.S.1.S . • in - Set Indent

Given that you've got your page-offset and line-length correctly set for a document to establish
the position of the left and right margins, you now make all other movements of the left margin
via the .in (indent) request discussed here, and via the .ti (temporary indent) request described
below.

The .in (indent) request indents the left margin by some specified amount from the page-offset.
This means that all the following text will be indented by the specified amount until you do
something to change the indent. To get the first line of a paragraph indented, you don't use the
.in request, but you use the .ti (temporary indent) request described below.

As an example, a common text structure in books and magazines is the 'quotation' - a para­
graph that is indented both on the right and the left of the line. A quotation is used for pre-

0

cisely that purpose, namely to set some text off from the rest of the copy. We can achieve such

0 a paragraph by using the .in request to move the left margin in, and the .II request to move the

15-28 Version D of 15 May 1985

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

right margin leftwards:

.in +O.Si

.11 -0.Si
I was to learn later in life that we tend to meet any new
situation by reorganizing; and a wonderful method
it can be for creating the illusion of progress
while producing confusion, inefficiency, and demoralization .
. 11 +O.Si
.in -0.Si

When you format the above construct you get a block that looks like this:

I was to learn later in life that we tend to meet any new situation by reorganizing;
and a wonderful method it can be for creating the illusion or progress while pro­
ducing confusion, inefficiency, and demoralization.2

Notice the use or '+' and '-' to specify the amount of change. These change the previous set­
ting by the specified amount rather than just overriding it. The distinction is quite important:
.II +2i makes lines two inches longer, whereas .II 2i makes them two inches long:

.11 2.0i
I was to learn later in life that we tend to meet any new
situation by reorganizing; and a wonderful method
it can be for creating the illusion of progress
while producing confusion, inefficiency, and demoralization.

I was to learn later in life
that we tend to meet any
new situation by reorganiz-
ing; and a wonderful method
it can be for creating the illu-
sion of progress while produc-
ing confusion, inefficiency,
and demoralization.

With .in, .II, and .po, the previous value is used if no argument is specified.

Note that the line-length include& indent space but not page-offset space. The line-length minus
the indent is the basis for centering with the .ce request. The effect of the .in request is
delayed, if a partially collected line exists, until after that line is output. In fill mode the length
of text on an output line is less than or equal to the line-length minus the indent. The current
indent is available in the .i number register.

2 Petroniu6 Arbiter, A.D. 60.

Version Dor 15 May 1985 15-29

Formatting Documents with nroff and troff

Summary of the .in Request
Item

Form of Requeat:

Initial Value:

If No Argument:

.in ±N

0

Use previous value

Editing and Text Processing

Deacription

Explanation: Set the indent to ±N where N is the value of the indent, or an incre­
ment or decrement on the current value of the indent.

Notea: E, m. The .in request causes a break.

15.9.1..J. , ti - Temporararily Indent One Line

The .ti (temporary indent) request indents the next text line by a specified amount.

A common application for .ti is where the first line of a paragraph must be indented just like
the one you're reading now. You get such a construct with a sequence like:

.ti 3
A common application for ...

and when the paragraph is formatted, the first line of the paragraph is indented by three
whatsits just like this one. Three of what? The default unit for the .ti request, as for most hor­
izontally oriented requests - .ll (line length), ,in (indent), and .po (page offset) - is ems. An
em is roughly the width of the letter 'm' in the current point size. Thus, an em is always pro·
portional to the point size you are using. An em in size p is the number of p points in the width
of an 'm'. Here's an em followed by an em dash in several point sizes to show why this is a pro­
portional unit of measure. You wouldn't want a 20-point dash if you are printing the rest of a
document in 12-point text. Here's 12-point text:

m
1-1

Here's 16-point text:

m
1-1

And here's 20-point text:

Thus a temporary indent of .ti 3 in the current point size results in an indent of three m's width
I I or 1mmm1•

15-30 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

Although inches are usually clearer than ems to people who don't set type for a living, ems have
a place: they are a measure of size that is proportional to the current point size. If you want to
make text that keeps its proportions regardless of point size, you should use ems for all dimen­
sions. Ems can be specified as scale factors directly, as in .ti 2.5m.

Lines can also be indented negatively if the indent is already positive:

.ti -0.31

moves the next line back three tenths of an inch. A common text structure found in documents
is 'itemized lists' where the paragraphs are indented but are set off by 'bullets' or some such.
Item lists are often called 'hanging paragraphs' because the first line with the item on it 'hangs'
to the left. For example, you could type the following series of lines like this (we've deliberately
shortened the length of the line to illustrate the effects):

.11 4.01

.in +0.21

. ta +O. 21

.ca
Indent Control Requests
.ti -0.2i
\ (bu tab the .po request sets the
page-offset to the desired amount thereby making
sure the lel't margin la correct •

shorten lines for this example
indent left margin by a fifth inch
set a tab for the hanging indent
center a line of title

move left margin back temporarily

• ti -0.21 move left margin back temporarily
\(bu tab the .In request sets the
Indent from the lel't margin tor all following text.
,ti -0,21 move left margin back temporarily
\(bu tabthe .ti request sets the Indent tor
the following line ot text only thus providing tor
fancy paragraph effects.

We had to play some tricks with tabs as well to get everything lined up, but that won't affect the
main point of the discussion. The tab markers in the lines above show where there's a tab char­
acter, and the \(bu sequence at the start of the lines gets you a bullet (•) like that - we'll
show the special character sequences later in this manual. When you format the text as shown
in the example above, you get this effect:

Indent Control Requests
• the .po request sets the page-offset to the desired

amount there by making sure the left margin is correct.
• the .in request sets the indent from the left margin for

all following text.
• the .ti request sets the indent for the following line of

text only thus providing for fancy paragraph effects.

Note that the line-length includea indent space but not page-offset space. The effect of a .ti
request is delayed, if a partially collected line exists, until after that line is output. In fill mode
the length of text on an output line is less than or equal to the line-length minus the indent. The
current indent is available in the .i register.

Version D of 15 May 1985 15-31

Formatting Documents with nroff and troff Editing and Text Processing

Summary of the .ti Request
Item Description

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

.ti ±N

0

Ignored

Indent the nezt output text line a distance ±N with respect to the
current indent. The resulting total indent may not be negative. The
current indent is not changed.

E, m. The .ti request causes a break.

15.3.2. Page Lengths, Page Breaks, and Conditional Page Breaks

Neither nroff nor troff provide any facilities for top and bottom margins on a page, nor for any
kind of page numbering at all. The -ms macro package described in a previous section of this
manual sets things up so that reasonable pagination with top and bottom margins and page
numbers are done automatically.

0

If you want top and bottom margins in when using raw troff or nroff, you have to do some
tricky stuff. The tricky stuff is done via traps and macros. The trap tells troff or nroff when
to do some processing for the margins (for example, you might set a trap to start the bottom 0
margin 0.75 inches from the bottom of the page), and the macro defines what to do when the •
trap is sprung. It is conventional to set traps for them at vertical positions O (top) and -N (N
from the bottom).

A pseudo-page transition onto the first page occurs either when the first break occurs or when
the first non-diverted text processing occurs. Arrangements for a trap to occur at the top of the
first page must be completed before this transition.

In the following tables, references to the current diversion mean that the mechanism being
described works during both ordinary and diverted output (the former considered as the top
diversion !eve I).

The useable page width on the Graphic Systems phototypesetter is about 7.54 inches, beginning
about 1/27 inch from the left edge of the 8 inch wide, continuous roll paper. The physical limi­
tations on nroff output are output-device dependent.

15.9.2.1. .pl - Set Page Length

Just as the .po, .II, .in, and .ti requests changed the horizontal aspects of the page, the .pl
(page length) request determines the physical length of the page. In general you never need to
use the .pl request because the standard setting is right for all but the most esoteric purposes.

15-32 Version D of 15 May 1985

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

Summary of the .pl Request
Item Deacription

Form of Requeat:

Initial Value:

If No Argument:

Explanation:

Notea:

plut±N
11 inches

11 inches

Set page length to ±N. The internal limitation is about 75 inches in
troff and about 136 inches in nroff. The current page length is avail­
able in the .p register.

V

15.9.2.2 . • bp - Start a New Page

Summary of the .bp Request
Item Deacription

Form of Requeat:

Initial Value:

If No Argument:

Explanation:

Notea:

.bp ±N

N=l

Increment current page number by I.

Eject the current page and start a new page. If ±N is given, the new
page number will be ±N. Also see the .ns (no space) request.

v, The .bp request causes a break.

15.9.2.9 . • pn - Set Page Number

Summary of the .pn Request
Item Deacription

Form of Request:

Initial Value:

If No Argument:

Explanation:

.pn ±N

N=l

Ignored

The next page (when it occurs) will have the page number ±N. A pn
must occur before the initial pseudo-page transition to affect the page
number of the first page. The current page number is in the % regis­
ter.

Version D of 15 May 1985 15-33

Formatting Documents with nroff and troff Editing and Text Processing

15.9.2.,1 . • ne - Specify Space Needed

In some applications you need to make sure that a few lines of text all appear together on the
same page. There are several ways to acheieve this ranging from simple to complicated. One of
the simplest ways is to use the .ne (need) lines request:

.ne 3
some
lines
of
text
to
be
kept
on the
same page

specify we need at least three lines

The arrangement of the .ne request specifies that if there are many lines of text in (say) a para,.
graph, at least three of the lines will appear together on the same page, otherwise a new page
will be started. The object of this exercise is to avoid what typographers call 'orphans' - that
is, the first line of a paragraph appearing all alone and lonely on the bottom of a page, while the
rest of the paragraph appears on the next page. This is generally considered to be somewhat
ugly and should be avoided if possible. By itself, troff is too stupid to recognize the existence of
orphans (indeed of any text constructs at all), but the facilities are there to avoid these situa,.
tions. In general, macro packages such as the -ms macro package discussed elsewhere have
'begin paragraph' macros such as .PP which take care of controlling orphans.

Summary of the . ne Request
Item Deacription

Form of Requeat:

Initial Value:

If No Argument:

Explanation:

Note.:

.ne N

Not applicable

IV

Need N vertical space. If the distance, D, to the next trap position is
less than N, a forward vertical space of size D occurs, which will spring
the trap. If there are no remaining traps on the page, D is the dis­
tance to the bottom of the page. If D < V, another line could still be
output and spring the trap. In a diversion, D is the distance to the
diveraion trap, if any, or is very large.

V

15.3.3. Multi-Columnar Page Layout by Marking and Returning

0

0

It is possible to achieve multi-column output in troff or nroff via the .mk (mark) and .rt
(return) requests. Other nifty special effects can also be obtained using these requests, but one

0 of the common uses is to do multi-column output. Basically, the .mk request marka the current ,
vertical position on the page (you can place the result of the mark in a register). You do a

15-34 Version D of 15 May 1985

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

column's worth of output, then when you get to the end of the page, instead of starting the next
page, you return (via the .rt request) to the marked position, set up a new indent and line­
length, and crank out another column.

15.9.9.1. .mll: - Mark Current Vertical Poaition

Summary of the . mk Request
Item Deacription

Form of Requeat:

Initial Value:

If No Argument:

Explanation:

.mk R

Not applicable

R is an internal register

Mark the current vertical place in an internal register (both associated
with the current diversion level), or in register R, if given. See rt re­
quest.

15.9.9.2. • rt - Return to Marked Vertical Poaition

Summary of the .rt Request
Item Deacription

Form of Requeat:

Initial Value:

If No Argument:

Explanation:

.rt ±N

Not applicable

place marked by a previous .mk request.

Return upward only to a marked vertical place in the current diver­
sion. If ±N (with respect to the current place) is given, the place is
±N from the top of the page or diversion or, if N is absent, to a place
marked by a previous mk. Note that the sp request (refer to the sec­
tion on Line Spacing and Character Size,) may be used in all cases in­
stead of rt by spacing to the absolute place stored in a explicit regis­
ter; for example, using the sequence

Version D of 15 May 1985 15-35

Formatting Documents with nroff and troff Editing and Text Processing

15.4. Line Spacing and Character Sizes

15.,/.1. • sp - Get Extra Space

You get extra vertical space with the .sp (space) request. A simple

.sp

request with no argument gives you one extra blank line (one .vs, whatever that has been set
to). Typically, that's more or less than you want, so .sp can be followed by information about
how much space you want -

.ap 21

means 'two inches of vertical space' .

. sp Ip

means 'two points of vertical space'; and

.sp 2

means 'two vertical spaces' - two of whatever .vs is set to (this can also be made explicit with
.sp 2v); troff also understands decimal fractions in most places, so

,Bp 1.51

is a space of 1.5 inches. These same scale factors can be used after the .vs request to define line
spacing, and in fact after most requests that deal with physical dimensions.

It should be noted that all size numbers are converted internally to 'machine units', which are
1/432 inch (1/6 point). For most purposes, this is enough resolution that you don't have to
worry about the accuracy of the representation. The situation is not quite so good vertically,
where resolution is 1/144 inch (1/2 point).

The vertical spacing (VJ between the base-lines of successive output lines can be set using the
.vs request with a resolution of 1/144 inch - 1/2 point in troff, and. to the output device resolu­
tion in nroff. V must be large enough to accommodate the character sizes on the affected output
lines. For the common type sizes (9-12 points), usual typesetting practice is to set V to 2 points
greater than the point size; troff default is IO-point type on a 12-point spacing. This document is
set in 11-point type with a 13-point vertical spacing. The current Vis available in the .v regis­
ter.

15-36 Version D of 15 May 1985

0

0

o:
I

0

0

0

Editing and Text Processing

Summary of the .vs Request
Item

Form of Requeat:

Initial Value:

If No Argument:

.vs N

1

Use previous value

Formatting Documents with nroff and troff

Deacription

Explanation: Set vertical base-line spacing size V. Transient extra
vertical space available with \x 'N '(see above).

Notea: E, P

15.4,2. • ls - Change Line Spacing

Multiple- V line separation (for instance, double spacing) can be requested with the .Is (line spac­
ing) request.

Summary of the .ls Request
Item

Form of Requeat:

Initial Value:

If No Argument:

.Ia N

N=l

Use previous value

Deacription

Explanation: Set line spacing to ±N. N-1 Vs {blank linea) are appended to each
output text line. Appended blank lines are omitted, if the text or pre­
vious appended blank line reached a trap position.

Notea: E

15.4.3. ,x Function - Get Extra Line-space

If a word contains a vertically tall construct requiring the output line containing it to have extra
vertical space before and/or after it, the extra-line-apace function \x 'N 'can be imbedded in or
attached to that word. In this and other functions having a pair of delimiters around their
parameter (here '), the delimiter choice is arbitrary, except that it can't look like the continua­
tion of a number expression for N. If N is negative, the output line containing the word will be
preceded by N extra vertical space; if N is positive, the output line containing the word will be
followed by N extra vertical space. If successive requests for extra space apply to the same line,
the maximum values are used. The most recently used post-line extra line-space is available in
the .a register.

Version D of 15 May 1985 15-37

Formatting Documents with nroff and troff Editing and Text Processing

15.,l.4- .vs - Change Vertical Distance Between Lines

The other parameter that determines what the type looks like is the spacing between lines,
which is set independently of the point size. Vertical spacing is measured from the bottom of
one line to the bottom of the next. The bottom of the text on a line is often called the ba,eline.
The vertical spacing is often called leading (pronounced 'led-ing') and comes from the days when
text was produced with lead slugs instead of electronic widgets like laser printers.

You control vertical spacing with the .vs (vertical spacing) request. For running text, it is usu­
ally best to set the vertical spacing about 20% bigger than the character size. For example, so
far in this document, we have used 11-point type with a vertical line-spacing of 7 points between
baselines. Typographers call this '11 on 7', so when you hear some one say that a book is set in
'9 on 11 ', you know that it's 9-point type with 11-point vertical spacing.

So, somewhere at the start of this document, the macro package that formats this document for
us had requests like:

•P• llp
.vs 13p

Had we set the point size and the vertical spacing like this:

.ps llp

.vs llp

0

the running text would look like this. After a few lines, you will agree it looks a little cramped.
The right vertical spacing is partly a matter of taste, depending on how much text you want to
squeeze into a given space, and partly a matter of traditional printing style. By default, troff o
uses 10 on 12. ·

Point size and vertical spacing make a substantial difference in the amount of text per
square inch. This is 12 on 14.
Fbim siu and vetiical !<pacing make a sub5tamial. difll:rmoe in die amoum of te:a per 5CJ.ian:: inch. For example, 10 on 12 use,. abous i1WKllli ae much space as 7 on 8. 'This is G
on 7, which is even smaller. It pack$ a lot - words per line, bul; you can go blind Sr)'ing to ~ ~-

When used without arguments, .ps and .vs revert to the previous size and vertical spacing
respectively.

15.4.s. • sp - Get Blocks of Vertical Space

A block of vertical space is ordinarily requested using the .sp (space) request, which honors the
no-•pace mode and which does not space pa,t a trap. A contiguous block of vertical space may
be reserved using the .sv request (see below).

15-38 Version D of 15 May 1985

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

Summary of the .sp Request
Item Description

Form of Reque.t:

Initial Value:

If No Argument:

Explanation:

Notes:

.sp N

Not applicable

N=lV

Space vertically in either direction. If N is negative, the mo­
tion is backward (upward) and is limited to the distance to the top of
the page. Forward (downward) motion is tFuncated to the distance to
the nearest trap. If the no-space mode is on, no spacing occurs (see
ns, and rs below).

B, V

15.,f.6. • sv - Save Block of Vertical Space

Summary of the .sv Request
Item Description

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

.sv N

Not applicable

N=lV

Save a contiguous vertical block of size N. If the distance to the next
trap is greater than N, N vertical space is output. No-space mode has
no effect. If this distance is less than N, no vertical space is immedi­
ately output, but N is remembered for later output (see the .os re­
quest). Subsequent sv requests will overwrite any still remembered N.

V

15.,1. 7 . • os - Output Saved Vertical Space

Version D of 15 May 1985 15-39

Formatting Documents with nroff and troff

Summary of the .os Request
Item

Form of Requeat:

Initial Value:

If No Argument:

.os

Not applicable

Not applicable

Editing and Text Processing

Deacription

Explanation: Output saved vertical space. No-space mode has no effect. Used to
finally output a block of vertical space requested by an earlier sv re­
quest.

15.4.s. .ns - Set No Space Mode

Summary of the . ns Request
Item

Form of Request:

Initial Value:

If No Argument:

.ns

Not applicable

Not applicable

Deacription

Explanation: Turn on no-space mode - When on, the no-space mode inhibits sp re­
quests and hp requests without a next page number. The no-space
mode is turned off when a line of output occurs, or with rs.

Notes: D

Summary of the .rs Request
Item

Form of Reque•t:

Initial Value:

If No Argument:

.rs

Not applicable

Not applicable

Deacription

Explanation:

Notea:

Restore spacing - turn off no-space mode.

D

15.4.0 . • ps - Change the Size of the Type

0

0

In troff, you can change the physical size of the characters that are printed on the page. The
.ps (point size) request sets the point size. One point is 1/72 inch, so 6-point characters are at
most 1/12 inch high, and 36-point characters are 1/2 inch. Troff and the machine it was origi- 0
nally designed for understand 15 point sizes, listed below.

