ty
er

The Universi
of Manchest

MANCHESTER

1824

Matrix Computations in Basic on a
Microcomputer

Higham, Nicholas J.

2013

MIMS EPrint: 2013.51

Manchester Institute for Mathematical Sciences

School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/

And by contacting: The MIMS Secretary
School of Mathematics
The University of Manchester
Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

This EPrint is a reissue of the 1985 technical report [1]. That report was published
as [2] but without the appendices, which are

Appendix A. Basic and Comal 29
Appendix B. Summary of Machine and Language Specifications 32
Appendix C. Commodore 64 Assembly Language BLAS Listing 39

Appendix D. BBC Microcomputer Assembly Language BLAS Listing 46
Appendix E. BBC Microcomputer SGEFA /SGESL Test Program 53
Appendix F. CBM Comal-80 SGEFA /SGESL Test Program 56
Appendix G. Amstrad CPC 464 Benchmark Program 59

Since the appendices contain material of historical interest that is not readily available
elsewhere, it seems appropriate to re-issue it in the MIMS EPrint series. The following

pages are scanned from the surviving original Epson dot matrix printout.
This EPrint should be cited as

N. J. Higham. Matrix computations in Basic on a microcomputer. Numerical
Analysis Report No. 101, University of Manchester, Manchester, UK, June
1985. Reissued as MIMS EPrint 2013.51, Manchester Institute for Mathe-
matical Sciences, The University of Manchester, UK, October 2013.

References

[1] Nicholas J. Higham. Matrix computations in Basic on a microcomputer. Numerical
Analysis Report No. 101, Department of Mathematics, University of Manchester,
Manchester, M13 9PL, UK, June 1985.

[2] Nicholas J. Higham. Matrix computations in Basic on a microcomputer. IMA Bulletin,
22(1/2):13-20, 1986.

Nicholas J. Higham
October 2013

MATRIX COMPUTATIONS IN BASIC ON A

MICROCOMPUTER

p.J. Higham >

Numerical Analysis Report No. 181

Jung 1985

= Department of Mathematics
tUniversity of HManchester
Manchester MIZ ZPL
ERNGLAND

University of Manchester/UMIST Joint Numerical Analysis Reports

Department of Mathematics Department of Mathematics
The Victoria University University of Manchester Institute
of of
Manchester Science and Technology

Requests for individual technical reports may be addressed to
Dr C.T.H. Baker, Department of Mathematics, University of Manchester,
Manchester M13 9PL.

The views and opinions expressed herein are those of the author
and not necessarily those of the Department of Mathematics.

ABSTRACT

We consider the efficient implementation of matrix
computations in interpreted Basic on a microcomputer. Linear
equations routines S5GEFA and SGESL from the LINFACEKE library of
Fortran programs are translated into Basic and run on four
microcomputers: the Commodore &4, the Amstrad CFC 4464, the EBEC
Microcomputer, and the BBC with a ZI-88 second processor. The
computational cost of the routines is found to be dominated by
subscripting calculations rather than by floating point
arithmetic. For the BBEC Microcomputer and the Commodore &4, the
BLAS routines which constitute the inner loops of SGEFA and
SGESL are coded in assembly language: speed increases of factors
2.8 {(BBC) and 5.3 {(Commodore &4) accrue, and the improved
execution times are comparable to ones which have been guoted
for the more powerful and expensive IBM PC running under a
Fortran compiler. The computational cost of the routines using
coded BLAS is found to be dominated by floating point
arithmetic, subscripting calculations and other overheads having
been reduced to a negligible level, and it is concluded that
these hybrid Basic/assembly language routines extract near
optimum performance from their host machines. Dur findings are
shown to be applicable to any matrix routine whose computational

cost can be measured in "flops".

Keywords: matirix computations, Basic, microcomputer,

interpreter, assembly language, LINPACE, BLAG.

CONTENTS

i. Introduction i

Z. Translating Two LINPACK Subroutines into Basic 4

. fAssembly Language BLAS 7

Z.1 Theoretical Gains in Efficiency 7

=)

e 2 FPractical Implementation 1@

4. Test Results 13

e Benchmarks for Matrixz Computations 21

&s. Concluding Remarks 27

Appendix A
fAppendix B.
Appendix C.
fAppendix D.
Appendix E.
Appendix F.
fppendix G.

References

Basic and Comal 29

Summary of Machine and Language Specifications
Commodore &4 Assembly Language BLAS Listing 39
BBC Microcomputer Assembly Language BLAS Listing
BEC Microcomputer SGEFA/SGESL Test Program 53
CEM Comal—-BP SBEFA/SGESL Test Frogram 36

Gmstrad CPC 464 Benchmark Program 359

&8

el
P

45

1. Introduction

Stewart (1981) describes his experiences in implementing a
linear sguations solver on three hand—-held calculators. His
routine for the Hewlett Fackard HPF-41C, coded in the machine’'s
low level programming language, solved a system of linear
eguations of order 18 in 2508 seconds. Dongarra (1784) gives a
list of the times taken by various micro—, mini— and mainframe
computers to solve a linear system of order 188 using standard
linear sguations software written in Fortran. The timings
include one for the IBM PC microcomputer: this machine solved
the 188x188 problem in 28 minutes.

For several years the present author has used in his
research the Commmodore Pet and Commodore &4 microcomputers
{Higham, 198B4a, 198B4b, 1984c), which in terms of cost and
computing power lie between the hand-held calculators and the
more powerful microcomputers such as the IBM PC. Unlike the
calculators used by Stewart in Stewart (1781) the author’'s
microcomputers run a high level programming language, Basic, but
they are not equipped to run Fortran, the language of choice for
scientific computation on large computers.

Consideration of the papers of Stewart and Dongarra led us
to ask the following guestions.

(1.1} How should algorithms for matrix computations be
implemented on a microcomputer in order to make the best
possible use of the machine’'s processing power, if Basic
is the only available high-level language?

{1.2) What will be the dominant computational costs in

implementations that answer gquestion (1.1)7

(1.3} How can one make use of the rich supply of high guality
Fortran software when coding algorithms in Basic?
We investigate these questions in this report.

In this work we experimented with four microcomputers: the
Commodore &4, the Amstrad CPC 444, the standard BBC
Microcomputer, and the BBC with a Z-80@ second processor (we will
regard the last two configurations as different machines). All
the machines were used in their standard interpreted Basic
programming environment; in addition the Commodore 44 was used
with the Basic-related Comal programming language. For details
of Basic and Comal, and an explanation of the differences
between an interpreter and a compiler, see Appendix A and the
references cited therein. The technical specifications of the
four machines and of their particular language implementations
are described in Appendix B.

At this point we pause to define two terms that we will use
frequently in the following sections. Machine code {(or machine
language) is the collection of instructions that a
microprocessor recognises and can execute as fundamental
aoperations. To the microprocessor, a machine code instruction is
simply a binary bit pattern that specifies an action to be
performed. Assembly language is a low level language bearing a
one to one relationship to machine code; it allows the use of
mnemonics to refer to machine code instructions, and symbolic
names {(or labels! to refer to numeric values and addresses. The
translation from assembly language to machine code is carried
out by an assembler. Frogramming in assembly language is
easier, less prone to error, and much less tedious than

programming in machine code.

In sections 2 and 3 we describe the development of
efficient hybrid Basic/assembly language translations of two
standard Fortran subroutines for solving systems of linear
equations. Section 4 presents and analyses the results of
timing experiments carried out on the four test machines using
the hybrid routines and, for comparison, the sguivalent purely
Basic wversions.

