
Matrix Computations in Basic on a
Microcomputer

Higham, Nicholas J.

2013

MIMS EPrint: 2013.51

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

This EPrint is a reissue of the 1985 technical report [1]. That report was published
as [2] but without the appendices, which are

Appendix A. Basic and Comal 29
Appendix B. Summary of Machine and Language Specifications 32
Appendix C. Commodore 64 Assembly Language BLAS Listing 39
Appendix D. BBC Microcomputer Assembly Language BLAS Listing 46
Appendix E. BBC Microcomputer SGEFA/SGESL Test Program 53
Appendix F. CBM Comal-80 SGEFA/SGESL Test Program 56
Appendix G. Amstrad CPC 464 Benchmark Program 59

Since the appendices contain material of historical interest that is not readily available
elsewhere, it seems appropriate to re-issue it in the MIMS EPrint series. The following
pages are scanned from the surviving original Epson dot matrix printout.

This EPrint should be cited as

N. J. Higham. Matrix computations in Basic on a microcomputer. Numerical
Analysis Report No. 101, University of Manchester, Manchester, UK, June
1985. Reissued as MIMS EPrint 2013.51, Manchester Institute for Mathe-
matical Sciences, The University of Manchester, UK, October 2013.

References

[1] Nicholas J. Higham. Matrix computations in Basic on a microcomputer. Numerical
Analysis Report No. 101, Department of Mathematics, University of Manchester,
Manchester, M13 9PL, UK, June 1985.

[2] Nicholas J. Higham. Matrix computations in Basic on a microcomputer. IMA Bulletin,
22(1/2):13–20, 1986.

Nicholas J. Higham
October 2013

MATRIX COMPUTATIONS IN BASIC ON A

MICROCOMPUTER

N.J. Higham -

Numerical Analysis Report No. 101

June 1985

- Department of Mathematics
University of Manchester

Manchester M13 9PL
ENGLAND

University of Manchester/UMIST Joint Numerical Analysis Reports

Department of Mathematics
The Victoria University

of
Manchester

Department of Mathematics
University of Manchester Institute

of
Science and Technology

Requests for individual technical reports may be addressed to
Dr C.T.H. Baker, Department of Mathematics, University of Manchester,
Manchester M13 9PL.

The views and op1n1ons expressed herein are those of the author
and not necessarily those of the Department of Mathematics.

ABSTRACT

We consider the efficient implementation of matrix

computations in interpreted Basic on a microcomputer. Linear

equations routines SGEFA and SGESL from the LINPACK library of

Fortran programs are translated into Basic and run on four

microcomputers: the Commodore 64, the Amstrad CPC 464, the BBC

Microcomputer, and the BBC with a Z-80 second processor. The

computational cost of the routines is found to be dominated by

subscripting calculations rather than by floating point

arithmetic. For the BBC Microcomputer and the Commodore 64, the

BLAS routines which constitute the inner loops of SGEFA and

SGESL are coded in assembly language; speed increases of factors

2.8 <BBC> and 5.3 <Commodore 64) accrue, and the improved

execution times are comparable to ones which have been quoted

for the more powerful and expensive IBM PC running under a

Fortran compiler. The computational cost of the routines using

coded BLAS is found to be dominated by floating point

arithmetic, subscripting calculations and other overheads having

been reduced to a negligible level, and it is concluded that

these hybrid Basic/assembly language routines extract near

optimum performance from their host machines. Our findings are

shown to be applicable to any matrix routine whose computational

cost can be measured in "flops".

Keywords: matrix computations, Basic, microcomputer,

interpreter, assembly language, LINPACK, BLAS.

-1-

1. Introduction

Stewart <1981> describes his experiences in implementing a

linear equations solver on three hand-held calculators. His

routine for the Hewlett Packard HP-41C, coded in the machine's

low level programming language, solved a system of linear

equations of order 10 in 250 seconds. Dongarra (1984) gives a

list of the times taken by various micro-, mini- and mainframe

computers to solve a linear system of order 100 using standard

linear equations software written in Fortran. The timings

include one for the IBM PC microcomputer: this machine solved

the 100x100 problem in 20 minutes.

For several years the present author has used in his

research the Commmodore Pet and Commodore 64 microcomputers

(Higham, 1984a, 1984b, 1984c), which in terms of cost and

computing power lie between the hand-held calculators and the

more powerful microcomputers such as the IBM PC. Unlike the

calculators used by Stewart in Stewart (1981) the author's

microcomputers run a high level programming language, Basic, but

they are not equipped to run Fortran, the language of choice for

scientific computation on large computers.

Consideration of the papers of Stewart and Dongarra led us

to ask the following questions.

(1. 1)

(1. 2)

How should algorithms for matrix computations be

implemented on a microcomputer in order to make the best

possible use of the machine's processing power, if Basic

is the only available high-level language?

What will be the dominant computational costs in

implementations that answer question (1.1>?

(1.3)

-2-

How can one make use of the rich supply of high quality

Fortran software when coding algorithms in Basic?

We investigate these questions in this report.

In this work we experimented with four microcomputers: the

Commodore 64, the Amstrad CPC 464, the standard BBC

Microcomputer, and the BBC with a Z-80 second processor <we will

regard the last two configurations as different machines). All

the machines were used in their standard interpreted Basic

programming environment; in addition the Commodore 64 was used

with the Basic-related Carnal programming language. For details

of Basic and Carnal, and an explanation of the differences

between an interpreter and a compiler, see Appendix A and the

references cited therein. The technical specifications of the

four machines and of their particular language implementations

are described in Appendix B.

At this point we pause to define two terms that we will use

frequently in the following sections. Machine code <or machine

language) is the collection of instructions that a

microprocessor recognises and can execute as fundamental

operations. To the microprocessor, a machine code instruction is

simply a binary bit pattern that specifies an action to be

performed. Assembly language is a low level language bearing a

one to one relationship to machine code; it allows the use of

mnemonics to refer to machine code instructions, and symbolic

names (or labels) to refer to numeric values and addresses. The

translation from assembly language to machine code is carried

out by an assembler . Programming in assembly language is

easier, less prone to error, and much less tedious than

programming in machine code.

-3-

In sections 2 and 3 we describe the development of

efficient hybrid Basic/assembly language translations of two

standard Fortran subroutines for solving systems of linear

equations. Section 4 presents and analyses the results of

timing experiments carried out on the four test machines using

the hybrid routines and, for comparison, the equivalent purely

Basic versions.

In section 5 we introduce a set of benchmarks for

interpreted Basics and apply them to the four test machines.

The results obtained are used to gain insight into the results

of section 4. Finally, in section 6 we summarise our findings

in relation to questions <1.1>, (1.2) and (1.3>.

The view taken in this work is that one wishes to use the

fastest and most accurate special-purpose algorithms available

for solving on a microcomputer the problem at hand (cf. K.

Stewart (1980)). This is the view that is naturally taken by a

numerical analysis researcher who uses a microcomputer as a more

convenient, easy-to-use substitute for a mainframe computer. An

alternative approach, taken by Nash (1979, 1985>, is to develop

compact, versatile routines for small computers that are easy to

implement and to maintain, and that can be used to solve a

variety of computational problems; some loss of efficiency is

accepted in return for the economies achieved. We believe that

our findings concerning the efficiency of interpreted Basic

programs could usefully be employed in enhancing the efficiency

of the compact routines, such as those in Nash (1985>, albeit

with loss of machine independence.

-4-

2. Translating Two LINPACK Subroutines into Basic

To investigate questions (1.1>, (1.2> and (1.3>, and to

enable us to compare our experiments with those of Stewart and

Dongarra, we decided to focus on the problem of solving a system

of linear equations - probably the most fundamental and widely

occurring problem in numerical linear algebra. We took as our

starting point the routines SGEFA and SGESL in the LINPACK

library of Fortran programs for analysing and solving linear

systems <Dongarra, Bunch, Maler and Stewart, 1979). SGEFA

performs LU factorisation of a matrix A, using a column

oriented version of Gaussian elimination with partial pivoting,

and SGESL uses the factorisation to solve a linear system Ax=b

<Dongarra et al., 1979, Ch. 1).

Consider the following outline of the factorisation

algorithm used by SGEFA.

Algorithm 2.1.

Here A= <a:~._,) is an nxn real matrix.

(2. 1>

<2.2)

(2.3)

For k=1, ... , n-1

Find the smallest r 2 k such that

l a..-k l =max { l a:~.k l : i=k, ••• , n}

Swap akk and a..-k

For i=k+1, ••• , n

Endfor i

For j=k+l, ••• , n

Swap ak_, and a..-_,

For i=k+1, ••• , n

Endfor i

Endfor j

Endfor k.

-5-

In the Fortran code SGEFA the loops (2.2> and (2.3), and

the search <2.1>, are executed by the Basic Linear Algebra

Subprograms <BLAS> <Lawson, Hanson, Kincaid and Krogh, 1979).

The BLAS are a collection of Fortran subprograms for carrying

out various basic computations with vectors, including scaling a

vector by a constant (SSCAL>, searching for a component of

largest absolute value <ISAMAX>, and adding a constant times one

vector to another vector <SAXPY). Note that it is because of

Fortran's flexibility regarding the passing of array parameters

to subprograms that the computations on the two-dimensional

array A in <2.1>, <2.2) and <2.3) can be accomplished by calls

to the vector oriented BLAS.

In developing a Basic equivalent of SGEFA it is desirable

to translate directly from the Fortran code, rather than to code

from Algorithm 2.1. As well as reducing the programming effort

this approach should ensure that nuances and subtleties in the

Fortran coding that are not explicit in the algorithmic notation

are carried over to the Basic version. In any case, for many

Fortran codes, including some of the LINPACK routines, a fully

detailed algorithmic description at the a~~

not readily available.

element level is

However, of the versions of Basic considered here only one

supports procedures and this, BBC Basic, does not allow arrays

to be passed as parameters. Therefore the BLAS and the calls to

the BLAS cannot be translated directly into Basic. One way to

overcome this difficulty is to replace the BLAS calls by the

equivalent in-line code - as is done in some Fortran

implementations of LINPACK <Stewart, 1977; Dongarra et al.,

1 979 ' p • 1 • 23) •

-6-

An alternative approach is to write the BLAS in assembly

language; the BLAS calls can then be replaced by machine­

specific Basic statements that pass control to the specially

written machine code routines. This approach promises to

achieve the dual aim of increased efficiency, since machine code

generally runs much faster than interpreted Basic code and the

bulk of the computation in SGEFA is done inside the BLAS. In

fact it is true for most of the LINPACK routines that if the

total number of assignments, array element references and

floating point additions and multiplications is O<nq) (q=2,

3), then only O(nq- 1)

outside the BLAS.

of these operations are performed

We have tried both approaches towards translating the BLAS.

In section 4 we compare the performances of programs based on

the two approaches. But first, in the next section, we examine

in detail the theoretical and the practical aspects of coding

the BLAS in assembly language for use with a Basic interpreter

on a microcomputer.

-7-

3. Assembly Language BLAS

3.1 Theoretical Gains in Efficiency.

Before describing the details of coding the BLAS in

assembly language we first consider what we can hope to achieve

by using these special BLAS with an interpreted Basic.

One of the characteristics of the 6502 and Z-80 central

processing units <CPUs) of our test machines is that their

instruction sets do not contain a multiply operation; therefore

all four machines must carry out floating point arithmetic in

software. The four Basic interpreters contain individual

collections of floating point arithmetic subroutines and, under

the reasonable assumption that these routines are efficiently

coded, it is sensible to attempt to make use of these routines

in the assembly language BLAS. In addition to simplifying the

programming effort this approach should ensure that the coded

BLAS perform, bitwise, precisely the same arithmetic <and hence

sustain precisely the same rounding errors) as would their in-

line Basic equivalents. However, since in this way the very

same floating point calculations are performed in the coded BLAS

as in the equivalent Basic, it is not immediately clear what

gains in efficiency the coded BLAS will engender. To

investigate this question consider the inner loop (2.3) in

Algorithm 2. 1. When translated to Basic from its Fortran

implementation in SGEFA this loop takes the form

(3. 1) FOR I=l<+l TO N

A<I,J>=A<I,J>+T*A<I,K>

NEXT I.

