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ABSTRACT 

We consider the efficient implementation of matrix 

computations in interpreted Basic on a microcomputer. Linear 

equations routines SGEFA and SGESL from the LINPACK library of 

Fortran programs are translated into Basic and run on four 

microcomputers: the Commodore 64, the Amstrad CPC 464, the BBC 

Microcomputer, and the BBC with a Z-80 second processor. The 

computational cost of the routines is found to be dominated by 

subscripting calculations rather than by floating point 

arithmetic. For the BBC Microcomputer and the Commodore 64, the 

BLAS routines which constitute the inner loops of SGEFA and 

SGESL are coded in assembly language; speed increases of factors 

2.8 <BBC> and 5.3 <Commodore 64) accrue, and the improved 

execution times are comparable to ones which have been quoted 

for the more powerful and expensive IBM PC running under a 

Fortran compiler. The computational cost of the routines using 

coded BLAS is found to be dominated by floating point 

arithmetic, subscripting calculations and other overheads having 

been reduced to a negligible level, and it is concluded that 

these hybrid Basic/assembly language routines extract near 

optimum performance from their host machines. Our findings are 

shown to be applicable to any matrix routine whose computational 

cost can be measured in "flops". 

Keywords: matrix computations, Basic, microcomputer, 

interpreter, assembly language, LINPACK, BLAS. 
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1. Introduction 

Stewart <1981> describes his experiences in implementing a 

linear equations solver on three hand-held calculators. His 

routine for the Hewlett Packard HP-41C, coded in the machine's 

low level programming language, solved a system of linear 

equations of order 10 in 250 seconds. Dongarra (1984) gives a 

list of the times taken by various micro-, mini- and mainframe 

computers to solve a linear system of order 100 using standard 

linear equations software written in Fortran. The timings 

include one for the IBM PC microcomputer: this machine solved 

the 100x100 problem in 20 minutes. 

For several years the present author has used in his 

research the Commmodore Pet and Commodore 64 microcomputers 

(Higham, 1984a, 1984b, 1984c), which in terms of cost and 

computing power lie between the hand-held calculators and the 

more powerful microcomputers such as the IBM PC. Unlike the 

calculators used by Stewart in Stewart (1981) the author's 

microcomputers run a high level programming language, Basic, but 

they are not equipped to run Fortran, the language of choice for 

scientific computation on large computers. 

Consideration of the papers of Stewart and Dongarra led us 

to ask the following questions. 

(1. 1) 

( 1. 2) 

How should algorithms for matrix computations be 

implemented on a microcomputer in order to make the best 

possible use of the machine's processing power, if Basic 

is the only available high-level language? 

What will be the dominant computational costs in 

implementations that answer question (1.1>? 
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How can one make use of the rich supply of high quality 

Fortran software when coding algorithms in Basic? 

We investigate these questions in this report. 

In this work we experimented with four microcomputers: the 

Commodore 64, the Amstrad CPC 464, the standard BBC 

Microcomputer, and the BBC with a Z-80 second processor <we will 

regard the last two configurations as different machines). All 

the machines were used in their standard interpreted Basic 

programming environment; in addition the Commodore 64 was used 

with the Basic-related Carnal programming language. For details 

of Basic and Carnal, and an explanation of the differences 

between an interpreter and a compiler, see Appendix A and the 

references cited therein. The technical specifications of the 

four machines and of their particular language implementations 

are described in Appendix B. 

At this point we pause to define two terms that we will use 

frequently in the following sections. Machine code <or machine 

language) is the collection of instructions that a 

microprocessor recognises and can execute as fundamental 

operations. To the microprocessor, a machine code instruction is 

simply a binary bit pattern that specifies an action to be 

performed. Assembly language is a low level language bearing a 

one to one relationship to machine code; it allows the use of 

mnemonics to refer to machine code instructions, and symbolic 

names (or labels) to refer to numeric values and addresses. The 

translation from assembly language to machine code is carried 

out by an assembler . Programming in assembly language is 

easier, less prone to error, and much less tedious than 

programming in machine code. 
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In sections 2 and 3 we describe the development of 

efficient hybrid Basic/assembly language translations of two 

standard Fortran subroutines for solving systems of linear 

equations. Section 4 presents and analyses the results of 

timing experiments carried out on the four test machines using 

the hybrid routines and, for comparison, the equivalent purely 

Basic versions. 

In section 5 we introduce a set of benchmarks for 

interpreted Basics and apply them to the four test machines. 

The results obtained are used to gain insight into the results 

of section 4. Finally, in section 6 we summarise our findings 

in relation to questions <1.1>, (1.2) and (1.3>. 

The view taken in this work is that one wishes to use the 

fastest and most accurate special-purpose algorithms available 

for solving on a microcomputer the problem at hand (cf. K. 

Stewart (1980)). This is the view that is naturally taken by a 

numerical analysis researcher who uses a microcomputer as a more 

convenient, easy-to-use substitute for a mainframe computer. An 

alternative approach, taken by Nash (1979, 1985>, is to develop 

compact, versatile routines for small computers that are easy to 

implement and to maintain, and that can be used to solve a 

variety of computational problems; some loss of efficiency is 

accepted in return for the economies achieved. We believe that 

our findings concerning the efficiency of interpreted Basic 

programs could usefully be employed in enhancing the efficiency 

of the compact routines, such as those in Nash (1985>, albeit 

with loss of machine independence. 
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2. Translating Two LINPACK Subroutines into Basic 

To investigate questions (1.1>, (1.2> and (1.3>, and to 

enable us to compare our experiments with those of Stewart and 

Dongarra, we decided to focus on the problem of solving a system 

of linear equations - probably the most fundamental and widely 

occurring problem in numerical linear algebra. We took as our 

starting point the routines SGEFA and SGESL in the LINPACK 

library of Fortran programs for analysing and solving linear 

systems <Dongarra, Bunch, Maler and Stewart, 1979). SGEFA 

performs LU factorisation of a matrix A, using a column 

oriented version of Gaussian elimination with partial pivoting, 

and SGESL uses the factorisation to solve a linear system Ax=b 

<Dongarra et al., 1979, Ch. 1). 

Consider the following outline of the factorisation 

algorithm used by SGEFA. 

Algorithm 2.1. 

Here A= <a:~._,) is an nxn real matrix. 

(2. 1> 

<2.2) 

(2.3) 

For k=1, ... , n-1 

Find the smallest r 2 k such that 

l a..-k l =max { l a:~.k l : i=k, ••• , n} 

Swap akk and a..-k 

For i=k+1, ••• , n 

Endfor i 

For j=k+l, ••• , n 

Swap ak_, and a..-_, 

For i=k+1, ••• , n 

Endfor i 

Endfor j 

Endfor k. 
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In the Fortran code SGEFA the loops (2.2> and (2.3), and 

the search <2.1>, are executed by the Basic Linear Algebra 

Subprograms <BLAS> <Lawson, Hanson, Kincaid and Krogh, 1979). 

The BLAS are a collection of Fortran subprograms for carrying 

out various basic computations with vectors, including scaling a 

vector by a constant (SSCAL>, searching for a component of 

largest absolute value <ISAMAX>, and adding a constant times one 

vector to another vector <SAXPY). Note that it is because of 

Fortran's flexibility regarding the passing of array parameters 

to subprograms that the computations on the two-dimensional 

array A in <2.1>, <2.2) and <2.3) can be accomplished by calls 

to the vector oriented BLAS. 

In developing a Basic equivalent of SGEFA it is desirable 

to translate directly from the Fortran code, rather than to code 

from Algorithm 2.1. As well as reducing the programming effort 

this approach should ensure that nuances and subtleties in the 

Fortran coding that are not explicit in the algorithmic notation 

are carried over to the Basic version. In any case, for many 

Fortran codes, including some of the LINPACK routines, a fully 

detailed algorithmic description at the a~~ 

not readily available. 

element level is 

However, of the versions of Basic considered here only one 

supports procedures and this, BBC Basic, does not allow arrays 

to be passed as parameters. Therefore the BLAS and the calls to 

the BLAS cannot be translated directly into Basic. One way to 

overcome this difficulty is to replace the BLAS calls by the 

equivalent in-line code - as is done in some Fortran 

implementations of LINPACK <Stewart, 1977; Dongarra et al., 

1 979 ' p • 1 • 23) • 
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An alternative approach is to write the BLAS in assembly 

language; the BLAS calls can then be replaced by machine­

specific Basic statements that pass control to the specially 

written machine code routines. This approach promises to 

achieve the dual aim of increased efficiency, since machine code 

generally runs much faster than interpreted Basic code and the 

bulk of the computation in SGEFA is done inside the BLAS. In 

fact it is true for most of the LINPACK routines that if the 

total number of assignments, array element references and 

floating point additions and multiplications is O<nq) (q=2, 

3), then only O(nq- 1 ) 

outside the BLAS. 

of these operations are performed 

We have tried both approaches towards translating the BLAS. 

In section 4 we compare the performances of programs based on 

the two approaches. But first, in the next section, we examine 

in detail the theoretical and the practical aspects of coding 

the BLAS in assembly language for use with a Basic interpreter 

on a microcomputer. 
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3. Assembly Language BLAS 

3.1 Theoretical Gains in Efficiency. 

Before describing the details of coding the BLAS in 

assembly language we first consider what we can hope to achieve 

by using these special BLAS with an interpreted Basic. 

One of the characteristics of the 6502 and Z-80 central 

processing units <CPUs) of our test machines is that their 

instruction sets do not contain a multiply operation; therefore 

all four machines must carry out floating point arithmetic in 

software. The four Basic interpreters contain individual 

collections of floating point arithmetic subroutines and, under 

the reasonable assumption that these routines are efficiently 

coded, it is sensible to attempt to make use of these routines 

in the assembly language BLAS. In addition to simplifying the 

programming effort this approach should ensure that the coded 

BLAS perform, bitwise, precisely the same arithmetic <and hence 

sustain precisely the same rounding errors) as would their in-

line Basic equivalents. However, since in this way the very 

same floating point calculations are performed in the coded BLAS 

as in the equivalent Basic, it is not immediately clear what 

gains in efficiency the coded BLAS will engender. To 

investigate this question consider the inner loop (2.3) in 

Algorithm 2. 1. When translated to Basic from its Fortran 

implementation in SGEFA this loop takes the form 

(3. 1) FOR I=l<+l TO N 

A<I,J>=A<I,J>+T*A<I,K> 

NEXT I. 

When this loop is executed in an interpreted Basic the main 

computational costs, over and above the inherent floating point 
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arithmetic, are incurred when the following tasks are performed. 

(1) Parse the source code, to determine the operations to be 

performed. 

(2) Set up the I loop <this involves initialising the loop 

variable, and evaluating the upper and lower loop limits 

and the STEP, which defaults to 1>, then repeatedly 

increment the loop variable, test against the upper limit 

and jump to the start of the loop as necessary. 

(3) Search for the simple variables I, J, K, N, T and the 

array A in the <dynamically allocated) storage area. 

<4> Evaluate the address in storage of the array elements 

A<I,J> and A<I,.K>, that is, perform subscripting. 

Note that the Basic interpreter will carry out operations (3) 

and (4) during every execution of the second statement in the 

loop. 

With the use of assembly language BLAS these overheads to 

the floating point arithmetic can effectively be removed. To 

see why, consider, for example, CBM Basic. In this Basic a SYS 

command can be used to pass control to a machine code routine. 

Thus the command SYS SAXPY calls the machine code routine at 

the address held in the variable SAXPY. Unlike the other three 

Basics, CBM Basic ostensibly does not provide for the passing of 

multiple parameters to a machine code routine. However it is 

possible to emulate such a facility by using a nonstandard SYS 

command of the form 

SYS SAXPY, N-K, T, A<K+1,K>, A<K+1,J). 

This syntax is accepted by the interpreter and control is passed 

to the SAXPY routine. The routine can pick up the value N-K, 

the address of the variable T, and the addresses of the 
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elements A<K+1,K) and A<K+1,J), by calling expression 

evaluation and variable address search routines in the Basic 

interpreter. Using this parameter information the machine code 

routine can itself effect the computations implied in (3.1), 

making direct calls to the interpreter's floating point 

arithmetic routines. 

Clearly, overhead (1) is removed, since the interpretation 

is done by the programmer when writing the assembly language. 