In section 5 we introduce a set of benchmarks for
interpreted Basics and apply them to the four test machines.

The results obtained are used to gain insight into the results
of section 4. Finally, in section & we summarise our findings
in relation to guestions (1.1),; (1.2} and {(1.3).

The view taken in this work is that one wishes to use the
fastest and most accurate special-purpose algorithms available
for sclving on a microcomputer the problem at hand {(cf. K.
Stewart (1988)). This is the view that is naturally taken by a
numerical analysis researcher who uses a microcomputer as a more
convenient, sasy—to-use substitute for a mainframe computer. An
alternative approach,; taken by Nash (1979, 1985}, is to develop
compact, versatile routines for small computers that are easy to
implement and to maintain, and that can be used to solve a
variety of computational problems: some loss of efficiency is
accepted in return for the economies achieved. We believe that
our findings concerning the efficiency of interpreted Basic
programs could usefully be employed in enhancing the sfficiency
of the compact routines, such as thoses in Nash (198B5), albeit

with loss of machine independence.

— G-

2. Translating Two LINPACK Subroutines into Basic

To investigate guestions (1.1}, (1.2} and (1.3}, and to
enable us to compare our experiments with those of Stewart and
Dongarra, we decided to focus on the problem of solving a system
of linear equations — probably the most fundamental and widely
occurring problem in numerical linear algebra. We took as our
starting point the routines SGEFA and SGESL in the LINFACK
library of Foritran programs for analysing and solving linear
systems {(Dongarva, Bunch, Moler and Stewart, 197%). SGEFA
performs LU Ffactorisation of a matrix A, using a column
oriented version of Gaussian elimination with partial pivoting,
and SGESL uses the factorisation to solve a linear system Ax=b
{(Dongarra et al., 1979, Ch. 1).

Consider the following outline of the factorisation
algorithm used by SG6EFA. Here A&=(as,) is an nxn real matrix.

Algorithm 2.1.

Faor k=1; sass n=1
$2:1) Find the smallest r > k such that
lark!l = max { laswl ¢ i=k,; 2., N0t

Swap awxke and ark

(2. 2) For i=k+i, ..., n
Maipe = —BiwfBrk
Endfor i

For j=k+l; ..., n

Swap Swky and 3,5

(2.3) For i=k+1, ...; n
Qi3 T Aa13 F Maw ¥ Any
Endfor 1
Endfor 3

Endfor k.

In the Fortran code SGEFA the loops (2.2} and (2.3}, and
the search (2.1}, are executed by the Basic Linear Algebra
Subprograms (BLAS! {(Lawson, Hanson, Kincaid and Krogh, 197%).
The BLAS are a collection of Fortran subprograms for carrying
out various basic computations with vectors, including scaling =
vector by a constant (85CALY, searching for a component of
largest absoclute value (ISAMAX), and adding a constant times one
vector to another vector (SAXFY). HNote that it is because of
Fortran’'s flexibility regarding the passing of array parameters
to subprograms that the computations on the two—dimensional
array A in (2.1}, (2.2} and (2.3} can be accomplished by calls
to the vector oriented BLAS.

In developing a Basic eqguivalent of SGEFA it is desirable
to translate directly from the Fortran code, rather than to code
from Algorithm 2.1. As well as reducing the programming effort
this approach should ensure that nuances and subtleties in the
Fortran coding that are not explicit in the algorithmic notation
are carried over to the Basic version. In any case, for many
Fortran codes, including some of the LINPACK routines, a Ffully
detailed algorithmic description at the a&a;5 element level is
not readily available.

However, of the versions of Basic considered here only one
supports procedures and this, BBC Basic, does not allow arrays
to be passed as parameters. Therefore the BLAS and the calls to
the BLAS cannot be translated directly into Basic. 0One way to
overcome this difficulty is to replace the BLAS calls by the
equivalent in—line code — as is done in some Fortran
implementations of LINPACK (Stewart, 1977; Dongarra et a2i.,

1979, p-. 1.23).

—&—

an alternative approach is to write the BLAS in assembly
language: the BLAS calls can then be replaced by machine—
specific Basic statements that pass control to the specially
written machine code routines. This approach promises to
achieve the dual aim of increased sfficiency, since machine code
generally runs much faster than interpreted Basic code and the
buik of the computation in SGEFA is done inside the BLAS. In
fact it is true for most of the LINPACK routines that if the
total number of assignments, array element references and
floating point additions and multiplications is O{(n9) {g=2,
2}, then only O(n9~*} of these operations are performed
outside the BLAS.

We have tried both approaches towards translating the BLAG.
In section 4 we compare the performances of programs based on
the two approaches. But first, in the next section, we sxamine
in detail the theoretical and the practical aspects of coding
the BLAS in assembly language for use with a Basic interpreter

on a microcomputer.

3. Assembly Language BLAS

3.1 Theoretical Gains in Efficiency.

Before describing the details of coding the BLAS in
assembly language we first consider what we can hope to achieve
by using these special BLAS with an interpreted Basic.

One of the characteristics of the 4582 and Z-88 central
processing units (CPUs) of our test machines is that their
instruction sets do not contain a multiply operation; therefore
all fouwr machines must carry out ficating point arithmetic in
software. The four Basic interpreters contain individual
collections of floating point arithmetic subroutines and, under
the reasonable assumption that these routines are efficiently
coded, it is sensible to attempt to make use of these routines
in the assembly language BLAS. In addition to simplifying the
programming effort this approach should ensure that the coded
BLAS perform, bitwise, precisely the same arithmetic {(and hence
sustain precisely the same rounding errors) as would their in—
line Basic squivalents. However , since in this way the very
same floating point calculations are performed in the coded BLAS
as in the eguivalent Basic, it is not immediately clear what
gains in efficiency the coded BLAS will engender. To
investigate this guestion consider the inner loop (2.3} in
Algorithm 2.1. When translated to Basic from its Fortran
implementation in SGEFA this loop takes the form
(3.1} FOR I=K+1 TO N

AT, J)=A(L,J}+T#A{I K}
NEXT I.
When this loop is executed in an interpreted Basic the main

computational costs, over and above the inherent floating point

—8-

arithmetic, are incurred when the following tasks are performed.

{1) Parse the source code, to determine the operations to be
performed.

(2) Set up the I 1loop (this involves initialising the locop
variable, and evaluating the upper and lower loop limits
and the STEP,; which defaults to 1!, then repeatedly
increment the loop variable, test against the upper limit
and jump to the start of the loop as necessary.

{3} BSearch for the simple variables I, J, K, N, T and the
array A in the {(dynamically allocated) storage area.

{4) Evaluate the address in storage of the array elements
AlI,J) and A(I,EK), that is, perform subscripting.

Mote that the Basic interpreter will carry out operations (3}

and {4) during svery execution of the second statement in the

loop.

With the use of assembly language BLAS these overheads to
the floating point arithmetic can effectively be removed. To
see why, consider, for example, CBM Basic. In this Basic a &YE
command can be used to pass control to a machine code routine.
Thus the command 8YS SAXPY calls the machine code routine at
the address held in the variable SAXPY. Unlike the other three
Basics, CBM Basic ostensibly does not provide for the passing of
multiple parameters to a machine code routine. However it is
possible to emulate such a facility by using a nonstandard §8YS
command of the form

SYS SAXPY, N-K, T, A+l K}, AK+1,J).
This syntax is accepted by the interpreter and control is passed
to the SAXPY routine. The routine can pick up the value N-K,

the address of the variable T, and the addresses of the

elements A{K+1,K} and A(K+1,J), by calling expression
evaluation and variable address search routines in the Basic
interpreter. Using this parameter information the machine code
routine can itseld effect the computations implied in (3.1},
making direct calls to the interpreter’'s floating point
arithmetic routines.