When this loop is executed in an interpreted Basic the main

computational costs, over and above the inherent floating point

-8-

arithmetic, are incurred when the following tasks are performed.

(1) Parse the source code, to determine the operations to be

performed.

(2) Set up the I loop <this involves initialising the loop

variable, and evaluating the upper and lower loop limits

and the STEP, which defaults to 1>, then repeatedly

increment the loop variable, test against the upper limit

and jump to the start of the loop as necessary.

(3) Search for the simple variables I, J, K, N, T and the

array A in the <dynamically allocated) storage area.

<4> Evaluate the address in storage of the array elements

A<I,J> and A<I,.K>, that is, perform subscripting.

Note that the Basic interpreter will carry out operations (3)

and (4) during every execution of the second statement in the

loop.

With the use of assembly language BLAS these overheads to

the floating point arithmetic can effectively be removed. To

see why, consider, for example, CBM Basic. In this Basic a SYS

command can be used to pass control to a machine code routine.

Thus the command SYS SAXPY calls the machine code routine at

the address held in the variable SAXPY. Unlike the other three

Basics, CBM Basic ostensibly does not provide for the passing of

multiple parameters to a machine code routine. However it is

possible to emulate such a facility by using a nonstandard SYS

command of the form

SYS SAXPY, N-K, T, A<K+1,K>, A<K+1,J).

This syntax is accepted by the interpreter and control is passed

to the SAXPY routine. The routine can pick up the value N-K,

the address of the variable T, and the addresses of the

-9-

elements A<K+1,K) and A<K+1,J), by calling expression

evaluation and variable address search routines in the Basic

interpreter. Using this parameter information the machine code

routine can itself effect the computations implied in (3.1),

making direct calls to the interpreter's floating point

arithmetic routines.

Clearly, overhead (1) is removed, since the interpretation

is done by the programmer when writing the assembly language.

Overhead (3) becomes negligible for large N-K, because the

searching for variables is done only once, at the start of the

machine code routine, rather than every time a variable is

encountered on executing the loop interpretively. Overhead (2)

is now insignificant because the integer addition and comparison

operations involved in the looping are fundamental operations

for the microprocessor, and these operations are no longer being

performed interpretively.

Finally, and most importantly, overhead (4) is greatly

reduced, for only two full subscripting calculations are

required: those which evaluate the addresses of the array

elements in the SYS statement. Thereafter, the assembly

language routine can take advantage of the known, constant

increment between the addresses in storage of the array elements

which must be accessed successively. In CBM Basic arrays are

stored by column, and floating point numbers occupy five bytes

of storage, so the constant increment between the addresses of

A<K+1,J>, A<K+2,J>, ••• , A<N,J> in (3.1> is five bytes.

The above considerations suggest that assembly language

BLAS will be appreciably more efficient than the equivalent

Basic code, through the reduction to a negligible level of the

overheads associated with the floating point arithmetic.

-10-

We wish to emphasise that the above discussion is

applicable only to interpreted Basics. In a compiled Basic

(or Fortran) environment, where the compiler itself may generate

assembler code or machine code, assemb l y language BLAS may be no

more efficient than the compiled equivalent source code - this

behaviour was observed using Fortran in Lawson et al.

(1979), for example.

3.2 Practi c al Implementation.

In order to write assembly language BLAS for a particular

microcomputer one needs two main tools. The first is an

assembler. Good assemblers are available for each of the four

microcomputers; see Appendix B.

The second tool is documentation for the floating point

ar i thmet i c routines in the Basic interpreter.

details of the routines for

One needs to know

loading and storing the floating point accumulator <the

work area in which floating point arithmetic is performed

by the Basic interpreter>,

performing floating point addition and multiplication,

calculating the absolute value and the square root,

comparing two floating point numbers.

It is also necessary to determine whether arrays are stored by

column or by row, how many bytes each floating point number

occupies, and which memory locations can safely be used for

temporary storage (of pointers and intermediate sums , for

example) without affecting the subsequent operation of the Basic

interpreter. We have been able to find this " i nside

informat i on" for two of the four machines: the Commodore 64

<West, 1982; Bathurst, 1983) and the BBC Microcomputer <Pharo,

-11-

1984). In both cases the information was obtained from sources

independent of the manufacturer. Given the competitive nature

of the microcomputer industry it is not surprising if the

manufacturers are unwilling to publish technical details

concerning the inner working of their Basic interpreters.

We have written a subset of the BLAS in 6502 assembly

language for the Commodore 64 and for the BBC Microcomputer; we

hope to repeat the exercise for the Z-80 machines if and when

the necessary documentation becomes available. We based the

routines on the Fortran BLAS listings in <Dongarra et al,,

1979), but we did not "unroll" the loops. Since all calls to

the BLAS in LINPACI< have "INCX=INCY=l" <Dongarra et al.,

1979, p. Al> we asssumed these values for

of treating them as parameters.

INCX, INCY instead

The coding for the Commodore 64 presented no major

difficulties, since the author was already familiar with the

intricate CBM Basic interpreter. A partial listing of the

assembler code (for routines SASUM, SAXPY, ISAMAX and SSCAL

only> is given in Appendix C. Complete understanding of the

code requires a good knowledge of 6502 assembly language, but

the informed reader should be able to follow the broad outline

using the information given in comment lines.

We were able to use very similar coding for the BBC version

of the BLAS. However, a problem was encountered, for BBC Basic

stores arrays by rows. Thus the increment between the addresses

of A<I,J> and A <I+ 1 , J > depends on the array dimension; in

fact, assuming that A is dimensioned DIM A<N,N>, the

increment is 5*<N+l), since each element occupies 5 bytes and

BBC Basic subscripts start at zero. This difficulty could be

-12-

overcome by coding the BLAS in exactly the same way as for the

Commodore 64, so that the BLAS access in succession contiguously

stored array elements, and by re-writing SGEFA and SGESL so as

to generate sequential access across the rows of A, instead of

down the columns. Instead however, to avoid changing SGEFA and

SGESL, we decided to treat the address increment as a "global"

parameter. The BBC BLAS assume that the increment between the

addresses of the array elements to be accessed successively is

given by the value of the static integer variable M% <static

variables, whose address is fixed, are peculiar to BBC Basic).

Thus a BLAS call with one-dimensional array parameters should be

preceded by the assignment M%=5, while for two-dimensional

arrays the required assignment is M%=5*<N+1). This simple

approach does not permit a BLAS call with both one- and two­

dimensional array parameters; to avoid this limitation we stored

the right-hand side vector b (which is manipulated by the

solve routine SGESL) in the otherwise unused, zero'th column of

A. The BBC Basic program which we used to generate and test the

BBC BLAS is listed in Appendix D.

-13-

4. Test Results

In this section we give the results of tests carried out on

the four microcomputers using Basic translations of LINPACK's

SGEFA and SGESL, using both in-line BLAS and assembly language

BLAS (for the machines for which these were written).

Because of the nature of interpreted Basic, many factors

influence program performance <that is, execution times>, and

the degree of influence varies from one Basic to another.

example factors are the following.

Some

<1> The order (with respect to program flow at run time> of

(2)

(3)

first use of variables, and of declaration of arrays. In

CBM Basic the access times are fastest for the earliest

defined variables or arrays , but in Locomotive Basic (on

the Amstrad CPC 464) the access time is independent of the

order of definition.

The use of multi-statement lines. A given program will

usually run faster if the number of distinct lines in the

source code is reduced - by combining lines wherever

possible.

The presence of spaces and REM (remark) statements. The

interpreter has to scan over spaces and REMs, so their

presence in frequently executed sections of the code can

have an adverse affect on run times.

<4> In some Basics (for example, BBC Basic and Locomotive

Basic>, expressions involving variables of only integer

type are evaluated more rapidly than the corresponding

expressions containing floating point variables. In other

Basics (including CBM Basic and CBM Carnal> the converse is

true, because integer arithmetic is not supported and so

-14-

integer values must be converted to floating point before a

numeric expression can be evaluated.

Clearly, then, it is difficult to compare the performance

of one interpreted Basic with another, even if the same program

can be run unaltered under both Basics: aspects of the code

which are beneficial to the performance of one Basic may be

detrimental to the performance of the other.

In our tests we have endeavoured to ensure that each Basic

is treated "fairly". The translation of SGEFA and SGESL was

carried out first into CBM Basic and thence into the other three

Basics and Comal, with care taken to ensure that the five

different codings were as similar as possible, particularly with

respect to factors <1>, <2> and (3) above. The only major

difference between the five implementations concerns factor (4):

in all except the CBM Basic and Comal versions integer variables

were used where appropriate. Since our purpose is not

essentially to compare the performance of different Basics, we

believe that our limited efforts at optimising the code for each

Basic are justified.

The two BBC Microcomputer versions of SGEFA and SGESL, the

first with in-line BLAS and the second with calls to the

assembly language BLAS, are listed in Appendix E together with

the test program in which they were used. For each machine our

approach was to time the execution of SGEFA and SGESL for n=5,

10, 20, . . . ' using random A and b. The elements of A and

x were generated as pseudo-random numbers in the interval

[-1,1], using whatever random number generator the Basic

provided, and the right-hand side b was formed as b=Ax. The

error in the computed solution was monitored to ensure that the

-15-

routines were working correctly. The machines· built-in clocks

were used to time the routines; the units in which the clocks

count vary from 1/60 th of a second (Commodore 64) to 1/300 th

of a second <Amstrad CPC 464), so we quote the times to one

decimal place at most.

Only one linear system was solved for each n. A separate

experiment, on the Commodore 64, in which for fixed n several

seeds were used for the random number generator produced timings

varying by only a few percent, so we believe our approach of

using only one random matrix for each n produces reliable

results.

The results are reported in Tables 4.1 and 4.2. "Coded

BLAS" denotes the use of assembly language BLAS. The blank

entries in the tables correspond to values of

large for the available memory space.

n which were too

We offer the following comments and observations on Tables

4.1 and 4.2.

(1) The SGESL timings are insignificant, for large n,

compared to those of SGEFA. This is to be expected since the

total counts of floating point operations, array element

references and assignments for the two routines are of orders

n 2 and n 3 respectively.

(2) In every case the 10x10 system was solved in less than

11 seconds. This compares to the 250 or more seconds required

by the hand-held calculators in Stewart (1981> to solve a

problem of the same size, and gives some indication of the

difference in processing power between these two classes of

machine.

-16-

Table 4. 1. SGEFA timings in seconds.

N I CBM 64 CBM 64 CBM 64 BBC BBC BBC Z-80 AMSTRAD I

Coded BLAS Comal Coded BLAS CPC 464
---+---

5 1. 33 0.75 1. 23 0.39 0.26 0.54 0.83

10 8.90 3.43 7.92 2.47 1.26 3.25 4.39

20 62.6 17.2 53.6 18.0 7.63 23.7 29.5

30 202 47.3 170 58.9 22.8 76. 1 94.9

40 466 99.9 392 137 51.3 177 219

50 896 181 266 96.3 341 422

60 1535 298 458 162 584 722

70 2416 455 922 1140

80 1371 1694

90 1946

Table 4.2. SGESL timings in seconds.

N I CBM 64 CBM 64 CBM 64 BBC BBC BBC Z-80 AMSTRAD I

Coded BLAS Co mal Coded BLAS CPC 464
---+---

5 0.57 0.38 0.53 0.17 0.15 0.22 0.34

10 1.97 0.93 1. 75 0.56 0.39 0.76 1.03

20 7. 18 2.53 6.30 2.11 1.20 2.86 3.59

30 15.6 4.75 13.7 4.66 2.39 6.22 7.76

40 27.2 7.58 23.8 8.16 4.02 10.9 13.5

50 42.1 11.0 12.6 6.00 16.9 20.9

60 60.1 15.0 18.1 8.39 24.2 29.7

70 81.2 19.8 32.7 40.4

80 42.6 52.4

90 53.8

-17-

(3) Consider the tabulated times for the pure Basic, in-

line BLAS versions of SGEFA and SGESL. According to the results

shown, the BBC Microcomputer is fastest by a significant margin.