Overhead (3) becomes negligible for large N-K, because the 

searching for variables is done only once, at the start of the 

machine code routine, rather than every time a variable is 

encountered on executing the loop interpretively. Overhead (2) 

is now insignificant because the integer addition and comparison 

operations involved in the looping are fundamental operations 

for the microprocessor, and these operations are no longer being 

performed interpretively. 

Finally, and most importantly, overhead (4) is greatly 

reduced, for only two full subscripting calculations are 

required: those which evaluate the addresses of the array 

elements in the SYS statement. Thereafter, the assembly 

language routine can take advantage of the known, constant 

increment between the addresses in storage of the array elements 

which must be accessed successively. In CBM Basic arrays are 

stored by column, and floating point numbers occupy five bytes 

of storage, so the constant increment between the addresses of 

A<K+1,J>, A<K+2,J>, ••• , A<N,J> in (3.1> is five bytes. 

The above considerations suggest that assembly language 

BLAS will be appreciably more efficient than the equivalent 

Basic code, through the reduction to a negligible level of the 

overheads associated with the floating point arithmetic. 
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We wish to emphasise that the above discussion is 

applicable only to interpreted Basics. In a compiled Basic 

(or Fortran) environment, where the compiler itself may generate 

assembler code or machine code, assemb l y language BLAS may be no 

more efficient than the compiled equivalent source code - this 

behaviour was observed using Fortran in Lawson et al. 

(1979), for example. 

3.2 Practi c al Implementation. 

In order to write assembly language BLAS for a particular 

microcomputer one needs two main tools. The first is an 

assembler. Good assemblers are available for each of the four 

microcomputers; see Appendix B. 

The second tool is documentation for the floating point 

ar i thmet i c routines in the Basic interpreter. 

details of the routines for 

One needs to know 

loading and storing the floating point accumulator <the 

work area in which floating point arithmetic is performed 

by the Basic interpreter>, 

performing floating point addition and multiplication, 

calculating the absolute value and the square root, 

comparing two floating point numbers. 

It is also necessary to determine whether arrays are stored by 

column or by row, how many bytes each floating point number 

occupies, and which memory locations can safely be used for 

temporary storage (of pointers and intermediate sums , for 

example) without affecting the subsequent operation of the Basic 

interpreter. We have been able to find this " i nside 

informat i on" for two of the four machines: the Commodore 64 

<West, 1982; Bathurst, 1983) and the BBC Microcomputer <Pharo, 
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1984). In both cases the information was obtained from sources 

independent of the manufacturer. Given the competitive nature 

of the microcomputer industry it is not surprising if the 

manufacturers are unwilling to publish technical details 

concerning the inner working of their Basic interpreters. 

We have written a subset of the BLAS in 6502 assembly 

language for the Commodore 64 and for the BBC Microcomputer; we 

hope to repeat the exercise for the Z-80 machines if and when 

the necessary documentation becomes available. We based the 

routines on the Fortran BLAS listings in <Dongarra et al,, 

1979), but we did not "unroll" the loops. Since all calls to 

the BLAS in LINPACI< have "INCX=INCY=l" <Dongarra et al., 

1979, p. Al> we asssumed these values for 

of treating them as parameters. 

INCX, INCY instead 

The coding for the Commodore 64 presented no major 

difficulties, since the author was already familiar with the 

intricate CBM Basic interpreter. A partial listing of the 

assembler code (for routines SASUM, SAXPY, ISAMAX and SSCAL 

only> is given in Appendix C. Complete understanding of the 

code requires a good knowledge of 6502 assembly language, but 

the informed reader should be able to follow the broad outline 

using the information given in comment lines. 

We were able to use very similar coding for the BBC version 

of the BLAS. However, a problem was encountered, for BBC Basic 

stores arrays by rows. Thus the increment between the addresses 

of A<I,J> and A <I+ 1 , J > depends on the array dimension; in 

fact, assuming that A is dimensioned DIM A<N,N>, the 

increment is 5*<N+l), since each element occupies 5 bytes and 

BBC Basic subscripts start at zero. This difficulty could be 



-12-

overcome by coding the BLAS in exactly the same way as for the 

Commodore 64, so that the BLAS access in succession contiguously 

stored array elements, and by re-writing SGEFA and SGESL so as 

to generate sequential access across the rows of A, instead of 

down the columns. Instead however, to avoid changing SGEFA and 

SGESL, we decided to treat the address increment as a "global" 

parameter. The BBC BLAS assume that the increment between the 

addresses of the array elements to be accessed successively is 

given by the value of the static integer variable M% <static 

variables, whose address is fixed, are peculiar to BBC Basic). 

Thus a BLAS call with one-dimensional array parameters should be 

preceded by the assignment M%=5, while for two-dimensional 

arrays the required assignment is M%=5*<N+1). This simple 

approach does not permit a BLAS call with both one- and two­

dimensional array parameters; to avoid this limitation we stored 

the right-hand side vector b (which is manipulated by the 

solve routine SGESL) in the otherwise unused, zero'th column of 

A. The BBC Basic program which we used to generate and test the 

BBC BLAS is listed in Appendix D. 
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4. Test Results 

In this section we give the results of tests carried out on 

the four microcomputers using Basic translations of LINPACK's 

SGEFA and SGESL, using both in-line BLAS and assembly language 

BLAS (for the machines for which these were written). 

Because of the nature of interpreted Basic, many factors 

influence program performance <that is, execution times>, and 

the degree of influence varies from one Basic to another. 

example factors are the following. 

Some 

<1> The order (with respect to program flow at run time> of 

(2) 

(3) 

first use of variables, and of declaration of arrays. In 

CBM Basic the access times are fastest for the earliest 

defined variables or arrays , but in Locomotive Basic (on 

the Amstrad CPC 464) the access time is independent of the 

order of definition. 

The use of multi-statement lines. A given program will 

usually run faster if the number of distinct lines in the 

source code is reduced - by combining lines wherever 

possible. 

The presence of spaces and REM (remark) statements. The 

interpreter has to scan over spaces and REMs, so their 

presence in frequently executed sections of the code can 

have an adverse affect on run times. 

<4> In some Basics (for example, BBC Basic and Locomotive 

Basic>, expressions involving variables of only integer 

type are evaluated more rapidly than the corresponding 

expressions containing floating point variables. In other 

Basics (including CBM Basic and CBM Carnal> the converse is 

true, because integer arithmetic is not supported and so 
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integer values must be converted to floating point before a 

numeric expression can be evaluated. 

Clearly, then, it is difficult to compare the performance 

of one interpreted Basic with another, even if the same program 

can be run unaltered under both Basics: aspects of the code 

which are beneficial to the performance of one Basic may be 

detrimental to the performance of the other. 

In our tests we have endeavoured to ensure that each Basic 

is treated "fairly". The translation of SGEFA and SGESL was 

carried out first into CBM Basic and thence into the other three 

Basics and Comal, with care taken to ensure that the five 

different codings were as similar as possible, particularly with 

respect to factors <1>, <2> and (3) above. The only major 

difference between the five implementations concerns factor (4): 

in all except the CBM Basic and Comal versions integer variables 

were used where appropriate. Since our purpose is not 

essentially to compare the performance of different Basics, we 

believe that our limited efforts at optimising the code for each 

Basic are justified. 

The two BBC Microcomputer versions of SGEFA and SGESL, the 

first with in-line BLAS and the second with calls to the 

assembly language BLAS, are listed in Appendix E together with 

the test program in which they were used. For each machine our 

approach was to time the execution of SGEFA and SGESL for n=5, 

10, 20, . . . ' using random A and b. The elements of A and 

x were generated as pseudo-random numbers in the interval 

[-1,1], using whatever random number generator the Basic 

provided, and the right-hand side b was formed as b=Ax. The 

error in the computed solution was monitored to ensure that the 
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routines were working correctly. The machines· built-in clocks 

were used to time the routines; the units in which the clocks 

count vary from 1/60 th of a second (Commodore 64) to 1/300 th 

of a second <Amstrad CPC 464), so we quote the times to one 

decimal place at most. 

Only one linear system was solved for each n. A separate 

experiment, on the Commodore 64, in which for fixed n several 

seeds were used for the random number generator produced timings 

varying by only a few percent, so we believe our approach of 

using only one random matrix for each n produces reliable 

results. 

The results are reported in Tables 4.1 and 4.2. "Coded 

BLAS" denotes the use of assembly language BLAS. The blank 

entries in the tables correspond to values of 

large for the available memory space. 

n which were too 

We offer the following comments and observations on Tables 

4.1 and 4.2. 

(1) The SGESL timings are insignificant, for large n, 

compared to those of SGEFA. This is to be expected since the 

total counts of floating point operations, array element 

references and assignments for the two routines are of orders 

n 2 and n 3 respectively. 

(2) In every case the 10x10 system was solved in less than 

11 seconds. This compares to the 250 or more seconds required 

by the hand-held calculators in Stewart (1981> to solve a 

problem of the same size, and gives some indication of the 

difference in processing power between these two classes of 

machine. 
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Table 4. 1. SGEFA timings in seconds. 

N I CBM 64 CBM 64 CBM 64 BBC BBC BBC Z-80 AMSTRAD I 

Coded BLAS Comal Coded BLAS CPC 464 
---+-------------------------------------------------------------

5 1. 33 0.75 1. 23 0.39 0.26 0.54 0.83 

10 8.90 3.43 7.92 2.47 1.26 3.25 4.39 

20 62.6 17.2 53.6 18.0 7.63 23.7 29.5 

30 202 47.3 170 58.9 22.8 76. 1 94.9 

40 466 99.9 392 137 51.3 177 219 

50 896 181 266 96.3 341 422 

60 1535 298 458 162 584 722 

70 2416 455 922 1140 

80 1371 1694 

90 1946 

Table 4.2. SGESL timings in seconds. 

N I CBM 64 CBM 64 CBM 64 BBC BBC BBC Z-80 AMSTRAD I 

Coded BLAS Co mal Coded BLAS CPC 464 
---+-------------------------------------------------------------

5 0.57 0.38 0.53 0.17 0.15 0.22 0.34 

10 1.97 0.93 1. 75 0.56 0.39 0.76 1.03 

20 7. 18 2.53 6.30 2.11 1.20 2.86 3.59 

30 15.6 4.75 13.7 4.66 2.39 6.22 7.76 

40 27.2 7.58 23.8 8.16 4.02 10.9 13.5 

50 42.1 11.0 12.6 6.00 16.9 20.9 

60 60.1 15.0 18.1 8.39 24.2 29.7 

70 81.2 19.8 32.7 40.4 

80 42.6 52.4 

90 53.8 
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(3) Consider the tabulated times for the pure Basic, in-

line BLAS versions of SGEFA and SGESL. According to the results 

shown, the BBC Microcomputer is fastest by a significant margin. 

The following ratios of execution times hold, approximately. 

(a) Commodore 64 I BBC = 3.4, 

(b) Amstrad CPC 464 I BBC = 1.6, 

(c) BBC Z-80 I BBC = 1. 3. 

The first ratio might be considered surprisingly large, given 

that the Commodore 64 and the BBC Microcomputer use essentially 

the same microprocessor. The ratio can partly be explained by 

the fact that the BBC's 6502 microprocessor runs at twice the 

clock rate of the Commodore's 6510 (though it is not clear to us 

whether doubling the clock speed on a given machine should, in 

theory, halve the run times). Furthermore, it appears that BBC 

Basic for the 6502 was written with speed of program execution 

as a prime consideration. Ratios {b) and (c) provide an 

interesting comparison between the performance of the 6502 and 

the Z-80 CPUs, especially as BBC Basic for the Z-80 has a nearly 

identical specification to standard BBC Basic for the 6502. 

(4} The speed up ratios resulting from the use of assembly 

language BLAS in SGEFA are given in Table 4.3. The .. asymptotic .. 

speed up ratios of 5.3 and 2.8, for the Commodore 64 and the BBC 

Microcomputer respectively, are very pleasing and provide 

excellent justification for the effort expended in coding the 

BLAS. The reason for these differing improvements in execution 

speed, and the efficiency relative to the theoretical optimum of 
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the routines using the coded BLAS, are examined in the next 

section. 

Table 4.3. Speed up ratios for SGEFA. 