Clearly, overhead (1} is removed, since the interpretation
is done by the programmer when writing the assembly language.
Overhead {(3) becomes negligible for large N-K, because the
searching for variables is done only once, at the start of the
machine code routine, rather than every time a variable is
encountered on executing the loop interpretively. Overhead (2}
is now insignificant because the integer addition and comparison
operations involved in the looping are fundamental operations
for the microprocessor, and these operations are no longer being
performed interpretively.

Finally, and most importantly, overhead (4) is greatly
reduced, for only two full subscripting calculations are
reguired: those which svaluate the addresses of the array
elements in the &SYS5 statement. Thereatter, the assembly
language routine can take advantage of the known, constant
increment between the addresses in storage of the array elements
which must be accessed successively. In CBM Basic arrays are
stored by column, and floating point numbers occupy five bvytes
of storage, so the constant increment between the addresses of
AEK+1, T, AK+2,J), ..., AMNN,I} in (3.1} is five bytes.

The above considerations suggest that assembly language
BLAS will be appreciably more efficient than the equivalent
Basic code, through the reduction to a negligible level of the

aoverheads associated with the floating point arithmetic.

We wish to emphasise that the above discussion is
applicable only to interpreted Basics. In a compiled Basic
{or Fortran) environment, where the compiler itseld may generate
assembler code or machine code, assembly language BLAS may be no
more sfficient than the compiled equivalent source code — this
behaviour was observed using Fortran in Lawson et al.
(1979, for example.

3.2 Practical Implementation.

In order to write assembly language BLAS for a particular
microcomputer one needs two main tools. The first is an
assembler. BGood assemblers are available for sach of the four
microcomputers; see Appendix B.

The second tool is documentation for the floating point
arithmetic routines in the Basic interpreter. One needs to know
details of the routines for

— loading and storing the floating point accumulator {(the

work area in which floating point arithmetic is performed
by the Basic interpreter),

— performing floating point addition and multiplication,

— calculating the absolute value and the sguare root,

— camparing two floating point numbers.

It is also necessary to determine whether arrays are stored by
column or by row, how many bytes esach floating point number
occupies, and which memory locations can safely be used for
temporary storage {(of pointers and intermediate sums, for
example) without affecting the subsequent operation of the Basic
interpreter. We have been able to find this "inside
information” for two of the four machines: the Commodore &4

{West, 1982; Bathurst, 1983) and the BBC Microcomputer (Pharo,

i984). In both cases the information was obtained from sources
independent of the manufacturer. Given the competitive nature
af the microcomputer industry it is not surprising if the
manufacturers are unwilling to publish technical details
concerning the inner working of their Basic interpreters.

We have written a subset of the BLAS in 4502 assembly
language +for the Commodore &4 and for the BBEC Microcomputer: we
hope to repeat the exercise for the Z-88 machines if and when
the necessary documentation becomes available. We based the
routines on the Fortran BLAS listings in {(Dongarra et al.,
1979}, but we did not "unroll"” the loops. Since all calls to
the BLAS in LINPACK have "INCX=INCY=1" (Dongarra et al.,

1979, p. Al) we asssumed these values for INCX, INCY instead
of treating them as parameters.

The coding for the Commodore &4 presented no major
difficulties, since the author was already familiar with the
intricate CBM Basic interpreter. A partial listing of the
assembler code {(for routines SASUM, SAXPY, ISAMAX and S5S5CAL
only) is given in Appendix C. Complete understanding of the
code reqguires a good knowledge of 45802 assembly language, but
the informed reader should be able to follow the broad outline
using the information given in comment lines.

We were able to use very similar coding for the BEC version
of the BLAS. However, a problem was encountered, for BEC Basic
stores arrays by rows. Thus the increment between the addresses
of A{I,J) and A{I+1,J) depends on the array dimension: in
fact, assuming that A is dimensioned DIM A{N,N), the
increment is S#{N+1}), since sach element occupies 3 bytes and

BBC Basic subscripts start at zero. This difficulty could be

overcome by coding the BLAS in exactly the same way as for the
Commodore &4, so that the BLAS access in succession contiguously
stored array elements, and by re—-writing SGEFA and SGESL so as
to generate sequential access across the rows of A, instead of
down the columns. Instead however, to avoid changing SGEFA and
SGESL ; we decided to treat the address increment as a "global®
parameter. The BBC BLAS assume that the increment betwesn the
addresses of the array elements to be accessed successively is
given by the value of the static integer variable ML ({(static
variables, whose address is fixed, are peculiar to BBC Basicl.
Thus a BLAS call with one—dimensional array parameters should be
preceded by the assignment MiE=5, while for two—dimensional
arrays the required assignment is MA=S#{N+1}. This simple
approach does not permit a BLAS call with both one— and two—
dimensional array parameters; to avoid this limitation we stored
the right-hand side vector b (which is manipulated by the
solve routine SGESL) in the otherwise unused, zero ' th column of
A. The BBC Basic program which we used to generate and test the

BBC BLAS is listed in Appendix D.

4. Test Results

In this section we give the results of tests carried out on
the four microcomputers using Basic translations of LINPACK ‘s
SGEFA and SGESL, using both in—line BLAS and assembly language

LAS (for the machines for which these were written).

Because of the nature of interpreted Basic, many factors
influence program performance (that is, execution times), and
the degree of influence varies from one Basic to another. Some
example factors are the following.

(i) The order (with respect to program flow at run time) of
first use of variables, and of declaration of arrays. In
CBM EBasic the access times are fastest for the esarliest
defined variables or arrays, but in Locomotive Basic (on
the Amstrad CPC 44&44) the access time is independent of the
order of definition.

{2} The use of multi-statement lines. A given program will
usually run faster i+ the number of distinct lines in the
source code is reduced — by combining lines wherever
possible.

{3} The presence of spaces and REM {remark) statements. The
interpreter has to scan over spaces and REMs, so their
presence in freguently executed sections of the code can
have an adverse affect on run times.

{4) In some Basics (for example, BBC Basic and Locomotive
Basic), expressions involving variables of only integer
type are evaluated more rapidly than the corresponding
expressions containing floating point variables. In other
Basics {(including CBM Basic and CBM Comal) the converse is

true, because integer arithmetic is not supported and so

integer values must be converted to floating point before a
numeric expression can be evaluated.

Clearly, then, it is difficult to compare the performance
of one interpreted Basic with ancother, even if the same program
can be run unaltered under both HBasics: aspects of the code
which are beneficial to the performance of one Basic may be
detrimental to the performance of the other.

In our tests we have endeavoured to ensure that esach Basic
is treated "fairly"”. The translation of SGEFA and SGESL was
carried out first into CBM Basic and thence into the other three
Basics and Comal, with care taken to ensure that the five
different codings were as similar as possible, particulariy with
respect to factors (1), (2} and (3) above. The only major
difference between the five implementations concerns factor {(4):
in all except the CBM Basic and Comal versions integer variables
were used where appropriate. Since our purpose is not
essentially to compare the performance of different Basics, we
believe that our limited efforts at optimising the code for each
Basic are justified.