The following ratios of execution times hold, approximately.

(a) Commodore 64 I BBC = 3.4,

(b) Amstrad CPC 464 I BBC = 1.6,

(c) BBC Z-80 I BBC = 1. 3.

The first ratio might be considered surprisingly large, given

that the Commodore 64 and the BBC Microcomputer use essentially

the same microprocessor. The ratio can partly be explained by

the fact that the BBC's 6502 microprocessor runs at twice the

clock rate of the Commodore's 6510 (though it is not clear to us

whether doubling the clock speed on a given machine should, in

theory, halve the run times). Furthermore, it appears that BBC

Basic for the 6502 was written with speed of program execution

as a prime consideration. Ratios {b) and (c) provide an

interesting comparison between the performance of the 6502 and

the Z-80 CPUs, especially as BBC Basic for the Z-80 has a nearly

identical specification to standard BBC Basic for the 6502.

(4} The speed up ratios resulting from the use of assembly

language BLAS in SGEFA are given in Table 4.3. The .. asymptotic ..

speed up ratios of 5.3 and 2.8, for the Commodore 64 and the BBC

Microcomputer respectively, are very pleasing and provide

excellent justification for the effort expended in coding the

BLAS. The reason for these differing improvements in execution

speed, and the efficiency relative to the theoretical optimum of

-18-

the routines using the coded BLAS, are examined in the next

section.

Table 4.3. Speed up ratios for SGEFA.

N 5 10 20 30 40 50 60 70
-------+--
CBM 64 1.8 2.6 3.6 4.3 4.7 5.0 5.2 5.3

BBC 1.5 2.0 2.4 2.6 2.7 2.8 2.8

(5) The quoted timings for CBM Carnal are roughly 16%

faster than those for CBM Basic. However, in the Carnal versions

of SGEFA and SGESL we used a special (and very convenient)

feature of Carnal which allows an assignment statement of the

form S:=S+T to be replaced by the shorthand form S:+T. For

example, we coded A<I,J>:=A<I,J>+T*ACI,K> as A<I,J>:+T*ACI,K>

<see the listings in Appendix F>. When we changed the shorthand

assignments back into the longer form the Comal timings

increased by approximately 30/. and they then exceeded the

Commodore 64 Basic timings by 11/.. This 30/. increase in

execution time can be explained by the fact that the short form

involves one less subscripting operation than the long form; see

the timing results in the next section. Clearly, when applied

to array element expressions, the shorthand form S:+T is a

very effective tool for increasing the efficiency of programs

for matrix computations in CBM Carnal.

(6) In the Commodore 64 and BBC Microcomputer tests the

computed solutions returned by the routines using the coded BLAS

were in every case identical to those returned by the purely

Basic routines. This confirms our expectation that the assembly

language BLAS would perform precisely the same arithmetic as the

in-line, Basic BLAS.

-19-

We have used the test results to estimate the times that

would be required to solve a linear system of order 100 were the

test machines able to accommodate systems of this order. The

n=100 times were obtained by extrapolating on the times for the

largest value of n available:

t1mm = (100/n) 3 tn<SGEFA> + (100/n) 2 tn<SGESL>.

In Table 4.4 we compare these estimates with five actual timings

given in Dongarra (1984>; Dongarra's timings were obtained using

standard Fortran versions of SGEFA and SGESL. Three mainframe

computer timings are included to help to put the performance of

the microcomputers into perspective.

Table 4.4. Estimates of tn<SGEFA> + tn<SGESL>

Machine Seconds
---------------------+---------------------
CBM 64 7209 (120 mins>

Amstrad CPC 464

Apple III
Pascal compiler

BBC Z-80

BBC

CBM 64
Coded BLAS

IBM PC
Microsoft Fortran
3.1 compiler

BBC
Coded BLAS

VAX 11/780
Fortran VMS compiler

CDC 7600
Fortran FTN compiler

CDC Cyber 205
Fortran FTN compiler

3390 (56 mins>

2813 <47 mins)

2736 (46 mins)

2171 (36 mins)

1367 (23 mins)

1225 <20 mins)

773 (13 mins)

4.13

0.21

0.082

for n=100.

-20-

We note from Table 4.4 that the BBC Microcomputer, using

coded BLAS, is, in these experiments, 37/. faster than the IBM PC

running under a Fortran compiler, and that the Commodore 64 with

coded BLAS is only 12/. slower than the IBM PC. These

comparisons surprised us, because the IBM PC uses an Intel 8088

CPU, which, in contrast to the 8-bit 6502 and Z-80 CPUs, is a 16-

bit processor, and the 8088 contains multiply and divide

instructions: in other words, the 8088 is a substantially more

powerful processor than the 6502 or the Z-80.

-21-

5. Benchmarks for Matrix Computations

To help to explain the results of section 4 and to gain

further insight into them, we have developed a set of benchmarks

for interpreted Basics which measure the computational costs of

floating point arithmetic and subscripting calculations. Our

method is to time a small, carefully chosen, set of Basic

statements and to extract the desired information by

differencing the timings. Timings have been obtained for each

of the four Basics, and Carnal, using the test program listed in

Appendix G.

The test program times the execution of a loop (lines 170-

210) whose core is a line consisting solely of a colon (the

statement separator in Basic>. Then a similar loop (lines 250-

290>, in which the colon is followed by a single statement, is

timed. The difference between the two times is the time

required to execute the statement, multiplied by the total loop

count. This technique for timing the execution of a statement

in an interpreted Basic is described in West <1982, p.16). The

colon is necessary because we need to account for the time

required to process the line number of the line on which the

statement stands, and this timing cannot be obtained directly

because in Basic a line number may not be followed by an empty

line.

The tests are based on statements involving variables that

have earlier in the program been assigned random values. We

have found that in the Basics tested, the execution times for

floating point operations depend on the arguments; however we

believe the timings obtained with random arguments to be

representative.

-22-

The statements used in line 270 of the test program, and

the times for execution of the statements within the loop, are

tabulated for the four machines in Table 5.1. Note that these

times should be divided by the loop count, n 2 =25 2 , to obtain

the time for a single execution of the statement. Also

tabulated are differences which can be expected to provide good

general estimates of the time required to perform one- and two-

dimensional subscripting and the three arithmetic operations.

For example, the difference between the times for the statements

T=R+S and T=R approximates the time which is required for a

floating point addition, once the operands have been evaluated.

Table 5. 1. Times in seconds for 625 executions of a Basic statement.

Statement CBM 64 CBM 64 BBC
Co mal

BBC
Z-80

Amstrad
CPC 464

---------------------------+--------------------------------------
<a> T=R 0.912! 0.98 0.34 0.45 0.42

(b) T=R+S 1. 78 1.91 0.68 0.91 1.00

(c) T=R*S 2.93 3.07 1. 51 1.45 1. 63

(d) T=R/S 3. 18 < <r:>
·-·· ._l.zt._ 1.63 1.67 1.88

(e) T=B (I> ,., ,., -=!"
.L.. • L~.J 2.38 fll.55 0.89 1.02

(f) T=A<I,J> 3.52 4.08 0.90 1. 30 1.52

(g) A<I,J>=A<I,J>+R*A<K,J) 11.87 13.28 3.59 4.47 5.54
---------------------------+--------------------------------------
t- = (b)-(a) "' '+ ' 0.88 0.93 0.34 0.46 0.58

t = (c)-(a) "' '*. 2.03 2.09 1.17 1.00 1.21

t,. = (d)-(a) "' . I. 2.28 2.34 1.29 1.22 1.46

t:L = (e)-(a) "' ' (I> . 1.33 1.40 0.21 0.44 0.60

t:L_j = (f)-(a) "' '(l,J)' 2.62 3.10 0.56 0.85 1.10

_,.,~­
.L.•..J

Much useful information can be gleaned from Table 5.1.

First, consider statement (g). The time required to execute a

statement of this form on a particular computer system, and in a

particular programming language, is termed a flop <Golub and Van

Loan, 1983 , p.32). Single statements of the form of statement

(g) form the nucleus of the innermost loops of SGEFA and SGESL

(see the listings in Appendix E>, and are executed n 3 /3 +

and n 2 + O<n> times respectively; thus we might

expect the execution times of the pure Basic versions of SGEFA

and SGESL to be well approximated, for large n,

t~1~p and n 2 t~1~p respectively, where t~ 1 ~p is the

time for a single execution of statement (g). This is indeed

the case, as is shown by Table

Table 5.2.

N 30 60 30 60
----------------+-------------------------+----------------------
CBM 64 1.18 1.12 0.91 0.88

BBC 1.14 1. 11 0.90 0.88

BBC Z-80 1.18 1. 13 0.97 0.94

Amstrad CPC 464 1.19 1.18 0.97 121.93

<The SGEFA estimates are overestimates bacause they ignore the

parts of the computations. The SGESL estimates are

underestimates because t~ 1 ~p is based on two-dimensional

subscripting, whereas the SGESL flop invloves less expensive,

one-dimensional subscripting.)

-24-

Thus in the microcomputer Basics tested here, the time

required for solution of a linear system by Gaussian elimination

is proportional to the flop time. We now look more closely at

the component computational costs in a flop.

Consider statement (g) in Table 5.1. The main tasks to be

performed when evaluating this statement in an interpreted Basic

are the following:

parse the statement and evaluate the addresses in storage

of A and R, then carry out

three two-dimensional subscripting operations,

one floating point multiplication,

one floating point addition.

We can use the timings t<g>, t- and t- in Table

5.1 to express the cost of these tasks as a percentage of one

flop.

Table 5.3. Components of a flop.

: Subscripting Multiplication Addition Parse/Addr.
----------------+--
CBM 64 66% 17% 7% 10%

CBM 64 Carnal 70% 16% 7% 7%

BBC 47% 33% 9% 11%

BBC Z-80 57% 22% 10% 11%

Amstrad CPC 464 60% 22% 10% 8%

Table 5.3 shows that in all five Basics the largest single

contribution to a flop comes from subscripting calculations,

this contribution varying from 47% in BBC Basic to 70% in CBM

Carnal. In every case the floating point arithmetic accounts for

less than half a flop, with variation between 23% in CBM Carnal

and 42% in BBC Basic.

-25-

We conclude that in solving a linear system on our test

machines, using Basic translations of SGEFA and SGESL with in­

line BLAS, the dominant computational cost is subscripting:

it accounts for between one half and two thirds of the execution

time.

To see why subscripting calculations can be so expensive we

examined a dissassembly of the CBM Basic interpreter <Bathurst,

1983). In outline, the interpreter performs the following

actions to evaluate A<I,J>, assuming A has been dimensioned

DIM A<N,N>. First, the base address of the array A is

calculated, by searching through the array table. Next the two

subscripts are evaluated, using a general purpose "evaluate

floating point expression" routine, and these floating point

values are converted to 4-byte integers, with checks for out-of-

bounds subscripts. The offset of the element A<I,J>, in terms

of the number of array elements, is evaluated as I+(J-1)*(N+1>,

and the offset in bytes is calculated by multiplying the result

by 5 (the length of each array element). These two

multiplications are carried out by a general purpose 16-bit

integer multiplication routine, so special advantage is not

taken of the operand 5. It appears, then, that CBM Basic's

relative inefficiency at subscripting is due, at least in part,

to its failure to take advantage both of integer subscripts

(when these are present) and of the simple form of the operand 5

in the second 16-bit multiplication.

We now use Table 5.3 to explain the speed up ratios in

Table 4.3. As explained in section 3, the use of assembly

language BLAS effectively removes the overheads to the floating

point arithmetic in evaluating statement <g> in Table 5.1. Thus,

-26-

assuming that for large n the execution times for the routines

using coded BLAS are proportional to the time for an ''assembly

language flop", we can predict the speed up ratios, using Table

5.3, as follows.

CBM 64 100/24 = 4.17

BBC : 100/42 = 2.38

Comparing with Table 4.3 we see that the predictions are

reasonably good, though, perhaps surprisingly, they are somewhat

pessimistic for large n.