N 5 10 20 30 40 50 60 70 
-------+----------------------------------------------
CBM 64 1.8 2.6 3.6 4.3 4.7 5.0 5.2 5.3 

BBC 1.5 2.0 2.4 2.6 2.7 2.8 2.8 

(5) The quoted timings for CBM Carnal are roughly 16% 

faster than those for CBM Basic. However, in the Carnal versions 

of SGEFA and SGESL we used a special (and very convenient) 

feature of Carnal which allows an assignment statement of the 

form S:=S+T to be replaced by the shorthand form S:+T. For 

example, we coded A<I,J>:=A<I,J>+T*ACI,K> as A<I,J>:+T*ACI,K> 

<see the listings in Appendix F>. When we changed the shorthand 

assignments back into the longer form the Comal timings 

increased by approximately 30/. and they then exceeded the 

Commodore 64 Basic timings by 11/.. This 30/. increase in 

execution time can be explained by the fact that the short form 

involves one less subscripting operation than the long form; see 

the timing results in the next section. Clearly, when applied 

to array element expressions, the shorthand form S:+T is a 

very effective tool for increasing the efficiency of programs 

for matrix computations in CBM Carnal. 

(6) In the Commodore 64 and BBC Microcomputer tests the 

computed solutions returned by the routines using the coded BLAS 

were in every case identical to those returned by the purely 

Basic routines. This confirms our expectation that the assembly 

language BLAS would perform precisely the same arithmetic as the 

in-line, Basic BLAS. 
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We have used the test results to estimate the times that 

would be required to solve a linear system of order 100 were the 

test machines able to accommodate systems of this order. The 

n=100 times were obtained by extrapolating on the times for the 

largest value of n available: 

t1mm = (100/n) 3 tn<SGEFA> + (100/n) 2 tn<SGESL>. 

In Table 4.4 we compare these estimates with five actual timings 

given in Dongarra (1984>; Dongarra's timings were obtained using 

standard Fortran versions of SGEFA and SGESL. Three mainframe 

computer timings are included to help to put the performance of 

the microcomputers into perspective. 

Table 4.4. Estimates of tn<SGEFA> + tn<SGESL> 

Machine Seconds 
---------------------+---------------------
CBM 64 7209 (120 mins> 

Amstrad CPC 464 

Apple III 
Pascal compiler 

BBC Z-80 

BBC 

CBM 64 
Coded BLAS 

IBM PC 
Microsoft Fortran 
3.1 compiler 

BBC 
Coded BLAS 

VAX 11/780 
Fortran VMS compiler 

CDC 7600 
Fortran FTN compiler 

CDC Cyber 205 
Fortran FTN compiler 

3390 (56 mins> 

2813 <47 mins) 

2736 (46 mins) 

2171 (36 mins) 

1367 (23 mins) 

1225 <20 mins) 

773 (13 mins) 

4.13 

0.21 

0.082 

for n=100. 
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We note from Table 4.4 that the BBC Microcomputer, using 

coded BLAS, is, in these experiments, 37/. faster than the IBM PC 

running under a Fortran compiler, and that the Commodore 64 with 

coded BLAS is only 12/. slower than the IBM PC. These 

comparisons surprised us, because the IBM PC uses an Intel 8088 

CPU, which, in contrast to the 8-bit 6502 and Z-80 CPUs, is a 16-

bit processor, and the 8088 contains multiply and divide 

instructions: in other words, the 8088 is a substantially more 

powerful processor than the 6502 or the Z-80. 
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5. Benchmarks for Matrix Computations 

To help to explain the results of section 4 and to gain 

further insight into them, we have developed a set of benchmarks 

for interpreted Basics which measure the computational costs of 

floating point arithmetic and subscripting calculations. Our 

method is to time a small, carefully chosen, set of Basic 

statements and to extract the desired information by 

differencing the timings. Timings have been obtained for each 

of the four Basics, and Carnal, using the test program listed in 

Appendix G. 

The test program times the execution of a loop (lines 170-

210) whose core is a line consisting solely of a colon (the 

statement separator in Basic>. Then a similar loop (lines 250-

290>, in which the colon is followed by a single statement, is 

timed. The difference between the two times is the time 

required to execute the statement, multiplied by the total loop 

count. This technique for timing the execution of a statement 

in an interpreted Basic is described in West <1982, p.16). The 

colon is necessary because we need to account for the time 

required to process the line number of the line on which the 

statement stands, and this timing cannot be obtained directly 

because in Basic a line number may not be followed by an empty 

line. 

The tests are based on statements involving variables that 

have earlier in the program been assigned random values. We 

have found that in the Basics tested, the execution times for 

floating point operations depend on the arguments; however we 

believe the timings obtained with random arguments to be 

representative. 
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The statements used in line 270 of the test program, and 

the times for execution of the statements within the loop, are 

tabulated for the four machines in Table 5.1. Note that these 

times should be divided by the loop count, n 2 =25 2 , to obtain 

the time for a single execution of the statement. Also 

tabulated are differences which can be expected to provide good 

general estimates of the time required to perform one- and two-

dimensional subscripting and the three arithmetic operations. 

For example, the difference between the times for the statements 

T=R+S and T=R approximates the time which is required for a 

floating point addition, once the operands have been evaluated. 

Table 5. 1. Times in seconds for 625 executions of a Basic statement. 

Statement CBM 64 CBM 64 BBC 
Co mal 

BBC 
Z-80 

Amstrad 
CPC 464 

---------------------------+--------------------------------------
<a> T=R 0.912! 0.98 0.34 0.45 0.42 

(b) T=R+S 1. 78 1.91 0.68 0.91 1.00 

(c) T=R*S 2.93 3.07 1. 51 1.45 1. 63 

(d) T=R/S 3. 18 < <r:> 
·-·· ._l.zt._ 1.63 1.67 1.88 

(e) T=B (I> ,., ,., -=!" 
.L.. • L~.J 2.38 fll.55 0.89 1.02 

(f) T=A<I,J> 3.52 4.08 0.90 1. 30 1.52 

(g) A<I,J>=A<I,J>+R*A<K,J) 11.87 13.28 3.59 4.47 5.54 
---------------------------+--------------------------------------
t- = (b)-(a) "' '+ ' 0.88 0.93 0.34 0.46 0.58 

t .... = (c)-(a) "' '*. 2.03 2.09 1.17 1.00 1.21 

t,. = (d)-(a) "' . I. 2.28 2.34 1.29 1.22 1.46 

t:L = (e)-(a) "' ' (I> . 1.33 1.40 0.21 0.44 0.60 

t:L_j = (f)-(a) "' '(l,J)' 2.62 3.10 0.56 0.85 1.10 
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Much useful information can be gleaned from Table 5.1. 

First, consider statement (g). The time required to execute a 

statement of this form on a particular computer system, and in a 

particular programming language, is termed a flop <Golub and Van 

Loan, 1983 , p.32). Single statements of the form of statement 

(g) form the nucleus of the innermost loops of SGEFA and SGESL 

(see the listings in Appendix E>, and are executed n 3 /3 + 

and n 2 + O<n> times respectively; thus we might 

expect the execution times of the pure Basic versions of SGEFA 

and SGESL to be well approximated, for large n, 

t~1~p and n 2 t~1~p respectively, where t~ 1 ~p is the 

time for a single execution of statement (g). This is indeed 

the case, as is shown by Table 

Table 5.2. 

N 30 60 30 60 
----------------+-------------------------+----------------------
CBM 64 1.18 1.12 0.91 0.88 

BBC 1.14 1. 11 0.90 0.88 

BBC Z-80 1.18 1. 13 0.97 0.94 

Amstrad CPC 464 1.19 1.18 0.97 121.93 

<The SGEFA estimates are overestimates bacause they ignore the 

parts of the computations. The SGESL estimates are 

underestimates because t~ 1 ~p is based on two-dimensional 

subscripting, whereas the SGESL flop invloves less expensive, 

one-dimensional subscripting.) 
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Thus in the microcomputer Basics tested here, the time 

required for solution of a linear system by Gaussian elimination 

is proportional to the flop time. We now look more closely at 

the component computational costs in a flop. 

Consider statement (g) in Table 5.1. The main tasks to be 

performed when evaluating this statement in an interpreted Basic 

are the following: 

parse the statement and evaluate the addresses in storage 

of A and R, then carry out 

three two-dimensional subscripting operations, 

one floating point multiplication, 

one floating point addition. 

We can use the timings t<g>, t- and t- in Table 

5.1 to express the cost of these tasks as a percentage of one 

flop. 

Table 5.3. Components of a flop. 

: Subscripting Multiplication Addition Parse/Addr. 
----------------+----------------------------------------------------
CBM 64 66% 17% 7% 10% 

CBM 64 Carnal 70% 16% 7% 7% 

BBC 47% 33% 9% 11% 

BBC Z-80 57% 22% 10% 11% 

Amstrad CPC 464 60% 22% 10% 8% 

Table 5.3 shows that in all five Basics the largest single 

contribution to a flop comes from subscripting calculations, 

this contribution varying from 47% in BBC Basic to 70% in CBM 

Carnal. In every case the floating point arithmetic accounts for 

less than half a flop, with variation between 23% in CBM Carnal 

and 42% in BBC Basic. 
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We conclude that in solving a linear system on our test 

machines, using Basic translations of SGEFA and SGESL with in­

line BLAS, the dominant computational cost is subscripting: 

it accounts for between one half and two thirds of the execution 

time. 

To see why subscripting calculations can be so expensive we 

examined a dissassembly of the CBM Basic interpreter <Bathurst, 

1983). In outline, the interpreter performs the following 

actions to evaluate A<I,J>, assuming A has been dimensioned 

DIM A<N,N>. First, the base address of the array A is 

calculated, by searching through the array table. Next the two 

subscripts are evaluated, using a general purpose "evaluate 

floating point expression" routine, and these floating point 

values are converted to 4-byte integers, with checks for out-of-

bounds subscripts. The offset of the element A<I,J>, in terms 

of the number of array elements, is evaluated as I+(J-1)*(N+1>, 

and the offset in bytes is calculated by multiplying the result 

by 5 (the length of each array element). These two 

multiplications are carried out by a general purpose 16-bit 

integer multiplication routine, so special advantage is not 

taken of the operand 5. It appears, then, that CBM Basic's 

relative inefficiency at subscripting is due, at least in part, 

to its failure to take advantage both of integer subscripts 

(when these are present) and of the simple form of the operand 5 

in the second 16-bit multiplication. 

We now use Table 5.3 to explain the speed up ratios in 

Table 4.3. As explained in section 3, the use of assembly 

language BLAS effectively removes the overheads to the floating 

point arithmetic in evaluating statement <g> in Table 5.1. Thus, 
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assuming that for large n the execution times for the routines 

using coded BLAS are proportional to the time for an ''assembly 

language flop", we can predict the speed up ratios, using Table 

5.3, as follows. 

CBM 64 100/24 = 4.17 

BBC : 100/42 = 2.38 

Comparing with Table 4.3 we see that the predictions are 

reasonably good, though, perhaps surprisingly, they are somewhat 

pessimistic for large n. 

Our findings about computational cost, and about speed 

increase with the use of coded BLAS, are applicable not only to 

the Gaussian elimination algorithm, but to any other algorithm 

for matrix computations whose cost can reliably be measured in 

flops (most of the algorithms in LINPACK, for example>. We 

conclude that for flop dominated matrix algorithms the use of 

assembly language BLAS will induce near optimum machine 

performance on the two microcomputers for which they have been 

written, for the dominant computational cost in such 

implementations will be that associated with the floating point 

arithmetic, and this arithmetic is performed using machine code 

routines from within the Basic interpreter which we assume are 

efficiently coded. 
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6. Concluding Remarks 

We have shown that it is feasible to translate Fortran 

subroutines from the LINPACK library <Dongarra et al., 1979) 

into Basic, so that they can be used on those microcomputers for 

which Basic is the standard programming language. Two 

approaches to translating the BLAS were considered. The first 

was simply to replace the BLAS calls by the equivalent in-line 

Basic code. We found that in the resulting pure Basic programs 

the dominant computational cost is subscripting, rather than 

floating point arithmetic. 