The two BBC Microcomputer versions of SGEFA and S5GESL, the
first with in—line BLAS and the second with calls to the
assembly language BLAS, are listed in Appendix E together with
the test program in which they were used. For esach machine our
approach was to time the execution of SGEFA and SGESL for n=35,
i@, 2@, «..., using random A& and b. The slements of A and
¥ were generated as pseudo—-random numbers in the interval
[—1,1i3; using whatever random number generator the Basic
provided, and the right-hand side b was formed as b=Ax. The

error in the computed solution was monitored to ensure that the

routines were working correctly. The machines’ built—-in clocks
were used to time the routines; the units in which the clocks
count vary from 1/68 th of a second {(Commodore &4) to 173880 th
of a second {(Amstrad CPC 444), so we guote the times to one
decimal place at most.

Only one linear system was solved for sach n. A separate
experiment, on the Commodore &4, in which for fikxed i several
seeds were used for the random number generator produced timings
varying by only a few percent, so we believe our approach of
using only one random matrix for each n produces reliable
results.

The results are reported in Tables 4.1 and 4.2. "Coded
BLASY denotes the use of assembly language BLAS. The blank
entries in the tables correspond to values of n which were too
large for the available memory space.

We offer the following comments and observations on Tables
4.1 and 4.2.

(1) The SGESL timings are insignificant, for large n,
compared to those of SGEFA. This is to be expected since the
total counts of floating point operations, array element
references and assignments for the two routines are of orders
n® and n~ respectively.

(27 In every case the 18x18 system was solved in less than
11 seconds. This compares to the 258 or more seconds reqguired
by the hand-held calculators in Stewart (1981} to solve a
problem of the same size, and gives some indication of the
difference in processing power between these two classes of

machine.

Table 4.1. SGEFA timings in seconds.

N1 CBM &4 CBM &4 CBM &4 EBC BEC BBC ZI-8B8 AMSTRAD
i Coded BLAS Comal Coded BLAS CPC 444

—5 ? 1?33 ﬂ?75 1.23 Ba.3%9 @.26 @.54 @.8=

i@ ; 8.98 3.43 7.92 2.47 1.26 3.25 4.39

28 ; &2.6 17.2 53. 6 ig.@ 7.63 23.7 29.5

za ; 282 47.3 i76 58.7 22.8 76.1 ?4.9

4@ ; {4466 99.9 392 157 51.3 177 219

=@ ; 894 igi = 264 Q6.3 241 422

&8 ; 1535 298 = 458 1462 584 722

78 ; 2416 455 = = = 22 1148

8a ; = = = - = 1371 14694

@ ; = = = = e 12446 =

Table 4.2. SGESL timings in seconds.

N | CBM &4 CbBM &4 CBM &4 BBC BEBC BBC 7-8B@ AMSTRAD
i Coded BLAS Comal Coded BLAS CPC 444

b ? 0?57 @.38 a.53 ngz; 8.15 @.22 a.34

i@ ; 1.97 a.93 1.75 B.56 a.39 8.7& 1.8=

28 ; 7.18 2.53 &.38 2.11 i.20 2.86 3.99

=8 ; 15.6 4.73 13.7 .65 259 .22 7.76

48 ; 27.2 7.58 2.8 8.16 4.802 18.% 13.5

S8 ; 42.1 11.8@ o 12.6 &£.08 16.9 28.9

&8 ; &@. 1 15.4 = 18.1 8.39 24.2 29.7

7@ ; 81.2 19.8 = = =5 32.7 4B.4

88 ; - == = = == 42. 6 92.4

a8 ; = - = = - 293.8 -

{3} Consider the tabulated times for the pure Basic, in-—
line BLAS versions of SGEFA and SGESL. According to the results
shown,; the BBC Microcomputer is fastest by a significant margin.

The following ratios of execution times hold, approximately.

(a) Commodore &4 /7 BEBEC = 3.4,
(b} Amstrad CPC 444 /7 BBC = 1.6,
{(c} BBC Z-8@ / BEC = 1.3,

The first ratioc might be considered surprisingly large, given
that the Commodore &4 and the BBC Microcomputer use essentially
the same microprocessor. The ratio can partly be explained by
the fact that the BBC's 4582 microprocessor runs at twice the
clock rate of the Commodore’ s &51@ (though it is not clear to us
whether doubling the clock speed on a given machine should, in
theory, halve the run times). Furthermore, it appears that BBC
Basic Ffor the 46582 was written with speed of program execution
as a prime consideration. Ratios (b} and {(c} provide an
interesting comparison between the performance of the 4582 and
the Z-88 CPUs, especially as BBC Basic for the Z-88 has a nearly
identical specification to standard BBC Basic for the &582.

(4} The speed up ratios resulting from the use of assembly
language BLAS in SGEFA are given in Table 4.3. The "asymptotic®
speed up ratios of 5.3 and 2.8, for the Commodore &4 and the BEC
Microcomputer respectively, are very pleasing and provide
excellent justification for the effort expended in coding the
BLAS. The reason for these differing improvements in execution

speed, and the efficiency relative to the theoretical optimum of

the routines using the coded BLAS, are examined in the next

section.

Table 4.3. Speed up ratios for SGEFA.

N i S i@ 28 @ 48 Sé &@ 7@
CBM &4 | 1.8 2.6 S. b 4.3 4.7 .8 S.2 g
BBC i 1.5 2.8 2.4 2.6 2.7 2.8 2.8 ==

(5} The guoted timings for CBM Comal are roughly 184
faster than those for CBM Basic. However, in the Comal versions
of SG6EFA and S5G6ESL we used a special {(and very convenient)
feature of Comal which allows an assignment statement of the
form S:=5+T to be replaced by the shorthand faorm S5:+7. For
example, we coded A(I,J):=A{I1,J)+T=#A(I,K} as A{I,J):+T#A(I,K)
{see the listings in Appendix F!}. When we changed the shorthand
assignments back into the longer form the Comal timings
increased by approximately 38%1 and they then exceeded the
Commodore &4 Basic timings by 11%4. This 384 increase in
execution time can be explained by the fact that the short form
involves one less subscripting operation than the long form; see
the timing results in the next section. Clearly, when applied
to array slement expressions, the shorthand form S:+4T7 is a
very effective tool for increasing the efficiency of programs
for matrix computations in CBM Comal.

(&) In the Commodore &4 and BEC Microcomputer tests the
computed solutions returned by the routines using the coded BLAS
were in every case identical to those returned by the purely
Basic routines. This confirms our expectation that the assembly
language BLAS would perform precisely the same arithmetic as the

in—-line, Basic BLAS.

We have used the test results to estimate the times that
would be required to solve a linear system of order 188 were the
test machines able to accommodate systems of this order. The
n=188 times were obtained by extrapolating on the times for the
iargest value of n available:

ti1oe = {188/}~ tL{5GEFA) + (188/n)= t.(S56GESL).
In Table 4.4 we compare these estimates with five actual timings
given in Dongarra {(i984); Dongarvra’s timings were obtained using
standard Fortran versions of SGEFA and S5GESL. Three mainframe
computer timings are included to help to put the performance of

the microcomputers into perspective.

Table 4.4. Estimates of t.,(S5GEFA) + t,{5GESL) For n=180.