Our findings about computational cost, and about speed

increase with the use of coded BLAS, are applicable not only to

the Gaussian elimination algorithm, but to any other algorithm

for matrix computations whose cost can reliably be measured in

flops (most of the algorithms in LINPACK, for example>. We

conclude that for flop dominated matrix algorithms the use of

assembly language BLAS will induce near optimum machine

performance on the two microcomputers for which they have been

written, for the dominant computational cost in such

implementations will be that associated with the floating point

arithmetic, and this arithmetic is performed using machine code

routines from within the Basic interpreter which we assume are

efficiently coded.

-27-

6. Concluding Remarks

We have shown that it is feasible to translate Fortran

subroutines from the LINPACK library <Dongarra et al., 1979)

into Basic, so that they can be used on those microcomputers for

which Basic is the standard programming language. Two

approaches to translating the BLAS were considered. The first

was simply to replace the BLAS calls by the equivalent in-line

Basic code. We found that in the resulting pure Basic programs

the dominant computational cost is subscripting, rather than

floating point arithmetic.

The second approach was to code the BLAS in assembly

language and to make use of machine dependent features in the

Basic which allow a machine code subroutine to be called and

multiple parameters to be passed. This was done for the

Commodore 64 and the BBC Microcomputer. On the Commodore 64,

for n=70, the Basic version of SGEFA which uses assembly

language BLAS runs 5.3 times faster than the version using in-

line BLAS. On the BBC Microcomputer, for n=60, the

corresponding speed increase is 2.8. While speedy program

execution is not necessarily a prime requirement when solving

problems numerically on microcomputers <Nash, 1985>, these

substantial increases in efficiency are well worth having if

computations with long run times are to be performed.

Importantly, we have seen that the versions of SGEFA using

assembly language BLAS and running under interpreted Basic

produce near optimum machine performance, in the sense that

their computational cost is dominated by the cost of the

inherent floating point arithmetic. In other words, even if the

whole SGEFA subroutine were to be coded in assembly language (a

-28-

formidable task!) the resulting gains in efficiency over the

Basic program using coded BLAS would be relatively smal l .

We conclude that for programming matrix computations in

interpreted Basic on a microcomputer, a carefuly coded set of

assembly language BLAS is a very useful tool. Its use

facilitates the translation into Basic of Fortran programs which

use the BLAS <such as those in LINPACK>, and at the same time

enables the translated programs to make efficient use of the

available processing power something that cannot usually be

achieved when working with a Basic interpreter. Furthermore,

the assembly language BLAS enable the programmer coding in Basic

directly to enjoy the benefits of using simple, one-line BLAS

calls to perform basic vector operations: careful use of the

BLAS can produce greater modularity and improved readability of

programs (cf. Appendix D>.

Acknowledgements

I thank Dr. I. Gladwell and Dr. C.T.H. Baker for their

interest in this work and for their comments on the manuscript.

I also thank Supersoft of Harrow, England for the use of an

Amstrad CPC 464 machine and a Mikro Assembler cartridge.

As an experiment this report was produced on a Commodore

64, using the wordprocessor Vizawrite 64 and an Epson FX-80

printer.

-29-

Appendix A: Basic and Comal.

Basic.

The Basic programming language was invented by J.G. Kemeny

and T.E. Kurtz at Dartmouth College, New Hampshire in 1964. The

language was designed for use by novice programmers in an

interactive, time-sharing environment, but the range of usage of

Basic has expanded beyond this originally intended audience.

Basic is available on many mainframe computers and is the

principal language on most low cost microcomputers, often being

permanently stored in read only memory.

Disappointingly, Basic suffers from a lack of

standardisation. Although there exists an ANSI standard <ANSI,

1978), few Basics adhere to it, and in general, a program

written in one version of Basic will require modification to

enable it to run in another.

Loosely, Basic can be described as a simplified subset of

Fortran. Some of the major differences between Basic and

Fortran are as follows. <These comments are not applicable to

all Basics; for example BBC Basic supports procedures with local

variables- see Appendix B.>

(1) There are no statement numbers in Basic, so GOTO is

directed to a line number.

(2) Named, program independent subroutines with parameter

(3)

passing are not supported in Basic. Subroutines are called

by line number, as in GOSUB 100, and an exit point is

marked with RETURN, as in Fortran.

A All variables are global to the whole program in Basic.

numeric variable is by default of type real unless its

identifier is terminated by the % character, which denotes

-30-

integer type <though not all Basics support integer

variables>. Identifiers are often restricted to two

characters in length.

<4> Multi-statement lines are allowed in most Basics, the

statement separator being a colon <usually).

(5) If the condition in an 'IF condition THEN ••• ' statement

is false, then the rest of the (generally multi-statement)

line is ignored.

Excellent references for Basic are the books by Kemeny and

Kurtz (1980) and Alcock (1977). Other useful references include

Lientz <1976> and Genz and Hopkins <1980>, both of which contain

comparisons between different dialects of Basic, and Brown

(1979).

The four microcomputer Basics that we have used in this

work are interpreted rather than compiled. The major way in

which a compiler differs from an interpreter is that a compiler

translates the source code into machine language (perhaps via

assembly language) before the program is executed; it is this

machine language translation that is executed by the CPU. In

contrast, an interpreter translates the source code during

execution of the program: each statement is translated as and

when it is encountered. If a statement is executed n times,

then an interpreter will translate it n times, whereas a

compiler will translate it only once, in the initial compilation

phase. See Brown (1979, p. 38) for further details on the

differences between compilers and interpreters. Generally, a

given program on a fixed computer can be expected to run faster

under a compiled Basic than under an interpreted Basic. The

principal reasons for most microcomputer Basics being

-31-

interpreted are that a Basic interpreter lends itself more

readily to interactive programming, is more convenient to use,

and is usually more economical in its use of memory space, than

a Basic compiler.

Carnal.

Carnal was developed by B.R. Christensen and B. Loefstedt in

Denmark in 1973. Carnal can be thought of as a hybrid between

Basic and Pascal: it combines the interactive nature and simple

syntax of Basic with the structured programming features (but

not the data structures> of Pascal. Specifically, most Basic

commands and intrinsic functions are supported, but to these are

added the following features (among others>:

long variable names, procedures and multi-line functions

with full parameter passing, WHILE-ENDWHILE and REPEAT-

UNTIL loops, global

statement.

IF-THEN-ELSE-ENDIF and a CASE

Carnal appears to be relatively little known, compared to Basic,

outside Denmark. Public domain versions of Carnal for Commodore

computers are distributed by the Independent Commodore Products

User Group, England, and the Carnal User Group, U.S.A.

Implementations which run under the CP/M operating system are

available commercially.

Good references for Carnal are Lindsay (1983), which

documents CBM Comal-80, and Atherton <1982).

APPENDIX B: Summary of Machine and Language Specifications.

The purpose of this appendix is to summarise the technical

details of the test machines and their Basic or Comal language

implementations.

All four machine configurations use one or both of the MOS

Technology (now Commodore Semiconductor Group> 6502/6510 and the

Zilog Z-80 microprocessors. Both microprocessors have an 8-bit

data bus and a 16-bit address bus; consequently, the basic unit

of data on which the processors act is one byte (8 bits) and the

maximum amount of addressable memory is 64K bytes, where 1K

byte = 2 1 0 = 1024 bytes. Neither processor contains a

hardware multiplier.

The memory map of each machine contains a combination of

random access memory <RAM>, which can be written to and read

from, and read only memory <ROM>, in which is stored the

machine's operating system and the Basic interpreter.

For each of the Basics we summarise under the following

headings the features that are relevant to matrix computations.

Us er RAM This is the amount of memory space available to the

Basic programmer for storage of the Basic program and its

variables.

Ar i thmetic We describe the floating point and integer number

systems of a particular Basic by quoting five numbers: b, t, L,

U, m. For floating point numbers, b is the base, t is the

number of base b digits in the mantissa, and L, U are

exponents representing the underflow level and the overflow

level respectively <Golub and Van Loan, 1983, p. 32}. The last

number, m, is the number of base b digits in which integers

are stored. In fact, all the Basics considered here use b=2,

-33-

rounded floating point arithmetic with t=32, and each stores

integers in two's complement form. Thus in each Basic the unit

roundoff <Golub and Van Loan, 1983, p. 33)

and integers m must lie in the range

- 2t-1 ~ m ~ 2t-1 - 1.

Integer Arithmetic Some Basics perform true integer arithmetic

<addition, subtraction and multiplication) between integer

operands; others automatically convert integer values to

floating point before evaluating an expression, even if all the

components are of integer type.

Structure This refers to the provision of structured

programming constructs such as procedures, If-Then-Else, and

Repeat-Until and While-Wend loops.

Identifiers Most microcomputer Basics do not restrict the

length of variable names. However, in some Basics only the

first two characters are significant, so that, for example, the

identifiers TEST and TEMP are synonymous. Furthermore, some

Basics prohibit embedded keywords in an identifier (usually the

ones that do not require spaces to be placed around keywords):

for example, TOTAL may be an illegal identifier because TO

is a Basic keyword. Clearly, these restrictions pose

difficulties in the translation of Fortran programs to Basic.

Array Storage Multi-dimensional arrays can be stored in

essentially two ways: with the k ' th subscript varying more

rapidly than the (k+l)st, for all k, or vice versa <Brown,

1979, p. 186). For the two-dimensional arrays of interest in

matrix computations the respective storage schemes are "by

column" and "by row". For example, after DIM A<2,2>, the

-34-

elements of A may be stored in the order

(121,121), <1,121>, (2,121), (121,1>, (1,1>, <2,1>, (121,2), (1,2), (2,2)

(by column>, or

(121,121), (121,1>, (121,2), <1,121>, <1,1>, <1,2>, (2,121), <2,1>, (2,2)

(by row> • Which storage scheme is used becomes of interest when

one wishes to access array elements from assembly language. In

all the Basics considered here, accessing array elements by

column is no faster and no slower than accessing array elements

by row (cf. Dongarra et al. (1979, p.l.5)).

Machine Language Routines This entry describes the mechanism

provided in Basic for calling machine language routines and for

passing parameters to such routines.

Assembler This entry describes the availability of assemblers

for the machines.

Interpreter Documentation The final entry describes the

availability of documentation for the internal interpreter

routines. This documentation should describe the location and

the purpose of the main subroutines in the interpreter and it

should explain how to use the subroutines from an assembly

language program.

-35-

Commodore 64

<Commodore Business Machines, 1982; West, 1982; Bathurst, 1983).

Microprocessor

6510 microprocessor running at 0.985 MHz <U.K. version> or

1.022 MHz (U.S.A. version).

set as the 6502.

Language: Basic

The 6510 has the same instruction

Commodore Basic 2 interpreter occupying 8K of ROM; this is

developed from a 1977 Basic written by Microsoft Software.

User RAM 38K. A further 4K is available for use by machine

code routines.

Arithmetic <b, t, L, U, m) = <2, 32, -128, 127, 16>.

Integer Arithmetic Not supported.

Structure No structured constructs.

Identifiers The first two characters only are significant.

Embedded keywords are not allowed.

Array Storage By column.

Machine Language Routines Called by the SYS command.

Ostensibly, SYS does not take parameters, but they can be

included provided that the machine language routine takes the

responsibility for evaluating the parameter values and/or

addresses <by calling general purpose evaluation routines in the

Basic interpreter).

Assembler Many assemblers are commercially available.

Interpreter Documentation Readily available from sources

independent of the manufacturer.

<1982> and Bathurst (1983>.

Excellent references are West

Language: Comal <Atherton, 1982; Lindsay, 1983).

Version 0.64S of CBM Comal-80 interpreter (soft loaded from

-36-

disk). Occupies approximately 24K of RAM.

User RAM 12K.

Arithmetic: (b , t , L , U , m > = (2 , 32 , -128 , 127 , 16 > •

Integer Arithmetic Not supported.

Structure Well structured; see Appendix A.

Identifiers Long. All characters are significant and embedded

keywords are allowed.

Array Storage See Note <1>.

Machine Language Routines Called by the SYS command.

Parameters are not supported.

Assembler See Basic entry.