15-40 Version D of 15 May 1985

0

0

Editing and Text Processing Formatting Documents with nroff and troff

6 polnt1 P.c:k sy box vlth five do:i:en llqu.or jug•.
7 point: Pack my box with five dozen liquor juga.
8 point: Pack my box vith five dozen liquor jug•.
9 point: Pack my box vith five dozen liquor jugs.
10 point: Pack my box with five dozen liquor jugs.
11 point: Pack my box with five dozen liquor jugs.
12 point: Pack my box with five dozen liquor jugs.
14 point: Pack my box with five dozen liquor jugs.
16 point: Pack my box with five dozen liquor jugs.
18 point: Pack my box with five dozen liquor j
20 point: Pack my box with five dozen liq
22 point: Pack my box with five dozen
24 point: Pack my box with five do
28 point: Pack my box with fi

36 point: Pack my box w
If the number after a .ps request is not one of these legal sizes, it is rounded up to the next valid
value, with a maximum of 36. If no number follows .ps, troff reverts to the previous size, what­
ever it was. troff begins with point size 10, which is usually fine. This document is in 11-point.

The point size can also be changed in the middle of a line or even a word with an in-line size
change sequence. In general, text which is in ALL CAPITALS in the middle of a sentence tends
to loom large over the rest of the text and so it is customary to drop the point size of the capi­
tals so that it looks like ALL CAPITALS instead. You use the \s {for size) sequence to state what
the point size should be. You can state the size explicitly as in this line here:

The \sBPOWER\sO of a \s8SUN\s0

to produce the output line like:

The POWER O f a SUN

As above, \s should be followed by a legal point size, except that \sO makes the size revert to its
previous value (before you just changed it).

Note that because there are a fixed number of point sizes that the system knows about, the
sequence \s96 gets you a nine-point 6 instead of 96-point type like you wanted, whereas the
sequence \s180 gets you an 18-point O instead of 180-point type.

Stating the point size in absolute terms as above is not always a good idea - what you really
want is for the changed size to be relative to the surrounding text, so that if your document is in
11-point type like this one, you'd really like the bigger (or smaller stuff) to be a couple of points
different without your having to know explicitly what the actual size is. So in this case, you can
use a relative size-change sequence of the form \s+n to raise the point size, and \s-n to lower
the point size. The number n is restricted to a single digit. So we can rework our previous
example from above like this:

Version D of 15 May 1985 15-41

Formatting Documents with nroff and troff

The \s-2POWER\s+2 of a \s-2SUN\s+2

to produce the output line like:

The POWER O f a SUN

Editing and Text Processing

Relative size changes have the advantage that the size difference is independent of the starting
size of the document. Of course this stuff only works really well (in typography terms) when the
changes in size aren't too violently out of whack with the point size - a change of two points in
36--point type doesn't have quite the same impact as it does for 12-point type - there is a ques­
tion of the weight of the type, but by the time you get to that stuff you'll be much more
knowledgeable about typography.

Character point sizes available on the Graphic Systems typesetter are 6, 7, 8, 9, 10, 11, 12, 14,
16, 18, 20, 22, 24, 28, and 36. This is a range of 1/12 inch to 1/2 inch. The ps request is used to
change or restore the point size. Alternatively the point size may be changed between any two
characters by embedding a \sN at the desired point to set the size to N, or a \s±N(l<N<9) to
increment/decrement the size by N; \sO restores the previous size. Requested point size values
that are between two valid sizes yield the larger of the two. The current size is available in the
.s register. nroff ignores type size control.

Summary of the .ps Request
Item Deacription

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

.ps ±N

10 points

Use previous value

Set point-size to ±N. Alternatively embed \sN or \s±N. Any posi­
tive size value may be requested; if invalid, the next larger valid size
will result, with a maximum of 36. A paired sequence + N, -N works
because the previous requested value is also remembered. Ignored in
nroff.

E

15 .. ,1.10. • ss - Set Size of Space Character

15-42 Version D of 15 May 1985

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

Summary of the .ss Request
Item Deacription

Form of Requeat:

Initial Value:

If No Argument:

Explanation:

Notea:

.ss N

12

Ignored

Set space-character size to N /36 ems. This size is the minimum word
spacing in adjusted text. Ignored in nroff.

E

15.,4.11. .cs - Set Constant Width Characters

Summary of the .cs Request
Item Deacription

Form of Requeat:

Initial Value:

If No Argument:

Explanation:

Notea:

,CS F NM

Off

Ignored

Constant character space (width) mode is set on for font F (if mount­
ed); the width of every character is taken as N/36 ems. If Mis absent,
the em is that of the character's point size; if Mis given, the em is M­
points. All affected characters are centered in this space, including
those with an actual width larger than this space. Special Font char­
acters occurring while the current font is Fare also so treated. If N is
absent, the mode is turned off. The mode_ must be still or again m
effect when the characters are physically printed. Ignored in nroff.
p

Version D of 15 May 1985 15-43

Formatting Documents with nroff and troff Editing and Text Processing

15.5. Fonts and Special Characters

troff and the typesetter allow four different fonts at any one time. Normally three fonts (Times
roman, italic and bold) and one collection of special characters are permanently mounted.

abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz 011!9456789
ABCDEFGHJJKLMNOPQRSTUVWXYZ
abcdefghljklmnopqrotuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

The greek, mathematical symbols and miscellany of the special font are listed in Appendix A.

Troff prints in Roman unless told otherwise. To switch into bold, use the .rt (font) request:

.ft B

and for italics,

.ft I

To return to roman, use .rt R; to return to the previous font, whatever it was, use either .ft P
or just .ft. The 'underline' request

.ul

makes the next input line print in italics. .ul can be followed by a count to indicate that more
than one line is to be italicized.

Fonts can also be changed within a line or word with the in-line request \f:

boldface text

is produced by

\fBbold\fiface\fR text

If you want to do this so the previous font, whatever it was, is left undisturbed, insert extra in­
line \fP commands, like this:

\fBbold\fP\fiface\fP\fR text\fP

Because only the immediately previous font is remembered, you have to restore the previous font
after each change or you lose it. The same is true of .ps and .vs when used without an argu­
ment.

There are other fonts available besides the standard set, although you can still use only four at
any given time. The .fp (font position) request tells troff what fonts are physically mounted on
the typesetter:

.fp 3 H

15-44 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

says that the Helvetica font is mounted on position 3. Appropriate .fp requests should appear at
the beginning of your document if you do not use the standard fonts.

It is possible to make a document relatively independent of the actual fonts used to print it by
using font numbers instead of names; for example, \f'3 and .ft 3 mean 'whatever font is mounted
at position 3', and thus work for any setting. Normal settings are Roman font (R) on 1, italic (I)
on 2, bold (B) on 3, and special (S) on 4 - remember 'RIBS'.

There is also a way to get 'synthetic' bold fonts by overstriking letters with a slight offset. Look
at the .bd request.

Special characters have four-character names beginning with \(, and they may be inserted any­
where. For example,

is produced by

\(14 + \(12 = \(34

In particular, greek letters are all of the form \(*-, where - is an upper or lower case roman
letter reminiscent of the greek. Thus to get

E (ax,8) -+ oo

in bare troff we have to type

\(*S(\(*a\(mu\(*b) \(-> \(if

That line is unscrambled as follows:

Eacape Character
Sequence Printed

\(*S E
((
\(*a C,

\(mu X
\(*b /3
))
\(-> -+
\(if 00

Deacription

Upper-caae Sigma or Sum

lower-caae alpha
multiplication aign or aignum
lower-caae beta

tend, towarda
infinity

A complete list of these special names occurs in Appendix A.

In eqn (Formatting Mathematica with 'eqn) the same effect can be achieved with the input

SIGMA (alpha times beta) -> inf

which is less concise (31 keystrokes instead of 27!), but clearer to the uninitiated.

Notice that each four-character name is a single character as far as troff is concerned - the
'translate' request

Version D of 15 May 1985 15-45

Formatting Documents with nroff and troff Editing and Text Processing

.tr \(mi\(em

is perfectly clear, meaning

.tr --

that is, to translate - (minus sign) into - (em-dash).

Some characters are automatically translated into others: grave ' and acute ' accents (apos­
trophes) become open and close single quotes "; the combination of" ... " is generally preferable
to the double quotes" ... ". Similarly a typed minus sign becomes a hyphen-. To print an explicit
- sign, use \-. To get a backslash printed, use \e.

15.5.1. Character Set

The troff character set consists of the Graphics Systems Commercial II character set plus a Spe­
cial Mathematical Font character set-each having 102 characters. These character sets are
shown in Appendix A, Examplea of Fonta and Non-ASC// Charactera. All ASCII characters are
included, with some on the Special Font. With three exceptions, the ASCII characters are input
as themselves, and non- ASCII characters are input in the form \(zz where zz is a two-character
name also explained in Appendix A. The three ASCII exceptions are mapped as follows:

Table 15-6: Exceptions to the Standard ASCII Character Mapping

ASCII Input Printed by troff
Character Name Character Name

,
acute accent

,
close quote

' grave accent ' open quote
- mmus - hyphen

The characters ', ', and - may be input by \ ', \', and \- respectively or by their names
found in Appendix A. The ASCII characters @, #, ", ', ', <, >, \, {. }. -, -, and _ exist only
on the Special Font and are printed as a 1-em space if that Font is not mounted.

Nroff understands the entire troff character set, but can in general print only ASCII characters,
additional characters as may be available on the output device, such characters as may be con­
structed by overstriking or other combination, and those that can reasonably be mapped into
other printable characters. The exact behavior is determined by a driving table prepared for
each device. The characters ', ', and_ print as themselves.

15.5.2. Fonts

0

0

The default mounted fonts are Times Roman (R), Times Italic (I), Times Bold (B), and the Spe­
cial Mathematical Font (S) on physical typesetter positions 1, 2, 3, and 4 respectively. These
fonts are used in this document. The current font, initially Roman, may be changed (among the
mounted fonts) by use of the ft request, or by embedding at any desired point either \rz, \r(zz, 0

15-46 Version D of 15 May 1985

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

or \fN where x and xx are the name of a mounted font and N is a numerical font position. It is
not necessary to change to the Special font; characters on that font are automatically handled.
A request for a named but not-mounted font is ignored. troff can be informed that any particu­
lar font is mounted by use of the fp request. The list of known fonts is installation dependent.
In the subsequent discussion of font-related requests, F represents either a one/two-character
font name or the numerical font position, 1-4. The current font is available (as numerical posi­
tion) in the read-only number register .f.

nroff understands font control and normally underlines Italic characters.

15.5.3 . • bd -Artificial Bold Face

Summary of the .bd Request
Item Description

Form of Request:

Initial Value:

If No Argument:

Explanation:

Form of Reque&t:

Explanation:

Notes:

.bd F N

Off

No Emboldening

Artificially embolden characters in font F by printing each one twice,
separated by N-1 basic units. A reasonable value for N is 3 when the
character size is in the vicinity of 10 points. If N is missing the embol­
den mode is turned off. The mode must be still or again in effect when
the characters are physically printed. Ignored in nroff.

.bd SF N
Embolden characters in the Special Font whenever the current font is
F. The mode must be still or again in effect when the characters are
physically printed.
p

15.5.,t. .ft - Set Font

Summary of the .ft Request
Item

Form of Request:

Initial Value:

If No Argument:

.ft F

Roman

Previous Font

Description

Explanation: Change font to F. Alternatively, embed \fF. The font name P 1s
reserved to mean the previous font.

Notes: E

Version D of 15 May 1985 15-47

Formatting Documents with nroff and troff Editing and Text Processing

15.5.5. • fp - Set Font Position

Summary of the .fp Request
Item Deacription

Form of Request:

Initial Value:

If No Argument:

Explanation:

.fp NF

R, I, B, S

Ignored

Font position - this is a statement that a font named Fis mounted on
position N (1-4). It is a fatal error if F is not known. The photo­
typesetter has four fonts physically mounted. Each font consists of a
film strip which can be mounted on a numbered quadrant of a wheel.
The default mounting sequence assumed by troff is R, I, B, and S on
positions 1, 2, 3 and 4. Any fp request specifying a font on some posi­
tion must precede fz requests relating to that position.

15.5.6. ,fz - Force Font Size

Summary of the .fz Request
Item Description

Form of Requeat:

Initial Value:

If No Argument:

Explanation:

.fz SF N

None

None

Forces font F or S for special characters to be in size N. A ,fz 3 -2
causes implicit \s-2 every time font 3 is entered, and a matching \s+2
when left. Same for Special font characters that are used during F.
Use S to handle Special characters during F (fz 3 -3 or fz S 3 -0
cause automatic reduction of font 3 by 3 points while special charac­
ters are not affected. Any fp request specifying a font on some posi­
tion must precede fz requests relating to that position.

15.5. 7. • lg - Control Ligatures

Ligatures are not something you sprain when you work out too hard, rather a ligature is a spe­
cial way of joining two characters together as one. Way back in the days before Gutenberg,
scribes would have a variety of special forms to choose from to make lines come out all the same
length on a manuscript. Some of these forms are still with us today. Five ligatures are available
in the current troff character set - fi, fl, tr, ffi, and fft. They may be input (even in nroff) by
\(fi, \(fl, \(ff, \(Fi, and \(Fl respectively. The ligature mode is normally on in troff, and
automatically invokes ligatures during input.

15-48 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

If you want other ligatures like the re, re, IE, andCE ligatures, you have to make them up your­
self - troff doesn't know about them. See the section on Arbitrary Horizontal Motion with the
\h Function Cor some examples on constructing these ligatures.

Summary of the .lg Request
Item De•cription

Form of Requeat:

Initial Value:

If No Argument:

Explanation:

.lg N

Off in nroff, on in troff.

on

Turn Ligature mode on if N is absent or non-zero. Turn ligature mode
off if N=O. If N=2, only the two-character ligatures are automatically
invoked. Ligature mode is inhibited for request, macro, string, regis­
ter, or file names, and in copy mode. No effect in nroff

Version D of 15 May 1985 15-49

Formatting Documents with nroff and troff Editing and Text Processing

15.6. Tabs, Leaders, and Fields - Aligning Things in Columns

There are several ways to get stuff lined up in columns, and to achieve other effects such as hor­
izontal motion and repeated strings of characters. The three related topics we discuss in this
section are tabs, leaders, and fields.

tabs behave just like the tab stops on a typewriter.

leaders are for generating repeated strings of characters.

fields are a general mechanism for helping to line stuff up into columns.

This part of the document concentrates on the 'easy' parts, so to speak. Later sections of this
document contain discussions on the facilities for drawing lines and for producing arbitrary
motions on the page.

15. 6.1. • ta - Set Tabs

Tabs (the ASCII 'horizontal tab' character) can be used to produce output in columns, or to set
the horizontal position of output. Typically tabs are used only in unfilled text. Tab stops are set
by default every half inch from the current indent (in troff) and every 0.8 inch from the current
indent (in nroff), but can be changed by the .ta (tab) request. In the example below, we set
tab stops every one-and-a-half inches and set some text in columns based on those tab stops. We
place a line of ! marks above and below the text to show where the tabs stops are in the output
page:

.ta 1.Si 3.0i 4.Si 6.0i set tabs
! tab! tab! tab! tab! show where tabs are with ! character
word-one tab word-two tab word-three tab word-four tab word-five
! tab! tab! tab! tab! show where tabs are with ! character

When we format the above example, we get this output:

! !
word-one
!

word-two
!

15.6.1.1. Setting Relative Tab Stopa

word-three word-four word-five

The tab stops set in the example above are in terms of absolute position on the line. You could
also set tabs relative to previous tabs stops by preceding the tab stop number with a + sign, and
get exactly the same result:

15-50

.ta 1.Si +1.Si +1.Si +1.Si
I tab I tab I tab I tab I

set tabs
show where tabs are with I character

word- onetabword-twotabword-threetabword- f ourtabword- five
I tab I tab I tab I tab I show where tabs are with ! character

Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

15.6.1.2. Right-Adjuated Tab Stopa

In the standard case as shown in the above examples, the tab stops are left-adjusted (as on a
typewriter). You can also make the tab stops right-adjusting for doing things like lining up
columns of numbers. When you right-adjust a tab stop, the action of placing a tab before the
field places the material behind the tab stop on the output line. Here's an example of some
input with both alphabetic and numeric items:

.nf

.ta 2.0iR
JulytabS
Augusttab9
SeptembertablS
Octobertab60
Novembertab85
Decembertab126
.fi

Notice the .ta request - it has the letter R on the end to indicate that this is a right-adjusted
tab. When we format that table, we get this result:

July 5
August 9
September 15
October 60
November 85
December 126

Notice how the numbers in the second column line up.

15.6.1.9. Centered Tab Stopa

Finally you can make a centered tab stop, so that things get centered between the tabs. We can
use the centering tabs to put a title on our table from above:

.nf

.ta 2.0iC
MonthtabShipments
.ta 2.0iR
Julytabs
Augusttab9
SeptembertablS
October tab60
Novembertabes
Decembertab126
. fl

and when we format this table now, we get this result:

Version D of 15 May 1985 15-51

Formatting Documents with nroff and troff Editing and Text Processing

Month Shipments
July 5
August 9

September 15
October 60
November 85
December 126

Notice that the column headings are centered over the data in the table.

If you have a complex table, instead of using troff or nroff directly, use the tbl program
described in the chapter Formatting Tab/ea with 'tbl'. A good example of where tbl does more
work for you is when numerically-aligned items have decimal points in them - it is really hard
to do this using the raw troff or nroff capabilities.

15.6.LI. • to - Change Tab Replacement Character

A tab inserts blank space between the item that came before and after it. You can change this
by filling up tabbed-over space with some other character. Set the 'tab replacement character'
with the .tc (tab character) request:

.ta 2.Si 4.Si

.tc _
Name tab Age tab

This produces

Name ____________ Age

There is a more general mechanism for drawing lines, described in the section Drawing Vertical
and Horizontal Linea.

To reset the tab replacement character to a space, use the • to request with no argument.
Lines can also be drawn with the in-line \I command, described in the section Arbitrary Motiona
and Drawing Linea and Charactera.

Summary of the .tc Request
Item Deacription

Form of Requeat:

Initial Value:

If No Argument:

Ezplanation:

Notea:

15-52

.tc C

space

Removed

The tab repetition character becomes c, or is removed, specifying mo­
tion.

E

Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

15.6.1.5. Summary of Taba

The table below is a summary of the types of tab stops. There are three types of internal tab
stops - left adjusting, right adjusting, and centering. In the following table:

D is the distance from the current position on the input line (where a tab was
found) to the next tab stop

next-string consists of the input characters following the tab up to the next tab or end of
line

w is the width of next-string.

Table 15-7: Types of Tab Stops

Tab Tab Length of motion or Location of
letter type repeated character& next-atring

blank Left D Following D
R Right D-W Right adjusted within D
C Centered D-W/2 Centered on right end of D

Summary of the .ta Request
Item Deuription

Form of Requeat:

Initial Value:

If No Argument:

Explanation:

Notea:

.ta Nt ...

0.8inches in nroff, 0.5 inches in troff.

Ignored

Set tab stops and types - N is the tab stop value and t is the type.
troff tab stops are preset every 0.5 inches; nroff tab stops are preset
every 0.8 inches. t=R means right-adjusting tabs, t=C means center­
ing tabs, and if t is absent, the tabs are left-adjusting tab stops. Stop
values in the list of tab stops are separated by spaces, and a value pre­
ceded by + is treated as an increment to the previous stop value.