The second approach was to code the BLAS in assembly 

language and to make use of machine dependent features in the 

Basic which allow a machine code subroutine to be called and 

multiple parameters to be passed. This was done for the 

Commodore 64 and the BBC Microcomputer. On the Commodore 64, 

for n=70, the Basic version of SGEFA which uses assembly 

language BLAS runs 5.3 times faster than the version using in-

line BLAS. On the BBC Microcomputer, for n=60, the 

corresponding speed increase is 2.8. While speedy program 

execution is not necessarily a prime requirement when solving 

problems numerically on microcomputers <Nash, 1985>, these 

substantial increases in efficiency are well worth having if 

computations with long run times are to be performed. 

Importantly, we have seen that the versions of SGEFA using 

assembly language BLAS and running under interpreted Basic 

produce near optimum machine performance, in the sense that 

their computational cost is dominated by the cost of the 

inherent floating point arithmetic. In other words, even if the 

whole SGEFA subroutine were to be coded in assembly language (a 
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formidable task!) the resulting gains in efficiency over the 

Basic program using coded BLAS would be relatively smal l . 

We conclude that for programming matrix computations in 

interpreted Basic on a microcomputer, a carefuly coded set of 

assembly language BLAS is a very useful tool. Its use 

facilitates the translation into Basic of Fortran programs which 

use the BLAS <such as those in LINPACK>, and at the same time 

enables the translated programs to make efficient use of the 

available processing power something that cannot usually be 

achieved when working with a Basic interpreter. Furthermore, 

the assembly language BLAS enable the programmer coding in Basic 

directly to enjoy the benefits of using simple, one-line BLAS 

calls to perform basic vector operations: careful use of the 

BLAS can produce greater modularity and improved readability of 

programs (cf. Appendix D>. 
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Appendix A: Basic and Comal. 

Basic. 

The Basic programming language was invented by J.G. Kemeny 

and T.E. Kurtz at Dartmouth College, New Hampshire in 1964. The 

language was designed for use by novice programmers in an 

interactive, time-sharing environment, but the range of usage of 

Basic has expanded beyond this originally intended audience. 

Basic is available on many mainframe computers and is the 

principal language on most low cost microcomputers, often being 

permanently stored in read only memory. 

Disappointingly, Basic suffers from a lack of 

standardisation. Although there exists an ANSI standard <ANSI, 

1978), few Basics adhere to it, and in general, a program 

written in one version of Basic will require modification to 

enable it to run in another. 

Loosely, Basic can be described as a simplified subset of 

Fortran. Some of the major differences between Basic and 

Fortran are as follows. <These comments are not applicable to 

all Basics; for example BBC Basic supports procedures with local 

variables- see Appendix B.> 

(1) There are no statement numbers in Basic, so GOTO is 

directed to a line number. 

(2) Named, program independent subroutines with parameter 

(3) 

passing are not supported in Basic. Subroutines are called 

by line number, as in GOSUB 100, and an exit point is 

marked with RETURN, as in Fortran. 

A All variables are global to the whole program in Basic. 

numeric variable is by default of type real unless its 

identifier is terminated by the % character, which denotes 
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integer type <though not all Basics support integer 

variables>. Identifiers are often restricted to two 

characters in length. 

<4> Multi-statement lines are allowed in most Basics, the 

statement separator being a colon <usually). 

(5) If the condition in an 'IF condition THEN ••• ' statement 

is false, then the rest of the (generally multi-statement) 

line is ignored. 

Excellent references for Basic are the books by Kemeny and 

Kurtz (1980) and Alcock (1977). Other useful references include 

Lientz <1976> and Genz and Hopkins <1980>, both of which contain 

comparisons between different dialects of Basic, and Brown 

(1979). 

The four microcomputer Basics that we have used in this 

work are interpreted rather than compiled. The major way in 

which a compiler differs from an interpreter is that a compiler 

translates the source code into machine language (perhaps via 

assembly language) before the program is executed; it is this 

machine language translation that is executed by the CPU. In 

contrast, an interpreter translates the source code during 

execution of the program: each statement is translated as and 

when it is encountered. If a statement is executed n times, 

then an interpreter will translate it n times, whereas a 

compiler will translate it only once, in the initial compilation 

phase. See Brown (1979, p. 38) for further details on the 

differences between compilers and interpreters. Generally, a 

given program on a fixed computer can be expected to run faster 

under a compiled Basic than under an interpreted Basic. The 

principal reasons for most microcomputer Basics being 
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interpreted are that a Basic interpreter lends itself more 

readily to interactive programming, is more convenient to use, 

and is usually more economical in its use of memory space, than 

a Basic compiler. 

Carnal. 

Carnal was developed by B.R. Christensen and B. Loefstedt in 

Denmark in 1973. Carnal can be thought of as a hybrid between 

Basic and Pascal: it combines the interactive nature and simple 

syntax of Basic with the structured programming features (but 

not the data structures> of Pascal. Specifically, most Basic 

commands and intrinsic functions are supported, but to these are 

added the following features (among others>: 

long variable names, procedures and multi-line functions 

with full parameter passing, WHILE-ENDWHILE and REPEAT-

UNTIL loops, global 

statement. 

IF-THEN-ELSE-ENDIF and a CASE 

Carnal appears to be relatively little known, compared to Basic, 

outside Denmark. Public domain versions of Carnal for Commodore 

computers are distributed by the Independent Commodore Products 

User Group, England, and the Carnal User Group, U.S.A. 

Implementations which run under the CP/M operating system are 

available commercially. 

Good references for Carnal are Lindsay (1983), which 

documents CBM Comal-80, and Atherton <1982). 



APPENDIX B: Summary of Machine and Language Specifications. 

The purpose of this appendix is to summarise the technical 

details of the test machines and their Basic or Comal language 

implementations. 

All four machine configurations use one or both of the MOS 

Technology (now Commodore Semiconductor Group> 6502/6510 and the 

Zilog Z-80 microprocessors. Both microprocessors have an 8-bit 

data bus and a 16-bit address bus; consequently, the basic unit 

of data on which the processors act is one byte (8 bits) and the 

maximum amount of addressable memory is 64K bytes, where 1K 

byte = 2 1 0 = 1024 bytes. Neither processor contains a 

hardware multiplier. 

The memory map of each machine contains a combination of 

random access memory <RAM>, which can be written to and read 

from, and read only memory <ROM>, in which is stored the 

machine's operating system and the Basic interpreter. 

For each of the Basics we summarise under the following 

headings the features that are relevant to matrix computations. 

Us er RAM This is the amount of memory space available to the 

Basic programmer for storage of the Basic program and its 

variables. 

Ar i thmetic We describe the floating point and integer number 

systems of a particular Basic by quoting five numbers: b, t, L, 

U, m. For floating point numbers, b is the base, t is the 

number of base b digits in the mantissa, and L, U are 

exponents representing the underflow level and the overflow 

level respectively <Golub and Van Loan, 1983, p. 32}. The last 

number, m, is the number of base b digits in which integers 

are stored. In fact, all the Basics considered here use b=2, 
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rounded floating point arithmetic with t=32, and each stores 

integers in two's complement form. Thus in each Basic the unit 

roundoff <Golub and Van Loan, 1983, p. 33) 

and integers m must lie in the range 

- 2t-1 ~ m ~ 2t-1 - 1. 

Integer Arithmetic Some Basics perform true integer arithmetic 

<addition, subtraction and multiplication) between integer 

operands; others automatically convert integer values to 

floating point before evaluating an expression, even if all the 

components are of integer type. 

Structure This refers to the provision of structured 

programming constructs such as procedures, If-Then-Else, and 

Repeat-Until and While-Wend loops. 

Identifiers Most microcomputer Basics do not restrict the 

length of variable names. However, in some Basics only the 

first two characters are significant, so that, for example, the 

identifiers TEST and TEMP are synonymous. Furthermore, some 

Basics prohibit embedded keywords in an identifier (usually the 

ones that do not require spaces to be placed around keywords): 

for example, TOTAL may be an illegal identifier because TO 

is a Basic keyword. Clearly, these restrictions pose 

difficulties in the translation of Fortran programs to Basic. 

Array Storage Multi-dimensional arrays can be stored in 

essentially two ways: with the k ' th subscript varying more 

rapidly than the (k+l)st, for all k, or vice versa <Brown, 

1979, p. 186). For the two-dimensional arrays of interest in 

matrix computations the respective storage schemes are "by 

column" and "by row". For example, after DIM A<2,2>, the 



-34-

elements of A may be stored in the order 

(121,121), <1,121>, (2,121), (121,1>, (1,1>, <2,1>, (121,2), (1,2), (2,2) 

(by column>, or 

(121,121), (121,1>, (121,2), <1,121>, <1,1>, <1,2>, (2,121), <2,1>, (2,2) 

(by row> • Which storage scheme is used becomes of interest when 

one wishes to access array elements from assembly language. In 

all the Basics considered here, accessing array elements by 

column is no faster and no slower than accessing array elements 

by row (cf. Dongarra et al. (1979, p.l.5)). 

Machine Language Routines This entry describes the mechanism 

provided in Basic for calling machine language routines and for 

passing parameters to such routines. 

Assembler This entry describes the availability of assemblers 

for the machines. 

Interpreter Documentation The final entry describes the 

availability of documentation for the internal interpreter 

routines. This documentation should describe the location and 

the purpose of the main subroutines in the interpreter and it 

should explain how to use the subroutines from an assembly 

language program. 
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Commodore 64 

<Commodore Business Machines, 1982; West, 1982; Bathurst, 1983). 

Microprocessor 

6510 microprocessor running at 0.985 MHz <U.K. version> or 

1.022 MHz (U.S.A. version). 

set as the 6502. 

Language: Basic 

The 6510 has the same instruction 

Commodore Basic 2 interpreter occupying 8K of ROM; this is 

developed from a 1977 Basic written by Microsoft Software. 

User RAM 38K. A further 4K is available for use by machine 

code routines. 

Arithmetic <b, t, L, U, m) = <2, 32, -128, 127, 16>. 

Integer Arithmetic Not supported. 

Structure No structured constructs. 

Identifiers The first two characters only are significant. 

Embedded keywords are not allowed. 

Array Storage By column. 

Machine Language Routines Called by the SYS command. 

Ostensibly, SYS does not take parameters, but they can be 

included provided that the machine language routine takes the 

responsibility for evaluating the parameter values and/or 

addresses <by calling general purpose evaluation routines in the 

Basic interpreter). 

Assembler Many assemblers are commercially available. 

Interpreter Documentation Readily available from sources 

independent of the manufacturer. 

<1982> and Bathurst (1983>. 

Excellent references are West 

Language: Comal <Atherton, 1982; Lindsay, 1983). 

Version 0.64S of CBM Comal-80 interpreter (soft loaded from 
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disk). Occupies approximately 24K of RAM. 

User RAM 12K. 

Arithmetic: ( b , t , L , U , m > = ( 2 , 32 , -128 , 127 , 16 > • 

Integer Arithmetic Not supported. 

Structure Well structured; see Appendix A. 

Identifiers Long. All characters are significant and embedded 

keywords are allowed. 

Array Storage See Note <1>. 

Machine Language Routines Called by the SYS command. 

Parameters are not supported. 

Assembler See Basic entry. 

Interpreter Documentation See Note <2>. 

BBC Microcomputer - Model B 

<Call and Allen, 1982; Pharo, 1984>. 

Microprocessor 

6502 microprocessor running at 2 MHz. 

Language: Basic 

BBC Basic interpreter occupying 16K of ROM. 

User RAM 25K (in screen mode 7- less in other modes>. 

Arithmetic (b, t, L, U, m) = <2, <'I -·L.' 
further details see Wichmann (1983). 

Integer Arithmetic: Supported. 

-128, 127' 32). For 

Structure Procedures with local variables and parameters 

(simple variables only> which are called by value; REPEAT-UNTIL 

loop; single line IF-THEN-ELSE. 

Identifiers Long. All characters are significant and embedded 

keywords are allowed. 

Array Storage By row. 
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Machine Language Routines Called by the CALL command, which 

takes parameters. The parameters must be variables or array 

elements (not expressions>; their addresses and types are 

evaluated by the interpreter and stored in a parameter block. 

Assembler BBC Basic contains a built-in 6502 assembler. 

Assembly language may be freely mixed with the Basic source 

code. 

Interpreter Documentation The integer and floating point 

arithmetic routines are thoroughly documented in Pharo (1984). 

BBC Microcomputer <Model B> with Torch Z-80 Second Processor 

<Torch Computers, 1982). 