Machine Seconds

CBM &4 7289 {128 mins}

Amstrad CPC 444 3390 {36 mins)}

Apple III 2813 (47 mins}

Fascal compiler

BBC Z-B@ i 2736 {446 mins)
BEBC H 2171 {36 mins)?
CBM &4 H 1347 {23 mins)
Coded BLAS H

1
IBM PC H 1225 (28 mins?
Microsoft Fortran H
F.1 compiler H
BRC H 773 {12 mins)
Coded BLAS i
Vax 11/788@ ; 4.13
Fortran VMS compiler |
ChC 7688 i a.21
Fortran FTN compiler |
CDC Cvyber 285 H @.ag2

Fortran FTN compiler

We note from Table 4.4 that the BBEC Microcomputer, using
coded BLAS, is, in these experiments, 374 faster than the IBM PC
running under a Fortran compiler, and that the Commodore &4 with
coded BLAS is only 124 slower than the IBM FPC. Thess
comparisons surprised us,; because the IBM PC uses an Intel 8888
CFU, which, in contrast to the B-bit 4582 and Z-80 CPUs, is a 16—
bit processor, and the 8888 contains multiply and divide
instructions: in other words, the BA8BE is a substantially more

powerftul processor than the 4582 or the ZI-84.

S. Benchmarks for Matrix Computations

To help to explain the results of section 4 and to gain
further insight into them, we have developed a set of benchmarks
for interpreted Basics which measure the computational costs of
floating point arithmetic and subscripting calculations. Our
method is to time a small, carefully chosen, set of Hasic
statements and to extract the desired information by
differencing the timings. Timings have been obtained for esach
of the four Basics, and Comal, using the test program listed in
Appendix G.

The test program times the execution of a loop {(lines 178-
218) whose core is a line consisting solely of a colon (the
statement separator in Basic). Then a similar loop (lines 2586-
298}, in which the colon is folliowed by a single statement, is
timed. The difference between the two times is the time
required to execute the statement, multiplied by the total loop
count. This technigue for timing the execution of a statement
in an interpreted Basic is described in West (1982, p.i&). The
colon is necessary because we need to account for the time
reqgquired to process the line number of the line on which the
statement stands, and this timing cannot be obtained directly
because in Basic a line number may not be followed by an empty
line.

The tests are based on statements involving variables that
have earlier in the program been assigned random values. We
have found that in the Basics tested, the execution times for
floating point operations depend on the arguments; however we
believe the timings obtained with random arguments to be

representative.

The statements used in line 278 of the test program, and
the times for execution of the statements within the loop, are
tabulated for the four machines in Table S5.1. Note that these
times should be divided by the loop count, n=®=25=2, to obtain
the time for a single execution of the statement. Also
tabulated are differences which can be expected to provide good
general estimates of the time reguired to perform one— and two—
dimensional subscripting and the three arithmetic operations.
For example, the difference between the times for the statements
T=R+5 and T=R approximates the time which is reqguired for a

floating point addition, once the operands have been evaluated.

Table S.1. Times in seconds for 425 executions of a Basic statement.

Statement i CBM &4 CBM &4 EBC BBC Amstrad
i Comal Z-8@ CPC 4464
(al T=R ? a.7a& @a.78 a.34 B.45 _E.42
{b? T=R+5 ; 1.78 1.91 @.48 B8.71 i.88
() T=R#*5 ; 2.93 Z.87 1.51 i.45 1.63
{d} T=R/ES ; 3.18 3.32 1.63 1.467 1.88
(=) T=B{IJ ; 2.23 2.38 #B.55 a.89 1.82
{+) T=A(I,J} ; 3.52 4.88 @.78 1.38 1.32
{g) A{I,J)=A(L,J)+R*A(K,J} ; 11.87 13.28 3.99 4.47 9.94
;:—_= {b)—(a)y ™ "+° :-—B.BB @.93 @a.34 Ba.44 @.58)
te = {(c)—(a) ™ "%’ ; 2.8= 2.89 1.17 i.86 1.21
t, = {dy—{a)y ™~ 77 ; 2.28 2.34 1.29 1.22 1.446
ty, = {(e)—-{a) ™~ (1)’ ; 1.33 1.4@ éa.21 B.44 @.58
tag = (F)—{a) ™ "{IgJ}° ; 2.62 Z.18 @6.56 @a.85 1.1@

Much useful information can be gleaned from Table 5.1.
First, consider statement {(g). The time reguired to sxecute a
statement of this form on a particular computer system, and in a
particular programming language, is termed a flop (Golub and Van
Loan, 1983, p.32). Single statements of the form of statement
{g} form the nucleus of the innermost loops of SGEFA and SGESL
{see the listings in Appendix E}, and are executed n>/3 +
O0in®) and n= + 0(n) times respectively; thus we might
expect the execution times of the pure Basic versions of SGEFA
and SGESL to be well approximated, for large n, by n>/3
tfrop and n= terop respectively, where teiop 1is the
time for a single execution of statement (g). This is indeed

the case, as is shown by Table S5.2.

Table S5.2.
i LL{SEEFA)/{(nS/3 trriop! i TL(SHESLY /™ teiopd
N i 38 & H za &@
—— e +
CBM &4 H i.18 112 i B8.91 @.g88
EEC H i.14 i.ii i B.76 @.88
BEC Z-8@ H i.18 1.13 P A.F7 a.24
Amstrad CPC 4464 ¢ 1.19 i.i8 i B.97 B.93

{The SGEFA estimates are overestimates bacause they ignore the
0i{n*®) parts of the computations. The S5GESL estimates are
underestimates because tfiop 15 based on two—dimensional
subscripting, whereas the SGESL flop invioves less expensive,

one—dimensional subscripting.)

Thus in the microcomputer Basics tested here, the time
required for solution of a linear system by Gaussian elimination
is proportional to the flop time. We now look more closely at
the component computational costs in a flop.

Consider statement (g) in Table 5.1i. The main tasks to be
performed when evaluating this statement in an interpreted Basic
are the following:

— parse the statement and evaluate the addresses in storage

of A and R, then carry ocut

— three two-dimensional subscripting operations,

— one floating point multiplication,

— one floating point addition.

We can use the timings tig), ti4, t. and t. in Table
3.1 to express the cost of these tasks as a percentage of one
flop.

Table 5.3. Components of a flop.

Subscripting Multiplication Addition Farse/Addr.

i
CBM &4 : &% 174 74 18%
CBM &4 Comal ; 78% 16% 7% 74
BBC ; 47% 33% 9% 11%
BBC Z-B6 ; a7% 22% 18% 11%
Amstrad CPC 4464 ; &@% 22% 18% 8%

Table 5.3 shows that in all five Basics the largest single
contribution to a flop comes from subscripting calculations,
this contribution varving from 47% in BBC Basic to 7841 in CBM
Comal. In every case the floating point arithmetic accounts for
less than half a flop, with variation between 23X in CBM Comal

and 42% in BBC Basic.

We conclude that in solving a linear system on our test
machines, using Basic translations of SGEFA and SGESL with in-—
line BLAS, the dominant computational cost is subscripting:
it accounts for bstween one half and two thirds of the execution
time.

To see why subscripting calculations can be so expensive we
examined a dissassembly of the CBM Basic interpreter (Bathurst,
1983 . In outline, the interpreter performs the following
actions to svaluate A{I,J); assuming A has been dimensionsd
DIM AdM NI, First, the base address of the array A& is
calculated,; by searching through the array table. HNext the two
subscripts are evaluated, using a general purpose "evaluate
floating point expression routine,; and these floating point
values are converited to 4-byte integers, with checks for out—of-
bounds subscripts. The offset of the element A(I,J), in terms
of the number of array slements, is evaluated as I+{(J-1}#%{pN+1),
and the offset in bytes is calculated by multiplying the result
by 5 {(the length of each array slement). These two
multiplications are carried ocut by a genesral purpose 1&6-bit
integer multiplication routine, so special advantage is not
taken of the operand 5. It appears, then, that CBM Basic’'s
relative inefficiency at subscripting is due, at least in part,
to its failure to take advantage both of integer subscripts
{when these are present) and of the simple form of the operand 5
in the second 1&-bit multiplication.