E,m

15.6.2. Leaders - Repeated Runs of Characters

Leadera are repeated runs of the same character between tab stops. Leaders are most often
used to hang two separated pieces of text together. A common application is in tables of con­
tents. If you look at the table of contents for this manual you will see that the chapter and sec­
tion titles (on the left of the line) are separated from the page number (on the right end of the
line) by a row of dots. In fact here is a short example to illustrate what the leaders look like:

Version D of 15 May 1985 15-53

Formatting Documents with nroff and troff

Table or Contents

2.0 Blunt Uses of Clubs
2.1 Social Clubs

Editing and Text Processing

13
16

2.2 Arthritic Clubs .. 18
2.3 Golf Clubs ... 25
2.4 Two-by-Four Clubs ... 29

The dots are called leader,, because they 'lead' your eye from one thing to the other. It is not
nearly so easy to read stuff like that if the leaders aren't there:

2.0 Blunt Uses of Clubs
2.1 Social Clubs
2.2 Arthritic Clubs
2.3 Golf Clubs
2.4 Two-by-Four Clubs

Table or Contents

13
16
18
25
29

The leader character is normally a period, but it can in fact be any character you like - some
people prefer dots and some peopie prefer a straight line:

2.0 Blunt Uses of Clubs
2.1 Social Clubs
2.2 Arthritic Clubs
2.3 Golf Clubs
2.4 Two-by-Four Clubs

Table of Contents

13
16
18
25
29

A leader is very similar to a tab, but you get the repeated characters by typing an in-line \a
sequence instead of a tab or a \t sequence. The \a sequence is a control-A character or an ASCII

SOH (start of heading) character and is hereafter known as the leader character for the purposes
of this discussion. When the leader character is encountered in text it generates a string of
repeated characters. The length of the repeated string of characters is governed by internal tab
.top• specified just as for ordinary tabs as discussed in the section on tabs above.. The major
difference between tabs and leaders is that tabs generate motion and leaders generate a airing of
period,. Let's look at a fragment of the text that generated the examples above:

.ta S.Oi-SnR S.OiR
2.0 Blunt Uses of Clubs \a\t13"

2.1 Social Clubs \a\t16"
2.2 Arthritic Clubs \a\t18"
2.3 Golf Clubs \a\t25"
2.4 Two-by-Four Clubs \a\t29"

0

0

What we're trying to get here are lines of text with the section numbers and the titles, followed

0 by a string of leader characters, followed by some space and then the page number at the right-
hand end of the line. Tables of contents tend to look better with shorter line lengths, so we set

15-54 Version D of 15 May 1985

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

our first tab to five inches minus five en-spaces to leave a gap at the end of the leader. The
second tab is set to a right-adjusting tab at five inches. Each line of the table now contains the
text to appear on the left end, followed by a couple of spaces, followed by the \a sequence to
indicated the leader, followed by the \t sequence to indicate the tab, and finally followed by the
page number. The result of formatting all that stuff is:

2.0 Blunt Uses of Clubs ... 13
2.1 Social Clubs ... 16
2.2 Arthritic Clubs .. 18
2.3 Golf Clubs ... 25
2.4 Two-by-Four Clubs ... 29

15.6.2.1 . • le - Change the Leader Character

Just as you could use the .tc request to change the character that gets generated with tabs, you
can use the .le (leader character) request to specify the character that is generated by a leader.
The standard leader character is the period. We can show this by taking our last fragment and
placing a .le request before it to change the leader character to an underline:

.le

.ta 5.0i-SnR S.OiR
set leader character
set tabs

2.0 Blunt Uses of Clubs \a\t13"
2.1 Social Clubs \a\t16"
2.2 Arthritic Clubs \a\tl8"
2. 3 Golf Clubs \a\t25"
2.4 Two-by-Four Clubs \a\t29"

Then when we format the thing, it looks like this:

2.0 Blunt Uses of Clubs
2.1 Social Clubs
2.2 Arthritic Clubs
2.3 Golf Clubs
2.4 Two-by-Four Clubs

13
HI
18
25
29

Whereas the length of generated motion for a tab can be negative, the length of a repeated char­
acter string cannot be. Repeated character strings contain an integer number of characters, and
any residual distance is prepended as motion. Tabs or leaders found after the last tab stop are
ignored, but may be used as next-airing terminators.

Tabs and leaders are not interpreted in copy mode. \t and \a always generate a non-interpreted
tab and leader respectively, and are equivalent to actual tabs and leaders in copy mode.

Version D of 15 May 1985 15-55

Formatting Documents with nroff and troff

Summary of the .le Request
Item

Form of Request: .le c

Initial Value:

If No Argument: Removed specifying motion

Editing and Text Processing

Deacription

Explanation: The leader repetition character becomes c, or 1s removed specifying
motion.

Notea: E

15.6.3. • fc - Set Field Characters

A field is a more general mechanism for laying out material between tab stops. Hardly anyone
ever needs to use fields, but the tbl preprocessor uses them for placing tabular material on the
page. This section is a very short discussion on how to use fields. In general, when you want to
lay out tabular material you should use tbl to do the job for you. Fields are a way of reducing
the number of tab stops you have to set, and also have troff or nroff do some automatic work in
parcelling out padding space for you.

A field lives between the current position on the input line and the next tab stop. The start and

0

end of the field are indicated by a field delimiter character. troff or nroff places the field on the o
line and pads out any excess space with spaces. You indicate where the padding actually goes by
placing padding indicator characters at. various places in the field. You set the field delimiter
character and the padding indicator character with the .re (field characters) request. In the
absence of any other information, troff or nroff has the field mechanism turned off entirely. The
.re request looks like:

. fc d p

where d is the field delimiter character and p is the padding indicator character. If you do not
specify any character for a padding indicator, the space character is the default. However, this
means that you could not have spaces within the field, so you normally specify the padding indi­
cator as something other than a space.

So let's start with a very simple example of a single field and see what we get. Here is the input:

.ta 3.0i

.fc #@

I tab!
#string of characters#
!tab I
. fc

and here is the output after formattting:

15-56

set a single tab at three inches
set field delimiter character to # and

set padding indicator character to @
the ! characters show where tabs are

the ! characters show where tabs are

Version D of 15 May 1985

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

string or characters
!

This is not very exciting - the characters in the field are simply left-adjusted in the field, and
the rest or the field up to the tab stop are padded with spaces. You would get exactly the same
result ii you placed the padding indicator character at the right end or the field to indicate that
you wanted the padding on the right:

.ta 3.01

. fc # @

& !tab!
#string of characters@#
I tab I
.fc

set a single tab at three inches
set field delimiter character to #

set padding indicator character to @
the ! characters show where tabs are

the ! characters show where tabs are

As you can see, the result is identical to the one just above:

string or characters
!

But now we can place a padding indicator character at the left end or the field and get strings
right-adjusted in the field:

.ta 3.01

.fc # @

! tab I
#@string of characters#
#@another string of characters#
I tab I
. fc

set a single tab at three inches
set field delimiter character as#

set padding indicator character as@
the ! characters show where tabs are

the I characters show where tabs are

We used two strings or different length here to show how they are right-adjusted against the tab
stop:

string or characters
another string or characters

!

You can see how the spaces were placed on the left end or the field because that is we where we
placed the padding indicator character, and the strings got adjusted right to the tab stop.

Then we can get fields centered by placing the padding indicator character at both ends or the
string:

Version Dor 15 May 1985 15-57

Formatting Documents with nroff and troff Editing and Text Processing

.ta 3.0i

. fc # @

I tab!
#@string of characters@#
#@longer string of characters@#
! tab!
. fc

set a single tab at three inches
set field delimiter character as#

set padding indicator character as@
the ! characters show where tabs are

the ! characters show where tabs are

Again we used two strings of different lengths to show the effect of centering the field:

!
string of characters

longer string of characters

In general, a field or a sub-field between a pair of padding indicator characters is centered in its
space on the line.

Things get even more useful when you have multiple sub-fields in a field - the padding spaces
are then parcelled out so that the sub-fields are uniformly left-adjusted, right-adjusted, or cen­
tered between the current position and the next tab stop:

.ta w.Oi

.re#@
ut a single tab at five inches
set field delimiter character aa #
,et padding indicator character aa @

! tab! u,e the ! character& lo show where taba are

#string of characters#
#string of characters@another string#
! tab! uae the ! characters to show where tab• are

and here is the output after we format that:

string of characters
string of characters
!

another string
!

And finally we can show three strings within a field, with the left part left-adjusted, the center
part centered, and the right part right-adjusted:

.ta w.Oi

. fc # @

I tab I
#left string@center string@right string#
#longer left string@longer center string@longer right string#
I tab I

and here is the output after we format that:

!

15-58

left string
longer left string
!

center string
longer center string

right string
longer right string

!

Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

So to summarize, a field is contained between a pair of field delimiter characters. A field con­
sists of sub-fields separated by padding indicator characters. The field length is the distance on
the input line from the position where the field begins to the next tab stop. The difference
between the total length of all the sub-fields and the field length is incorporated as horizontal
padding space that is divided among the indicated padding places. The incorporated padding
can be negative.

Summary of the .Jc Request
Item Deacription

Form of Requeat:

Initial Value:

If No Argument:

Explanation:

.ref p

Field mechanism off

Field mechanism off

Set the field delimiter to a; set the padding indicator to b (if specified)
or to the space character if b is not specified. In the absence of argu­
ments, the field mechanism is turned off.

Version D of 15 May 1985 15-59

Formatting Documents with nroff and troff Editing and Text Processing

15.7. Titles, Pages, and Numbering

This is an area where things get tougher, because nothing is done for you automatically. Of
necessity, some of this section is a cookbook, to be copied literally until you get some experience.

Suppose you want a title at the top of each page, saying just

left top center top right top

There was a very early text formatter called roff, where you could say

.he 'left top'center top'right top'

.fo 'left bottom'center bottom'right bottom'

to get headers and footers automatically on every page. Alas, this doesn't work in troff, which
is a serious hardship for the novice. Instead you have to do a lot of specification:

• You have to say what the actual title is (reasonably easy - you just use the .ti request to
specify what the title is).

• You have to specify when to print the title (also reasonably easy - you set a trap to call a
macro that actually does the work),

• and finally you have to say what to do at and around the title line (this is the hard part).

Taking these three things in reverse order, first we define a .NP macro (for 'new page') to pro­
cess titles and the like at the end of one page and the beginning of the next:

.de NP
'bp
1sp 0.51
.tl 'left top'center top'right top'

1sp 0.31

To make sure we're at the top of a page, we issue a 'begin page' request 1bp, which skips to top­
of-page (we'll explain the' shortly). Then we space down half an inch (with the 'sp0.5i request),
and print the title (the use of .ti should be self explanatory - later we will discuss parameteriz­
ing the titles), space another 0.3 inches (with the 1sp0.3i request), and we're done.

To ask for .NP at the bottom of each page, we have to say something like 'when the text is
within an inch of the bottom of the page, start the processing for a new page'. This is done with
a 'when' request .wh:

.wh -11 NP

No '.' is used before NP because this is simply the name of a macro, not a macro call. The
minus sign means 'measure up from the bottom of the page', so '-li' means 'one inch from the
bottom'.

The .wh request appears in the input outside the definition of .NP; typically the input would be

15-60 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

.de NP
definition of the NP macro

.wh -11 NP

Now what happens? As text is actually being output, troff keeps track of its vertical position on
the page. After a line is printed within one inch from the bottom, the .NP macro is activated.
In the jargon, the .wh request sets a trap at the specified place, which is 'sprung' when that
point is passed . • NP skips to the top of the next page (that's what the 'hp was for), then prints
the title with the appropriate margins.

Why 'hp and 'sp instead of .bp and .sp? The answer is that .bp and .sp, and like several other
requests, break the current line - that is, all the input text collected but not yet printed is
flushed out as soon as possible, and the next input line is guaranteed to start a new line of out­
put. If we had used .bp or .sp in the .NP macro, a break would occur in the middle of the
current output line when a new page is started. The effect would be to print the left-over part
of that line at the top of the page, followed by the next input line on a new output line, some­
thing like this:

last line but one at almost at the bottom of the page
last line at the bottom of the

title on the bottom of the page

page break

title on the top of the next page

page.

This is not what we want. Using I instead of • for a request tells troff that no break is to take
place - the output line currently being filled should not be forced out before the space or new
page.

The list of requests that break lines is short and natural:

Table 15-8: Requests that Cause a Line Break

Command Explanation

. bp Begin a new page

. br Break the current output line

. ce Center line(s) ·
• f i Start filling text lines
. n f Stop filling text lines
. sp Space vertically
. in Indent the left margin
. ti Temporary indent the left margin for the next line only

No other requests break lines, regardless of whether you use a • or a '· If you really do need a
break, add a .br (break) request at the appropriate place.

Version D of 15 May 1985 15-61

Formatting Documents with nroff and troff Editing and Text Processing

One other thing to beware of - if you're changing fonts or point sizes a lot, you may find that if
you cross a page boundary in an unexpected font or size, your titles come out in that size and
font instead of what you intended. Furthermore, the length of a title is independent of the
current line length, so titles will come out at the default length of 6.5 inches unless you change
it, which is done with the .It (length of title) request.

There are several ways to fix the problems of point sizes and fonts in titles. For the simplest
applications, we can change .NP to set the proper size and font for the title, then restore the
previous values, like this:

.de NP
'bp
'sp 0.51
. ft R \" set title font to roman
.ps 10 \" and size to 10 point
. lt 61 \" and length to 6 inches
.tl 'left 1 center 1right 1

.ps \" revert to previous size

. ft P \" and to previous font
1sp 0.3i

This version of .NP does not work if the fields in the .ti request contain size or font changes.
What we would like to do in cases like this is remember the status of certain aspects of the
environment, change them to meet our needs for the time being, and then restore them after
we're done with the special stuff. This requirement is satisfied by troff's 'environment' mechan­
ism. discussed in the section on Saving State With Environmenta.

To get a footer at the bottom of a page, you can modify .NP so it does some processing before
the 1hp request, or split the job so that there is a separate footer macro invoked at the bottom
margin and a header macro invoked at the top of the page.

Output page numbers are computed automatically as each page is produced (starting at I), but
no numbers are printed unless you ask for them explicitly. To get page numbers printed, include
the character % in the .ti line at the position where you want the number to appear. For exam­
ple

.ti "- % -"

centers the page number inside hyphens. You can set the page number at any time with either
.hp n, which immediately starts a new page numbered n, or with .pn n, which sets the page
number for the next page but doesn't skip to the new. page. Again, .hp +n sets the page
number ton more than its current value; .hp means .hp +1.

15. 7.1. Three Part Titles for Running Headers and Footers

The .ti (title) request automatically places three text fields at the left, center, and right of a line
(with a title-length specifiable via the .It (length of title) request. The most common use for
three-part titles is to put running headers and footers at the top and bottom of pages just like
those in this manual. In fact, the .ti request may be used anywhere, and is independent of the

0

0

normal text collecting process. For example, we just placed a three-part title right here in the o
text: '

15-62 Version D of 15 May 1985

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

Hunting the Snark -63- Smiles and Soap

by typing the a three-part title request that looks like:

.ti 'Hunting the Snark'- % -'Smiles and Soap'

and you might notice that the page number in the formatted example is the same a.s the page
number for this page.

Summary of the .ti Request
Item Deuription

Form of Reque.t:

Initial Value:

If No Argument:

Ezplanation:

.ti 'left 'center 'right'

Nothing

Nothing

The strings left, center, and right are respectively left-adjusted, cen­
tered, and right-adjusted in the current title-length. Any of the
strings may be empty, and overlapping is permitted. If the page­
number character (initially%) is found within any of the fields it is re­
placed by the current page number having the format assigned to re­
gister %. Any character may be used a.s the string delimiter.

Summary of the .pc Request
Item Deuription

Form of Requeat:

Initial Value:

If No Argument:

Explanation:

.pc C

%
Off

Set the page number character to c, or remove it if there is no c argu­
ment. The page-number regiater remains %.

Summary of the .It Request
Item Description

Form of Reque.t:

Initial Value:

If No Argument:

Ezplanation:

Notes:

.It C

6.5 inches

Use previous value

Set length of title to ±N. The line-length and the title-length are in•
dependent. Indents do not apply to titles; page-offsets do.

E,m

Version D of 15 May 1985 15-63

Formatting Documents with nroff and troff Editing and Text Processing

15.8. Input and Output when using troff

We now describe two nroff requests that we omitted earlier, because their usefulness is more
apparent when you understand the nroff command line. Normally nroff takes its input from the
files given when it is called up. However there are ways in which the formatter can be made to
take part of its input from elsewhere, using nroff requests embedded in the document text.

15.8.1. • so - Read Text from a File

The .so request, which tells nroff to switch over and take its source from the named file. For
example, suppose you have a set of macros that you have defined, and you have them in a file
called 'macros'. We can call them up from the nroff command line:

tutorial% nroff macros document
tutorial%

as we showed earlier, but it's a bit of a nuisance having to do this all the time. Also, if only
some of our documents use the macros, and others don't, it can be difficult to remember which is
which. An alternative is to make the first line of the 'document' file look like this:

.so macros

Now we can format the document by:

tutorial% nroff document
tutorial%

The first thing nroff sees in the file 'document' is the request .so macros which tells it to read
input from the file called 'macros'. When it finishes taking input from 'macros', nroff continues
to read the original file 'document'.

Another way of using the .so request lets you format a complete document, held in several files,
by only giving one filename to the nroff command. Let us create a file called 'document' con­
taining:

.so macros

.so sectlon.1

.so section.2

.so section.3
and so on through the document until ...

. so appendix. C

We can now format it with the nroff command line:

tutorial% nroff document I lpr
tutorial%

This is a lot easier than typing all the filenames each time you format the document, and a lot
less prone to error.

This technique is especially useful if your filenames reflect the contents of the various sections,
rather than the order in which they appear. For instance, look at this file which describes a

15-64 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

whole book (something like the one you are reading):

tutorial% cat book
.so bookmacros
.so preface
.so intro
.so login
.so directs
.so stdio

\"Getting Started on the UNIX System
\"Directories and the File System
\"Commands, Processes, and Standard Files

.so biblio
tutorial%

<etc .. ,>
\"Bibliography

It is obviously much easier to format the whole thing with an nroff command line like this:

tutorial% nroff book I lpr
tutorial%

than it would be if you had to supply all the filenames in the right order. Notice that we used
the comment feature of nroff to tie chapter titles to filenames.

Summary of the .so Request
Item De,cription

Form of Reque.t:

Explanation:

.so filename

Switch source file - The top input (file reading) level is switched to
filename. The effect of an so in a macro is felt when so is encoun­
tered. When the new file ends, input is again taken from the original
file. so's may be nested.

Summary of the . nx Request
Item Deuription

Form of Reque•t:

If No Argument:

Explanation:

.nx filename

end-of-file

Next file is filename. The current file is considered ended, and the in­
put is immediately switched to filename.

Summary of the .pi Request
Item Deacription

Form of Reque.t:

Explanation:

.pi program_name

Pipe out.put to program (nroff only). This request must occur before
any printing occurs. No ·arguments are transmitted to program.

Version D of 15 May 1985 15-65

Formatting Documents with nroff and troff Editing and Text Processing

15.8.2. , rd - Read from the Standard Input

The input can be temporarily switched to the system atandard input with rd, which will switch
back when two newlines in a row are found (the extra blank line is not used). This mechanism is
intended for insertions in form-letter-like documentation. On UNIX, the atandard input can be
the user's keyboard, a pipe, or a file.

Another nroff request that switches input from the file you specify is the .rd (read) request. The
rd request reads an insertion from the standard input. When nroff encounters the .rd request,
it prompts for input by sounding the terminal bell. A visible prompt can be given by adding an
argument to .rd, as we show in the example below.

Everything typed up to a blank line (two newline characters in a row) is inserted into the text
being formatted at that point. This can be used to 'personalize' form letters. If you have an
input file with this text:

.po 10

.nf

.in 20
14th February
.in 0
Dear
.rd who

Will you be my Valentine?
If you will, give me a sign
(I like roses, I like wine).

then when you format it, you will be prompted for input:

tutorial% nroff valentine I lpr
who:Peter

tutorial%

After typing the name Peter you have to press the RETURN key twice, since nroff needs a blank
line to end input. The results of formatting that file is:

14th February

Dear Peter
Will you be my Valentine?
If you will, give me a sign
(I like roses, I like wine).