Microprocessor 

Z-80A microprocessor running at 4 MHz, in addition to the 

6502 in the standard BBC machine. The 6502 is dedicated to 

input/output and the Z-80 performs the data processing. 

Language: Basic <Russell, 1983>. 

Z80 version of the BBC Basic interpreter, which is soft 

loaded from disk and occupies approximately 16K of RAM. 

User RAM 48K. 

Arithmetic, Integer Arithmetic, Structure and Identifiers as 

for BBC Basic (6502>. 

Array Storage See Note (1). 

Machine Language Routines Similar to BBC Basic. 

Assembler Z80 version of the 6502 assembler in BBC Basic. 

Interpreter Documentation See Note <2>. 
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Amstrad CPC 64 

<Amsoft, 1984; Locomotive Software, 1984). 

Microprocessor 

Z-80A microprocessor running at 4 MHz. 

Language: Basic 

Locomotive Software Basic interpreter occupying 16K of ROM. 

User RAM 42.5K. 

Arithmetic <b, t, L, U, m) = (2, 32, -128, 127, 16). 

Integer Arithmetic Supported. 

Structure WHILE-WEND loop and single line IF-THEN-ELSE. 

Identifiers Long. All characters are significant and embedded 

keywords are allowed. 

Array Storage By column. 

Machine Language Routines Called by the CALL command. This 

is very similar to the CALL statement in BBC Basic but it allows 

parameters to be passed by address or by value. A useful 

additional feature of this Basic is that it allows the user to 

define new commands, which are accessed by name instead of via a 

CALL statement. 

Assembler Several assemblers are commercially available. 

Interpreter Documentation See Note <2>. 

Note (1) In these cases I was unable to determine the method of 

array storage. 

Note <2> In these cases I was unable to obtain documentation. 
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Appendix C: Commodore 64 Assembly Language BLAS Listing. 

100 
110 
120 
490 
500 
501 
502 
504 
510 
512 
514 
516 
518 
519 
520 
521 
522 
523 
525 
526 
527 
528 
529 
530 
531 
532 
533 
534 
535 
536 
537 
538 
540 
545 
550 
600 
898 
900 
910 
920 
922 
940 
970 
980 
995 

1000 
1010 
1020 
1025 
1028 
1030 
1040 
1045 
1048 

1.00 P.M. 12-5-85 
SAVE"BLASHOW.4",8:VERIFY"*" 1 8 

######################################################## 
ASSEMBLY LANGUAGE BLAS ROUTINES FOR THE COMMODORE 64. 

TO BE CALLED FROM A C64 BASIC PROGRAM. 
LISTING OF SASUM, SAXPY, ISAMAX, SSCAL ONLY. 

######################################################## 

### 6502 ASSEMBLY LANGUAGE ### BRIEFLY, MAIN INSTRUCTIONS ARE 
JSR: CALL SUBROUTINE, WHICH IS TERMINATED BY RTS (= 'RETURN'), 
JMP: UNCONDITIONAL JUMP ('GOTO'), 
LDA/LDX/LDY: LOAD ACCUMULATOR/X-REGISTER/Y-REGISTER. 
STA: STORE THE ACCUMULATOR. 
INC/DEC: INCREMENT/DECREMENT MEMORY BY ONE. 
BEQ/BNE: BRANCH IF RESULT OF PREVIOUS OPERATION WAS ZERO/NONZERO. 

### ASSEMBLER NOTES ### 
THIS LISTING IS IN MIKRO ASSEMBLER (SUPERSOFT, HARROW, ENGLAND) FORMAT. 
' ! ' DENOTES A COMMENT LINE OR REMAINDER OF LINE, 
'$' SPECIFIES A HEXADECIMAL (BASE 16) NUMBER. 
'STORE = $5C' DEFINES THE LABEL STORE TO REPRESENT THE VALUE 92. 

### IMPLEMENTATION NOTES ### 
EACH BLAS ROUTINE IS CALLED BY AN EXTENDED SYS STATEMENT WHOSE 
FORM IS DEFINED IN A COMMENT LINE AT THE START OF THE ROUTINE, 
'SX ()' DENOTES AN ELEMENT OF THE ARRAY SX, WHICH MAY HAVE ANY 
DIMENSIONS. THE BLAS ROUTINES ACCESS ARRAY ELEMENTS IN THE ORDER THAT 
THEY ARE STORED IN MEMORY, I.E., BY COLUMN FOR 2-DIM'L ARRAYS A(N 1 N). 
PARAMETER 'N' MAY BE AN EXPRESSION (E.G. 'N-K+1' OR 'M*3') BUT THE 
OTHER PARAMETERS MUST BE SIMPLE VARIABLES OR ARRAY ELEMENTS, OF 
TYPE FLOATING POINT (NOT INTEGER), 
'N' MUST EVALUATE TO 0 <= N <= 32767. IN THIS 
IMPLEMENTATION, FOR N=0 1 SASUM, SOOT, SNRM2 CORRECTLY RETURN 01 BUT 
ISAMAX RETURNS 1 (ISAMAX IS UNLIKELY TO BE CALLED WITH N=0), 

1-------------------------------------------
f=$C000 ! ASSEMBLE CODE IN SPARE 4K BLOCK STARTING AT $C000 

NOTATION: 

FP1 1 FP2 =FLOATING POINT ACCUMULATORS 1, 2 
MEM.AY := '(A 1 Y)' =FL. PT. NUMBER AT ADDRESS A+256*Y 
MEM.XY := '(X 1 Y)' = FL.PT. NUMBER AT ADDRESS X+256*Y 

ADDRESSES OF (ROM) ROUTINES IN THE BASIC INTERPRETER: 

EVAL = $AD8A 
! GETS ~ EVALUATES NUMERIC EXPRESSION FROM TEXT. RESULT PLACED IN FP1. 

COMMA 
INTEGER 
INTFLP 

= $AEFD 
= $B7F7 
= $B391 

CHECK FOR COMMA 
FP1 -> INTEGER AT (Y,A) 
FP1 := FLOAT((Y 1 A)) 



1050 
1055 
1056 
1060 
1070 
1080 
1130 
1140 
1150 
1160 
1170 
1178 
1180 
1185 
1200 
1210 
1220 
1230 
2000 
2002 
2005 
2007 
2010 
2020 
2030 
2040 
2050 
2060 
2070 
2080 
2090 
2100 
2110 
3000 
3010 
3020 
3030 
3050 
9998 
9999 

10000 
10010 
10015 
10017 
10020 
10030 
10100 
10110 
10120 
10140 
10150 
10160 
10170 
10180 
10190 
10200 
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PTRGET = $B08B 
GETS NAME AND POINTER TO A VARIABLE. RETURNS WITH (A 1 Y) POINTING TO 

! EXPONENT (OF FIRST ELEMENT IF ARRAY), FOR NUMERIC VARIABLE. 

LOADFP1 
SAVEFP1 

ADD 
MULT 
ABS 
SQRT 

= $BBA2 
= $BBD4 

= $B86A 
= $BA2B 
= $BC58 
= $BF71 

FP1 := MEM.AY 
MEM.XY := FP1 

FP1 : = FP1+FP2 
FP1 := FP1*FP2 
FP1 := ABS(FPU 
FP1 := SQRT(FPU 

COMPARE = $BC58 COMPARE FP1 WITH MEM.AY 
! A=0 IF EQUAL, A=1 IF FP1 > MEM.AY, A=$FF IF FP1 < MEM.AY 

ADDMEM 
MULTMEM 

= $8867 
= $BA28 

! TEMPORARY STORAGE: 

STORE = $5C 
FP1TOSTORE = $BBC7 

NLOW 
NHIGH 

PLOW1 
PHIGH1 
PLOW2 
PHIGH2 
PLOW3 
PHIGH3 

= $F7 
= $F8 

= $F9 
= $FA 
= $FB 
= $FC 
= $FD 
= $FE 

! FLOATING POINT ACCUMULATORS: 

FP1 
FP2 

= $61 
= $69 

FP1 := FP1+MEM.AY 
FP1 := FP1tMEM.AY 

'FP3' : $5C-$60 
'FP3' := FP1 

POINTER (PTRl) 

! $61-$66 
! $69-$6E 

(PTR2) 

(PTR3) 

·-------------------------------------------
"REAL FUNCTION SASUM (N,SX)" 

SUM OF ABSOLUTE VALUES OF A VECTOR 

SYS ASUM,N,SX() ,S 

SASUM 
!UU 

LOOPS A 

JSR GETN 

JSR GET1 

JSR ZEROSTORE 

LDA NLOW 
ORA NHIGH 
BEQ FINSA 

EVALUATE 1ST PARAMETER 

(PTR1) -> SX() 

SUM:=0 

N=0? 

IF SO, FINISHED 
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10210 LOA PLOW1 SET UP ACCUM. 
1111220 LOY PHIGH1 AND Y-REG. 
10230 JSR LOADFP1 THEN CALL ROM ROUTINE 
10232 
1111235 JSR ABS FP1 := ABS(FP1) 
1111238 
111124111 LOA ti<STORE 
1111242 LOY tt>STORE 
11112 45 JSR ADDMEM FPl : = FP1 + SUM 
10250 
10260 JSR FP1TOSTORE SUM : = FP1 
10280 
1031110 JSR BUMP1 CALL SUBROUTINES AT 
1111360 JSR NEQNM1 END OF LISTING. 
10420 JMP LOOP SA LOOP BACK 
1111430 
1111440 FINSA JSR COMMA STORE RESULT (FP1) IN 
1111450 JSR PTRGET VARIABLE. THIS CODE CALLED BY 
111146111 TAX ISAMAX ALSO. 
1111470 JSR SAVEFP1 
1111480 RTS 
111149111 
1111998 !-------------------------------------------
1111999 
1111110 "SUBROUTINE SAXPY (N,SA,SX,SYl" 
1102111 
1111125 VECTOR=VECTOR+CONST*VECTOR: SY () : = SY () +SA*SX () 
1111127 
1111130 SYS AXPY,N,SA,SX() ,SY() 
111114111 
1111150 SAXPY JSR GETN 
111116111 !UU 
1111170 JSR GET3 (PTR3) -> SA 
11080 JSR GET2 (PTR2) -> sx () 
11090 JSR GET1 (PTR1) -> SY () 
11100 
11110 LOOPS AX LOA NLOW N=0? 
11120 ORA NHIGH 
11130 BEQ FINSAX 
11140 
11150 LOA PLOW3 FP1:=SA 
11160 LOY PHIGH3 
11170 JSR LOADFP1 
11180 
11190 LOA PLOW2 FP1: =FPl*SX () 
11200 LOY PHIGH2 
11210 JSR MULTMEM 
11220 
11230 LOA PLOW1 FP1:=FP1+SY() 
11240 LOY PHIGH1 
11250 JSR ADDMEM 
11260 
11270 LOX PLOW1 SY():=FPl 
11280 LOY PHIGH1 
11290 JSR SAVEFP1 
11300 



11310 
11320 
11330 
11340 
11400 
11410 
11420 
11430 
14998 
14999 
15000 
15010 
15020 
15030 
15040 
15050 
15060 
15070 
15080 
15090 
15100 
15110 
15120 
15130 
15135 
15140 
15150 
15155 
15156 
15157 
15158 
15159 
15160 
15170 
15180 
15190 
15200 
15210 
15220 
15225 
15230 
15240 
15250 
15260 
15270 
15280 
15285 
15290 
15300 
15310 
15320 
15330 
15340 
15350 
15360 
15370 

JSR BUMP2 
JSR BUMP1 

JSR NEQNM1 
JMP LOOPSAX 

FINSAX RTS 
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MOVE PTRS TO NEXT 
ELTS OF SX 8c SY. 

1-------------------------------------------
"INTEGER FUNCTION ISAMAX (N,SXl" 

FIND INDEX OF ELT WITH LARGEST ABSOLUTE VALUE IN VECTOR X 

SYS ISAMAX,N,SXO,K 

ISAMAX 
!U# 

LOOPMAX 

LTE 

JSR GETN 

JSR GET1 

JSR ZEROSTORE 

LDA NLOW 
STA PLOW2 
STA PLOW3 
LDA NHIGH 
STA PHIGH2 
STA PHIGH3 
INC PLOW3 
BNE LOOPMAX 
INC PHIGH3 

LDA NLOW 
ORA NHIGH 
BEQ FINMAX 

LDA PLOW1 
LDY PHIGH1 
JSR LOADFP1 

JSR ABS 

LDA #<STORE 
LDY #>STORE 
JSR COMPARE 
BM I LTE 
BEQ LTE 

LDA NLOW 
STA PLOW2 
LDA NHIGH 
STA PHIGH2 

JSR FP1TOSTORE 

JSR BUMP1 

(PTR1l -> SXO 

'CURRENT MAX' : = 0 

PTR2 = N+1-INDEX OF 
CURRENT MAX ELT. 