Interpreter Documentation See Note <2>.

BBC Microcomputer - Model B

<Call and Allen, 1982; Pharo, 1984>.

Microprocessor

6502 microprocessor running at 2 MHz.

Language: Basic

BBC Basic interpreter occupying 16K of ROM.

User RAM 25K (in screen mode 7- less in other modes>.

Arithmetic (b, t, L, U, m) = <2, <'I -·L.'
further details see Wichmann (1983).

Integer Arithmetic: Supported.

-128, 127' 32). For

Structure Procedures with local variables and parameters

(simple variables only> which are called by value; REPEAT-UNTIL

loop; single line IF-THEN-ELSE.

Identifiers Long. All characters are significant and embedded

keywords are allowed.

Array Storage By row.

-37-

Machine Language Routines Called by the CALL command, which

takes parameters. The parameters must be variables or array

elements (not expressions>; their addresses and types are

evaluated by the interpreter and stored in a parameter block.

Assembler BBC Basic contains a built-in 6502 assembler.

Assembly language may be freely mixed with the Basic source

code.

Interpreter Documentation The integer and floating point

arithmetic routines are thoroughly documented in Pharo (1984).

BBC Microcomputer <Model B> with Torch Z-80 Second Processor

<Torch Computers, 1982).

Microprocessor

Z-80A microprocessor running at 4 MHz, in addition to the

6502 in the standard BBC machine. The 6502 is dedicated to

input/output and the Z-80 performs the data processing.

Language: Basic <Russell, 1983>.

Z80 version of the BBC Basic interpreter, which is soft

loaded from disk and occupies approximately 16K of RAM.

User RAM 48K.

Arithmetic, Integer Arithmetic, Structure and Identifiers as

for BBC Basic (6502>.

Array Storage See Note (1).

Machine Language Routines Similar to BBC Basic.

Assembler Z80 version of the 6502 assembler in BBC Basic.

Interpreter Documentation See Note <2>.

-38-

Amstrad CPC 64

<Amsoft, 1984; Locomotive Software, 1984).

Microprocessor

Z-80A microprocessor running at 4 MHz.

Language: Basic

Locomotive Software Basic interpreter occupying 16K of ROM.

User RAM 42.5K.

Arithmetic <b, t, L, U, m) = (2, 32, -128, 127, 16).

Integer Arithmetic Supported.

Structure WHILE-WEND loop and single line IF-THEN-ELSE.

Identifiers Long. All characters are significant and embedded

keywords are allowed.

Array Storage By column.

Machine Language Routines Called by the CALL command. This

is very similar to the CALL statement in BBC Basic but it allows

parameters to be passed by address or by value. A useful

additional feature of this Basic is that it allows the user to

define new commands, which are accessed by name instead of via a

CALL statement.

Assembler Several assemblers are commercially available.

Interpreter Documentation See Note <2>.

Note (1) In these cases I was unable to determine the method of

array storage.

Note <2> In these cases I was unable to obtain documentation.

-39-

Appendix C: Commodore 64 Assembly Language BLAS Listing.

100
110
120
490
500
501
502
504
510
512
514
516
518
519
520
521
522
523
525
526
527
528
529
530
531
532
533
534
535
536
537
538
540
545
550
600
898
900
910
920
922
940
970
980
995

1000
1010
1020
1025
1028
1030
1040
1045
1048

1.00 P.M. 12-5-85
SAVE"BLASHOW.4",8:VERIFY"*" 1 8

ASSEMBLY LANGUAGE BLAS ROUTINES FOR THE COMMODORE 64.

TO BE CALLED FROM A C64 BASIC PROGRAM.
LISTING OF SASUM, SAXPY, ISAMAX, SSCAL ONLY.

6502 ASSEMBLY LANGUAGE ### BRIEFLY, MAIN INSTRUCTIONS ARE
JSR: CALL SUBROUTINE, WHICH IS TERMINATED BY RTS (= 'RETURN'),
JMP: UNCONDITIONAL JUMP ('GOTO'),
LDA/LDX/LDY: LOAD ACCUMULATOR/X-REGISTER/Y-REGISTER.
STA: STORE THE ACCUMULATOR.
INC/DEC: INCREMENT/DECREMENT MEMORY BY ONE.
BEQ/BNE: BRANCH IF RESULT OF PREVIOUS OPERATION WAS ZERO/NONZERO.

ASSEMBLER NOTES ###
THIS LISTING IS IN MIKRO ASSEMBLER (SUPERSOFT, HARROW, ENGLAND) FORMAT.
' ! ' DENOTES A COMMENT LINE OR REMAINDER OF LINE,
'$' SPECIFIES A HEXADECIMAL (BASE 16) NUMBER.
'STORE = $5C' DEFINES THE LABEL STORE TO REPRESENT THE VALUE 92.

IMPLEMENTATION NOTES ###
EACH BLAS ROUTINE IS CALLED BY AN EXTENDED SYS STATEMENT WHOSE
FORM IS DEFINED IN A COMMENT LINE AT THE START OF THE ROUTINE,
'SX ()' DENOTES AN ELEMENT OF THE ARRAY SX, WHICH MAY HAVE ANY
DIMENSIONS. THE BLAS ROUTINES ACCESS ARRAY ELEMENTS IN THE ORDER THAT
THEY ARE STORED IN MEMORY, I.E., BY COLUMN FOR 2-DIM'L ARRAYS A(N 1 N).
PARAMETER 'N' MAY BE AN EXPRESSION (E.G. 'N-K+1' OR 'M*3') BUT THE
OTHER PARAMETERS MUST BE SIMPLE VARIABLES OR ARRAY ELEMENTS, OF
TYPE FLOATING POINT (NOT INTEGER),
'N' MUST EVALUATE TO 0 <= N <= 32767. IN THIS
IMPLEMENTATION, FOR N=0 1 SASUM, SOOT, SNRM2 CORRECTLY RETURN 01 BUT
ISAMAX RETURNS 1 (ISAMAX IS UNLIKELY TO BE CALLED WITH N=0),

1---
f=$C000 ! ASSEMBLE CODE IN SPARE 4K BLOCK STARTING AT $C000

NOTATION:

FP1 1 FP2 =FLOATING POINT ACCUMULATORS 1, 2
MEM.AY := '(A 1 Y)' =FL. PT. NUMBER AT ADDRESS A+256*Y
MEM.XY := '(X 1 Y)' = FL.PT. NUMBER AT ADDRESS X+256*Y

ADDRESSES OF (ROM) ROUTINES IN THE BASIC INTERPRETER:

EVAL = $AD8A
! GETS ~ EVALUATES NUMERIC EXPRESSION FROM TEXT. RESULT PLACED IN FP1.

COMMA
INTEGER
INTFLP

= $AEFD
= $B7F7
= $B391

CHECK FOR COMMA
FP1 -> INTEGER AT (Y,A)
FP1 := FLOAT((Y 1 A))

1050
1055
1056
1060
1070
1080
1130
1140
1150
1160
1170
1178
1180
1185
1200
1210
1220
1230
2000
2002
2005
2007
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
3000
3010
3020
3030
3050
9998
9999

10000
10010
10015
10017
10020
10030
10100
10110
10120
10140
10150
10160
10170
10180
10190
10200

-4121-

PTRGET = $B08B
GETS NAME AND POINTER TO A VARIABLE. RETURNS WITH (A 1 Y) POINTING TO

! EXPONENT (OF FIRST ELEMENT IF ARRAY), FOR NUMERIC VARIABLE.

LOADFP1
SAVEFP1

ADD
MULT
ABS
SQRT

= $BBA2
= $BBD4

= $B86A
= $BA2B
= $BC58
= $BF71

FP1 := MEM.AY
MEM.XY := FP1

FP1 : = FP1+FP2
FP1 := FP1*FP2
FP1 := ABS(FPU
FP1 := SQRT(FPU

COMPARE = $BC58 COMPARE FP1 WITH MEM.AY
! A=0 IF EQUAL, A=1 IF FP1 > MEM.AY, A=$FF IF FP1 < MEM.AY

ADDMEM
MULTMEM

= $8867
= $BA28

! TEMPORARY STORAGE:

STORE = $5C
FP1TOSTORE = $BBC7

NLOW
NHIGH

PLOW1
PHIGH1
PLOW2
PHIGH2
PLOW3
PHIGH3

= $F7
= $F8

= $F9
= $FA
= $FB
= $FC
= $FD
= $FE

! FLOATING POINT ACCUMULATORS:

FP1
FP2

= $61
= $69

FP1 := FP1+MEM.AY
FP1 := FP1tMEM.AY

'FP3' : $5C-$60
'FP3' := FP1

POINTER (PTRl)

! $61-$66
! $69-$6E

(PTR2)

(PTR3)

·---
"REAL FUNCTION SASUM (N,SX)"

SUM OF ABSOLUTE VALUES OF A VECTOR

SYS ASUM,N,SX() ,S

SASUM
!UU

LOOPS A

JSR GETN

JSR GET1

JSR ZEROSTORE

LDA NLOW
ORA NHIGH
BEQ FINSA

EVALUATE 1ST PARAMETER

(PTR1) -> SX()

SUM:=0

N=0?

IF SO, FINISHED

-41 -

10210 LOA PLOW1 SET UP ACCUM.
1111220 LOY PHIGH1 AND Y-REG.
10230 JSR LOADFP1 THEN CALL ROM ROUTINE
10232
1111235 JSR ABS FP1 := ABS(FP1)
1111238
111124111 LOA ti<STORE
1111242 LOY tt>STORE
11112 45 JSR ADDMEM FPl : = FP1 + SUM
10250
10260 JSR FP1TOSTORE SUM : = FP1
10280
1031110 JSR BUMP1 CALL SUBROUTINES AT
1111360 JSR NEQNM1 END OF LISTING.
10420 JMP LOOP SA LOOP BACK
1111430
1111440 FINSA JSR COMMA STORE RESULT (FP1) IN
1111450 JSR PTRGET VARIABLE. THIS CODE CALLED BY
111146111 TAX ISAMAX ALSO.
1111470 JSR SAVEFP1
1111480 RTS
111149111
1111998 !---
1111999
1111110 "SUBROUTINE SAXPY (N,SA,SX,SYl"
1102111
1111125 VECTOR=VECTOR+CONST*VECTOR: SY () : = SY () +SA*SX ()
1111127
1111130 SYS AXPY,N,SA,SX() ,SY()
111114111
1111150 SAXPY JSR GETN
111116111 !UU
1111170 JSR GET3 (PTR3) -> SA
11080 JSR GET2 (PTR2) -> sx ()
11090 JSR GET1 (PTR1) -> SY ()
11100
11110 LOOPS AX LOA NLOW N=0?
11120 ORA NHIGH
11130 BEQ FINSAX
11140
11150 LOA PLOW3 FP1:=SA
11160 LOY PHIGH3
11170 JSR LOADFP1
11180
11190 LOA PLOW2 FP1: =FPl*SX ()
11200 LOY PHIGH2
11210 JSR MULTMEM
11220
11230 LOA PLOW1 FP1:=FP1+SY()
11240 LOY PHIGH1
11250 JSR ADDMEM
11260
11270 LOX PLOW1 SY():=FPl
11280 LOY PHIGH1
11290 JSR SAVEFP1
11300

11310
11320
11330
11340
11400
11410
11420
11430
14998
14999
15000
15010
15020
15030
15040
15050
15060
15070
15080
15090
15100
15110
15120
15130
15135
15140
15150
15155
15156
15157
15158
15159
15160
15170
15180
15190
15200
15210
15220
15225
15230
15240
15250
15260
15270
15280
15285
15290
15300
15310
15320
15330
15340
15350
15360
15370

JSR BUMP2
JSR BUMP1

JSR NEQNM1
JMP LOOPSAX

FINSAX RTS

-42-

MOVE PTRS TO NEXT
ELTS OF SX 8c SY.