To get another copy of this for Bill, you just run the nroff command again:

tutorial% nroff valentine I lpr
who:Bill

tutorial%

and again for Joe, and for Manuel, and Louis, and Alphonse, and ...

15-66 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

Since nroff takes input from the terminal up to a blank line, you are not limited to a single word,
or even a single line of input. You can use this method to insert addresses or anything else into
form letters.

Summary of the .ex Request
Item

Form of Reque.t: .ex prompt

Deacription

Explanation: Exit from nroff/troff. Text processing is terminated exactly as if all
innut had ended.

Summary of the .rd Request
Item

Form of Requeat:

Initial Value:

If No Argument:

.rd prompt

Not applicable

prompt=BEL

Deacription

Explanation: Read insertion from the standard input until two newlines in a row are
found. If the standard input is the user's keyboard, prompt (or a BEL)
is written onto the user's terminal. rd behaves like a macro, and ar­
guments may be placed after prompt.

If insertions are to be taken from the terminal keyboard while output is being printed on the ter­
minal, the command line option -q will turn off the echoing of keyboard input and prompt only
with BEL. The regular input and insertion input cannot simultaneously come from the standard
input.

AI; an example, multiple copies of a form letter may be prepared by entering the insertions for
all the copies in one file to be used as the standard input, and causing the file containing the
letter to re invoke itself using nx (§ 19); the process would ultimately be ended by an ex in the
insertion file.

15.8.3. • tm - Send Messages to the Standard Error File

The .tm (terminal message) request displays a message on the standard error file. The request
looks like:

tell me some good news

and when troff or nroff encounters this in the input file, it displays the string

tell me some good news

on the standard error file. This request has been used in older versions of the -ms macro pack­
age to rebuke the user when (for instance) an abstract for a paper was bigger than a page.
Other macro packages use the .tm request for assisting in generating tables of contents and
indices and such supplementary material.

Version D of 15 May 1985 15-67

Formatting Documents with nroff and troff

Summary of the .trn Request
Item

Form of Reque.t:

Initial Value:

If No Argument:

.tm airing

Not applicable

Display a newline

Editing and Text Processing

De•cription

Explanation: After skipping initial blanks, Btring (rest of the line) is read in copy
mode and written on the user's terminal.

15-68 Version D of 15 May 1985

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

15.9. Using Strings as Shorthand

Obviously if a paper contains a large number of occurrences of an acute accent over a letter 'e',
typing \o"e\ "' for each e would be a great nuisance.

Fortunately, troff provides a way in which you can store an arbitrary collection of text in a
'string', and thereafter use the string name as a shorthand for its contents. Strings are one of
several troff mechanisms whose judicious use lets you type a document with less effort and
organize it so that extensive format changes can be made with few editing changes. A reference
to a string is replaced by whatever text the string was defined as.

A string is a named string of character•, not including a newline character, that may be inter­
polated by name at any point in your text. Note that names of troff requests, names of macros,
and names of strings, all share the aame name list. String names may be one or two characters
long and may usurp previously defined request, macro, or string names.

You create a string (and give it an initial value) with the .ds (define string) request. You can
later add more characters to the end of the string by using the .as (append to string) request.

You get the value of a string placed in the text, where it is said to be interpolated, by using the
notation:

\u

for a one-character string name called x, and the more complicated notation:

\•(xx

0 for a two-character string name xx. String references and macro invocations may be nested.

0

Strings (just like macros) can be renamed with the .rn (rename) request, or can be removed
from the namelist with the .rm (remove) request.

15.0.1 . • ds - Define Strings

You create a string (and define its initial value) with the .ds (define string) request. The line

.ds e \o"e\'"

defines the string e to have the value \o"e\ "'
String names may be either one or two characters long, and are referred to by\ •x for one char­
acter names or \ •(xy for two character names. Thus to get telephone, given the definition of
the string e as above, we can say t\ *el\ *ephone.

As another live example, in the section on Ligature• we noted that troff doesn't know about the
Scandinavian ligatures - you have to make them up for yourself. Here are the definitions of the
strings for those ligatures:

.ds ae a\h'-(\w'a'u*4/10) 'e

.ds Ae A\h'-(\w'A'u*4/10) 'E

.ds oe o\h'-(\w'o'u*4/10) 'e

.ds Oe O\h'-(\w'O'u*4/10) 'E

Version D of 15 May 1985 15-69

Formatting Documents with nroff and troff Editing and Text Processing

See the section on Arbitrary Horizontal Motiona with the \h Function for a discussion on what
the \h constructs are doing in the string definitions above. Having defined the strings, all you o
have to do is type the string references like this:

... the Scandinavian ligatures *(oe, *(ae, *(Oe, and *(Ae ...

in order to get ... the Scandinavian ligatures ce, a,, <E, and AE ... into your stream of text.

If a string must begin with spaces, define it as

. ds xx " text

The double quote signals the beginning of the definition. There is no trailing quote - the end of
the line terminates the string.

A string may actually be several lines long; if troff encounters a \ at the end of any line, it is
thrown away and the next line added to the current one. So you can make a long string simply
by ending each line but the last with a backslash:

.ds xx this\
is a very\
long string

Strings may be defined in terms of other strings, or even in terms of themselves.

Summary of the .ds Request
Item

Form of Request:

Initial Value:

If No Argument:

.ds zz atring

Not applicable

Ignored

Deacription

Explanation: Define a string xx containing atring. Any initial double-quote in atring
is stripped off to permit initial spaces.

15.9.2 . • as -Append to a String

The .as (append to string) request adds characters to the end of a string. You use the .as
request like this

. as xx string-of-characters

where atring-of-charactera is appended to the end of whatever is already in the string zz.

Note that the string mentioned in a .as request is created if it didn't already exist, so in that
respect an initial .as request acts just like a .ds request.

For example, here's a short fragment from the .H macro that was used to generate the section
numbers in this document. The .H macro is called up like

.H level-number "Text of the Title"

15-70 Version D of 15 Ma.y 1985

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

where level-number is l, 2, 3, ... to indicate that this is a first, second, third, ... level heading.
The .H macro keeps track of the various section numbers via a bunch of number registers Hl
through HS, and they are tested for and appended to the SN string if appropriate. For example:

.ds SN \ \n (Hl. set the initial section number string

.if \\n(NS>l .as SN \\n(H2. append Hf! if needed

.if \\n(NS>2 .as SN \\n(H3. append HS if needed

.if \\n(NS>3 .as SN \\n(H4. append HI if needed
,if \\n(NS>4 .as SN \\n(HS. append HS if needed

more processing to compute indentations and such ...

*(SN\\\\ \t\c
\&\\$2

and yet more processing ...

Now output the text

Let's unscramble that mess. The essential parts are the initial line that says:

. ds SN \ \n (Hl. set the initial section number string

which sets the SN (Section Number) string to the value of the Hl number register that counts
chapter level numbers. Then the following four lines essentially all perform a test that say:

.if the level-number is greater than N, append the next higher section counter to the
string. That is, if the current section number is greater than 2, we append the value
of the level 3 counter, then if the section number is greater than 3, we append the
value of the level 4 counter, and so on.

Finally, the built-up SN string, followed by the text of the title, gets placed into the output text
with the lines that read:

*(SN\\\\ \t\c
\&\\$2

Now output the text

And in fact we can use the mechanisms that exist to play games like that because we are using a
macro package to format thia document, and those number registers are available to us. So we
can define a string like this:

.ds XX \n(Hl-

and interpolate that string like this:

*(XX

to get the value

15-

printed in the text. Now we can append the rest of the section counters to that XX string like
this (without caring whether they have any values):

Version D of 15 May 1985 15-71

Formatting Documents with nroff and troff

.as XX \n(H2-\n(H3-\n(H4-\n(H5

and then when we interpolate that string we get this:

15-9-2-0-0

Editing and Text Processing

which if you look, should be the section number of the stuff you are now reading.

Summary of the .ds Request
Item Deacription

Form of Request:

Initial Value:

If No Argument:

Explanation:

15-72

.ds xx airing

Not applicable

Ignored

Append string to string xx (append version of ds). The string xx 1s
created if it didn't already exist.

Version D of 15 May 1985

0

01
I

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

15.10. Macros, Diversions, and Traps

15 . .10.1. Macros

Before we can go much further in troff or troff, we need to learn a bit about the macro facility.
In its simplest form, a macro is just a shorthand notation quite similar to a string. But, whereas
a string is somewhat limited, a macro can not only contain multiple lines of text and requests,
but a macro can also deal with arguments that can change its behavior from one invocation to
the next.

A macro is a named set of arbitrary line• that may be invoked by name or with a trap. Request,
macro, and string names share the ,ame name list. Macro names may be one or two characters
long and may usurp previously defined request, macro, or string names. Any of these entities
may be renamed with rn or removed with rm. Macros are created by de and di, and appended
to by am and da; di and da cause normal output to be stored in a macro. A macro is invoked
in the same way as a request; a control line beginning .zz interpolates the contents of macro zz.
The remainder of the line may contain up to nine argument,. String references and macro invo­
cations may be nested.

15.10.1.1 . • de - Define a Macro

Suppose we want every paragraph to start in exactly the same way - with a space and a tem­
porary indent of two ems. We show a (very simplified) version of the .PP (paragraph) macro
from the -ms macro package:

.sp

.ti +2m"

Then to save typing, we would like to collapse these into one shorthand line, a troff 'request' like

.PP

that would be treated by troff exactly as if you had typed:

.sp

.ti +2m

.PP is called a macro. The way we tell troff what .PP means is to define it with the .de
(define) request:

.de PP

.sp

.ti +2m

The first line names the macro (we used .PP for which is a standard notation for 'paragraph'. It
is common practice to use upper-case names for macros so that their names don't conflict with
ordinary troff requests. The last line • • marks the end of the definition. In between is the text
(often called the replacement te:rt), which is simply inserted whenever troff sees the 'request' or

Version D of 15 May 1985 15-73

Formatting Documents with nroff and troff Editing and Text Processing

macro call

.PP

The definition of .PP has to precede its first use; undefined macros are simply ignored. Names
are restricted to one or two characters.

Using macros for commonly occurring sequences of requests is critically important. Not only
does it save typing, but it makes later changes much easier. Suppose we decide that the para­
graph indent is too small, the vertical space is much too big, and roman font should be forced.
Instead of changing the whole document, we need only change the definition of .PP to something
like

.de pp \" paragraph macro

.sp 2p

.ti +3m

.ft R

and·the change takes effect everywhere we used .PP.

\" is an in-line troff function that means that the rest of the line is to be ignored. We use it
here to add comments to the macro definition (a wise idea once definitions get complicated).

As another example of macros, consider these two which start and end a block of offset, unfilled
text, like most of the examples in this paper:

.de BS \" start indented block

.sp

.nf

.in +0.31

.de BE \" end indented block

.sp

. fi

.in -0.31

Now we can surround text like

Copy to
John Doe
Richard Roberts
Stanley Smith

by the requests .BS and .BE, and it will come out as it did above. Notice that we indented by
.in +0.3i instead of .in 0.3i. This way we can nest our uses of .BS and BE to get blocks within
blocks.

If later on we decide that the indent should be 0.5i, then it is only necessary to change the
definitions of .BS and .BE, not the whole paper.

15-74 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

15.10.1.2. Macro• with Argument•

The next step is to define macros that can change from one use to the next according to parame­
ters supplied as argument, to the macro. To make this work, we need two things: first, when
we define the macro, we have to indicate that some parts of it will be provided as arguments
when the macro is called. Then when the macro is called we have to provide actual arguments
to be plugged into the definition.

When a macro is invoked by name, the remainder of the line is taken to contain up to nine argu­
ments. The argument separator is the space character, and arguments may be surrounded by
double-quotes to permit embedded space characters. Pairs of double-quotes may be embedded in
double-quoted arguments to represent a single double-quote. If the desired arguments won't fit
on a line, a concealed newline may be used to continue on the next line.

When a macro is invoked the input level is pushed down and any arguments available at the pre­
vious level become unavailable until the macro is completely read and the previous level is
restored. A macro's own arguments can be interpolated at any point within the macro with \$JV,
which interpolates the Nth argument (1:SN:S9). If an invoked argument doesn't exist, a null
string results. For example, the macro xx may be defined by

&de xx \"begin definition
Today is \\$1 the \\$2.
&. \"end definition

and called by

&xx Monday 14th

to produce the text

Today is Monday the 14th.

Note that the \ $ was concealed in the definition with a preceding \. The number of currently
available arguments is in the .$ register.

No arguments are available at the top (non-macro) level in this implementation. Because string
referencing is implemented as an input-level push down, no arguments are available from within
a string. No arguments are available within a trap-invoked macro.

Arguments are copied in copy mode onto a stack where they are available for reference. The
mechanism does not allow an argument to contain a direct reference to a long string (interpo­
lated at copy time) and it is advisable to conceal string references (with an extra \) to delay
interpolation until argument reference time.

Version D of 15 May 1985 15-75

Formatting Documents with nroff and troff Editing and Text Processing

Summary of the .de Request
Item Deacription

Form of Request:

Initial Value:

If No Argument:

Explanation:

.de xx yy

Not applicable

.yy= .•

Define or redefine the macro xx. The contents of the macro begin on
the next input line. Input lines are copied in copy mode until the
definition is terminated by a line beginning with .yy, whereupon the
macro yy is called. In the absence of yy, the definition is terminated
by a line beginning with ' •• '. A macro may contain de requests pro­
vided the terminating macros differ or the contained definition termi­
nator is concealed. ' •• ' can be concealed as \\·. which will copy as
\ •• and be reread as' •• '.

15.10.1.9 . • am -Append to a Macro

Summary of the .am Request
Item

Form of Request:

Initial Value:

If No Argument:

.am xx yy

Not applicable

.yy= ••

Deuription

Explanation: Append to macro (append version of de).

15.10.1 . .j. • rm - Remove Requeata, Macros, or Strings

Summary of the .rm Request
Item

Form of Requeat:

Initial Value:

If No Argument:

.rm F

Not applicable

Ignored

Description

Explanation: Remove request, macro, or string. The name zz is removed from the
name list and any related storage space is freed. Subsequent refer­
ences will have no effect.

15-76 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

15.10.1.5 . • rn - Rename Requeata, Macro• or String•

Summary of the . rn Request
Item

Form of Requeat:

Initial Value:

If No Argument:

.rn xx yy

Not applicable

Ignored

Description

Explanation: Rename request, macro, or string xx to yy. If yy exists, it is first re­
moved.

Let us illustrate by defining a macro .SM that will print its argument two point sizes smaller
than the surrounding text. That is, the macro call

.SM TROFF

will produce TROFF.

The definition of .SM is

.de SM
\s-2\ \$1 \s+2

Within a macro definition, the symbol \ \$n refers to the nth argument that the macro was
called with. Thus\ \$1 is the string to be placed in a smaller point size when .SM is called.

As a slightly more complicated version, the following definition of .SM permits optional second
and third arguments that will be printed in the normal size:

.de SM
\\$3\s-2\\$1\s+2\\$2

Arguments not provided when the macro is called are treated as empty, so

.SM TROFF) ,

produces TROFF), while

.SM TROFF) .

produces (TROFF). It is convenient to reverse the order of arguments because trailing punctua­
tion is much more common than leading.

By the way, the number of arguments that a macro was called with is available in number regis­
ter ,$.

The following macro .BD is the one used to make the 'bold roman' we have been using for troff
request names in text. It combines horizontal motions, width computations, and argument rear­
rangement.

Version D of 15 May 1985 15-77

Formatting Documents with nroff and troff

.de BD
\&\\$3\fl\\$1\h'-\w'\\$1'u+lu'\\$1\fP\\$2

Editing and Text Processing

The \h and \ w commands need no extra backslash, as we discussed above. The \& is there in
case the argument begins with a period.

Two backslashes are needed with the \ \$n commands, though, to protect one 0£ them when the
macro is being defined. Perhaps a second example will make this clearer. Consider a macro
called .SH which produces section headings rather like those in this paper, with the sections
numbered automatically, and the title in bold in a smaller size. The use is

. SH "Section title ... "

If the argument to a macro is to contain spaces, then it must be surrounded by double quotes,
unlike a string, where only one leading quote is permitted.

Here is the definition of the .SH macro:

.nr SH O \" initialize section number

.de SH

. sp O. 3i

. ft B

.nr SH \\n(SH+l\ 11 increment number

. ps \ \n (PS-1 \" decrease PS
\\n(SH. \\$1 \ 11 number. title
.ps \\n(PS \" restore PS
.sp 0.3i
. ft R

The section number is kept in number register SH, which is incremented each t.ime just before it
is used. A number register may have the same name as a macro without conflict but a string
may not.

We used \ \n(SH instead of \n(SH and \ \n(PS instead of \n(PS. If we had used \n(SH, we
would get the value of the register at the time the macro was defined, not at the time it was
used. If that's what you want, fine, but not here. Similarly, by using\ \n(PS, we get the point
size at the time the macro is called.

As an example that does not involve numbers, recall our .NP macro which had a

.tl 1 left'center'right'

We could make these into parameters by using instead

.tl '*(LT'*(CT'*(RT'

so the title comes from three strings called LT, CT and RT. If these are empty, then the title
will be a blank line. Normally CT would be set with something like

.ds CT - % -

15-78 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

to give just the page number between hyphens, but a user could supply private definitions for
any of the strings.

15.10.1.6. Copy Mode Input Interpretation

During definition and extension of strings and macros (not by diversion) the input is read in copy
mode. The input is copied without interpretation except that:
• The contents of number registers indicated by \n are interpolated.
• Strings indicated by \ • are interpolated.
• Arguments indicated by \ $ are interpolated.
• Concealed newlines indicated by \(newline) are eliminated.
• Comments indicated by\" are eliminated.
• \t and \a are interpreted as ASCII horizontal tab and SOH respectively (§9).
• \ \ is interpreted as\.
• \. is interpreted as".".

These interpretations can be suppressed by prepending a \. For example, since \ \ maps into a
\, \ \n will copy as \n which will be interpreted as a number register indicator when the macro
or string is reread.

15.10.2. Using Diversions to Store Text for Later Processing

There are numerous occasions in page layout when it is necessary to store some text for a period
of time without actually printing it. Footnotes are the most obvious example: the text of the
footnote usually appears in the input well before the place on the page where it is to be printed
is reached. In fact, the place where it is output normally depends on how big it is, which implies
that there must be a way to process the footnote at least enough to decide its size without print­
ing it.

troff provides a mechanism called a diversion for doing this processing. A diversion is very simi­
lar to a macro and in fact uses the same mechanisms as the macro facility. Any part of the out­
put may be sent into a diversion instead of being printed, and then at some convenient time the
diversion may be brought back into the input.

15.10.2.1 . • di - Divert Text

The request .di xy begins a diversion - all subsequent output is collected into the diversion
called xy until a .di request with no argument is encountered, which terminates the diversion.
The processed text is available at any time thereafter, simply by giving the request

.xy

The vertical size of the last finished diversion is contained in the built-in number register dn.

As a simple example, suppose we want to implement a 'keep-release' operation, so that text
between the requests .KS and .KE will not be split across a page boundary (as for a figure or
table). Clearly, when a .KS is encountered, we have to begin diverting the output so we can
find out how big it is. Then when a .KE is seen, we decide whether the diverted text will fit on
the current page, and print it either there if it fits, or at the top of the next page if it doesn't.