PTR3 = SAVED VALUE OF N 
PLUS 1. 

N=0? 

FP1 := SXO 

FP1 := ABS(FP1l 

FP1 8c BIGGEST SO FAR 
IF FP 1 < .. . 
IF FP 1 - .. . 

FP1 IS BIGGER 

UPDATE 'INDEX' OF MAX ELT 

SAVE CURRENT MAX ELT 
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15390 JSR NEQNM1 
15400 JMP LOOPMAX 
15410 
15420 FINMAX SEC INDEX ; = N+1-PTR2 
15422 LDA PLOW3 
15424 SBC PLOW2 
15426 TAY 
15428 LDA PHIGH3 
15430 SBC PHIGH2 
15435 
15440 JSR INTFLP ! CONVERT RESULT TO 
15450 JMP FINSA ! FL.PT. & GOTO SASUM 
15500 
15998 1-------------------------------------------
15999 
16000 "SUBROUTINE SSCAL !N 1 SA,SX>" 
16010 
16020 SCALE VECTOR BY A CONSTANT: sx (): = SA*SX ( > 
16030 
16040 SYS SCAL,N,SA,SX () 
16050 
16060 SSCAL JSR GETN 
16070 !UU 
16075 JSR GET2 !PTR2> -> SA 
16080 JSR 6ET1 (PTR 1) -> SX () 
16090 
16100 LOOPSC LDA NLOW N=0? 
16110 ORA NHIGH 
16120 BEQ FINSC 
16130 
16140 LOA PLOW1 
16150 LDY PHIGH1 
16160 JSR LOADFP1 FP1 : = sx () 
16170 
16180 LDA PLOW2 
16190 LDY PHIGH2 
16200 JSR MULTMEM FP1 : = FP1*SA 
16210 
16220 LDX PLOW! 
16230 LDY PHIGH1 
16240 JSR SAVEFP1 sx () : = FP1 
16250 
16260 JSR BUMP1 
16270 JSR NEQNM1 
16280 JMP LOOPSC 
16290 
16300 FINSC RTS 
16310 
16998 1-------------------------------------------
20060 ! ROUTINE TO EVALUATE THE PARAMETER . N, AND STORE THE RESULT 
20065 I AS A 16-BIT INTEGER IN (NLOW 1 NHIGH>. 
20067 
20100 GETN JSR COMMA 
20110 !U# 
20120 JSR EVAL 
20130 JSR INTEGER 



20140 
20150 
20170 
20180 
20200 
20490 
20495 
20497 
20500 
20510 
20520 
20530 
20540 
20545 
20550 
20560 
20565 
20570 
20580 
20585 
20590 
20595 
25000 
25005 
25010 
25020 
25030 
25040 
25050 
25060 
25070 
25200 
25210 
25220 
25230 
25240 
25250 
25260 
25270 
25280 
25300 
25310 
25320 
25330 
25340 
25350 
25360 
25370 
25380 
25385 
25900 
25910 
25920 
25930 
25940 

STY NLOW 
STA NHIGH 
RTS 
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'-------------------------------------------
! SET TO ZERO 'FP3' AND FP1 1 THE LATTER SO THAT SASUM, SOOT AND 
! SNRM2 RETURN 0 WHEN N=0. 

ZEROS TORE LOX #4 ! 5 ELTS TO ZERO 
!#UUU# 

LOA #0 

LOOPZ1 STA STORE,X 
STA FP1,X 
OEX 
BPL LOOPZ1 BRANCH IF X>=0 
STA FP1+5 
RTS 

'-------------------------------------------
! THE FOLLOWING ROUTINES MOVE A POINTER ONTO THE NEXT ARRAY ELEMENT 

BUMP1 
!UU 

FIN1 

BUMP2 
!#U# 

FIN2 

BUMP3 
!UU 

FIN3 

CLC 

LOA 
AOC 
STA 
BCC 
INC 
RTS 

CLC 

LOA 
ADC 
STA 
BCC 
INC 
RTS 

CLC 

LOA 
AOC 
STA 
BCC 
INC 
RTS 

! BUMP PTR1 BY 5 

PLOW1 
#5 
PLOWl 
FIN1 
PHIGH1 

BUMP PTR2 BY 5 

PLOW2 
#5 
PLOW2 
FIN2 
PHIGH2 

BUMP PTR3 BY 5 

PLOW3 
#S 
PLOW3 
FIN3 
PHIGH3 

'-------------------------------------------
THE FOLLOWING ROUTINES SEARCH FOR A 
NUMERIC VARIABLE (SIMPLE VAR, OR ARRAY ELEMENT> AND 
STORE A POINTER TO THE FIRST BYTE OF THE 
FLOATING POINT NUMBER IN (PTR1) 1 (PTR2l OR (PTR3l. 
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26000 GET1 JSR COMMA 
26010 ! Uti 
26020 JSR PTRGET 
26030 STA PLOW1 
26040 STY PHIGH1 
26050 RTS 
26060 
26100 GET2 JSR COMMA 
26110 !iU 
26120 JSR PTRGET 
26130 STA PLOW2 
26140 STY PHIGH2 
26150 RTS 
26160 
26200 GET3 JSR COMMA 
26210 ! Uti 
26220 JSR PTRGET 
26230 STA PLOW3 
26240 STY PHIGH3 
26250 RTS 
26260 
26285 '-------------------------------------------
26999 
27000 NEQNM1 LOA NLOW ! N : = N-1 
27010 !UtiU 
27020 BNE NM1 
27030 DEC NHIGH 
27040 NM1 DEC NLOW 
27050 
27060 RTS 
29995 •-------------------------------------------
29996 
29997 END 
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Appendix D: BBC Microc omputer As sembly Language BLAS List i ng. 

10 REM 2.45 P.M. 25-3-85 
20 REM SAVE"BLAS.16" 
30 
40 PROCBLAS 
50 
60 REM TEST THE M/C BLAS 
70 
80 N/.=22: M%=5*<N%+1) 
90 DEF FNF<X>=-1+2*RND<1> 

100 INPUT "SEED>O";SEED: T=RND<-SEED> 
110 DIM X<N'l.,N%>, Y<N'l.,N/.), Z<N'l.,N/.) 
120 T=FNF<1>: J=INT<N%/2) 
130 FOR I=1 TO N/. 
140 X<I,J>=FNF<1>:Y<I,J>=FNF(1) 
150 NEXT 
160 
170 REM TEST SSCAL 
180 FOR I=1 TO N/.:Z<I,J>=T*X<I,J>:NEXT 
190 CALL SSCAL,N'l.,T,X<1,J> 
200 FOR I=1 TO N/.:PRINTABS<X<I,J>-Z<I,J>>;:NEXT:PRINT 
210 
220 REM TEST SAXPY 
230 FOR I=1 TO N/.:Z<I,J>=Y<I,J>+T*X<I,J):NEXT 
240 CALL SAXPY,N'l.,T,X<1,J),Y(1,J) 
250 FOR I=1 TO N/.:PRINTABS<Y<I,J>-Z<I,J))" ";:NEXT:PRINT 
260 
270 REM TEST ISAMAX 
280 S=O 
290 FOR I=1 TO N/.:T=ABS<X<I,J)): IF T>S THEN S=T:K=I 
300 NEXT 
310 L/.=0 
320 CALL ISAMAX,N'l.,X<1,J),L/. 
330 PRINTK,L/. 
340 
350 END 
352 REM ------------------------------------------------------------
353 REM PROCEDURE TO ASSEMBLE THE MACHINE CODE BLAS 
360 
370 DEF PROCBLAS 
375 REM ######## 
380 
390 REM MACHINE CODE BLAS ROUTINES SAXPY, SSCAL & ISAMAX FOR THE 
400 REM BBC MODEL B <6502) MACHINE WITH BASIC2. 
410 REM SIMILAR TO COMMODORE 64 VERSION BUT 

BBC BASIC STORES ARRAYS BY ROW, THUS THE INCREMENT BETWEEN 
ELEMENTS <I,J) AND <I+1,J) IN STORAGE DEPENDS ON 
THE COLUMN DHMENSION. THIS IMPLEMENTATION ASSUMES 
THAT M/. HOLDS THE INCREMENT. INTENDED USE IS 
FOR FLOATING POINT ARRAYS OF THE FORM 
DIM A<N'l.,N/.) ONLY, FOR WHICH M/. = 5*<N%+1) 
IS REQUIRED. 

420 REM <1 > 
430 REM 
440 REM 
450 REM 
460 REM 
470 REM 
480 REM 
490 REM 
500 REM 

<2> IN SAXPY, SSCAL & ISAMAX PARAMETERS N/. AND K% MUST 
BE INTEGER VARIABLES, NOT EXPRESSIONS. 

512 
515 REM ### ASSEMBLER NOTES ### 
516 REM '\' DENOTES A COMMENT LINE OR REMAINDER OF LINE 
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517 REM '&' SPECIFIES A HEXADECIMAL <BASE 16) NUMBER 
518 REM ".LABEL' DEFINES 'LABEL' TO TAKE THE VALUE OF THE CURRENT ADDRESS 
519 
520 
530 REM ---------------------------------------
535 REM ### LABEL DEFINITIONS ### 
536 
540 REM PARAMETER BLOCK, OF FORM 
550 REM <NO. PARAMETERS>, <2-BYTE PARAMETER ADDRESS, 1-BYTE PARAMETER TYPE> 
560 BLOCK=~-!600 
570 
580 REM ZERO PAGE POINTERS FOR ARRAY ELEMENTS ETC. 
590 PLOW1=~-!70 
600 PHIGH1=~-.71 
61 0 PLOW2=~-.( 72 
620 PHIGH2=&73 
630 PLOW3=~-.( 7 4 
640 PHIGH3=&75 
650 
660 REM COUNTER FOR NUMBER OF ELEMENTS 
670 NLOW=~-!76 
680 NHIGH=&77 
690 
700 REM TEMPORARY ZERO PAGE POINTER 
71 0 TEMP LOW=~-( 78 
720 TEMPHIGH=&79 
730 
740 REM POINTER TO FL.PT. VARIABLE FOR ROM ROUTINES 
750 FPLOW=~-!4B 
7 60 FPH I GH=~-!4C 
770 
780 REM LOW 2 BYTES OF STATIC VARIABLE M%. 
790 INCLOW=&434 
BOO INCHIGH=&435 
810 
820 REM TEMPORARY STORAGE FOR A FL.PT. VALUE: &46C-&470 
830 FPSTORE=~A6C 
840 
850 REM ROM ROUTINES 
860 REM FWA, FWB DENOTE FLOATING POINT WORK AREAS A AND B 
870 
880 AUNP=&A3B5: REM FWA := FP.VAR 
890 APACK=&A38D: REM FP.VAR := FWA 
900 AMULT=&A656: REM FWA := FWA*FP.VAR 
910 APLUS=&A500: REM FWA := FWA+FP.VAR 
920 APACK1=&A385: REM FPSTORE1 := FWA 
930 AUNP1=&A3B2: REM FWA := FPSTORE1 
940 ACLEAR=&A686: REM FWA := 0 
950 ASIGN=&A1DA: REM A := SIGN <FWA> 
960 ACOMP=&AD7E: REM FWA := -FWA 
970 ATEST=&9A5F: REM TEST FP.VAR <-> FWA 
980 
990 REM ---------------------------------------

1000 REM ### ASSEMBLER CODE ### 
1005 
1010 
1020 
1030 
1040 
1050 

DIM MC% 500 
REM INPUT"LISTING <YIN>";Z$ 

PS=2:REM IF Z$="Y" THEN PS=3 
FOR PASS%=0 TO PS STEP PS 

ELSE PS =2 



1060 
1070 
1080 
1090 
1100 
1110 
1120 
1130 
1140 
1150 
1160 
1170 
1180 
1190 
1200 
1210 
1220 
1230 
1240 
1250 
1260 
1270 
1280 
1290 
1300 
1310 
1320 
1330 
1340 
1350 
1360 
1370 
1380 
1390 
1400 
1410 
1420 
1430 
1440 
1450 
1460 
1470 
1480 
1490 
1500 
1510 
1520 
1530 
1540 
1550 
1560 
1570 
1580 
1590 
1600 
1610 
1620 
1630 
1640 
1650 