1---
"INTEGER FUNCTION ISAMAX (N,SXl"

FIND INDEX OF ELT WITH LARGEST ABSOLUTE VALUE IN VECTOR X

SYS ISAMAX,N,SXO,K

ISAMAX
!U#

LOOPMAX

LTE

JSR GETN

JSR GET1

JSR ZEROSTORE

LDA NLOW
STA PLOW2
STA PLOW3
LDA NHIGH
STA PHIGH2
STA PHIGH3
INC PLOW3
BNE LOOPMAX
INC PHIGH3

LDA NLOW
ORA NHIGH
BEQ FINMAX

LDA PLOW1
LDY PHIGH1
JSR LOADFP1

JSR ABS

LDA #<STORE
LDY #>STORE
JSR COMPARE
BM I LTE
BEQ LTE

LDA NLOW
STA PLOW2
LDA NHIGH
STA PHIGH2

JSR FP1TOSTORE

JSR BUMP1

(PTR1l -> SXO

'CURRENT MAX' : = 0

PTR2 = N+1-INDEX OF
CURRENT MAX ELT.

PTR3 = SAVED VALUE OF N
PLUS 1.

N=0?

FP1 := SXO

FP1 := ABS(FP1l

FP1 8c BIGGEST SO FAR
IF FP 1 < .. .
IF FP 1 - .. .

FP1 IS BIGGER

UPDATE 'INDEX' OF MAX ELT

SAVE CURRENT MAX ELT

-43-

15390 JSR NEQNM1
15400 JMP LOOPMAX
15410
15420 FINMAX SEC INDEX ; = N+1-PTR2
15422 LDA PLOW3
15424 SBC PLOW2
15426 TAY
15428 LDA PHIGH3
15430 SBC PHIGH2
15435
15440 JSR INTFLP ! CONVERT RESULT TO
15450 JMP FINSA ! FL.PT. & GOTO SASUM
15500
15998 1---
15999
16000 "SUBROUTINE SSCAL !N 1 SA,SX>"
16010
16020 SCALE VECTOR BY A CONSTANT: sx (): = SA*SX (>
16030
16040 SYS SCAL,N,SA,SX ()
16050
16060 SSCAL JSR GETN
16070 !UU
16075 JSR GET2 !PTR2> -> SA
16080 JSR 6ET1 (PTR 1) -> SX ()
16090
16100 LOOPSC LDA NLOW N=0?
16110 ORA NHIGH
16120 BEQ FINSC
16130
16140 LOA PLOW1
16150 LDY PHIGH1
16160 JSR LOADFP1 FP1 : = sx ()
16170
16180 LDA PLOW2
16190 LDY PHIGH2
16200 JSR MULTMEM FP1 : = FP1*SA
16210
16220 LDX PLOW!
16230 LDY PHIGH1
16240 JSR SAVEFP1 sx () : = FP1
16250
16260 JSR BUMP1
16270 JSR NEQNM1
16280 JMP LOOPSC
16290
16300 FINSC RTS
16310
16998 1---
20060 ! ROUTINE TO EVALUATE THE PARAMETER . N, AND STORE THE RESULT
20065 I AS A 16-BIT INTEGER IN (NLOW 1 NHIGH>.
20067
20100 GETN JSR COMMA
20110 !U#
20120 JSR EVAL
20130 JSR INTEGER

20140
20150
20170
20180
20200
20490
20495
20497
20500
20510
20520
20530
20540
20545
20550
20560
20565
20570
20580
20585
20590
20595
25000
25005
25010
25020
25030
25040
25050
25060
25070
25200
25210
25220
25230
25240
25250
25260
25270
25280
25300
25310
25320
25330
25340
25350
25360
25370
25380
25385
25900
25910
25920
25930
25940

STY NLOW
STA NHIGH
RTS

-44-

'---
! SET TO ZERO 'FP3' AND FP1 1 THE LATTER SO THAT SASUM, SOOT AND
! SNRM2 RETURN 0 WHEN N=0.

ZEROS TORE LOX #4 ! 5 ELTS TO ZERO
!#UUU#

LOA #0

LOOPZ1 STA STORE,X
STA FP1,X
OEX
BPL LOOPZ1 BRANCH IF X>=0
STA FP1+5
RTS

'---
! THE FOLLOWING ROUTINES MOVE A POINTER ONTO THE NEXT ARRAY ELEMENT

BUMP1
!UU

FIN1

BUMP2
!#U#

FIN2

BUMP3
!UU

FIN3

CLC

LOA
AOC
STA
BCC
INC
RTS

CLC

LOA
ADC
STA
BCC
INC
RTS

CLC

LOA
AOC
STA
BCC
INC
RTS

! BUMP PTR1 BY 5

PLOW1
#5
PLOWl
FIN1
PHIGH1

BUMP PTR2 BY 5

PLOW2
#5
PLOW2
FIN2
PHIGH2

BUMP PTR3 BY 5

PLOW3
#S
PLOW3
FIN3
PHIGH3

'---
THE FOLLOWING ROUTINES SEARCH FOR A
NUMERIC VARIABLE (SIMPLE VAR, OR ARRAY ELEMENT> AND
STORE A POINTER TO THE FIRST BYTE OF THE
FLOATING POINT NUMBER IN (PTR1) 1 (PTR2l OR (PTR3l.

-45-

26000 GET1 JSR COMMA
26010 ! Uti
26020 JSR PTRGET
26030 STA PLOW1
26040 STY PHIGH1
26050 RTS
26060
26100 GET2 JSR COMMA
26110 !iU
26120 JSR PTRGET
26130 STA PLOW2
26140 STY PHIGH2
26150 RTS
26160
26200 GET3 JSR COMMA
26210 ! Uti
26220 JSR PTRGET
26230 STA PLOW3
26240 STY PHIGH3
26250 RTS
26260
26285 '---
26999
27000 NEQNM1 LOA NLOW ! N : = N-1
27010 !UtiU
27020 BNE NM1
27030 DEC NHIGH
27040 NM1 DEC NLOW
27050
27060 RTS
29995 •---
29996
29997 END

-46-

Appendix D: BBC Microc omputer As sembly Language BLAS List i ng.

10 REM 2.45 P.M. 25-3-85
20 REM SAVE"BLAS.16"
30
40 PROCBLAS
50
60 REM TEST THE M/C BLAS
70
80 N/.=22: M%=5*<N%+1)
90 DEF FNF<X>=-1+2*RND<1>

100 INPUT "SEED>O";SEED: T=RND<-SEED>
110 DIM X<N'l.,N%>, Y<N'l.,N/.), Z<N'l.,N/.)
120 T=FNF<1>: J=INT<N%/2)
130 FOR I=1 TO N/.
140 X<I,J>=FNF<1>:Y<I,J>=FNF(1)
150 NEXT
160
170 REM TEST SSCAL
180 FOR I=1 TO N/.:Z<I,J>=T*X<I,J>:NEXT
190 CALL SSCAL,N'l.,T,X<1,J>
200 FOR I=1 TO N/.:PRINTABS<X<I,J>-Z<I,J>>;:NEXT:PRINT
210
220 REM TEST SAXPY
230 FOR I=1 TO N/.:Z<I,J>=Y<I,J>+T*X<I,J):NEXT
240 CALL SAXPY,N'l.,T,X<1,J),Y(1,J)
250 FOR I=1 TO N/.:PRINTABS<Y<I,J>-Z<I,J))" ";:NEXT:PRINT
260
270 REM TEST ISAMAX
280 S=O
290 FOR I=1 TO N/.:T=ABS<X<I,J)): IF T>S THEN S=T:K=I
300 NEXT
310 L/.=0
320 CALL ISAMAX,N'l.,X<1,J),L/.
330 PRINTK,L/.
340
350 END
352 REM --
353 REM PROCEDURE TO ASSEMBLE THE MACHINE CODE BLAS
360
370 DEF PROCBLAS
375 REM ########
380
390 REM MACHINE CODE BLAS ROUTINES SAXPY, SSCAL & ISAMAX FOR THE
400 REM BBC MODEL B <6502) MACHINE WITH BASIC2.
410 REM SIMILAR TO COMMODORE 64 VERSION BUT

BBC BASIC STORES ARRAYS BY ROW, THUS THE INCREMENT BETWEEN
ELEMENTS <I,J) AND <I+1,J) IN STORAGE DEPENDS ON
THE COLUMN DHMENSION. THIS IMPLEMENTATION ASSUMES
THAT M/. HOLDS THE INCREMENT. INTENDED USE IS
FOR FLOATING POINT ARRAYS OF THE FORM
DIM A<N'l.,N/.) ONLY, FOR WHICH M/. = 5*<N%+1)
IS REQUIRED.

420 REM <1 >
430 REM
440 REM
450 REM
460 REM
470 REM
480 REM
490 REM
500 REM

<2> IN SAXPY, SSCAL & ISAMAX PARAMETERS N/. AND K% MUST
BE INTEGER VARIABLES, NOT EXPRESSIONS.

512
515 REM ### ASSEMBLER NOTES ###
516 REM '\' DENOTES A COMMENT LINE OR REMAINDER OF LINE

-47-

517 REM '&' SPECIFIES A HEXADECIMAL <BASE 16) NUMBER
518 REM ".LABEL' DEFINES 'LABEL' TO TAKE THE VALUE OF THE CURRENT ADDRESS
519
520
530 REM ---------------------------------------
535 REM ### LABEL DEFINITIONS ###
536
540 REM PARAMETER BLOCK, OF FORM
550 REM <NO. PARAMETERS>, <2-BYTE PARAMETER ADDRESS, 1-BYTE PARAMETER TYPE>
560 BLOCK=~-!600
570
580 REM ZERO PAGE POINTERS FOR ARRAY ELEMENTS ETC.
590 PLOW1=~-!70
600 PHIGH1=~-.71
61 0 PLOW2=~-.(72
620 PHIGH2=&73
630 PLOW3=~-.(7 4
640 PHIGH3=&75
650
660 REM COUNTER FOR NUMBER OF ELEMENTS
670 NLOW=~-!76
680 NHIGH=&77
690
700 REM TEMPORARY ZERO PAGE POINTER
71 0 TEMP LOW=~-(78
720 TEMPHIGH=&79
730
740 REM POINTER TO FL.PT. VARIABLE FOR ROM ROUTINES
750 FPLOW=~-!4B
7 60 FPH I GH=~-!4C
770
780 REM LOW 2 BYTES OF STATIC VARIABLE M%.
790 INCLOW=&434
BOO INCHIGH=&435
810
820 REM TEMPORARY STORAGE FOR A FL.PT. VALUE: &46C-&470
830 FPSTORE=~A6C
840
850 REM ROM ROUTINES
860 REM FWA, FWB DENOTE FLOATING POINT WORK AREAS A AND B
870
880 AUNP=&A3B5: REM FWA := FP.VAR
890 APACK=&A38D: REM FP.VAR := FWA
900 AMULT=&A656: REM FWA := FWA*FP.VAR
910 APLUS=&A500: REM FWA := FWA+FP.VAR
920 APACK1=&A385: REM FPSTORE1 := FWA
930 AUNP1=&A3B2: REM FWA := FPSTORE1
940 ACLEAR=&A686: REM FWA := 0
950 ASIGN=&A1DA: REM A := SIGN <FWA>
960 ACOMP=&AD7E: REM FWA := -FWA
970 ATEST=&9A5F: REM TEST FP.VAR <-> FWA
980
990 REM ---------------------------------------

1000 REM ### ASSEMBLER CODE ###
1005
1010
1020
1030
1040
1050

DIM MC% 500
REM INPUT"LISTING <YIN>";Z$

PS=2:REM IF Z$="Y" THEN PS=3
FOR PASS%=0 TO PS STEP PS

ELSE PS =2

1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650

P'l.=MC%
[

OPT PASS%
\

.PGETN \get no. of elements
\####
LDA BLOCI<+ 1
STA TEMPLOW
LDA BLOCK+2
STA TEMPHIGH
\

LDY #1 \ N = 16 BIT INTEGER
.NLOOP
LDA <TEMPLOW>,Y
STA NLOW,Y
DEY
BPL NLOOP
RTS
\
\

-48-

.PGET1 \ get pointer to parameter #1
\####
LDA BLOCK+4
STA PLOW!
LDA BLOCK+5
STA PHIGH1
RTS
\
\