We now use Table 5.3 to sxplain the speed up ratios in
Table 4.3. As explained in section 3, the use of assembly
language BLAS effectively removes the overheads to the floating

point arithmetic in evaluating statement (g) in Table 5.1. Thus,

assuming that for large n the execution times for the routines
using coded BLAS are proportional to the time for an "assembly
language flop", we can predict the speed up ratios, using Table

5.5, as follows.

CBM &4 : 1B@/24 4.17

il
J

BRC

i@a@as42 2.38

Comparing with Table 4.3 we see that the predictions are
reasonably good,; though,; perhaps surprisingly, they are somewhat
pessimistic for large n.

Our findings about computational cost, and about spesd
increase with the use of coded BLAS, are applicable not only to
the Gaussian elimination algorithm, but to any other algorithm
for matrix computations whose cost can reliably be measured in
filops (most of the algorithms in LINPACK, for example). We
conclude that for flop dominated matrix algorithms the use of
assembly language BLAS will induce near optimum machine
performance on the two microcomputers for which they have been
written, for the dominant computational cost in such
implementations will be that associated with the floating point
arithmetic,; and this arithmetic is performed using machine code

routines from within the Basic interpreter which we assums are

efficiently coded.

6. Concluding Remarks

We have shown that it is feasible to translate Fortran
subroutines from the LINPACK library (Dongarra et al., 1979}
into Basic, so that they can be used on those microcomputers for
which Basic is the standard programming language. Two
approaches to translating the BLAS were considered. The first
was simply to replace the BLAS calls by the equivalent in-line
Basic code. We found that in the resulting pure Basic programs
the dominant computational cost is subscripting, rather than
floating point arithmetic.

The second approach was to code the BLAS in assembly
language and to make use of machine dependent features in the
Basic which allow a machine code subroutine to be called and
multiple parameters to be passed. This was done for the
Commodore &4 and the BBC Microcomputer. On the Commodore &4,
for n=78, the Basic version of SGEFA which uses assembly
language BLAS runs 5.3 times faster than the version using in-—
line BLAS. 0On the BBC Microcomputer, for n=&8, the
corresponding speed increase is 2.8. While spesdy program
execution is not necessarily a prime reguirement when solving
problems numerically on microcomputers {(Mash, 1985}, these
substantial increases in efficiency are well worth having i
computations with long run times are to be performed.

Importantly,; we have seen that the versions of SGEFA using
assembly language BLAS and running under interpreted Basic
produce near optimum machine performance, in the sense that
their computational cost is dominated by the cost of the
inherent floating point arithmetic. In other words, even if the

whole SGEFA subroutine were to be coded in assembly language (a

formidable task!}) the resulting gains in efficiency over the
Basic program using coded BLAS would be relatively small.

We conclude that for programming matrix computations in
interpreted Basic on a microcomputer, a carefuly coded set of
assembly language BLAS is a very useful tool. Its use
facilitates the translation into Basic of Fortran programs which
use the BLAS (such as those in LINPACK}), and at the same time
enables the translated programs to make efficient use of the
available processing power — something that cannot usually be
achieved when working with a Basic interpreter. Furthermore,
the assembly language BLAS enable the programmer coding in Basic
directly to enjoy the benefits of using simple, one—-line BLAS
calls to perform basic vector operations: careful use of the
BLAS can produce greater modularity and improved readability of

programs {(cf. Appendix D).

Acknowl edgements

I thank Dr. I. Gladwell and Dr. C.T.H. Baker for their
interest in this work and for their comments on the manuscript.
I also thank Supersoft of Harrow, England for the use of an
Amstrad CPC 444 machine and a Mikro Assembler cartridge.

As an sxperiment this report was produced on a Commodore
&4, using the wordprocessor Vizawrite &4 and an Epson FX-88

printer.

Appendix A: Basic and Comal.

Basic.

The Basic programming language was invented by J.G. Eemeny
and T.E. Kurtz at Dartmouth College, New Hampshire in 12&4. The
language was designed for use by novice programmers in an
interactive, time—sharing environment,; but the range of usage of
Basic has expanded beyond this originally intended audience.
Basic is available on many mainframe computers and is the
principal language on most low cost microcomputers, often being
permanently stored in read only memory.

Disappointingly, Basic suffers from a lack of
standardisation. Although there exists an ANSI standard (ANSI,
1278} ; few Basics adhere to it,; and in general, a program
wiritten in one version of Basic will reguire modification to
enable it to run in another.

loosely, Basic can be described as a simplified subset of
Fortran. Some of the major differences between Basic and
Fortran are as follows. {These comments are not applicable to
all Basics; for example BEC Basic supports procedures with local
variables — see Appendix B.)

{1} There are no statement numbers in Basic, so GOTO is
directed to a line number.

{2} HNamed, program independent subroutines with parameter
passing are not supported in Basic. Subroutines are called
by line number, as in GOSUEB 188, and an exit point is
marked with RETURN, as in Fortran.

(Z} All variables are global to the whole program in Basic. A
numeric variable is by default of type real unless its

identifier is terminated by the % character,; which denoctes

integer type {(though not all Basics support integer

variables). Identifiers are often restricted to two

characters in length.

{4} HMulti-—statement lines are allowed in most Basics, the
statement separator being a colon {(usuallyl).

{(3) I+ the condition in an “IF condition THENM... statement
is false, then the rest of the (generally multi-statement!}
line is ignored.

Excellent references for Basic are the books by Eemeny and
Kurtz (1988) and Alcock (1977). Other useful references include
Lientz {(1974) and Genz and Hopkins (198B8), both of which contain
comparisons between different dialects of Basic, and Brown
(1979).

The four microcomputer Basics that we have used in this
work are interpreted rather than compiled. The major way in
which a compiler differs from an interpreter is that a compiler
translates the source code into machine language (perhaps via
assembly language) before the program is executed; it is this
machine language translation that is executed by the CFU. In
contrast,; an interpreter translates the source code during
execution of the program: esach statement is translated as and
when it is encountered. I¥f a statement is sxecuted n times,
then an interpreter will translate it n times, whereas a
compiler will translate it only once, in the initial compilation
phase. See Brown (1979, p. 38) for {further details on the
differences between compilers and interpreters. Generally, a
given program on a fixed computer can be expected to run faster
under a compiled Basic than under an interpreted Basic. The

principal reasons for most microcomputer Basics being

interpreted are that a Basic interpreter lends itself more
readily to interactive programming, is more convenient to uses,
and is usually more economical in its use of memary space. than
a Basic compiler.

Comal.

Comal was developed by B.R. Christensen and B. Loefstedt in
Denmark in 1973. Comal can be thought of as a hybrid between
Basic and Fascal: it combines the interactive nature and simple
syntax of Basic with the structured programming features (but
not the data structures) of Pascal. Specifically, most Basic
commands and intrinsic functions are supported, but to these are
added the following features {(among others):

long variable names,; procedures and multi-line functions

with full parameter passing, WHILE-ENDWHILE and REPEAT-

UNTIL loops, global IF-THEN-ELSE-ENDIF and a CASE

statement.

Comal appears to be relatively little known, compared to Basic,
gutside Denmark. Fublic domain versions of Comal for Commodore
computers are distributed by the Independent Commodore Products
User Group, England, and the Comal User Group, U.S5.A.
Implementations which run under the CF/M operating system are
available commercially.

Good references for Comal are Lindsay {(1983),; which

documents CBM Comal-86, and Atherton (1982).

APPENDIX B: Summary of Machine and Language Specifications.