P'l.=MC% 
[ 

OPT PASS% 
\ 

.PGETN \get no. of elements 
\#### 
LDA BLOCI<+ 1 
STA TEMPLOW 
LDA BLOCK+2 
STA TEMPHIGH 
\ 

LDY #1 \ N = 16 BIT INTEGER 
.NLOOP 
LDA <TEMPLOW>,Y 
STA NLOW,Y 
DEY 
BPL NLOOP 
RTS 
\ 
\ 
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.PGET1 \ get pointer to parameter #1 
\#### 
LDA BLOCK+4 
STA PLOW! 
LDA BLOCK+5 
STA PHIGH1 
RTS 
\ 
\ 

.PGET2 \ get pointer to parameter #2 
\#### 
LDA BLOCK+7 
STA PLOW2 
LDA BLOCK+8 
STA PHIGH2 
RTS 
\ 
\ 

.PGET3 \ get pointer to parameter #3 
\#### 
LDA BLOCK+10 
STA PLOW3 
LDA BLOCK+11 
STA PHIGH3 
RTS 
\ 
\ 
.FPTR1 \ fplow = ptr1 
\##### 
LDA PLOW1 
STA FPLOW 
LDA PHIGHl 
STA FPHIGH 
RTS 
\ 
\ 
.FPTR2 \ fplow = ptr2 
\##### 
LDA PLOW2 
STA FPLOW 



1660 
1670 
1680 
1690 
1700 
1710 
1720 
1730 
1740 
1750 
1760 
1770 
1780 
1790 
1800 
1810 
1820 
1830 
1840 
1850 
1860 
1870 
1880 
1890 
1900 
1910 
1920 
1930 
1940 
1950 
1960 
1970 
1980 
1990 
2000 
2010 
2020 
2030 
2040 
2050 
2060 
2070 
2080 
2090 
2100 
2110 
2120 
2130 
2140 
2150 
2160 
2170 
2180 
2190 
2200 
2210 
2220 
2230 
2240 
2250 

LDA PHIGH2 
STA FPHIGH 
RTS 
\ 
\ 
.FPTR3 \ fplow = ptr3 
\##### 
LDA PLDW3 
STA FPLOW 
LDA PHIGH3 
STA FPHIGH 
RTS 
\ 
\ 
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.BUMP1 \ move pointer 1 to next array element 
\ #### 
CLC 
LDA PLDW1 
ADC INCLOW 
STA PLDW1 
LDA PHIGH1 
ADC INCHIGH 
STA PHIGH1 
RTS 
\ 
\ 

.BUMP2 \ move pointer 2 to next array element 
\ #### 
CLC 
LDA PLOW2 
ADC INCLOW 
STA PLOW2 
LDA PHIGH2 
ADC INCHIGH 
STA PHIGH2 
RTS 
\ 
\ 

.BUMP3 \ move pointer 3 to next array element 
\ #### 
CLC 
LDA PLOW3 
ADC INCLOW 
STA PLDW3 
LDA PHIGH3 
ADC INCHIGH 
STA PHIGH3 
RTS 
\ 
\ 
.NEQNM1 \decrement count 
\ ###### 
LDA NLOW 
BNE NM1 
DEC NHIGH 
.NM1 
DEC NLOW 
RTS 
\ 
\ 



2260 
2270 
2280 
2290 
2300 
2310 
2320 
2330 
2340 
2350 
2360 
2370 
2380 
2390 
2400 
2410 
2420 
2430 
2440 
2450 
2460 
2470 
2480 
2490 
2500 
2510 
2520 
2530 
2540 
2550 
2560 
2570 
2580 
2590 
2600 
2610 
2620 
2630 
2640 
2650 
2660 
2670 
2680 
2690 
2700 
2710 
2720 
2730 
2740 
2750 
2760 
2770 
2780 
2790 
2800 
2810 
2820 
2830 
2840 
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.ZEROSTORE \ zero fl.pt. temporary store 
\ ######### 
JSR ACLEAR 
JSR APACK1 
RTS 
\ 
\ 

.FABS \ FWA = ABS <FWA>. Is there a ROM routine for this? 
\ #### 
JSR ASIGN 

AND #~~FF 

BPL FINABS 
JSR ACOMP \ negate FWA 
.FINABS 
RTS 
\ 
\ 

\ --------------------------------------
.SSCAL 
\##### 
\ 

\SCALE VECTOR BY A CONSTANT, SX = SA*SX 
\ 
\CALL <>,N'l.,SA,SX<> 
\ 
JSR PGETN 
JSR PGET1 
JSR PGET2 
\ 
.LOOPSC 
\ 
LDA NLOW 
ORA NHIGH 
BEQ FINSC 
\ 
JSR FPTR1 
JSR AUNP \ 
\ 
JSR FPTR2 
JSR AMULT 
\ 
JSR FPTR2 
JSR APACK 
\ 
JSR BUMP2 
JSR NEQNM1 
JMP LOOPSC 
\ 
.FINSC 
RTS 
\ 
\ 

\ 
\ 

\ 

<PTR1> -> SA 
<PTR2> -> SX < > 

FINISHED IF N=O 

FWA = SA 

\ FWA = FWA*SX < > 

\ sx () = FWA 

\ ---------------------------------------
.SAXPY 
\##### 
\ 

\ VECTOR =VECTOR+ CONST*VECTOR, SY<> = SY<>+SA*SX<> 
\ 
\CALL () ,N'l.,SA,SX<>,SY<> 

2850 \ 



2860 
2870 
2880 
2890 
2900 
2910 
2920 
2930 
2940 
2950 
2960 
2970 
2980 
2990 
3000 
3010 
3020 
3030 
3040 
3050 
3060 
3070 
3080 
3090 
3100 
3110 
3120 
3130 
3140 
3150 
3160 
3170 
3180 
3190 
3200 
3210 
3220 
3230 
3240 
3250 
3260 
3270 
3280 
3290 
3300 
3310 
3320 
3330 
3340 
3350 
3360 
3370 
3380 
3390 
3400 
3410 
3420 
3430 
3440 
3450 

JSR PGETN 
\ 
JSR PGETl \ CPTRl > -> SA 
JSR PGET2 \ <PTR2> -> sx () 
JSR PGET3 \ CPTR3> -> SYO 
\ 
.LOOPSAX 
LDA NLOW 
ORA NHIGH 
BEQ FINSAX 
\ 
JSR FPTRl 
JSR AUNP \ FWA = SA 
\ 
JSR FPTR2 
JSR AMULT \ FWA = FWA*SX < > 
\ 
JSR FPTR3 
JSR A PLUS \ FWA = FWA+SY < > 
\ 
JSR FPTR3 
JSR A PACK \ SYO = FWA 
\ 
JSR BUMP2 
JSR BUMP3 
JSR NEQNMl 
JMP LOOPSAX 
\ 
.FINSAX 
RTS 
\ 
\ 

-51-

\ ---------------------------------------
.ISAMAX 
\###### 
\ 

\ FIND INDEX OF ELT WITH LARGEST ABSOLUTE VALUE IN VECTOR X 
\ 

\CALL <>,NX,SX<>,KX 
\ 
JSR PGETN 
JSR PGETl \ CPTRl> -> SXC> 
\ 

JSR ZEROSTORE \ CURRENT MAX = 0 
\ 
LDA NLOW 
STA PLOW2 
STA PLOW3 
LDA NHIGH 
STA PHIGH2 \ PTR2 = N+l-INDEX OF CURRENT MAX ELT 
STA PHIGH3 \ PTR3 = SAVED VAUE OF N PLUS 1 
INC PLOW3 
BNE LOOPMAX 
INC PHIGH3 
\ 
.LOOPMAX 
LDA NLOW 
ORA NHIGH 
BEQ FINMAX 
\ 



3460 
3470 
3480 
3490 
3500 
3510 
3520 
3530 
3540 
355(1 
3560 
3570 
3580 
3590 
3600 
3610 
3620 
3630 
3640 
3650 
3660 
3670 
3680 
3690 
3700 
3710 
3720 
3730 
3740 
3750 
3760 
3770 
3780 
3790 
3800 
3810 
3820 
3830 
3840 
3850 
3860 
3870 
3880 
3890 
3900 
3910 
3920 
3930 
3940 
3950 

JSR 
JSR 
\ 
JSR 
\ 
LOA 
STA 
LOA 
STA 
\ 

FPTR1 
AUNP \ FWA = 

FABS \ FWA = 

#FPSTORE MOD 
FPLOW 
#FPSTORE DIV 
FPHIGH 
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sx () 

ABS <FWA> 

256 

256 

JSR ATEST \ COMPARE FWA AND BIGGEST SO FAR 
\ 
BCS LTE \ IF FWA < OR = FPSTORE 
\ 
LOA NLOW 
STA PLOW2 
LOA NHIGH 
STA PHIGH2 
JSR APACK1 \ STORE NEW BIGGEST 
\ 
.LTE 
JSR BUMP1 
JSR NEQNM1 
JMP LOOPMAX 
\ 
.FINMAX 
SEC \ ADJUST INDEX ACCORDING TO K -> N+1-K 
LOA PLOW3 
SBC PLOW2 
STA PLOW3 
LOA PHIGH3 
SBC PHIGH2 
STA PHIGH3 
\ 
LOY #0 
JSR PGET2 \ PTR TO VAR TO ACCEPT RESULT 
LOA PLOW3 
STA <PLOW2>,Y 
INY 
LOA PHIGH3 
STA <PLOW2>,Y 
LOA #0 \ NOW ZERO THE HIGH TWO BYTES 
INY 
STA <PLOW2>,Y 
INY 
STA <PLOW2>,Y 
RTS 
] 

NEXT PASS% 

3960 ENDPROC 
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Appendix E: BBC Microcomputer SGEFA/SGESL Listing. 

10 REM 6-2-85 10.30 A.M. 
20 REM SAVE"SGEFA.4" 
30 
40 IX=O:JX=O:KX=O:NX=O:LX=O:KP1X=O:NM1X=O:INFOX=O:JOBX=O 
50 T=O:S=O 
60 
70 SEED=1 
80 INPUT"N: ";NX 
90 

100 VDU 3: REM VDU 2: REM PRINTER/SCREEN 
110 
120 DIM ACNX,NX>,B<NX>,X<NX>,IPVTX<NX> 
130 
140 REM SET UP PROBLEM - RANDOM MATRIX A AND R.H.S. B 
150 T=RND<-SEED> 
160 FOR IX=1 TO NX:FOR JX=1 TO NX:ACIX,JX>=-1+2*RNDC1>:NEXT JX:NEXT IX 
170 FOR IX=1 TO NX:X<IX>=-1+2*RND<1>:NEXT IX 
180 REM B=A*X 
190 FOR IX=1 TO NX:S=O 
200 FOR JX=1 TO NX:S=S+ACIX,JX>*X<JX>:NEXT JX 
210 B<IX>=S:NEXT IX 
220 PRINT"N = ";NX;" SEED = ";SEED 
230 
240 REM FACTORISE AND SOLVE CAX=B> 
250 T1=TIME 
260 PROCSGEFA 
270 T1=TIME-T1:PRINT"SGEFA: ";T1/100;" SECONDS" 
280 
290 JOBX=O:T1=TIME 
300 PROCSGESL 
310 T1=TIME-T1:PRINT"SGESL: ";T1/100;" SECONDS" 
320 
330 REM CHECK ANSWER 
340 S=O:FOR IX=1 TO NX 
350 S=S+ABSCB<IX>-X<IX>>:NEXT 
360 PRINT"ONE-NORM OF ERROR = ";S 
370 
380 PRINT"-----------------------------" 
390 END 
400 : 
410 REM -------------------------------------------------------------
420 DEF PROCSGEFA 
430 REM WITH IN-LINE BLAS 
440 
450 INFOX=O:NM1X=NX-1 
460 IF NM1X<1 THEN 670 
470 
480 FOR K%=1 TO NM1% 
490 KP1X=KX+1 
500 T=ABSCACKX,KX>>:LX=KX 
510 FOR JX=KP1X TO NX:IF ABSCACJX,KX>>>T THEN T=ABSCACJX,KX>>:LX=JX 
520 NEXT JX 
530 IPVTX<KX>=LX 
540 IF ACLX,KX>=O THEN INFOX=KX:GOTO 650 
550 IF LX<>KX THEN T=A<LX,KX>:ACLX,KX>=ACKX,KX>:ACKX,KX>=T 
560 
570 T=-1/ACKX,KX> 
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580 FOR I%=KP1% TO NX:A<IX,KX>=T*A<IX,KX>:NEXT I% 
590 
600 FOR J%=KP1% TO N% 
610 T=A<LX,JX>:IF LX<>KX THEN A<LX,JX>=A<KX,JX>:A<KX,JX>=T 
620 FOR I%=KP1% TO NX:A<IX,JX>=A<IX,JX>+T*A<IX,KX>:NEXT I% 
630 NEXT J% 
640 
650 NEXT K% 
660 
670 IPVTX<NX>=N% 
680 IF A<NX,N%>=0 THEN INFOX=N% 
690 ENDPROC 
700 
710 REM ------------------------------------------------------------
720 DEF PROCSGESL 
730 REM WITH IN-LINE BLAS 
740 
750 NM1%=N%-1 
760 IF JOBX<>O THEN 900 
770 IF NM1%<1 THEN 850 
780 
790 
BOO 
810 
820 
830 
840 