Version D of 15 May 1985 15-79

Formatting Documents with nroff and troff Editing and Text Processing

So:

.de KS \" start keep

.br \" start fresh line

.ev 1 \" collect in new environment

. fi \" make it filled text

.di xx \" collect in XX

.de KE \" end keep

.br \" get last partial line

.di \" end diversion

.if \ \n (dn>=\ \n (. t .bp \" bp if doesn't fit

.nf \" bring it back in no-fill

.xx \" text

.ev \" return to normal environment

Recall that number register nl is the current pos1t1on on the output page. Since output was
being diverted, this remains at its value when the diversion started. dn is the amount of text in
the diversion; .t (another built-in register) is the distance to the next trap, which we assume is at
the bottom margin of the page. If the diversion is large enough to go past the trap, the .ir is
satisfied, and a .bp is issued. In either case, the diverted output is then brought back with .XX.
It is essential to bring it back in no-fill mode so troff will do no further processing on it.

This is not the most general keep-release, nor is it robust in the face of all conceivable inputs,
but it would require more space than we have here to write it in full generality. This section is
not intended to teach everything about diversions, but to sketch out enough that you can read
existing macro packages with some comprehension.

Processed output may be diverted into a macro for purposes such as footnote processing or
determining the horizontal and vertical size of some text for conditional changing of pages or
columns. A single diversion trap may be set at a specified vertical position. The number regis­
ters dn and di respectively contain the vertical and horizontal size of the most recently ended
diversion.

Processed text that is diverted into a macro retains the vertical size of each of its lines when
reread in nofi/1 mode regardless of the current V. Constant-spaced (cs) or emboldened (bd) text
that is diverted can be reread correctly only if these modes are again or still in effect at reread
time. One way to do this is to embed in the diversion the appropriate cs or bd requests with
the tran~parent mechanism described in the Introduction to nroff and troff.

Diversions may be nested and certain parameters and registers are associated with the current
diversion level (the top non-diversion level may be thought of as the 0th diversion level). These
are the diversion trap and associated macro, no-space mode, the internally-saved marked place
(see mk and rt), the current vertical place (.d register), the current high-water text base-line (.h
register), and the current diversion name (.z register).

15-80 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

Summary of the .di Request
Item Description

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

.di zz

Not applicable

End of diversion

Divert output to macro zz. Normal text processing occurs during
diversion except that page offsetting is not done. The diversion ends
when the request di or da is encountered without an argument; ex­
traneous requests of this type should not appear when nested diver­
sions are being used.

D

15.10.2.2 . • da - Append to a Diversion

Summary of the .da Request
Item

Form of Request:

Initial Value:

If No Argument:

.da zz

Not applicable

End of diversion

Description

Explanation: Append to diversion zz. This is the diversion equivalent of the .am
(append to macro) request.

15.10.3. Using Traps to Process Text at Specific Places on a Page

Three types of trap mechanisms are available, namely page traps, diversion trap,, and input­
line-count traps.

Macro-invocation traps may be planted using the .wh (when) request at any page position
including the top. This trap position may be changed using the .ch (change) request. Trap
positions at or below the bottom of the page have no effect unless or until moved to within the
page or rendered effective by an increase in page length.

Two traps may be planted at the same position only by first planting them at different positions
and then moving one of the traps; the first planted trap will conceal the second unless and until
the first one is moved. If the first one is moved back, it again conceals the second trap.

The macro associated with a page trap is automatically invoked when a line of text is output
whose vertical size reaches or sweeps past the trap position. Reaching the bottom of a page
springs the top-of-page trap, if any, provided there is a next page.

The distance to the next trap position is available in the .t register; if there are no traps
between the current position and the bottom of the page, the distance returned is the distance to

Version D of 15 May 1985 15-81

the page bottom.

A macro-invocation trap effective in the current diversion may be planted using the odt (diver­
sion trap) request. The .t register works in a diversion; if there is no subsequent trap a large
distance is returned. For a description of input-line-count traps, see the .it request below.

15.10.9.1. • wh -- Set Page or Poaition Trapa

Summary of the . wh Request
Item

Form of Reque.t:

Initial Value:

If No Argument:

.wh N xx

Not applicable

Not applicable

De,cription

Explanation: Install a trap to invoke xx at page position N; a negative N will be in­
terpreted with respect to the page bottom. Any macro previously
planted at N is replaced by xx. A zero N refers to the top of a page.
In the absence of xx, the first found trap at N, if any, is removed.

Notes: V

15.10.9.fJ. , ch - Change Poaition of a Page Trap

Summary of the .ch Request
Item

Form of Request:

Initial Value:

If No Argument:

.ch zz N

Not applicable

Not applicable

Deacription

Explanation: Change the trap position for macro zz to be N. In the absence of lV,
the trap, if any, is removed.

Notea: V

15.10.9.9. • dt - Set a Diveraion Trap

15-82 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing

Summary of the .dt Request
Item

Form of Request: .dt N zz

Initial Value: Not applicable

If No Argument: Turn off diversion trap

Formatting Documents with nroff and troff

Description

Explanation: Install a diversion trap at position Nin the current diversion to invoke
macro zx. Another dt will redefine the diversion trap. If no argu­
ments are given, the diversion trap is removed.

Notes: D,v

15.10.S.,I. , it - Set an Input-Line Count Trap

Summary of the .it Request
Item

Form of Reque.t:

Initial Value:

If No Argument:

.it N zz

Not applicable

Turn off trap

Deacription

Explanation: Set an input-line-count trap to invoke the macro zx after N lines of
text input have been read (control or request lines don't count). The
text may be in-line text or text interpolated by inline or trap-invoked
macros.

Note,: E

15.10.S.5. , em - Set the End of Proceuing Trap

Summary of the .em Request
Item

Form of Reque.t:

Initial Value:

If No Argument:

.em zz

Not applicable

No trap installed

Deacription

Explanation: Call the macro xx when all input has ended. The effect is the same as
if the contents of zx had been at the end of the last file processed.

Version D of 15 May 1985 15-83

Formatting Documents with nroff and troff Editing and Text Processing

15.11. Number Registers and Arithmetic

In a programmable text formatter such as troff, you need a facility for storing numbers some­
where, retrieving the numbers, and for doing arithmetic on those numbers. troff meets this need
by providing things called number registera. Number registers give you the ability to define
variables where you can place numbers, retrieve the values of the variables, and do arithmetic on
those values. Number registers, like strings and macros, can be useful in setting up a document
so it is easy to change later. And of course number registers serve for any sort of arithmetic
computation.

Number registers, just like strings, have one- or two-character names. They are set by the .nr
(number register) request, and are referenced anywhere by \nx (one character name) or \n(zy
(two character name). When you access a number register so that its value appears in the
printed text, the jargon says that you have interpolated the value of the number register.

A variety of parameters are available to the user as predefined, named number registera (see
Appendix B, the troff Request Summary, and Appendix D, Predefined Number Registers). In
addition, the user may define his own named registers. Register names are one or two characters
long and do not conflict with request, macro, or string names. Except for certain predefined
read-only registers, a number register can be read, written, automatically incremented or decre­
mented, and interpolated into the input in a variety of formats. One common use of user­
defined registers is to automatically number sections, paragraphs, lines, etc. A number register
may be used any time numerical input is expected or desired and may be used in numerical
expreaa,ona.

0

troff defines several pre-defined number registers (see Appendix D). Among them are % for the

0 current page number, nl for the current vertical position on the page, dy, mo, and yr for the
current day, month and year; and .s and .r for the current size and font - the font is a number
from l to 4. Any of these number registers can be used in computations like any other register,
but some, like .s and .r, cannot be changed with an .nr request because they are read only.

15.11.1. .nr - Set Number Registers

You create and modify number registers using the .nr (number register) request. In its simplest
form, the .nr request just places a value into a number register - the register is created if it
doesn't already exist. The .nr request specifies the name of the number register, and also
specifies the initial value to be placed in there. So the request

.nr PD l.Sv

would be a request to set a register called PD (which we might know as 'Paragraph Depth' if we
were writing a macro package) to the value 1.5v (1.5 of troff's vertical units).

As an example of the use of number registers, in the -ms macro package, most significant
parameters are defined in terms of the values of a handful of number registers (see the Chapter
Formatting Document, with the '-ma' Macro Package). These include the point size for text,
the vertical spacing, and the line and title lengths. To set the point size and vertical spacing for
the following paragraphs, for example, a user may say:

15-84

.nr PS 9

.nr VS 11

Version D of 15 May 1985

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

The paragraph macro .PP is defined (roughly) as follows:

.de pp

.ps \\n(PS \" reset size

.vs \\n(VSp \" spacing

. ft R \" font

.sp O.Sv \" half a line

.ti +3m

This sets the font to Roman and the point size and line spacing to whatever values are stored in
the PS and VS number registers.

Why are there two backslashes? When troff originally reads the macro definition, it peels off one
backslash to see what's coming next. To ensure that another is left in the definition when the
macro is u,ed, we have to put two backslashes in the definition. If only one backslash is used,
point size and vertical spacing will be frozen at the time the macro is defined, not when the
macro is u.ed.

Protecting by an extra layer of backslashes is only needed for \n, \ *,\$(which we haven't come
to yet), and\ itself. Things like \s, \f, \h, \v, and so on do not need an extra backslash, since
they are converted by troff to an internal code immediately upon being seen.

Summary of the . nr Request
Item

Form of Reque.t:

Initial Value:

If No Argument:

.nr R ±NM

Not applicable

Ignored

De,cription

Explanation: Assign the value ±N to number register R, with respect to the previ­
ous value, if any. Set the increment for auto-incrementing to M.

Note.: u

15.11.1.1. Auto-increment Number Registers

When you set a number register wit,h the .nr request, you can also specify an additional number
as an auto-increment value - that is, the number is added to the number register every time
you access the number register. You specify the auto-increment value with a request such as:

.nr sn O 1

to specify a (hypothetical) section number register that starts off with the value O and is incre­
mented by l every time you use it. This might find application (for instance) in numbering the
sections of a document automatically - something you might expect a computer to do for you,
no? You might also define a numbered list macro that would clock up the item number every
time you started a new item.

Here's a very quick and dirty example of the use of auto-incrementing a number register:

Version D of 15 May 1985 15-85

Formatting Documents with nroff and troff Editing and Text Processing

.nrcn-12

the odd numbers \n+(cn, \n+(cn, \n+(cn, \n+(cn, \n+(cn, \n+(cn,

When we format the above sequence, we get the following:

... the odd numbers 1, 3, 5, 7, 9, 11, ...

The table below shows the effects of accessing the number registers x and xx after a .nr request
that sets them to the value N with an auto-increment value of M.

Table 15-9: Access Sequences for Auto-incrementing Number Registers

Request Acee•• Effect on
Sequence Regiater

.nrNM \nx none

.nrNM \n(xx none

.nrNM \n+x x incremented by M

.nrNM \n-z x decremented by M

.nrNM \n+(xx xx incremented by M

.nrNM \n-(xx xx decremented by M

15.11.2. Arithmetic Expressions with Number Registers

Arithmetic expressions can appear anywhere that a number is expected. As a trivial example,

.nr PS \\n(PS-2

decrements PS by 2.

Expressions can use the arithmetic operators and logical operators as shown in the table below.
Parts of an expression can be surrounded by parentheses.

15-86 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

Table 15-10: Arithmetic Operators and Logical Operators for Expressions

Arithmetic Operator Meaning

+ Addition
- Subtraction

I Division

• Multiplication
% Modulo

Logical Operator Meaning

< Less than
> Greater than

<= Less than or equal to
>= Greater than or equal to

=z or =:::::i: Equal to
& and
: or

Except where controlled by parentheses, evaluation of expressions is left-to-right - there is no
operator precedence.

Although the arithmetic we have done so far has been straightforward, more complicated things
are somewhat tricky. First, number registers hold only integers. troff arithmetic uses truncat­
ing integer division. Second, in the absence of parentheses, evaluation is done from left to right
without any operator precedence (including relational operators). Thus

7*-4+3/13

becomes '-1'. Number registers can occur anywhere in an expression, and so can scale indica­
tors like p, i, m, and so on (but no spaces). Although integer division causes truncation, each
number and its scale indicator is converted to machine units (1/432 inch) before any arithmetic
is done, so li/2u evaluates to 0.5i correctly.

The scale indicator u often has to appear where you would not expect it - in particular, when
arithmetic is being done in a context that implies horizontal or vertical dimensions. For exam­
ple,

.11 7/21

would seem obvious enough - 3.5 inches. Sorry - remember that the default units for horizon­
tal parameters like the .II request are ems. So that expression is really '7 ems / 2 inches', and
when translated into machine units, it becomes zero. How about

.11 71/2

Still no good - the '2' is '2 ems', so '7i/2' is small, although not zero. You muat use

.11 71/2u

Version D of 15 May 1985 15-87

Formatting Documents with nroff and troff Editing and Text Processing

So again, a safe rule is to attach a scale indicator to every number, even constants.

For arithmetic done within a .nr request, there is no implication of horizontal or vertical dimen­
sion, so the default units are 'units', and 7i/2 and 7i/2u mean the same thing. Thus

.nr 11 7i/2

.11 \\n(llu

does just what you want, so long as you don't forget the u on the .II request.

15.11.3 . • af - Specify Format of Number Registers

When you use a number register as part of the text, the contents of the register are said to be
interpolated into the text at that point. For example, you could use the following sequence:

.nr xy 567

the value of the \fixy\fP number register is: \n(xy.

and when you formatted that sequence, it would appear as:

... the value of the xy number register is: 567

When interpolated, the value of the number register is read out as a decimal number. You can
change this format by using the .af (assign format) request to get things like Roman numerals or
sequences of letters. Here is the example of the auto-incrementing section above, but with the
interpolation format now set for lower-case Roman numerals:

.nrcn-12

. af en 1

the odd Roman numerals \n+(cn, \n+(cn, \n+(cn, \n+(cn, \n+(cn, \n+(cn,

When we format the above sequence, we get the following:

... the odd Roman numerals i, iii, v, vii, ix, xi, ...

A decimal format having N digits specifies a field width of N digits.

Read-only number registers and the width function are always decimal.

The table below shows the different formats you can apply to a number register when it is inter­
polated.

15-88 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

Table 15-11: Interpolation Formats for Number Registers

Format Deacription

1 Decimal
001 Decimal with leading zeros

i Lower-case Roman Numerals
I Upper-case Roman Numerals
& Lower-case Letters
A Upper-case Letters

Summary of the .af Request
Item

Form of Request:

Initial Value:

If No Argument:

.af R c

Arabic

Ignored

Numbering
Sequence

o, 1, 2, 3, 4, 5, ...
000, 001, 002, 003, 004, 005, ...
0, i, ii, iii, iv, v, ...
0, I, II, III, IV, V, ...
0, a, b, c, ... , z, aa, ab, ... , zz, aaa, ...
0, A, B, C, ... , Z, AA, AB, ... , ZZ, AAA, ...

Deacription

Explanation: Assign format c to register R.

15.11..,S . • rr - Remove Number Registers

If you create many number registers dynamically, you may well have to remove number registers
that you aren't using any more to recapture internal storage space for newer registers. You
remove a number register with the .rr (remove register) request:

.rr xy

removes the xy number register from the list.

Summary of the .rr Request
Item

Form of Requeat:

Initial Value:

If No Argument:

.rr R

Not applicable

Ignored

Deacription

Explanation: Remove register R. If many registers are being created dynamically, it
may become necessary to remove no longer used registers to recapture
internal storage space for newer registers.

Version D of 15 May 1985 15-89

Formatting Documents with nroff and troff Editing and Text Processing

15.12. Arbitrary Motions and Drawing Lines and Characters

This section is a grab-bag of functions for moving to arbitrary places on the page and for draw­
ing things. This section covers a number of useful topics:

• Local motions - how to move forward and backward and up and down on the page to get
special effects.

• Constructing whole characters out of pieces of characters that are available in the special font
- these facilities are for doing mathematical typesetting.

• Drawing horizontal and vertical lines to make boxes and underlines and such.

• Various types of padding characters, zero-width characters, and functions for obtaining the
width of a character string.

Most of these commands are st.raightforward, but messy to read and tough to type correctly.

15.12.1. \.u and \.d Functions - Half-Line Vertical Movements

If you won't use eqn, subscripts and superscripts are most easily done with the half-line local
motions \u (for up) and \d (for down). To go up the page half a point-size, insert a \u at the
desired place, and to go down the page half a point-size, insert a \d at the desired place. The
\u and \d in-line functions should always be used in pairs, as explained below. Thus if your
input consists of the following fragment:

,, , area of a circle is 'Area= \(*pr\u2\d' when calculating,,,

the output when that fragment is formatted consists of:

... area of a circle is 'Area= m-2' when calculating ...

This is a first a.pproximation of what you want, but the superscript '2' is too large. To make the
'2' smaller, bracket it with \s-2 ... \sO. This reduces the point-size by two points before the
superscript and raises the point-size by two points after the superscript. This example input:

. , . area of a circle is 'Area= \(*pr\u\s-2s\s0\d' when calculating ...

when formatted, generates:

... area of a circle is 'Area= m-2' when calculating ...

Now the reason that the \u and \d functions should always be correctly paired is that they refer
to the current point size, so you must be sure to put any local motions either both inside or both
outside any size changes, or you will get an unbalanced vertical motion. Carrying this example
further, the input could look like this:

area of a circle is 'Area= \(*pr\u\s-22\d\sO' when calculating,,,

We'll format that example in a larger point-size so that you can see the effect of the baseline
being out of whack. So when we format the above construct with the motions incorrectly paired,
we get this:

15-90 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with 11roff and troff

... area of a circle is 'Area = 1rr2
' when calculating

As you can see, the baseline is higher after the incorrectly-displayed equation.

15.12.2. Arbitrary Local Horizontal and Vertical Motions

The next two sections describe the in-line \ v (vertical) and the \h (horizontal) local mtion func­
tions.

The general form of these functions is \ v 'N' for the vertical motion function, and \h 'N' for
the horizontal motion function. The argument N in the functions is the distance to move. The
distance N may be negative - the positive directions are rightward and dow11ward. A local
motion is one contained within a line. To avoid unexpected vertical dislocations, it is necessary
that the net vertical local motion within a word in filled text and otherwise within a line balance
to zero.

15.12.2.1. ,v Function - Arbitrary Vertical Motion

Sometimes the space given by \u and \d is not the right amount (usually too much). The in-line
\ v function requests an arbitrary amount of vertical motion. The in-line \ v function

\v'amount'

moves up or down the page by the amount specified in amount. For example, here's how to get
a large letter at the start of a verse:

. in +. 31

.ti - . 31
\v'l.O'\s36A\s0\v'-l.O'\h'-4p'wake! for Morning in the Bowl of Night
\h'2p'Has flung the Stone that puts the Stars to Flight:
.in -.31
And Loi the Hunter of the East has caught
The Sultan's Turret in a Noose of Light.

and when we format that verse we get:

A wake! for Morning in the Bowl of Night
J-\Has flung the Stone that puts the Stars to Flight:
And Lo! the Hunter of the East has caught
The Sultan's Turret in a Noose of Light.3

The indent amount we used here (0.3 inch) was determined by fiddling around until it looked
reasonable. Later we show another in-line function for measuring the actual width of something.

A minus sign means upward motion, while no sign or a plus sign means move down the page.
Thus \v'-1' means an upward vertical motion of one line space.

• Omar Khayyam - the Rubaivat

Version D of 15 May 1985 15-91

Formatting Documents with nroff and troff Editing and Text Processing

There are many other ways to specify the amount of motion. The following three examples are
all legal.

\v'o.111

\v13p1

\v'-o.sm'

Notice that the scale specifier (i, p, or m) goes inside the quotes. Any character can be used in
place of the quotes; this is also true of all other troff commands described in this section.