The purpose of this appendix is to summarise the technical
details of the test machines and their Basic or Comal language
implementations.

All four machine configurations use one or both of the MOS
Technology {(now Commodore Semiconductor Group! &582/6518 and the
Zilog Z-80@ microprocessors. Both microprocessors have an 8-bit
data bus and a 1l&-bit address bus: conseguently, the basic unit
of data on which the processors act is one byte (B bits) and the
maximum amount of addressable memory is &4K bytes, where 1K
byte = 2'® = 1824 bytes. Neither processor contains a
hardware multiplier.

The memory map of esach machine contains a combination of
random access memory {(RAM), which can be written to and read
from, and read only memory (ROM), in which is stored the
machine’ ' s operating system and the Basic interpreter.

For sach of the Basics we summarise under the following
headings the features that are relevant to matrix computations.
User RAM This is the amount of memory space available to the
Basic programmer for storage of the Basic program and its
variables.

Arithmetic We describe the floating point and integer number
systems of a particular Basic by gquoting five numbers: b, t, L,
Uy, m« For floating point numbers, b is the base, t is the
number of base b digits in the mantissa, and L, U are
exponents representing the underflow level and the overflow
level respectively (Golub and Van Loan, 1283, p. 32). The last
number, m, is the number of base b digits in which integers

are stored. In fact, all the Basics considered here use b=2,

rounded flcating point arithmetic with t=32, and each stores
integers in two’'s complement form. Thus in 2ach Basic the unit

roundoff (Golub and Van Loan, 1983, p. I3}

A

u = 1/2 br—t = 2-3=2 ~ 2

3 x 19—@

¥

and integers m must lie in the range

= 27 £ 9 m £ 21 = J.
Integer Arithmetic Some Basics perform true integer arithmetic
{addition, subtraction and multiplication! between integer
operands; others automatically convert integer valuess to
floating point before evaluating an expression, even if all the
components are of integer tvpe.
Structure This refers to the provision of structured
programming constructs such as procedures, I+-Then—Else, and
Repeat-Until and While—-Wend loops.
Identifiers Most microcomputer Basics do not restrict the
length of variable names. However, in some Basics only the
first two characters are significant, so that, for sxamples, the
identifiers TEST and TEMP are synonymous. Furthermore, some
Basics prohibit embedded keywords in an identifier {usually the
ones that do not require spaces to be placed around keywords):
for example, TOTAL may be an illegal identifier because T0O
is a Basic keyword. Clearly, these restrictions pose
difficulties in the translation of Fortran programs to Basic.
Array Storage Multi-dimensional arrays can be stored in
essentially two ways: with the k'th subscript varying more
rapidly than the (k+l)st, for all &k, or vice versa (Brown,
1972, p. 18&6). For the two-dimensional arrays of interest in
matrix computations the respective storage schemes are "by

column" and "by row". For example, after DIM A(Z2,2}, the

P &
-

elements of A may be stored in the order

(a,@®, (1,8, (2,80, (@,1), (1,1), (2,1), (B,2), (1,2), (2,2)
{by column}!, or

(8,2, (@,1), B,2), (1,8, (1,1), (1,2), (2,8), (2,1}, (2,2)
{by row}). Which storage scheme is used becomes of interest when
one wishes to access array elements from assembly language. In
all the Basics considered here, accessing array elements by
column is no faster and no slower than accessing array elements
by row {(cf. Dongarra et al. (1979, p.I1.5}}).
Machine Language Routines This entry describes the mechanism
provided in Basic for calling machine language routines and for
passing parameters to such routines.
Assembler This entry describes the availability of assemblers
for the machines.
Interpreter Documentation The final entry describes the
availability of documentation for the internal interpreter
routines. This documentation should describe the locatiocon and
the purpose of the main subroutines in the interpreter and it
should explain how to use the subroutines from an assembly

language program.

Commodore &4

{Commodore Business Machines, 1982; West, 1282: Bathurst, 1983).
Microprocessor

4518 microprocessor running at @8.985 MHz (U.E. version) or
1.822 MHz (U.5.A. versionl}). The &51@ has the same instruction
set as the &58Z.
Language: Basic

Commodore Basic 2 interpreter occupying BE of ROM; this is
developed from a 1977 Basic written by Microsoft Software.
User RAM 3Z8E. A& further 4K is available for use by machine
code routines.
Arithmetic (b, t, L, U, m) = (2, 32, —-128, 127, 1&).
Integer Arithmetic MNot supported.
Structure RNo structured constructs.
Identifiers The first two characters only are significant.
Embedded keywords are not allowed.
Array Storage By column.
Machine Language Routines Called by the 8¥Y5 command.
Ostensibly, SYS5 does not take parameters, but they can be
included provided that the machine language routine takes the
responsibility for evaluating the parameter values and/or
addresses (by calling general purpose evaluation routines in the
Basic interpreter}.
Assembler Many assemblers are commercially available.
Interpreter Documentation Readily available from sources
independent of the manufacturer. Excellent references are Hest
(1982) and Bathurst (1983).
Language: Comal {(Atherton, 1982; Lindsay, 1983).

Version @8.454S of CBM Comal—88 interpreter {(soft loaded from

disk}). Occupies approximately 24K of RAM.

User RAM 12K.

Arithmetic (b, t, L, U, m} = (2, 32, —-128, 127, 1i&6).
Integer Arithmetic Not supported.

Structure Well structured; see Appendix A.

Identifiers Long. All characters are significant and embedded
keywords are allowed.

Array Storage See Note (13.

Machine Language Routines Called by the §Y5 command.
FParameters are not supported.

Assembler Ses Basic entrvy.

Interpreter Documentation See Note (2).

BBC Microcomputer - Model B

{Coll and Allen, 1982; Pharo, 1284).
Microprocessor

&582 microprocessor running at 2 MH=z.
Language: Basic

EBC Basic interpreter occupvying 146K of ROM.
User RAM 25K {(in screen mode 7 — less in other modes).
Arithmetic (b, t, L, U, m} = (2, 32, —-128, 127, 32). For
further details see Wichmann (1283).
Integer Arithmetic Supported.
Structure Frocedures with local variables and parameters
{(simple variables only}! which are called by wvalue; REPEAT-UNTIL
loop:; single line IF-THEN-ELSE.
Identifiers Long. All characters are significant and embedded
kevwords are allowed.

Array Storage By row.

—Z7—

Machine Language Routines Called by the CALL command, which
takes parameters. The parameters must be variables or array
elements (not expressions); their addresses and types are
evaluated by the interpreter and stored in a parameter block.
Assembler BBEC Basic contains a built-in 4582 assembler.
Assembly language may be freely mixed with the Basic source
code.

Interpreter Documentation The integer and floating point

arithmetic routines are thoroughly documented in Pharo (1984).

BBC Microcomputer {(Model B) with Torch Z—-80 Second Processor

{Torch Computers, 1982).
Microprocessor

Z—-80A microprocessor running at 4 MHz; in addition to the
&582 in the standard BBC machine. The &582 is dedicated to
input/output and the ZI-88 performs the data processing.
Language: Basic (Russell, 1%283).

Z868 version of the BBC Basic interpreter, which is soft
loaded from disk and occupies approximately 168K of RAM.
User RAM 4BkK.
Arithmetic, Integer Arithmetic, Structure and Identifiers as
for BBC Basic (&502).
Array Storage See Note {(1i).
Machine Language Routines Similar to BBC Basic.
Assembler ZI8B8 version of the 4502 assembler in BBC Basic.

Interpreter Documentation Se== Note (2).