FOR K%=1 TO NM1% 
LX=IPVTX<KX>:T=B(L%) 
IF LX<>KX THEN B<LX>=B<KX>:B<KX>=T 
FOR JX=K%+1 TO NX:B<JX>=B<JX>+T*A<JX,KX>:NEXT J% 
NEXT K% 

850 FOR KX=N% TO 1 STEP -1 
860 B<KX>=B<KX>IA<KX,KX>:T=-B<KX> 
870 IF K%>1 THEN FOR J%=1 TO K%-1:B<JX>=B<JX>+T*A<JX,KX>:NEXT J% 
880 NEXT K% 
890 
900 REM CODE FOR TRANSPOSE SOLVE OMITTED 
910 
920 ENDPROC 

Versions of SGEFA/SGESL Using Assembly Language BLAS. 

Note: Here the vector b sits in the zero'th column of A. 

420 DEF PROCSGEFA 
430 REM WITH CALLS TO CODED BLAS 
440 
450 INF0%=0:NM1%=N%-1 
460 IF NM1%<1 THEN 670 
470 
480 FOR K%=1 TO NM1% 
490 KP1%=K%+1 
500 QX=N%-K%+1: CALL ISAMAX,QX,A<KX,KX>,LX: LX=LX+K%-1 
510 
520 
530 IPVTX<KX>=L% 
540 IF A<LX,K%>=0 THEN INFOX=KX:GOTO 650 
550 IF LX<>K% THEN T=A<LX,KX>:A<LX,KX>=A<KX,KX>:A<KX,KX>=T 
560 
570 T=-1/A<KX,K%> 
580 QX=N%-K%: CALL SSCAL,QX,T,A<KP1X,K%> 
590 
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600 FOR JX=KP1X TO NX 
610 T=ACLX,JX>:IF LX<>KX THEN ACLX,JX>=ACKX,JX>:ACKX,JX>=T 
620 QX=NX-KX:CALL SAXPY,QX,T,ACKP1X,KX>,ACKP1X,JXJ 
630 NEXT JX 
640 
650 NEXT KX 
660 
670 IPVTXCNXJ=NX 
680 IF A<NX,NX>=O THEN INFOX=NX 
690 ENDPROC 
700 

710 REM ------------------------------------------------------------
720 DEF PROCSGESL 
730 REM WITH CALLS TO CODED BLAS 
740 
750 NM1X=NX-1 
760 IF JOBX<>O THEN 900 
770 IF NM1X<1 THEN 850 
780 
790 FOR K%=1 TO NM1X 
BOO LX=IPVTXCKX>:T=A<LX,O> 
810 IF LX<>KX THEN A<LX,O>=ACKX,O>:A<KX,OJ=T 
820 QX=NX-KX:CALL SAXPY,QX,T,A<KX+1,KX>,A<KX+1,0) 
830 NEXT KX 
840 
850 FOR KX=NX TO 1 STEP -1 
860 
870 
880 
890 
900 
910 : 

A<KX,O>=A<KX,OJ/ACKX,KX>:T=-ACKX,O> 
QX=KX-1: CALL SAXPY,QX,T,AC1,KX>,A<1,0) 
NEXT KX 

REM CODE FOR TRANSPOSE SOLVE OMITTED 

920 ENDPROC 
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Appendix F: CBM Comal-80 SGEFAISGESL Test program. 

1211121121 II 4.3121 P.M. 13-1-85 
12111121 II SAVE"0:SGEFA.10" 
12112121 II 
12113121 II CBM COMAL-8121 VER. 0.64S 
12114121 II 
12115121 II 'II' DENOTES A REMARK STATEMENT 
12116121 // 'S:+T' IS SHORTHAND FOR 'S:=S+T' 
12117121 II SUFFIX '#' DENOTES AN INTEGER VARIABLE 
12118121 II REF PARAMETERS IN PROCS ARE CALLED BY REFERENCE - OTHERS BY VALUE 
12119121 II 
1212121121 SEED:=1 
12121121 ZONE 2 
12122121 INPUT "N =": N 
12123121 DIM DV$ OF 2 
12124121 DV$:="DS" 
12125121 SELECT OUTPUT DV$ II PRINTER OR SCREEN 
12126121 // 
12127121 DIM A<N,N>, B<N>, X<N>, IPVT#<N> 
12128121 II 
12129121 // SET UP PROBLEM - RANDOM MATRIX A AND R.H.S. B <AX=B> 
1213121121 I:=RND<-SEED> 
12131121 FOR I:=1 TO N DO 
12132121 FOR J:=1 TON DO A<I,J>:=-1+2*RND<1> 
12133121 ENDFOR I 
12134121 FOR I:=1 TON DO X<I>:=-1+2*RND(1) 
12135121 
12136121 
12137121 
12138121 
039121 
1214121121 
12141121 

II B=A*X 
FOR I:=1 TO N DO 

S:=0 
FOR J:=1 TON DO S:+A<I,J>*X<J> 
B <I>: =S 

ENDFOR I 
PRINT "N = ";N,"SEED = ";SEED 

042121 // 
043121 // FACTORISE AND SOLVE 
12144121 T1:=JIFFIES 
045121 SGEFA<A,N,IPVT#,INFO> 
046121 T1:=JIFFIES-T1 
12147121 PRINT "SGEFA: ";T1;"JIFFIES,",T1160;"SECONDS" 
12148121 // 
12149121 JOB:=0; T1:=JIFFIES 
1215121121 SGESL<A,N,IPVT#,B,JOB> 
12151121 T1:=JIFFIES-T1 
12152121 PRINT "SGESL: ";T1;"JIFFIES,",T1/60;"SECONDS" 
12153121 // 
12154121 // CHECK ANSWER 
12155121 S:=0 
121560 FOR I:=1 TON DO S:+ABS<B<I>-X<I>> 
12157121 PRINT "ONE NORM OF ERROR = ";S 
12158121 II 
12159121 PRINT -------------------------------------------
06121121 SELECT OUTPUT "DS" 
12161121 END 
12162121 // 
12163121 // -------------------------------------------------------------
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0640 
0650 
0660 
0670 
0680 
0690 
0700 
0710 
0720 
0730 
0740 
0750 
0760 
0770 
0780 
0790 
0800 
0810 

PROC SGEFA<REF A<,>,N,REF IPVT#<>,REF INFO> CLOSED 
II 
INF0:=0; NM1:=N-1 
IF NM1<1 THEN GOTO DONE 
II 
FOR K:=1 TO NM1 DO 

KP1:=K+1 
T:=ABS<A<K,K>>; L:=K 
FOR J:=KP1 TO N DO 

IF ABS<ACJ,K>>>T THEN T:=ABSCACJ,K>>; L:=J 
ENDFOR J 
IPVT# O<>: =L 
IF ACL,K>=0 THEN 

INFO:=K 
GOTO LOOPK 

END IF 
IF L<>K THEN T:=A<L,K>; ACL,K>:=ACK,K>; A<K,K>:=T 
II 

0820 T:=-11A<K,K> 
0830 FOR I:=KP1 TON DO ACI,K>:=T*A<I,K> 
0840 II 
0850 FOR J:=KP1 TO N DO 
0860 T:=A<L,J> 
0870 IF L<>K THEN ACL,J>:=A<K,J>; A<K,J>:=T 
0880 FOR I:=KP1 TON DO ACI,J):+T*A<I,K> 
0890 ENDFOR J 
0900 II 
0910 LOOPK: 
0920 ENDFOR K 
0930 II 
0940 DONE: 
0950 IPVT#CN>:=N 
0960 IF A<N,N>=0 THEN INFO:=N 
0970 ENDPROC SGEFA 
0980 II 
0990 II -------------------------------------------------------------
1000 PROC SGESLCREF A<,>,N,REF IPVT#C>,REF B<>,JOB> CLOSED 
1010 II 
1020 NMl:=N-1 
1030 IF JOB<>0 THEN 
1040 GOTO TRANSPOSE 
1050 ENDIF 
1060 IF NM1<1 THEN 
1070 GOTO BACKSUB 
1080 ENDIF 
1090 
1100 
1110 
1120 
1130 
1140 

II 
FOR K:=1 TO NM1 DO 

L:=IPVT#<K>; T:=B<L> 
IF L<>K THEN BCL>:=B<K>; BCK>:=T 
FOR J:=K+1 TON DO B<J>:+T*A<J,K> 

ENDFOR K 
1150 II 
1160 BACKSUB: 
1170 FOR K:=N TO 1 STEP -1 DO 
1180 B<K>:=B<K>IA<K,K>; T:=-B<K> 
1190 FOR J:=1 TO K-1 DO BCJ):+T•A<J,K> 
1200 ENDFOR K 
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1210 II 
1220 TRANSPOSE: 
1230 // CODE FOR TRANSPOSE SOLVE OMITTED 
1240 II 
1250 ENDPROC SGESL 
1255 II 
1260 // -------------------------------------------------------------
1265 II TIME FUNCTION. 1 JIFFY = 1/60 SECONDS. 
1270 FUNC JIFFIES CLOSED 
1280 MEM:=160 II MEM=141 FOR PET 
1290 J:=65536*PEEKCMEM>+256*PEEKCMEM+1)+PEEK<MEM+2) 
1300 RETURN J 
1310 ENDFUNC JIFFIES 
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Appendix G: Amstrad CPC 64 Benchmark Program. 

The versions for the other machines are similar. Note that DEFINT 
defines variables in the specified range to be of type integer. 

10 REM 10.20 A.M. 2-1-85 
20 REI"1 a$=" bench. 3": speed write 1 :save a$: speed write 0: save a$ 
3121 : 
4121 DEFINT i-n 
5121 i=121:j=121:n=121:r=121:s=121:t=121:k=121:t1=121:t2=121:seed=121 
6121 n=25 
7121 DIM a(n,n>, b(n) 
8121 seed=1: RANDOMIZE seed 
90 DEF FNr<x>=-1+2*RND<1> 
100 
110 FOR i=1 TO n:FOR j=l TO n:a(i,j}=FNr<1>:NEXT j:NEXT i 
120 FOR i=l TO n:b<i>=FNr<l>:NEXT i 
130 k=l 
14121 r=FNr<1>:s=FNr<1> 
150 
16121 t1=TIME 
17121 FOR i=1 TO n 
18121 FOR j=1 TO n 
190 
2121121 NEXT j 
21121 NEXT i 
22121 t2=TIME-t1 
23121 
24121 t1=TIME 
25121 FOR i=1 TO n 
26121 FOR j=l TO n 
270 :a<i,j)=a<i,j)+r*a<k,j) 
280 NEXT j 
290 NEXT i 
31210 t1=TIME-t1 
310 
32121 dv=0: ' dv=8 for printer 
330 PRINT #dv,"---------------------" 
34121 PRINT #dv,"time: ";ROUND< <t1-t2>130121,2 >;"seconds" 
35121 LIST 27121,#dv 
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