.PGET2 \ get pointer to parameter #2
\####
LDA BLOCK+7
STA PLOW2
LDA BLOCK+8
STA PHIGH2
RTS
\
\

.PGET3 \ get pointer to parameter #3
\####
LDA BLOCK+10
STA PLOW3
LDA BLOCK+11
STA PHIGH3
RTS
\
\
.FPTR1 \ fplow = ptr1
\#####
LDA PLOW1
STA FPLOW
LDA PHIGHl
STA FPHIGH
RTS
\
\
.FPTR2 \ fplow = ptr2
\#####
LDA PLOW2
STA FPLOW

1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250

LDA PHIGH2
STA FPHIGH
RTS
\
\
.FPTR3 \ fplow = ptr3
\#####
LDA PLDW3
STA FPLOW
LDA PHIGH3
STA FPHIGH
RTS
\
\

-49-

.BUMP1 \ move pointer 1 to next array element
\ ####
CLC
LDA PLDW1
ADC INCLOW
STA PLDW1
LDA PHIGH1
ADC INCHIGH
STA PHIGH1
RTS
\
\

.BUMP2 \ move pointer 2 to next array element
\ ####
CLC
LDA PLOW2
ADC INCLOW
STA PLOW2
LDA PHIGH2
ADC INCHIGH
STA PHIGH2
RTS
\
\

.BUMP3 \ move pointer 3 to next array element
\ ####
CLC
LDA PLOW3
ADC INCLOW
STA PLDW3
LDA PHIGH3
ADC INCHIGH
STA PHIGH3
RTS
\
\
.NEQNM1 \decrement count
\ ######
LDA NLOW
BNE NM1
DEC NHIGH
.NM1
DEC NLOW
RTS
\
\

2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840

-50-

.ZEROSTORE \ zero fl.pt. temporary store
\ #########
JSR ACLEAR
JSR APACK1
RTS
\
\

.FABS \ FWA = ABS <FWA>. Is there a ROM routine for this?
\ ####
JSR ASIGN

AND #~~FF

BPL FINABS
JSR ACOMP \ negate FWA
.FINABS
RTS
\
\

\ --------------------------------------
.SSCAL
\#####
\

\SCALE VECTOR BY A CONSTANT, SX = SA*SX
\
\CALL <>,N'l.,SA,SX<>
\
JSR PGETN
JSR PGET1
JSR PGET2
\
.LOOPSC
\
LDA NLOW
ORA NHIGH
BEQ FINSC
\
JSR FPTR1
JSR AUNP \
\
JSR FPTR2
JSR AMULT
\
JSR FPTR2
JSR APACK
\
JSR BUMP2
JSR NEQNM1
JMP LOOPSC
\
.FINSC
RTS
\
\

\
\

\

<PTR1> -> SA
<PTR2> -> SX < >

FINISHED IF N=O

FWA = SA

\ FWA = FWA*SX < >

\ sx () = FWA

\ ---------------------------------------
.SAXPY
\#####
\

\ VECTOR =VECTOR+ CONST*VECTOR, SY<> = SY<>+SA*SX<>
\
\CALL () ,N'l.,SA,SX<>,SY<>

2850 \

2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450

JSR PGETN
\
JSR PGETl \ CPTRl > -> SA
JSR PGET2 \ <PTR2> -> sx ()
JSR PGET3 \ CPTR3> -> SYO
\
.LOOPSAX
LDA NLOW
ORA NHIGH
BEQ FINSAX
\
JSR FPTRl
JSR AUNP \ FWA = SA
\
JSR FPTR2
JSR AMULT \ FWA = FWA*SX < >
\
JSR FPTR3
JSR A PLUS \ FWA = FWA+SY < >
\
JSR FPTR3
JSR A PACK \ SYO = FWA
\
JSR BUMP2
JSR BUMP3
JSR NEQNMl
JMP LOOPSAX
\
.FINSAX
RTS
\
\

-51-

\ ---------------------------------------
.ISAMAX
\######
\

\ FIND INDEX OF ELT WITH LARGEST ABSOLUTE VALUE IN VECTOR X
\

\CALL <>,NX,SX<>,KX
\
JSR PGETN
JSR PGETl \ CPTRl> -> SXC>
\

JSR ZEROSTORE \ CURRENT MAX = 0
\
LDA NLOW
STA PLOW2
STA PLOW3
LDA NHIGH
STA PHIGH2 \ PTR2 = N+l-INDEX OF CURRENT MAX ELT
STA PHIGH3 \ PTR3 = SAVED VAUE OF N PLUS 1
INC PLOW3
BNE LOOPMAX
INC PHIGH3
\
.LOOPMAX
LDA NLOW
ORA NHIGH
BEQ FINMAX
\

3460
3470
3480
3490
3500
3510
3520
3530
3540
355(1
3560
3570
3580
3590
3600
3610
3620
3630
3640
3650
3660
3670
3680
3690
3700
3710
3720
3730
3740
3750
3760
3770
3780
3790
3800
3810
3820
3830
3840
3850
3860
3870
3880
3890
3900
3910
3920
3930
3940
3950

JSR
JSR
\
JSR
\
LOA
STA
LOA
STA
\

FPTR1
AUNP \ FWA =

FABS \ FWA =

#FPSTORE MOD
FPLOW
#FPSTORE DIV
FPHIGH

-52-

sx ()

ABS <FWA>

256

256

JSR ATEST \ COMPARE FWA AND BIGGEST SO FAR
\
BCS LTE \ IF FWA < OR = FPSTORE
\
LOA NLOW
STA PLOW2
LOA NHIGH
STA PHIGH2
JSR APACK1 \ STORE NEW BIGGEST
\
.LTE
JSR BUMP1
JSR NEQNM1
JMP LOOPMAX
\
.FINMAX
SEC \ ADJUST INDEX ACCORDING TO K -> N+1-K
LOA PLOW3
SBC PLOW2
STA PLOW3
LOA PHIGH3
SBC PHIGH2
STA PHIGH3
\
LOY #0
JSR PGET2 \ PTR TO VAR TO ACCEPT RESULT
LOA PLOW3
STA <PLOW2>,Y
INY
LOA PHIGH3
STA <PLOW2>,Y
LOA #0 \ NOW ZERO THE HIGH TWO BYTES
INY
STA <PLOW2>,Y
INY
STA <PLOW2>,Y
RTS
]

NEXT PASS%

3960 ENDPROC

-53-

Appendix E: BBC Microcomputer SGEFA/SGESL Listing.

10 REM 6-2-85 10.30 A.M.
20 REM SAVE"SGEFA.4"
30
40 IX=O:JX=O:KX=O:NX=O:LX=O:KP1X=O:NM1X=O:INFOX=O:JOBX=O
50 T=O:S=O
60
70 SEED=1
80 INPUT"N: ";NX
90

100 VDU 3: REM VDU 2: REM PRINTER/SCREEN
110
120 DIM ACNX,NX>,B<NX>,X<NX>,IPVTX<NX>
130
140 REM SET UP PROBLEM - RANDOM MATRIX A AND R.H.S. B
150 T=RND<-SEED>
160 FOR IX=1 TO NX:FOR JX=1 TO NX:ACIX,JX>=-1+2*RNDC1>:NEXT JX:NEXT IX
170 FOR IX=1 TO NX:X<IX>=-1+2*RND<1>:NEXT IX
180 REM B=A*X
190 FOR IX=1 TO NX:S=O
200 FOR JX=1 TO NX:S=S+ACIX,JX>*X<JX>:NEXT JX
210 B<IX>=S:NEXT IX
220 PRINT"N = ";NX;" SEED = ";SEED
230
240 REM FACTORISE AND SOLVE CAX=B>
250 T1=TIME
260 PROCSGEFA
270 T1=TIME-T1:PRINT"SGEFA: ";T1/100;" SECONDS"
280
290 JOBX=O:T1=TIME
300 PROCSGESL
310 T1=TIME-T1:PRINT"SGESL: ";T1/100;" SECONDS"
320
330 REM CHECK ANSWER
340 S=O:FOR IX=1 TO NX
350 S=S+ABSCB<IX>-X<IX>>:NEXT
360 PRINT"ONE-NORM OF ERROR = ";S
370
380 PRINT"-----------------------------"
390 END
400 :
410 REM ---
420 DEF PROCSGEFA
430 REM WITH IN-LINE BLAS
440
450 INFOX=O:NM1X=NX-1
460 IF NM1X<1 THEN 670
470
480 FOR K%=1 TO NM1%
490 KP1X=KX+1
500 T=ABSCACKX,KX>>:LX=KX
510 FOR JX=KP1X TO NX:IF ABSCACJX,KX>>>T THEN T=ABSCACJX,KX>>:LX=JX
520 NEXT JX
530 IPVTX<KX>=LX
540 IF ACLX,KX>=O THEN INFOX=KX:GOTO 650
550 IF LX<>KX THEN T=A<LX,KX>:ACLX,KX>=ACKX,KX>:ACKX,KX>=T
560
570 T=-1/ACKX,KX>

-54-

580 FOR I%=KP1% TO NX:A<IX,KX>=T*A<IX,KX>:NEXT I%
590
600 FOR J%=KP1% TO N%
610 T=A<LX,JX>:IF LX<>KX THEN A<LX,JX>=A<KX,JX>:A<KX,JX>=T
620 FOR I%=KP1% TO NX:A<IX,JX>=A<IX,JX>+T*A<IX,KX>:NEXT I%
630 NEXT J%
640
650 NEXT K%
660
670 IPVTX<NX>=N%
680 IF A<NX,N%>=0 THEN INFOX=N%
690 ENDPROC
700
710 REM --
720 DEF PROCSGESL
730 REM WITH IN-LINE BLAS
740
750 NM1%=N%-1
760 IF JOBX<>O THEN 900
770 IF NM1%<1 THEN 850
780
790
BOO
810
820
830
840

FOR K%=1 TO NM1%
LX=IPVTX<KX>:T=B(L%)
IF LX<>KX THEN B<LX>=B<KX>:B<KX>=T
FOR JX=K%+1 TO NX:B<JX>=B<JX>+T*A<JX,KX>:NEXT J%
NEXT K%

850 FOR KX=N% TO 1 STEP -1
860 B<KX>=B<KX>IA<KX,KX>:T=-B<KX>
870 IF K%>1 THEN FOR J%=1 TO K%-1:B<JX>=B<JX>+T*A<JX,KX>:NEXT J%
880 NEXT K%
890
900 REM CODE FOR TRANSPOSE SOLVE OMITTED
910
920 ENDPROC

Versions of SGEFA/SGESL Using Assembly Language BLAS.

Note: Here the vector b sits in the zero'th column of A.

420 DEF PROCSGEFA
430 REM WITH CALLS TO CODED BLAS
440
450 INF0%=0:NM1%=N%-1
460 IF NM1%<1 THEN 670
470
480 FOR K%=1 TO NM1%
490 KP1%=K%+1
500 QX=N%-K%+1: CALL ISAMAX,QX,A<KX,KX>,LX: LX=LX+K%-1
510
520
530 IPVTX<KX>=L%
540 IF A<LX,K%>=0 THEN INFOX=KX:GOTO 650
550 IF LX<>K% THEN T=A<LX,KX>:A<LX,KX>=A<KX,KX>:A<KX,KX>=T
560
570 T=-1/A<KX,K%>
580 QX=N%-K%: CALL SSCAL,QX,T,A<KP1X,K%>
590

-55-

600 FOR JX=KP1X TO NX
610 T=ACLX,JX>:IF LX<>KX THEN ACLX,JX>=ACKX,JX>:ACKX,JX>=T
620 QX=NX-KX:CALL SAXPY,QX,T,ACKP1X,KX>,ACKP1X,JXJ
630 NEXT JX
640
650 NEXT KX
660
670 IPVTXCNXJ=NX
680 IF A<NX,NX>=O THEN INFOX=NX
690 ENDPROC
700

710 REM --
720 DEF PROCSGESL
730 REM WITH CALLS TO CODED BLAS
740
750 NM1X=NX-1
760 IF JOBX<>O THEN 900
770 IF NM1X<1 THEN 850
780
790 FOR K%=1 TO NM1X
BOO LX=IPVTXCKX>:T=A<LX,O>
810 IF LX<>KX THEN A<LX,O>=ACKX,O>:A<KX,OJ=T
820 QX=NX-KX:CALL SAXPY,QX,T,A<KX+1,KX>,A<KX+1,0)
830 NEXT KX
840
850 FOR KX=NX TO 1 STEP -1
860
870
880
890
900
910 :

A<KX,O>=A<KX,OJ/ACKX,KX>:T=-ACKX,O>
QX=KX-1: CALL SAXPY,QX,T,AC1,KX>,A<1,0)
NEXT KX

REM CODE FOR TRANSPOSE SOLVE OMITTED

920 ENDPROC

-56-

Appendix F: CBM Comal-80 SGEFAISGESL Test program.