Since troff does not take within-the-line vertical motions into account when figuring out where it
is on the page, output lines can have unexpected positions if the left and right ends aren't at the
same vertical position. Thus \v, like \u and \d, should always balance upward vertical motion
in a line with the same amount in the downward direction.

15.12.2.2. \h Function - Arbitrary Horizontal Motion

Arbitrary horizontal motions are also available - \h is quite analogous to \ v, except that the
default scale factor is ems instead of line spaces. As an example,

\h'-0.11'

causes a backwards motion of a tenth of an inch. As a practical matter, consider printing the
mathematical symbol '> >'. The standard spacing is too wide, so eqn replaces this by

0

>\h'-0.3m'> ~
to produce >>.
Frequently \h is used with the 'width function' \ w to generate motions equal to the width of
some character string. The construction

\w'thing'

is a number equal to the width of 'thing' in machine units (1/432 inch). All troff computations
are ultimately done in these units. To move horizontally the width of an 'x', we can say

\h'\w'x'u'

As we mentioned above, the default scale factor for all horizontal dimensions is m, ems, so here
we must have the u for machine units, or the motion produced will be far too large. troff is
quite happy with the nested quotes, by the way, so long as you don't leave any out.

As a live example of this kind of construction, the re, re, <E, and IE ligatures discussed in the
section on Ligaturea were constructed using the \h function to define the following strings:

15-92

.ds ae a\h'-(\w'a'u•4/10) 'e

.ds Ae A\h'-(\w'A'u•4/10) 'E

.ds oe o\h'-(\w'o'u•4/10) 'e

.ds Oe O\h'-(\w'O'u•4/10) 'E

Version D of 15 May 1985

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

and for any given one of those strings, the mess is unscrambled like this:

Comtruct

. ds ae
a
\h'-(\ w'a'u*4/10)'
e

Explanation

Define a airing called 'a e ' .
Letter 'a' in the atring.
Move backwarda O.J of the width of the letter 'a'.
Letter 'e' in the atring.

15.12.3. ,o Function - Digit Sized Spaces

The in-line \0 function is an unpaddable white space of the same width as a digit. 'Unpaddable'
means that it will never be widened or split across a line by line justification and filling. You
could use the digit space to get numerical columns correctly lined up. For example, suppose you
have this list of items:

.nf

.ta Sn
Step Description
.sp Sp
1. Unpack the handy dandy fuse blower.
2. Inspect for obvious shipping defects.

9.
10.
11.
. fi

Find a wall socket.
Insert handy dandy fuse blower in wall socket.
Push red button to blow all fuses.

When you format this list of operations, you get this result:

Step Description

l. Unpack the handy dandy fuse blower.
2. Inspect for obvious shipping defects.

9. Find a wall socket.
10. Insert handy dandy fuse blower in wall socket.
11. Push red button to blow all fuses.

As you can see, the numbers do not line up at the decimal point, but instead are lined up on the
left. Placing a space character in front of the digits in the input is not sufficient measure to line
up the digits at the decimal. A space is not the same width as a digit (at least not in troff). A
solution is to use the unpaddable digit-space character \0 in front of the single digits like this:

Version D of 15 May 1985 15-93

Formatting Documents with nroff and troff

.nf

.ta Sn
Step
.sp Sp
\01.
\02.

\0Description

Unpack the handy dandy fuse blower.
Inspect for obvious shipping defects.

\09. Find a wall socket.

Editing and Text Processing

10. Insert handy dandy fuse blower in wall socket.
11. Push red button to blow all fuses .
. fl

Now when you format the text, you get this result:

Step Description

1. Unpack the handy dandy fuse blower.
2. Inspect for obvious shipping defects.

9. Find a wall socket.
10. Insert handy dandy fuse blower in wall socket.
11. Push red button to blow all fuses.

which looks better than the previous example.

15.12.4. '' 'Function - Unpaddable Space

There is also the in-line '\ ' function, which is the \ character followed by a space character.
This function is an unpaddable character the width of a space. You can use this to make sure
that things don't get split across line boundaries, for instance if you want to see something
like nroff -Tip myfile in the stream of text, with the command line set off like it was here
and ensuring that it all apears on one line, you would type it m as
\ \ \fBnroff\ \-Tlp\ myfile\fP\ \ in-line in the text.

15.12.5. , ; and V' Functions - Thick and Thin Spaces

In typography, there are times when you need spaces that are one-sixth or one-twelfth of the
width of an em-space. troff supplies the in-line \I function which is one-sixth of an em-space wide
- this is sometimes called a 'thick space'. Where would you want such a thing? Well one place
it could be used is in making an ellipsis look better. In general, an ellipsis in a proportional font
looks too cramped if you just string three dots together:

and the dots tend to look too spread out if you just place spaces between them:

15-94 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

and so the answer is often to use the thick space to get a more pleasing effect like this:

which was actually achieved by typing:

. ,:. ,:.
Lastly, the in-line \ • function is one twelfth of the width of an em-space space. This function is
almost always used for a typographical application called italic correction. Consider an italic
word followed by some punctuation such as do tem Because the italic letters are slanted, they
tend to lean slightly on the trailing punctuation, especially when the last letter is a tall one like
the I in the example. So, what typographers do is to apply the italic correction in the form of a
thin space just before the punctuation, so that the effect is now do tell! What we actually typed
here was

\ffdo tell\fP\ ·,

with the italic correction just before the exclamation mark.

Typing the italic correction at every instance of adjacent Roman and Italic text, would be a lot
of work. Some macro packages construct special-purpose macros for applying the italic correc­
tion. For example, the -man macro package has a .m macro that joins alternating italic and
Roman words together so that you can italicize parts of words or have italic text with trailing
Roman punctuation. You use the .m macro like:

. IR well spring

to get the composite effect of wellspring m your text. The .m macro (somewhat simplified)
looks like this:

.de IR
\&\fI\\$1\.\fR\\$2\fI\\$3\.\fR\\$4\fI\\$5\.\fR\\$6\fI\\$7\.\fR\\$8\fI\\$9\.\fR

and you can see the italic correction applied after every parameter that is set in the italic font.

15.12. 6. \& Function - Non-Printing Zero-Width Character

The \& function is a character that does not print, and does not take up any space in the output
text. You might wonder what use it is at all? One application of the non-printing character
used throughout this manual is to display examples of text containing troff or nroff requests. To
print a troff request just as it appears in the input, you have to distinguish it from a real troff
request. You cannot print an example whose input looks just like this:

Version D of 15 May 1985 15-95

Formatting Documents with nroff and troff Editing and Text Processing

.in +0.51 indent the text half an inch

lots of lines of text to be processed

.in -0.51 unindent the text half an inch

The • characters at the beginning of each line would be interpreted as troff requests instead of
text representing examples of requests. In such cases, we have to use the \& function to stop
troff or nroff from interpreting the • at the start of the line as a control character. We would
type the example like this:

\&. in +O. 51 indent the text half an inch
\&.
\&.
\&.

lots of lines of text to be processed
\&.
\&.
\&.

\&. in -0. 51 unindent the text half an inch

Another place where the \& function is useful is within some of the other in-line functions such
as the \I function. The \I function draws lines and you type the function like:

\!'length character'

where length is the length of the line you want to draw, and character is the character to use.
Sometimes, the character might look like a part of length, for instance,

\1'1.01='

doesn't get you a one-inch line of = signs as you might expect, because the = sign looks like an
expression where you are trying to say that "1.0i is equal to" something else. When you
encounter this situation, type the \I function like this:

\I' 1.01\&='

and the result is a one-inch line of ======== signs as you see.

15.12. 7. '\o Function - Overstriking Characters

Automatically-centered overstriking of up to nine characters is possible with the in-line \o (over­
strike) function. The \o function looks like \o 'string' where the characters in .tring are over­
printed with their centers aligned. This means for example, that you can print from one to nine
different characters superimposed upon each other. troff determines the width of this "charac­
ter" you are creating to be the width of the widest character in your string. The superimposed
characters are then centered on the widest character. The string should not contain local verti­
cal motion.

15-96 Version D of 15 May 1985

0

0

0

0

0

Editing and Text Processing

The in-line \o function is used like this:

\o"set of characters"

This is useful for printing accents, as in

Formatting Documents with nroff and troff

syst\o"e\(ga"me t\o"e\(aa"l\o"e\(aa"phonique

which produces

systeme telephonique

The accents are \(ga (grave accent) and \(aa, (acute accent) or\' and\'; remember that each
is just one character to troff.

\o 11 e\ ' 11 produces e, and \0
11

\ (mo\ {sl II produces f

15.12.8. ,z Function - Zero Motion Characters

You can make your own overstrikes with another special convention, \z, the zero-motion com­
mand. \zz suppresses the normal horizontal motion after printing the single character z, so
another character can be laid on top of it. Although sizes can be changed within \o, it centers
the characters on the widest, and there can be no horizontal or vertical motions, so \z may be
the only way to get what you want:

is produced by

.sp 2
\s8\z\(ci\s14\z\(ci\s22\z\(ci\s36\z\(ci

The .sp 2 line is needed to leave enough vertical space for the result.

As another example, an extra-heavy semicolon that looks like

; instead of ; or ;

can be constructed with a big comma and a big period above it:

\s+6\z,\v'-0.2Sm'.\v'0.2Sm'\s0

where '0.25m' is an empirical constant.

As further examples, \z\(ci\{pl produces

®
and \(br\z\(rn\(ul\(br produces the smallest possible constructed box:

0 IJ

Version D of 15 May 1985 15-97

Formatting Documents with nroff and troff Editing and Text Processing

There is also a more general overstriking function for piling things up vertically - this topic is
discussed under Building Large Bracket• with the\ b Function, later in this section. 0
15.12.9. ,w Function - Get Width of a String

Back in the section on using tabs, we saw how we could set tab stops to various positions on the
line and lay stuff out in columns based on the tab stops. Sometimes it is hard to figure out
where the tab stops should go because you can't always tell in advance how wide things are -
this is especially true for proportional fonts (by definition the characters aren't all the same size).
Often what you want is to set tab stops based on the width of an item. Then you can set tab
stops based on that width and remain independent of the size of the characters if you decide to
change point size.

The in-line width function \ w 'airing' generates the numerical width of airing (in basic units).
For example, .ti -\ w '1. 'u could be used to temporarily indent leftward a distance equal to
the size of the string '1. '. Size and font changes may be safely embedded in airing, and do not
affect the current environment.

In a previous example we showed how a large capital letter could be placed in a verse with verti­
cal motions and we played some games with indenting to get the thing to come out more-or-less
right. The problem with that approach is that we had to measure the size of the character and
arrive at the indent by trial and error (actually, error and trial). Another problem is that the
measured indent didn't take the point-size into account - if we decide to change sizes, the
measurements are all wrong. The width function can measure the size of the thing directly, so
here's our example all over again using the \ w function:

.in +\w'\s36A\sO'u

.ti -\w'\s36A\sO'u
\v'l.O'\s36A\s0\v'-1.0'\h'-5p'wake! for Morning in the Bowl of Night
\h'lp'Has flung the Stone that puts the Stars to Flight:
.in -\w'\s36A\sO'u

And Lo! the Hunter of the East has caught
The Sultan's Turret in a Noose of Light.

and when we format that text we get this result:

A wake! for Morning in the Bowl of Night
J-\..Has flung the Stone that puts the Stars to Flight:
And Lo! the Hunter of the East has caught
The Sultan's Turret in a Noose of Light.

The width function also sets three number registers. The registers st and sb are set respectively
to the highest and lowest extent of airing relative to the baseline; then, for example, the total
height of the string is \n(stu-\n(sbu. In troff the number register ct is set to a value between
0 and 3:

15-98 Version D of 15 May 1985

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

Number
Register Meaning

0 all of the characters in airing
were short lower case charac­
ters without descenders (like e)

1 at least one character has a des­
cender (like y)

2 at least one character is tall
(like H)

3 both tall characters and charac-
ters with descenders are
oresent.

15.12.10. \k Function - Mark Current Horizontal Place

The in-line \kz function stores the current horizontal position in the input line into register z.
As an example, we could get a bold italic effect by the construction:

\kxword\h' I \nxu+ 2u 'word

This emboldens word by backing up almost to its beginning and overprinting it, resulting in

f/Jortl

15.12.11. \b Function - Build Large Brackets

The Special Mathematical Font contains a number of special characters for constructing large
brackets out of pieces. The table below shows the escape-sequences for the individual pieces,
what they look like, and their names.

Version D of 15 May 1985 15-99

Formatting Documents with nroff and troff Editing and Text Processing

Table 15-12: Pieces for Constructing Large Brackets

Eacape Character Deacription
Sequence

\(It (left top of big curly bracket

\(lb l left bottom of big curly bracket

\(rt) right top of big curly bracket

\(rb J right bottom of big curly bracket

\(lk l left center of big curly bracket

\(rk f right center of big curly bracket

\(bv I bold vertical

\(If l left floor (left bottom of big square bracket)

\(rf J right floor (right bottom of big square bracket)

\(le r left ceiling (left top of big square bracket)

\(re l right ceiling (right top of big square bracket)

These pieces can be combined into various styles and sizes of brackets and braces by using the
in-line \b (for bracketing) function. The \b function is used like this:

\b' string '

to pile up the characters vertically in string with the first character on top and the last on the
bottom. The characters are vertically separated by one em and the total pile is centered 1/2 em
above the current baseline (line in nroff). For example:

\x'-0.Sm'\x'O.Sm'\b'\(lc\(lf'E\"\b'\(rc\(rf'

produces [E]. As with previous examples, we should unscramble the whole mess for you:

15-100

E,cape
Sequence

\b
\(le

\(If
E

\b
\(re
\(rf

Character Description

,tart bracketing function

r left ceiling

l left floor

letter E

,tart bracketing function

l
J

right ceiling

right floor

Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

Here's another example of using braces and brackets. You get this effect:

{ [X l}
by typing this:

\b'\(lt\(lk\(lb' \b'\(lc\(lf' x \b'\(rc\(rf' \b'\(rt\(rk\(rb'

15.12.12. \r Function - Reverse Vertical Motions

The \r function makes a single reverse motion of one em upward in troff, and one line upward in
nroff.

15.12.13. Drawing Horizontal and Vertical Lines

Typesetting systems commonly have commands to draw horizontal and vertical lines. Of course
typographers don't call them lines - they are called 'rules' because once upon a time they were
drawn with rulers. troff provides a convenient facility for drawing horizontal and vertical lines
of arbitrary length with arbitrary characters, and these facilities are described in the subsections
following.

15.12.19.1. \l Function - Draw Horizontal Linea

The in-line \I (lower-case ell) function draws a horizontal line. For example, the function
\I' 1.0i' draws a one-inch horizontal line like this in the text.

The line is actually drawn using the bauline rule character in troff, and the underline charac­
ter in nroff, but you can in fact make the character that draws the line any character you like
by placing the character after the length designation. For example, you could draw a two inches
of tildes by using \112.0i~, to get •••••••••••••••••••••••••• in the text. The construction \L
is entirely analogous, except that it draws a vertical line instead of horizontal.

The general form of the \I function is

\ I' length character'

where length is the length of the string of characters to be drawn, and character is the character
to use to draw the line. If character looks like a continuation of length, you can insulate charac­
ter from length with the zero-width \& sequence. IC length is negative, a backward horizontal
motion of size length is made before drawing the string. Any space resulting from length /(size of
character) having a remainder is put at the beginning (left end) of the string. In the case of
cha@cters that are designed to be connected such as baseline-rule(-), underrule (_), and root­
en (), the remainder space is covered by overlapping. If length is leaa than the width of charac­
ter, a single character is centered on a distance length. As an example, here is a macro to under­
score a string:

Version D of 15 May 1985 15-101

Formatting Documents with nroff and troff

.de us
\ \$1 \1 '"0\ (ul'

and you use the .us macro like this:

.us "underlined words"

Editing and Text Processing

to yield underlined words in the stream of text. You could also write a macro to draw a box
around a string:

.de bx
\(br\1\\$1\1\(br\1'10\(rn'\1'10\(ul'

and so you can type:

.bx "words in a box"

to get some I words in a hox I in the text stream.

15.12.19.2. \L Function - Draw Vertical Linea

The in-line \L (upper-case ell) function draws a vertical line. As in the case of the \I function,
the general form of the function is

\L1 length character'

This draws a vertical line consisting consisting of the (optional) character character stacked vert­
ically apart 1 em (1 line in nroff), with the first two characters overlapped, if necessary, to form a
continuous line. The default character is the box rule, I (\(br); the other suitable character is
the bold vertical I (\(bv). The line is begun without any initial motion relative to the current
base line. A positive length specifies a line drawn downward and a negative length specifies a line
drawn upward. After the line is drawn no compensating motions -are made; the instantaneous
baseline is at the end of the line.

15.12.19.9. Combining the Horizontal and Vertical Line Drawing Functiona

The horizontal and vertical line drawing functions may be used in combination to produce large
boxes. The zero-width box-rule and the 'bem wide underrule were designed to form corners
when using one-em vertical spacings. For example the macro

.de eb

.sp -1 \"compensate for next automatic base-line spacing

.nf \"avoid possibly overflowing word buffer
\h'-.Sn'\L' I\ \nzu-1 '\l '\ \n (. lu+ln\ (ul '\L'-1\ \nzu+l'\1' jOu-.Sn\ (ul'

\"draw box
. fi

draws a box around some text whose beginning vertical place was saved rn number register z
(using .mk z) as done for this paragraph.

15-102 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

15.12.14- .me - Place Characters in the Margin

Many types of documents require placing specific characters in the margins. The most common
use of this is placing bars down the margins to indicate what's changed in a document from one
revision of a document to the next. This paragraph and the remainder of the text in this section
were preceded by a

.me \slO\(br\sO

request (that is, place a 10-point box-rule character in the margin) to turn on the marginal bars,
and followed by a simple

.me

request to turn off the marginal bars.

Summary of the . me Request
Item Description

Form of Requeat:

Initial Value:

If No Argument:

Explanation:

Note,:

.me c N

Not applicable

Turn off margin characters

Specifies that a margin character c appear a distance N to the right of
the right margin after each non-empty text line (except those pro­
duced by ti). If the output line is too long (as can happen in nofill
mode) the character is appended to the line. If N is not given, the
previous N is used; the initial N is 0.2 inches in nroff and 1 em in troff.
The margin character used with this paragraph was a 12-point box­
rule.

E,m

Version D of 15 May 1985 15-103

Formatting Documents with nroff and troff Editing and Text Processing

15.13. Input and Output Conventions and Character Translations

15.13.1. Input Character Translations

The newline delimits input lines. In addition, STX, ETX, ENQ, ACK, and BEL are accepted, and
may be used as delimiters or translated into a graphic with a .tr (translate) request (refer to the
section on Input and Output Convention• and Character Tranalationa). All others are ignored.

15.13.2 . • ec and .eo - Set Escape Character or Stop Escapes

The eacape character \ introduces euape aequencea - meaning the following character means
another character, or indicates some function. A complete list of such sequences is given in a
later chapter. The \ character should not be confused with the ASCII control character ESC of
the same name. The escape character\ can be input with the sequence \ \. The escape charac­
ter can be changed with an .ec (escape character) request, and all that has been said about the
default \ becomes true for the new escape character. \e can be used to print whatever the
current escape character is. If necessary or convenient, the escape mechanism can be turned off
with an .eo (escape off) request and restored with the .ec request.

Summary of the .ec Request
Item

Form of Requeat:

Initial Value:

If No Argument:

.ec c

\
\

Deacription

Explanation: Set escape character to\, or to c, if given.

Summary of the .eo Request
Item

Form of Requeat:

Initial Value:

If No Argument:

Explanation:

.eo

Escape mechanism is on

Turn escape mechanism off

Turn escape mechanism off.