1211121121 II 4.3121 P.M. 13-1-85
12111121 II SAVE"0:SGEFA.10"
12112121 II
12113121 II CBM COMAL-8121 VER. 0.64S
12114121 II
12115121 II 'II' DENOTES A REMARK STATEMENT
12116121 // 'S:+T' IS SHORTHAND FOR 'S:=S+T'
12117121 II SUFFIX '#' DENOTES AN INTEGER VARIABLE
12118121 II REF PARAMETERS IN PROCS ARE CALLED BY REFERENCE - OTHERS BY VALUE
12119121 II
1212121121 SEED:=1
12121121 ZONE 2
12122121 INPUT "N =": N
12123121 DIM DV$ OF 2
12124121 DV$:="DS"
12125121 SELECT OUTPUT DV$ II PRINTER OR SCREEN
12126121 //
12127121 DIM A<N,N>, B<N>, X<N>, IPVT#<N>
12128121 II
12129121 // SET UP PROBLEM - RANDOM MATRIX A AND R.H.S. B <AX=B>
1213121121 I:=RND<-SEED>
12131121 FOR I:=1 TO N DO
12132121 FOR J:=1 TON DO A<I,J>:=-1+2*RND<1>
12133121 ENDFOR I
12134121 FOR I:=1 TON DO X<I>:=-1+2*RND(1)
12135121
12136121
12137121
12138121
039121
1214121121
12141121

II B=A*X
FOR I:=1 TO N DO

S:=0
FOR J:=1 TON DO S:+A<I,J>*X<J>
B <I>: =S

ENDFOR I
PRINT "N = ";N,"SEED = ";SEED

042121 //
043121 // FACTORISE AND SOLVE
12144121 T1:=JIFFIES
045121 SGEFA<A,N,IPVT#,INFO>
046121 T1:=JIFFIES-T1
12147121 PRINT "SGEFA: ";T1;"JIFFIES,",T1160;"SECONDS"
12148121 //
12149121 JOB:=0; T1:=JIFFIES
1215121121 SGESL<A,N,IPVT#,B,JOB>
12151121 T1:=JIFFIES-T1
12152121 PRINT "SGESL: ";T1;"JIFFIES,",T1/60;"SECONDS"
12153121 //
12154121 // CHECK ANSWER
12155121 S:=0
121560 FOR I:=1 TON DO S:+ABS<B<I>-X<I>>
12157121 PRINT "ONE NORM OF ERROR = ";S
12158121 II
12159121 PRINT ---
06121121 SELECT OUTPUT "DS"
12161121 END
12162121 //
12163121 // ---

-57-

0640
0650
0660
0670
0680
0690
0700
0710
0720
0730
0740
0750
0760
0770
0780
0790
0800
0810

PROC SGEFA<REF A<,>,N,REF IPVT#<>,REF INFO> CLOSED
II
INF0:=0; NM1:=N-1
IF NM1<1 THEN GOTO DONE
II
FOR K:=1 TO NM1 DO

KP1:=K+1
T:=ABS<A<K,K>>; L:=K
FOR J:=KP1 TO N DO

IF ABS<ACJ,K>>>T THEN T:=ABSCACJ,K>>; L:=J
ENDFOR J
IPVT# O<>: =L
IF ACL,K>=0 THEN

INFO:=K
GOTO LOOPK

END IF
IF L<>K THEN T:=A<L,K>; ACL,K>:=ACK,K>; A<K,K>:=T
II

0820 T:=-11A<K,K>
0830 FOR I:=KP1 TON DO ACI,K>:=T*A<I,K>
0840 II
0850 FOR J:=KP1 TO N DO
0860 T:=A<L,J>
0870 IF L<>K THEN ACL,J>:=A<K,J>; A<K,J>:=T
0880 FOR I:=KP1 TON DO ACI,J):+T*A<I,K>
0890 ENDFOR J
0900 II
0910 LOOPK:
0920 ENDFOR K
0930 II
0940 DONE:
0950 IPVT#CN>:=N
0960 IF A<N,N>=0 THEN INFO:=N
0970 ENDPROC SGEFA
0980 II
0990 II ---
1000 PROC SGESLCREF A<,>,N,REF IPVT#C>,REF B<>,JOB> CLOSED
1010 II
1020 NMl:=N-1
1030 IF JOB<>0 THEN
1040 GOTO TRANSPOSE
1050 ENDIF
1060 IF NM1<1 THEN
1070 GOTO BACKSUB
1080 ENDIF
1090
1100
1110
1120
1130
1140

II
FOR K:=1 TO NM1 DO

L:=IPVT#<K>; T:=B<L>
IF L<>K THEN BCL>:=B<K>; BCK>:=T
FOR J:=K+1 TON DO B<J>:+T*A<J,K>

ENDFOR K
1150 II
1160 BACKSUB:
1170 FOR K:=N TO 1 STEP -1 DO
1180 B<K>:=B<K>IA<K,K>; T:=-B<K>
1190 FOR J:=1 TO K-1 DO BCJ):+T•A<J,K>
1200 ENDFOR K

-58-

1210 II
1220 TRANSPOSE:
1230 // CODE FOR TRANSPOSE SOLVE OMITTED
1240 II
1250 ENDPROC SGESL
1255 II
1260 // ---
1265 II TIME FUNCTION. 1 JIFFY = 1/60 SECONDS.
1270 FUNC JIFFIES CLOSED
1280 MEM:=160 II MEM=141 FOR PET
1290 J:=65536*PEEKCMEM>+256*PEEKCMEM+1)+PEEK<MEM+2)
1300 RETURN J
1310 ENDFUNC JIFFIES

-59-

Appendix G: Amstrad CPC 64 Benchmark Program.

The versions for the other machines are similar. Note that DEFINT
defines variables in the specified range to be of type integer.

10 REM 10.20 A.M. 2-1-85
20 REI"1 a$=" bench. 3": speed write 1 :save a$: speed write 0: save a$
3121 :
4121 DEFINT i-n
5121 i=121:j=121:n=121:r=121:s=121:t=121:k=121:t1=121:t2=121:seed=121
6121 n=25
7121 DIM a(n,n>, b(n)
8121 seed=1: RANDOMIZE seed
90 DEF FNr<x>=-1+2*RND<1>
100
110 FOR i=1 TO n:FOR j=l TO n:a(i,j}=FNr<1>:NEXT j:NEXT i
120 FOR i=l TO n:b<i>=FNr<l>:NEXT i
130 k=l
14121 r=FNr<1>:s=FNr<1>
150
16121 t1=TIME
17121 FOR i=1 TO n
18121 FOR j=1 TO n
190
2121121 NEXT j
21121 NEXT i
22121 t2=TIME-t1
23121
24121 t1=TIME
25121 FOR i=1 TO n
26121 FOR j=l TO n
270 :a<i,j)=a<i,j)+r*a<k,j)
280 NEXT j
290 NEXT i
31210 t1=TIME-t1
310
32121 dv=0: ' dv=8 for printer
330 PRINT #dv,"---------------------"
34121 PRINT #dv,"time: ";ROUND< <t1-t2>130121,2 >;"seconds"
35121 LIST 27121,#dv

-60-

REFERENCES

D. ALCOCK, Illustrating Basic, Cambridge University Press,

Cambridge, England, 1977.

AMSOFT, Amstrad CPC 464 User Instructions, AMSOFT,

Brentwood, England, 1984.

ANSI, American National Standard for minimal Basic,

ANSI X3.60, 1978.

R. ATHERTON, Structured programming with Comal, Halsted

Press, John Wiley, London, 1982.

M. BATHURST, Inside the Commodore 64, DataCap, Belgium,

1983.

P.J. BROWN, Writing Interactive Compilers and

Interpreters, John Wiley, Chicheste~, England, 1979.

J. COLL and D. ALLEN, The BBC Microcomputer User Guide,

British Broadcasting Corporation, London, 1982.

COMMODORE BUSINESS MACHINES, Commodore 64 Programmer's

Reference Guide, Howard W. Sams, Indianapolis, Indiana,

1982.

J.J. DONGARRA, J.R. BUNCH, C.B. MOLER and G.W. STEWART,

LINPACK Users' Guide, SIAM Publications, Philadelphia,

1979.

J.J. DONGARRA, Performance of various computers using

standard linear equations software in a Fortran

environment, Manuscript, Argonne National Laboratory,

July 1984.

A.C. GENZ and T.R. HOPKINS, Portable numerical software for

microcomputers, in Production and Assessment of Numerical

Software, M.A. HENNELL and L.M. DELVES, eds., Academic

Press, London, 1980, pp. 179-189.

-61-

G.H. GOLUB and C.F. VAN LOAN, Matrix Computations, Johns

Hopkins University Press, Baltimore, Maryland, 1983.

N.J. HIGHAM, Efficient algorithms for computing the

condition number of a tridiagonal matrix, Numerical

Analysis Report No. 88, University of Manchester,

England, 1984a; to appear in SIAM J. Sci. Stat. Comput.

N.J. HIGHAM, Computing real square roots of a real matrix,

Numerical Analysis Report No. 89, University of

Manchester, England, 1984b; to appear in Linear Algebra

and Appl.

N.J. HIGHAM, Newton's method for the matrix square root,

Numerical Analysis Report No. 91, University of

Manchester, England, 1984c; submitted for publication.

J.G . KEMENY and T.E. KURTZ, Basic Programming <Third

edition>, John Wiley, New York, 1980.

C.L. LAWSON, R.J. HANSON, D.R. KINCAID and F.T. KROGH, Basic

linear algebra subprograms for Fortran usage, ACM TOMS, 5

(1979), pp. 308-323.

B.P. LIENTZ, A comparative evaluation of versions of BASIC,

Comm. ACM, 19 (1976>, pp. 175-181.

L. LINDSAY, Carnal Handbook, Reston Publishing Company,

Virginia, 1983.

LOCOMOTIVE SOFTWARE, Amstrad Concise Basic Specification,

AMSOFT, Brentwood, England, 1984.

J.C. NASH, Compact Numerical Methods for Computers: Linear

Algebra and Function Minimisaton, John Wiley, New York,

1979.

J.C. NASH, Design and implementation of a very small linear

algebra program package, Comm. ACM, 28 (1985>, pp. 89-94.

-62-

C. PHARO, The Advanced Basic ROM User Guide for the BBC

Microcomputer, Cambridge Microcomputer Centre, England,

1984.

R.T. RUSSELL, BBCBASIC Z80 Documentation, M-TEC Computer

Services, Norfolk, England, 1983.

G.W. STEWART, Research, development, and LINPACK, in

Mathematical Software III, J.R. RICE, ed., Academic

Press, New York, 1977, pp. 1-14.

G.W. STEWART, Matrix calculations on hand-held calculators,

ACM SIGNUM Newsletter, 16 <1981>, pp. 10-13.

K. STEWART, The microcomputer as a tool in numerical

analysis, ACM SIGNUM Newsletter, 15 <1980), p. 27.

TORCH COMPUTERS, Torch Programmers' Guide, Torch Computers

Ltd., Cambridge, England, 1982.

R.C. WEST, Programming the PET/CBM, Level Limited,

Hampstead, England, 1982.

B.A. WICHMANN, A note on the accuracy of two microprocessors,

NPL Report DITC 18/83, National Physical Laboratory,

England, 1983.