15.13.3. • cc and. c2 - Set Control Characters

Deacription

0

0

Both the control character • and the no-break control character ' may be changed, if desired.
Such a change must be compatible with the design of any macros used in the span of the change, O
and particularly of any trap-invoked macros.

15-104 Version D of 15 May 1985

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

Summary of the .cc Request
Item

Form of Requeat: .cc C

Initial Value:

If No Argument:

Description

Explanation: Set the basic control character to c, or reset to '. '.

Summary of the .c2 Request
Item

Form of Request: .c2 C

Initial Value: '

If No Argument:

Deacription

Explanation: Set the no-break control character to c, or reset to ' ''.

15.13.4 . • tr - Output Translation

One character can be made a stand-in for another character using the .tr (translate) request.
All text processing (for instance, character comparisons) takes place with the input (stand-in)
character that appears to have the width of the final character. The graphic translation occurs
at the moment of output (including diversion).

Summary of the .tr Request
Item Description

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

.tr abed

Not Applicable

No translation

Translate a into b, c into d, etc. If an odd number of characters is
given, the last one is mapped into the space character. To be con­
sistent, a particular translation must stay in effect from input to output
time.

0

Version D of 15 May 1985 15-105

Formatting Documents with nroff and troff Editing and Text Processing

15.14. Automatic Line Numbering

· 15.L,t.1. .nm - Number Output Lines

Output lines may be numbered automatically via the .nm (number) request. Refer to the
following table for a summary of the .nm request. When in effect, a three-digit, arabic

3 number and a digit-space begins each line of output text. The text lines are thus offset by
four digit-spaces, and otherwise retain their line length. To keep the right margin aligned
with an earlier margin, you may want to reduce the line length by the equivalent of four

6 digit spaces. Blank lines, other vertical spaces, and lines generated by ti are not numbered.
Numbering can be temporarily suspended with the .nn (no number) request (see below), or
with an .nm followed by a later .nm +o. In addition, a line number indent I, and the

9 number-text separation Smay be specified in digit-spaces. Further, it can be specified that
only those line numbers that are multiples of some number Mare to be printed (the others
will appear as blank number fields).

Summary of the .nm Request
Item Deacription

Form of Reque,t:

Initial Value:

If No Argument:

Explanation:

Note,:

.nm± NM S

Line numbering turned off.

Line numbering turned off.

Turn on line numbering if ±N is given. The next output line num­
bered is numbered ±N. Default values are M= 1, S= 1, and I= 0.
Parameters corresponding to missing arguments are unaffected; a non­
numeric argument is considered missing. In the absence of all argu­
ments, numbering is turned off; the next line number is preserved for
possible further use in number register In.

E

15.L,t.2 . • nn - Stop Numbering Lines

When you are using the .nm request to number lines (as discussed above), you can temporarily
suspend the numbering with the .nn (no number) request.

15-106 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

Summary of the .nn Request
Item Deuription

Form of Request:

Initial Value:

If No Argument:

Explanation:

Note,:

.nn N

Not applicable

N=l

The next N text output lines are not numbered.

E

12 As an example, the paragraph portions of this section are numbered with M= 3: .nm 1 3
was placed at the beginning; .nm was placed at the end of the first paragraph; and .nm +0
was placed in front of this paragraph; and .nm finally placed at the end. Line lengths were

15 also changed (by \w'OOOO'u) to keep the right side aligned.

Another example is

.nm +5 5 x 3

which turns on numbering with the line number of the next line to be 5 greater than the last
18 numbered line, M= 5, spacing Sis untouched, and with the indent I set to 3.

Version D of 15 May 1985 15-107

Formatting Documents with nroff and troff Editing and Text Processing

15.15. Conditional Processing of Input

Suppose we want the .SH macro to leave two extra inches of space just before section 1, but
nowhere else. The cleanest way to do that is to test inside the .SH macro whether the section
number is 1, and add some space if it is. The .if request provides the conditional test that we
can add just before the heading line is output:

.if \\n(SH=l .sp 21 \" first section only

The condition after the .if can be any arithmetic or logical expression. If the condition is logi­
cally true, or arithmetically greater than zero, the rest of the line is treated as if it were text -
here a request. If the condition is false, or zero or negative, the rest of the line is skipped.

It is possible to do more than one request if a condition is true. Suppose several operations are
to be done before section 1. One possibility is to define a macro .Sl and invoke it if we are
about to do section 1 (as determined by an .if) .

. de Sl
processing for section 1 ---

.de SH

.if \\n(SH=l .Sl

An alternate way is to use the extended form of the .if, like this:

.if \\n(SH=l \{--- processing for section 1 ----\}

The braces \ { and \} must occur in the positions shown or you will get unexpected extra lines in
your output. troff also provides an 'if-else' construction, which we will not go into here.

A condition can be negated by preceding it with !; we get the same effect as above (but less
clearly) by using

.if l\\n(SH>l .Sl

There are a handful of other conditions that can be tested with ,if. For example, is the current
page even or odd?

.if e .tl ''even page title''

.if o .tl ''odd page title''

gives facing pages different titles when used inside an appropriate new page macro.

Two other conditions are t and n, which tell you whether the formatter is troff or nroff .

15-108

. if t troff stuff

.if n nroff stuff

Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

Finally, string comparisons may be made in an .ir:

.if 'stringl'string2' stuff

does 'stuff' if stringl is the same as string2. The character separating the strings can be any­
thing reasonable that is not contained in either string. The strings themselves can reference
strings with \ •, arguments with \ $, and so on.

In the following table, c is a one-character, built-in condition name, ! signifies not, N is a numeri­
cal expression, stringl and atring2 are strings delimited by any non-blank, non-numeric character
not in the strings, and anything represents what is conditionally accepted.

Summary of the .if Requests
Item

Form of Requeat:

Initial Value:

If No Argument:

,if C anything

Not Applicable

Not Applicable

Deacription

E:iplanation If condition c true, accept anything as input. In multi-line case use
\{ anything\} .

Form of Request: . if !c anything

Explanation If condition c false, accept anything.

Form of Requeat: .ir N anything

Explanation If expression N > 0, accept anything.

Form of Requeat: .if !N anything

Explanation If expression N < 0, accept anything.

Form of Requeat: ,if 'atringl 'atring2 ' anything

Explanation If atring1 identical to atring2, accept anything.

Form of Requeat: .ir ! 'atringl 'atring2 'anything

Explanation If stringl not identical to string2, accept anything.

Form of Requeat: .ie c anything

Explanation If portion of if-else (like above if forms).

Form of Requeat: ,el anything

Explanation Else portion of if-else.

The built-in condition names are:

Version D of 15 May 1985 15-109

Formatting Documents with nroff and troff Editing and Text Processing

Table 15-13: Built In Condition Names for Conditional Processing

Condition
Name True If

0 Current page number is odd
e Current page number is even
t Formatter is troff
n Formatter is nroff

If the condition c is true, or if the number N is greater than zero, or if the strings compare ident­
ically (including motions and character size and font), anything is accepted as input. If a ! pre­
cedes the condition, number, or string comparison, the sense of the acceptance is reversed.

Any spaces between the condition and the beginning of anything are skipped over. The anything
can be either a single input line (text, macro, or whatever) or a number of input lines. In the
multi-line case, the first line must begin with a left delimiter\{ and the last line must end with a
right delimiter\}.

The request ie (if-else) is identical to if except that the acceptance state is remembered. A sub­
sequent and matching el (else) request then uses the reverse sense of that state. ie - el pairs
may be nested.

Some examples are:

.if e .tl 'Even Page%'"

which outputs a title if the page number is even; and

.le \n%>1 \{\
'sp O.Si
.tl 'Page%'"
'sp *1.21 \}
.el .sp *2.51

which treats page 1 differently from other pages.

15.15.1. , ig - Ignore Input Text

Another mechanism for conditionally accepting input text is via the . ig (ignore) request. Basi­
cally, you place the . ig request before a block of text you want to ignore:

.ig start of ignored block of text

block of text you don't want to appear in the printed output

end of ignore block signalled with ..

15-110 Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

The .ig request functions like a macro definition via the . de request except that the text
between the . ig and the terminating .. is discarded instead of being processed for printing.

You can give the .ig request an argument - that is, an

.ig xy

request ignores all text up to and including a line that reads

.xy

which looks just like a request:

.ig zz ,tart of ignored block of text

block of text you don't want to appear in the printed output

.ZZ end of ignore block ,ignalled with . ZZ

You can of course combine the . ig request with the other conditionals to ignore a block of text
if a condition is satisfied. For example, you might want to omit blocks of text if the printed
pages are destined for different audiences:

.nr W 1 Thi• manual i• for Wizard• only

further proce,,ing

.if \nW .ig WZ If the manual is for wizards

Tutorial material beneath the attention of wizards

.wz end of ignored block of text

Version D of 15 May 1985 15-111

Formatting Documents with nroff and troff Editing and Text Processing

Summary of the .ig Request
Item Description

Form of Request:

Initial Value:

If No Argument:

Explanation:

15-112

.ig yy

Not applicable

Ignore text up to a line starting with

Ignore input lines up to and including a line starting with . yy - use
like the . de (define macro) request except that the input is discarded.
The input is read in copy mode, and any auto-incremented number re­
gisters will be affected.

Version D of 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

15.16. Requests for Debugging your troff Input File

Sad to say, troff and nroff resemble languages for programming a typesetter rather than a
mechanism to describe how a document should be put together. There are times when you just
can't figure out why things are going wrong and not generating results as advertised. The
requests described here are for dyed-in-the-wool macro wizards.

15.16.1. ,pm - Display Names and Sizes of Defined Macros

The .pm (print macros) request displays the names of all defined macros and how big they are.
Why would anybody want to do such a thing? Well, if you're using a macro as a diversion, you
might find out (by printing its size) that it is far bigger than you expect (like it's swallowing your
entire file).

Summary of the .pm Request
Item

Form of Requeat:

Initial Value:

If No Argument:

.pm t

Not applicable

All

De,cription

Explanation: Print macros. The names and sizes of all of the defined macros and
strings are printed on the user's terminal; if tis given, only the total of
the sizes is printed. The sizes is given in b/ocka of 128 characters.

15.16.2. • fl - Flush Output Buffer

The .fl (nush) request flushes the output buffer - this can be used when you're usmg nroff
interactively.

Summary of the .fl Request
Item

Form of Reque.t:

Initial Value:

If No Argument:

.fl
Not applicable

Not applicable

Deuription

Explanation: Flush output buffer. Used in interactive debugging to force output.

Version D of 15 May 1985 15-113

Formatting Documents with nroff and troff Editing and Text Processing

15.16.3 . • ab -Abort

A final useful request in the debugging category is the .ab (abort) request which basically bails
out and stops the formatting.

Summary of the .ab Request
Item Deacription

Form of Request:

Initial Value:

If No Argument:

Explanation:

15-114

.ab text

Not applicable

No text is displayed

Displays text and terminates without further processing. If text is miss­
ing, 'User Abort' is displayed. Does not cause a break. The output
buffer is flushed.

Version Do! 15 May 1985

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with nroff and troff

15.17. Saving State with Environments

As we mentioned, there is a potential problem when going across a page boundary: parameters
like size and font for a page title may well be different from those in effect in the text when the
page boundary occurs. Troff provides a very general way to deal with this and similar situa­
tions. There are six 'environments', each of which has independently settable versions of many
of the parameters associated with processing, including size, font, line and title lengths, fill/nofill
mode, tab stops, and even partially collected lines. Thus the titling problem may be readily
solved by processing the main text in one environment and titles in a separate one with its own
suitable parameters.

The command .ev n shifts to environment n; n must be in the range O thru 5. An .ev command
with no argument returns to the previous environment. Environment names are maintained in a
stack, so calls for different environments may be nested and unwound consistently.

When troff starts up, environment O is the default environment, so in general, the main text of
your document is processed in this environment in the absence of any information to the con­
trary. Given this, we can modify the .NP (new page) macro to process titles in environment 1
like this:

.de NP

.ev 1 \" shift to new environment

.lt 6i \" set parameters here

.ft R

.ps 10
any other processing ...

.ev \" return to previous environment

It is also possible to initialize the parameters for an environment outside the ,NP macro, but the
version shown keeps all the processing in one place and is thus easier to understand and change.

Another major application for environments is for blocks of text that must be kept together.

A number of the parameters that control the text processing are gathered together into an
environment, which can be switched by the user. The environment parameters are those associ­
ated with requests noting E in their Notea column; in addition, partially collected lines and words
are in the environment. Everything else is global; examples are page-oriented parameters,
diversion-oriented parameters, number registers, and macro and string definitions. All environ­
ments are initialized with default parameter values.

Version D of 15 May 1985 15-115

Formatting Documents with nroff and troff Editing and Text Processing

Summary of the .ev Request
Item Deacription

Form of Requeat:

Initial Value:

If No Argument:

Explanation:

15-116

.ev N

N=O

Switch back to previous environment

Switch to environment N, where O<N<5. Switching is done in push­
down fashion so that restoring a previous environment muat be done
with .ev rather than specific reference.

Version D of 15 May 1985

0

0

0

0

0

0

Appendix A

Examples of Fonts and Non-ASCil Characters

Font Style Examples

The following fonts are printed in 12-point, with a vertical spacing of 14-point, and with non­
alphanumeric characters separated by 'I.em space. They are Times Roman, Italic, Bold, and a special
mathematical font.

Times Roman

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
!$%&()''*+-.,/:;=?[]:
eD--_%Y.,%fiflffffiffl' t'¢®©

Times Italic

abcdefghijk/mnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1284567890
!$ % & (J' '* + - . , I:;=? fJI
eD--_Y,Y.,%fiftfftfiffl 't'¢®©

Times Bold

abcdefghijklmnopqrstuvwxyz
ABCDEFGWJKLMNOPQRSTUVWXYZ
1234567890
!$%&()"*+-.,/:;=!():
eD--_%Y.,%fl.fl.ft'fflffl O t'¢®©

Special Mathematical Font

"'\. - ' - /<>{}#@+-=*
a /3 "f 6 E i TJ O t K >. µ v ~ o 1r p u c; r v tjJ x if; w
rb.8ABII:Ei<l>\llfl
v- > < = - :'.:=;;<a-++- f ! X 7 ±Un C::) C::) 00 o
§v'-.Jcx:0Efu-u IO(l)JJ}llJrl[

Version D of 15 May 1985 A-1

Examples of Fonts and Non-ASCII Characters Editing and Text Processing

Non-ASCII characters and minH on the standard fonts.

lnpat Claractcr lnpat Clarader 0
Clar Name Name Clar Name Name

close quote fi \(fi fi
open quote fl \(fl fl

\(em 3/4 Em dash II \(II II
hyphen or ffi \(Fi ffi

\(hy hyphen ffi \(Fl ffl

\- current font minus \(de degree

• \(bu bullet t \(dg dagger
D \(sq square \(rm foot mark

\(ru rule ¢ \(ct cent sign

14 \(14 1/4 ® \(rg registered

~ \(12 1/2 C, \(co copyright
'll, \(34 3/4

Non-ASCII characters and ·, ', _, +, -, =, and • on the special font.

The ASCII characters @, #, ", ', ', <, >, \, {, }, -, ', and _ exist only on the special font and are
printed as a 1-em space if that font is not mounted. The following characters exist only on the special
font except for the upper case Greek letter names followed by t which are mapped into upper case
English letters in whatever font is mounted on font position one (default Times Roman). The special
math plus, minus, and equals are provided to insulate the appearance of equations from the choice of
standard fonts.

Input Claracter lnpal Clarader

0 Clar Nam• Nam• Clar Name Name

+ \(pl math plus p \(*r rho

\(mi math minus (1 \(*s sigma.

= \(eq math equals ~ \(ts terminal sigma

• \(** math star T \(*t tau

§ \(sc section V \(*u upsilon

\(aa acute accent </> \(*f phi

\(ga grave accent X \(*x chi

- \(ul underrule ,f; \(*q psi

I \(sl slash (matching backslash) w \(*w omega

" \(*a alpha \(*A Alphat
(3 \(*b beta \(*B Betat
,., \(*g gamma r \(*G Gamma

6 \(*d delta a \(*D Delta

' \(*e epsilon \(*E Epsilont

' \(*z zeta \(*Z Zetat ,, \(*y eta \(*Y Etat
8 \(*h theta 8 \(*H Theta

' \(*i iota \(*I Iotat
I< \(*k kappa \(*K Kappat

>- \(*l lambda A \(*L Lambda
µ \(*m mu \(*M Mut

" \(*n nu \(*N Nut
{ \(*c xi 8 \(*C Xi
0 \(*o omicron \(*O Omicront
1f \(*p pi I1 \(*P Pi 0

A-2 Version D of 15 May 1985

Editing and Text Processing Examples of Fonts and Non-ASCII Characters

0 Input CAaracter Input CAaracter
Clar Name Name Char Name Name

\(*R Rhot L \(lr left floor (left bottom or big
E \(*S Sigma square bracket)

\(*T Taut J \(rr right floor (right bottom)
T \(*U Upsilon r \(le left ceiling (left top)
4> \(*F Phi l \(re right ceiling (right top)

\(*X Chit
>j, \(*Q Psi
0 \(*W Omega
V \(sr square root

\(rn root en extender
<'.'. \(>= >=
::;; \(<= <=
- \(== identically equal

"" \C= approx=
\(ap approximates .. \(!= not equal

-+ \(-> right arrow - \(<- left arrow
t \(ua up arrow

l \(da down arrow
X \(mu multiply

\(di divide
± \(+- plus-minus

0
u \(cu cup (union)
n \(ca cap (intersection)
C \(sb subset or
:, \(sp superset or
~ \(ib improper subset
;;! \(ip improper superset
00 \(if infinity
0 \(pd partial derivative
V \(gr gradient
.., \(no not
I \(is integral sign

ex: \(pt proportional to
0 \(es empty set
E \(mo member or
I \(hr box vertical rule
t \(dd double dagger

o::7 \(rh right hand
"O \(Ih left hand

\(bs Bell System logo
I \(or or

0 \(ci circle
(\(It left top of big curly bracket
l \(lb left bottom
) \(rt right top
J \(rb right bot
~ \(lk left center of big curly bracket

0 ~ \(rk right center of big curly bracket
I \(bv bold vertical

Version D of 15 May 1985 A-3

0

01
!

0

0

0

0

Appendix B

troff Request Summary

This appendix is a quick-reference summary of troff and nroff requests. In the following table,
values separated by a : are for nroff and troff respectively.

The notes in column four are explained at the end of this summary.

Summary of troff and nroff Requests

• ab tezt

.ad C

.af R c

• am xx yy

Requeat
Form

.a• zz string

.bd FN

.bd s FN

.bp ±N

. br

.C2 C

.CC C

.ce N

.ch zzN

Version D of 15 May 1985

Initial If No
Value Argument

none User Abort

adj,both adjust

a.rabic

.yy= ..

ignored

off

off

N=!

off N=I

Notea Ezplanation

Displays tezt and terminates
without rurther processing; flush
output buffer.

E Adjust output lines with mode c
Crom .j.

Assign rormat to register R (c=l, i,
I, a, A).

Append to a. macro .

Append etn"ng to string zz.

p Embolden Cont F by N-1 units. t

p Embolden Special Font when
current font is F. t

Bl,v Eject current page. Next page is
number N .

B Break.

E Set nobreak control character to c.

E Set control character to c.

B,E Center following Ninput text lines.

V Change trap location.

B-1

troff Request Summary Editing and Text Processing

Summary of troff and nroff Requests 0 Request Initial If No
Notea Ezplanation

Form Value Argument

.cs F NM off p Constant character space {width)
mode (Cont F). j

.cu N off N=I E Continuous underline in nroff, like
ul in troff.

.da zz end D Divert and append to zz.

.de xx yy .yy= .. Define or redefine macro zz; end a.t
call or n

.di zz end D Divert output to ma.era zz.

• dB xx string ignored Define a string zz containing .tring .

• dt Nzz off D,v Set a diversion trap .

. ec C \ \ Set escape character .

. el anything Else portion or if-else .

. em zz none none End macro is zz . 0
I .eo on Turn off escape character mechan-

ism.

.ev N N=O previous Environment switched (pu6h down).

.ex Exit from nroff/troff.

. fc a b off off Set field delimiter a and pad char-
a.cter b .

• fi fill B,E Fill output lines.

.fl B Flush output buffer.

.fp NF R,l,B,S ignored Font named F mounted on physical
position 1:,;N:54 .

• ft F Roman previous E Change to font F = z, zz, or 1
through 4. Also \rz, \r(zz, \fN.

.fz SFN none Forces font For S tor special char•
acters to be in size N.

0
B-2 Version D of 15 May 1985

0

0

0

Editing and Text Processing troff Request Summary

Summary of troff and nroff Requests

. he C

Requeat
Form

.hv wordl ...

. hy N

. ie c anything

. if c anything

. if I c anything

. if N anything

. if IN anything

. if 'stringl 'string!! , anything

Initial
Value

\%

ignored

on

. if I 'stringl 'string!! 'anything -

. ig yy

• in ±N

.it N xx

.le C

.lg N

.11 ±N

.ls N

. lt ±N

.me c N

Version D of 15 May 1985

on

6.5 in

N=l

6.5 in

If No
Argument

\%

previous

. yy= ..

previous

off

none

on

previous

previous

previous

off

Notea

E

E

u

u

u

B,E,m

E

E

E,m

E

E,m

E,m

Ezplanation

Hyphenation indicator character c •

Exception words.

Hyphenate. N = mode .

Ir portion of if-elsej all above forms
(like ii) .

Ir condition c true, accept anything
as input, Cor multi-line use \ { any­
thing\} .

Ir condition c Calse, accept anything .

If expression N > O, accept any­
thing .

Ir expression N ::5. 0, accept any­
thing.

If ,tring1 identical to ,tring2, accept
anything .

Ir ,tringl not identical to ,tring2,
accept anything .

Ignore until call of yy .

Indent.

Set an input-line count trap.

Leader repetition character.

Lig:a.ture mode on if N>O.

Line length.

Output N-1 Vs after each text
output line .

Length of title.

Set margin character c and separar
tion N.

B-3

troff Request Summary Editing and Text Processing

Summary of troff and nroff Requests
0 Requeat Initial If No Notea Explanation

Form Value Argument

.mk R none internal D Mark current vertical place in regis-
ter R.

.na adjust E No output line adjusting.

.ne N N=IV D,v Need N vertical space (V = vertical
spacing) .

. nf fill B,E No filling or adjusting or output
lines .

. nh hyphenate E No hyphenation.

.nm ±NM SI off E Number mode on or off, set pa.ram-
eters.

.nn N N=I E Do not number next Nlines.

.nr R±NM u Define and set number register R;
auto-increment by M.

.na space D Turn no-space mode on. 0

.rue filename end-of-file Next file.

• OB Output saved vertical distance .

.pc C % off Page number character.

. pi program Pipe output to program (nroff only) .

.pm t all Print macro names and sizes. Ir t
present, print only total of sizes.

.pa ±N 10-point previous E Point size, also \s±N.1

.pl ±N 11 in 11 in V Page length.

.pn ±N N=l ignored Next page number is N.

.po ±N 0: 26/27 in previous V Page offset.

,rd prompt prompt=BEL Read insertion.

.rn :zz YY ignored Rena.me request, ma.cro, or string zz
to yy. 0

B-4 Version D of 15 May 1985

0

0

0

Editing and Text Processing troff Request Summary

Summary of troff and nroff Requests

.rm ::ez

• rr R

.ra

.rt ±N

Reque.t
Form

. so filename

.sp N

.BB N

.sv N

.ta Nt ...

.tC C

. ti ±N

. tl 'left, center 'right,

• tm string

• tr abed

.uf F

.ul N

.vs N

.vh N zz

Version D of 15 May 1985

Initial
Value

none

12/36 em

0.8: 0.5in

none

none

Italic

If No
Argument

ignored

internal

N=IV

ignored

N=IV

none

none

ignored

newline

Italic

off N=I

1/6in:12pts previous

Note•

D

D,v

B,v

E

V

E,m

E

B,E,m

0

E

E,p

V

Explanation

Remove request, macro, or string.

Remove register R .

Restore spacing. Turn no-space
mode off.

Return (upward only} to marked
vertical place.

Interpolate contents of source file
name when so encountered.

Space vertical distance Nin either
direction.

Space-character size set to N/36
em.I

Save vertical distance N.

Tab settings: left type, unless
t=R(right), or C(centered).

Tab repetition character.

Temporary indent .

Three-part title.

Print itring on terminal (UNIX
standard message output) .

Translate a into b, c into d, etc. on
output.

Underline Cont set to F (to be
switched to by ul).

Underline N input lines (italicize in
troJ!).

Vertical base line spacing (V).

Set location trap. Negative is with
respect to page bottom.

B-5

troff Request Summary Editing and Text Processing

t Point size changes have no effect in nroff.

+ The use of" ' " as the control character (instead of" . ") suppresses the break function.

B-6

Note

B
D
E
0
p
V

p
m
u

Table B-1: Notes in the Tables

Ezplanation

Request normally causes a break.
Mode or relevant parameters associated with current diversion level.
Relevant parameters are a part of the current environment.
Must stay in effect until logical output.
Mode must be still or again in effect at the time of physical output.
Default scale indicator - if not specified, scale indicators are ignored.
Default scale indicator - if not specified, scale indicators are ignored.
Default scale indicator - if not specified, scale indicators are ignored.
Default scale indicator - if not specified, scale indicators are ignored.

Version D of 15 May 1985

0

0

0

0

0

0

Appendix C

Escape Sequences for Characters, Indicators, and
Functions

Note: The escape sequences\\, \., \", \$, \•, \a, \n, \t, and \(newline) are interpreted in
copy mode (see the section on macros, diversion, and traps).

Section
Reference

Escape
Sequence

\\
\e
\'
\'
\-

\.
\(space)
\o
,: ,.
\&

\!
\"
\$N
\%
\(zz

\•z, \•(zz
\a
\b 'abc ... '
\c
\d

\Cz,\f(zz,\f N
\h 'N'
\kz
\I 'Ne '
\L 'Ne'

\nz\n(zz

Version D of 15 May 1985

Meaning

\ (to prevent or delay the interpretation of\)
Printable version of the current escape character.
' (acute accent); equivalent to \(aa
' (grave accent); equivalent to \(ga
- Minus sign in the current font

Period (dot) (see de)
Unpaddable space-size space character
Digit width space
1/6 em narrow space character (zero width in nroff)

1/12 em half-narrow space character (zero width in nroff)
Non-printing, zero width character

Transparent line indicator
Beginning of comment
Interpolate argument 1 <N<9
Default optional hyphenation character
Character named zz

Interpolate string z or zz
Non-interpreted leader character
Bracket building function
Interrupt text processing
Forward (down) 1/2 em vertical motion (1/2 line in nroff)

Change to font named z or zz, or position N
Local horizontal motion; move right N {negative left)
Mark horizontal input place in register z
Horizontal line drawing function (optionally with c)
Vertical line drawing function (optionally with c)

Internolate number re~ister z or zz

C-1

Escape Sequences for Characters, Indicators, and Functions Editing and Text Processing

C-2

Section
Reference

Euape
Sequence

\o 'abc ... '
\p
\r
\sN,\s±N

\t
\u
\v 'N '
\w',tring'
\x 'N'

\zc
\{
\}
\(newline)
\X

Meaning

Overstrike characters a, b, c, ...
Break and spread output line
Reverse 1 em vertical motion (reverse line in nroff)
Point-size change function

Non-interpreted horizontal tab
Reverse (up) 1/2em vertical motion (1/2 line in nroff)
Local vertical motion; move down N {negative up}
Interpolate width of airing
Extra line-space function (negative before, po,itive after}

Print c with zero width (without spacing)
Begin conditional input
End conditional input
Concealed (ignored) newline
X, any character not listed above

Version D of 15 May 1985

0

0

0

0

0

0

Appendix D

Predefined Number Registers

Table D-1: General Number Registers

Section
Reference

Regiater
Name Deacription

Section
Reference

c. Input line-number in current input file; same as .. c.
% Current page number.
ct Character type (set by width function).
di Width (maximum) of last completed diversion.
dn Height (vertical size) of last completed diversion.

dw
dy
hp
In
mo

Current day of the week (1-7).
Current day of the month (1-31).
Current horizontal place on input line.
Output line number.
Current month (1-12).

nl Vertical position of last printed text base-line.
sb Depth of string below base line (generated by width function).
st Height of string above base line (generated by width function).
yr Last two digits of current year.

Table D-2: Read-Only Number Registers

Regiater
Name Deuription

.$ Number of arguments available at the current macro level.

.A Set to 1 in troff, if -a option used; always 1 in nroff.

.H Available horizontal resolution in basic units .

. L Current line-spacing parameter (ls) .

. P 1 if current page is printed, otherwise zero.

. T

. v

.a
• c

Set to 1 in nroff, if -T option used; always O in troff .
Available vertical resolution in basic units .
Post-line extra line-space most recently utilized using \x 'N '.
Number of linea read from current innut file .

Version D of 15 May 1985 D-1

Predefined Number Registers Editing and Text Processing

Section
Reference

D-2

Regiater
Name

Deacription

.d Current vertical place in current diversion; equal to nl, if no diversion .

. f Current font as physical quadrant (1-4) .

. h Text base-line high-water mark on current page or diversion .
• i Current indent .
. j Current adjustment mode and type .

. k Horizontal text portion size of current output line .
• I Current line length .
. n Length of text portion on previous output line .
. o Current page offset .
. p Current page length .

• s Current point size .
. t Distance to the next trap .
. u Equal to 1 in fill mode and O in nofill mode .
. v Current vertical line spacing .
• w Width of previous character .

. x Reserved version-dependent register .
• y Reserved version-dependent register .
. z Name of current diversion.

Version D of 15 May 1985

0

0

0

0

0

0

Appendix E

Description of troff Output Codes

As we mentioned before, troff is geared up to produce binary codes for a phototypesetter called a
C/A/T. This appendix describfs the codes for the C/A/T in detail. This information is for peo­
ple who want to translate C/A/T codes for other purposes.

The basic mechanism of the C/A/T typesetter is a revolving drum divided into four quadrants.
On each quadrant of the drum you can mount a strip of film - one strip of film corresponds to a
font. Each font has 102 characters in it. Characters are exposed on the final photographic paper
by 'flashing' a light through the appropriate position of the film strip on the drum. The actual
font to be used is selected (as you will see later) by a combination of 'rail', 'mag', and 'font-half'
- the terms 'rail' and 'mag' are hangovers from very old hot-lead typesetting technology and
have no place in electro-mechanical systems, but they were carried over because typesetters
can't handle new things. Point size changes are handled in the C/A/T by a series of magnifying
lenses.

The C/A/T's basic unit of length (machine unit) is 1/432 inch (there are six of these units to a
typesetter's 'point'). The quantum of horizontal motion is one unit. The quantum of vertical
motion is three units (1/144 inch or half a point). troff uses the same system of units in its inter­
nal computations.

The C/A/T phototypesetter is driven by sending it a sequence of one-byte (eight-bit byte) codes
to specify characters, fonts, point sizes, and other information. The encoding scheme used was
obviously designed by someone wanting to send the minimum amount of information across a
communications channel at the expense of doing vast amounts of work in the computer driving
the typesetter.

A complete C/A/T file is supposed to start with an initialize code (described later), followed by
an e,cape-16 code, then the body of the text destined for the C/A/T. The whole file ends with
14 inches of trailer, followed by a .top code. In practice, looking at troff's output file has gen­
erated disagreements on what the file really looks like, but we don't have a C/A/T around to
really try it out.

Bit 7 of a code byte classifies the byte into one of two major types:

BIT 7

I Major Code I
. Type .

6

The top bit (bit 7) is encoded thus:

5 4 3 2

Further Encoding

1 - An Euape Code, specifying horizontal motion, as described below.

BIT 7

Bit 7 = 1

E:sca.--- Code

Version D of 15 May 1985

6 5 4 3 2

One's Complement of Amount of Motion

1 0

1 0

E-1

Description of troff Output Codes Editing and Text Processing

0 - indicates that bits 7 and 6 are used to further encode the code byte, as follows:

BIT 7
Fla.l!h Code or

Control Code

6 5

The two upper bits have these meanings:

4 3 2 1

Further Encoding

00 - A Flaah Code, which selects a character out of a font, as described below.

BIT 7

Bite 6 and 7 = 00

Fla.i,b Code

6 5 4 3 2 1

Character Number to Flub (t---e3)

0

0

01 - A Control Code, which is then further encoded into one of two categories depending on
whether the next bit is a one or a zero:

BIT 7 6 5 4 3 2 1 0

Control Code Further Encoding

1 - This is a lead code, described below, or

0 - in which case the control code is further encoded into one of three categories of:

• Initialization and termination.

• Selecting fonts.

• Specifying the direction of motion for escapes and leading.

We have finally reached the end of this encoding scheme. The following sections discuss each
type of code in detail.

E.1. Codes OOxxxxxx - Flash Codes to Expose Characters

A code with the bits six and seven equal to zero (OOxxxxxx) is a ftaah code. A flash code specifies
flashing one of 63 characters - the lower six bits of the flash code specify which character to
flash. This is not enough charcater combinations to select even all the characters within a single
font (there are 108 charcaters per font) and so there are control codes (described later) to select
the font and which half of the font. Given that a specific font is selected via the rail, mag, and
(for the eight-font C/ A/T) the tilt codes, you then select an upper-font-half or a lower-font-half.
The lower-font-half is the first 63 characters of the font, and the upper-font-half is the remaining
45 characters of the font. A flash code of greater than 46 in the upper-half of the font is con­
sidered illegal.

E.2. Codes lxxxxxxx - Escape Codes Specifying Horizontal
Motion

A code with bit seven equal to 1 (lxxxxxxx) is an eacape code. An eacape code specifies horizon­
tal motion. The C/A/T is a boustrophedonic device - that is, it can move in both directions,
and so the direction of motion is specified by one of the control codes described later on. The

E-2 Version D of 15 May 1985

0

0

I Oi

0

0

0

Editing and Text Processing Description of troff Output Codes

amount of horizontal motion is specified by the one's complement of the lower seven bits of the
escape code.

E.3. Codes Ollxxxxx - Lead Codes Specifying Vertical Motion

A codes with the top three bits equal to Oll is a lead code. A lead code is a subset of the con­
trol codes in that the top three bits are Oll. Such a code specifies vertical motion. The amount
of the vertical motion is specified by the one's complement of the lower five bits, in vertical
quanta. 'Lead' is a typesetter's term deriving from the days of hot-lead machines - the termi­
nology sticks with us because the industry moves slowly.

E.4. Codes OlOlxxxx - Size Change Codes

A byte with the top four bits equal to 0101 is a •ize-change code. Such a code specifies move­
ment of a lens turret and a doubler lens to change the point size of the characters. The size­
change codes are as follows:

Table E-1: Size Change Codes

Point-Size Binary Code Octal Code Point-Size Binary Code Octal Code

6 01011000 0130 16 01011001 0131
7 01010000 0120 18 0101 OHO 0126
8 01010001 0121 20 01011010 0132
9 01010111 0127 22 01011011 0133

10 01010010 0122 24 0101 llOO 0134
11 01010011 0123 28 01011101 0135
12 01010100 0124 36 0101 lllO 0136
14 01010101 0125

Changes in size using the doubler lens change the horizontal position on the page:

If you change from: Follow the change with:
Single to double A forward escape of 55 quanta

Double to single A reverse escape of 55 quanta

Version D of 15 May 1985 E-3

Description of troff Output Codes Editing and Text Processing

Single Point-Sizes versus Double Point-Sizes
Single Double

6 16
7 20
8 22
9 24

10 28
11 36
12
14
18

E.5. Codes OlOOxxxx - Control Codes

A byte with the top four bits equal to 0100 is a control code. Not all of the control codes have
meaning to the typesetter. The control codes are in three classes, namely:

• Initialization and termniation.

• Selecting fonts.

• Specifying the direction of motion for escapes and leading. The control codes and their mean­
mgs are:

Table E-2: C/A/T Control Codes and their Meanings

Category Meaning Binary Code Octal Code

Initializing Initialize 01000000 0100
and Terminating Stop 01001001 0111

Upper Rail 01000010 0102
Lower Rail 01000001 0101
Upper Mag 01000011 0103

Selecting Fonts Lower Mag 01000100 0104
Tilt Up 01001110 0116
Tilt Down 01001111 0117
Upper Font Half 01000110 0106
Lower Font Half 01000101 0105

Specifying Direction Escape Forward 01000111 0107
Escape Backward 01001000 0110

Of Motion Lead Forward 01001010 0112
Lead Backward 01001100 0114

0

0

Note that tilt up and tilt down are uniplemented op-codea on the four-font C/A/T. However, 0·
the illustrious hackers at Berkeley implemented a program called rvcat to drive the Versatec or

E-4 Version D of 15 May 1985

Editing and Text Processing Description of troff Output Codes

the Varian printers, and they used the 0116& code to mean 'multiply the next lead-code by 64' to 0 avoid having enormous runs of small lead-codes.

0

0

E.6. How Fonts are Selected

Fonts are selected by a combination of rail, mag, and tilt. The tilt codes exist only on the
eight-font C/A/T and this is the only difference between the two machines that is visible to the
user. The standard version of troff doesn't know about the eight-font machine - University of
Illinois is one of the places that hacked over troff to make it understand the eight-font C/A/T.
The correspondence between rail, mag, and tilt codes is shown in this table:

Table E-3: Correspondence Between Rail, Mag, Tilt, and Font Number

Rail Mag Tilt Four-Font Eight-Font

Lower Lower Up 1 1
Lower Lower Down 1 2
Upper Lower Up 2 3
Upper Lower Down 2 4
Lower Upper Up 3 5
Lower Upper Down 3 6
Upper Upper Up 4 7
Upper Upper Down 4 8

E. 7. Initial State of the C / A/T

For those wishing to write postprocessors to hack over C/A/T codes, here is the initial state of
the beast:

Attribute Initial State

Escape Forward

Lead Forward

Font-Half Lower

Rail Lower

Mag Lower

Tilt Down

Version D of 15 May 1985 E-5

0

I
01

0

0

0

READER COMMENT SHEET

Dear Customer,
We who work here at Sun Microsystems wish to provide the best possible documentation £or our
products. To this end, we solicit your comments on this manual. We would appreciate your tel­
ling us about errors in the content of the manual, and about any material which you feel should
be there but isn't.

Typographical Errors:
Please list typographical errors by page number and actual text of the error.

Technical Errors:
Please list errors of fact by page number and actual text of the error.

Content:
Please list errors of fact by page number and actual text of the error.

Content:
Did this guide meet your needs? If not, please indicate what you think should be added
or deleted in order to do so. Please comment on any material which you feel should be
present but is not. Is there material which is in other manuals, but would be more con­
venient if it were in this manual?

Layout and Style:
Did you find the organization of this guide useful? If not, how would you rearrange

0

things? Do you find the style of this manual pleasing or irritating? What would you like

0 to see different?

0

0

0

0

0

0

0