Amstrad CPC &4

{Amsoft, 1784; lLocomotive Software, 1784}.

Microprocessor

Z—-B@A microprocessor running at 4 MHz.
Language: Basic

Locomotive Software Basic interpreter occupying 148K of ROM.
User RAM 42.5K.
Arithmetic (b, t, L, U, m} = (2, 32, —-128, 127, 14&}.
Integer Arithmetic Supported.
Structure WHILE-WEND loop and single line IF-THEN-ELSE.
Identifiers Long. All characters are significant and embedded
keywords are allowed.
Array Storage By column.
Machine Language Routines Called by the CALL command. This
is very similar to the CALL statement in BBC Basic but it allows
parameters to be passed by address or by valus. A useful
additional feature of this Basic is that it allows the user to
define new commands, which are accessed by name instead of via a
CALL statement.
Assembler Several assemblers are commercially available.

Interpreter Documentation See Note (2).

Note (1) In these cases I was unable to determine the method of

array storage.

Note (2) In these cases 1 was unable to obtain documentation.

Appendix C: Commodore &4 Assembly Language BLAS Listing.

100
110
120
490
500
ael
502
oe4
ale
512
914
alé
a18

919 !
520 !

921

322 !

923

925 !
926 !
527 !
528 !
929 !
530 !

a31

932 !
333 !
934 !
335 !
936 !

a37

538 !
540 !
G943 !
950 !
500 !
898 !

700
710
920
922
940
970
980
993
1000
1010
1020
10235

1028 !

1030
1040
1045
1048

1.00 P.M. 12-5-83
SAVE"BLASHOW.4",8:VERIFY"*",8

1

I

!

ORRRRRRER R AHHA AR AR R RHAHAARHRR AR
! ASSEMBLY LANGUAGE BLAS ROUTINES FOR THE COMMODORE &4.

! TO BE CALLED FROM A C&4 BASIC PROGRAM.

: LISTING OF G&ASUM, SAXPY, ISAMAX, SSCAL ONLY.
DORHHHARRRRRAHAAHHRRRRAAHR R RHHAAAH R RRUU R RRNRAA R
1

I

1

}

##4 6502 ASSEMBLY LANGUAGE ### BRIEFLY, MAIN INSTRUCTIONS ARE
J8R: CALL SUBROUTINE, WHICH IS TERMINATED BY RTS (= "RETURN').
JMP: UNCONDITIONAL JUMP ('BOTO").

! LDA/LDX/LDY: LOAD ACCUMULATOR/X-REGISTER/Y-REGISTER.

S§TA: STORE THE ACCUMULATOR.

INC/DEC: INCREMENT/DECREMENT MEMORY BY ONE.

! BEG/BNE: BRANCH IF RESULT OF PREVIOUS OPERATION WAS ZERO/NONZERO.

! ### ASSEMBLER NOTES ###

THIS LISTING IS IN MIKRD ASSEMBLER (SUPERSOFT, HARROW, ENGLAND) FORMAT.
“!* DENOTES A COMMENT LINE OR REMAINDER OF LINE.

‘$' GPECIFIES A HEXADECIMAL (BASE 16) NUMBER.

"STORE = $5C° DEFINES THE LABEL STORE TO REPRESENT THE VALUE 92.

I
}
}
I
|
|
}
|
}
I
! ### IMPLEMENTATION NOTES ###

! EACH BLAS ROUTINE IS CALLED BY AN EXTENDED SYS STATEMENT WHOSE

! FORM IS DEFINED IN A COMMENT LINE AT THE START OF THE ROUTINE.

! '8X()' DENODTES AN ELEMENT OF THE ARRAY SX, WHICH MAY HAVE ANY

! DIMENSIONS. THE BLAS ROUTINES ACCESS ARRAY ELEMENTS IN THE ORDER THAT
! THEY ARE STORED IN MEMORY, I.E., BY COLUMN FOR 2-DIM'L ARRAYS A(N,N).

! PARAMETER ‘N’ MAY BE AN EXPRESSION (E.G. ‘N-K+1' OR "M*3°') BUT THE

! OTHER PARAMETERS MUST BE SIMPLE VARIABLES OR ARRAY ELEMENTS, OF

! TYPE FLOATING POINT (NOT INTEGER).

! N’ MUST EVALUATE TO @ <= N (= 32767. IN THIS

]

]

|

IMPLEMENTATION, FOR N=0, SASUM, SDOT, SNRM2 CORRECTLY RETURN @, BUT
ISAMAX RETURNS 1 (ISAMAX IS UNLIKELY TO BE CALLED WITH N=@).

[(R S I S N (TS e e e —————————

+=$C0B0 ! ASSEMBLE CODE IN SPARE 4K BLOCK STARTING AT $C000

|

! NOTATION:

|

! FP1, FP2 = FLOATING POINT ACCUMULATORS 1, 2

! MEM.AY := '(A,Y)' = FL.PT. NUMBER AT ADDRESS A+25&*Y

! MEM.XY i= '(X,Y)' = FL.PT. NUMBER AT ADDRESS X+256%Y

|

! ADDRESSES OF (ROM) ROUTINES IN THE BASIC INTERPRETER:

[}

EVAL = $ADBA

! GETS & EVALUATES NUMERIC EXPRESSION FROM TEXT. RESULT PLACED IN FP1.

|

COMMA = $AEFD ! CHECK FOR COMMA

INTEGER = $B7F7 ! FP1 -> INTEGER AT (Y,A)

INTFLP = $B391 ! FP1 1= FLOAT((Y,A))

._4_

105@ PTRGET = $BO8E

1855 ! GETS NAME AND POINTER TO A VARIABLE. RETURNS WITH (A,Y) POINTING TO
1856 ! EXPONENT (OF FIRST ELEMENT IF ARRAY), FOR NUMERIC VARIABLE.

1060 !

1870 LOADFP1 = $BBAZ ! FP1 := MEM.AY

188@ SAVEFP1 = $BBD4 ! MEM.XY := FP1

1130 !

1148 ADD = $BB6A ! FPL 1= FP1+FP2

1150 MULT = $BA2B ! FP1 1= FPL*FP2

1160 ABS = $BCS8 ! FP1 := ABS(FP1)

117@ S@RT = $BF71 ! FP1 1= SORT(FP1)

1178 !

1180 COMPARE = $BCSB ! COMPARE FP1 WITH MEM.AY

1185 ! A=0 IF EQUAL, A=1 IF FP! > MEM.AY, A=¥FF IF FP1 < MEM.AY
1200 !

1210 ADDMEM = $BB6&7 ! FP1 = FPL1+MEM.AY
1220 MULTMEM = $BAZ28 ' FPL 1= FPL*MEM.AY
1230 !

2000 ! TEMPORARY STORAGE:

2002 !

2005 STORE = $5C !OUFP3T 1 $5C-$60
2007 FPITOSTORE = $BBC7 !' 'FP3' 1= FPI1
2010 !

2020 NLOW = $F7

2030 NHIGH = $F8

2040 !

2050 PLOW1 = $F9

2060 PHIGHI = $FA ! POINTER (PTR1)
2070 PLOW2 = §FB

2080 PHIGH2 = $FC ! (PTR2)
2090 PLOW3 = $FD

2100 PHIGH3 = $FE : (PTR3)
2110 !

3000 ! FLOATING POINT ACCUMULATORS:

3eie !

3020 FP1 = $61 I $61-%66

3030 FP2 = $469 ! $69-%6E

3050 !

TR e 0 e oo e o et e

9999 !
10000 ! "REAL FUNCTION SASUM (N,SX)"
1ee1@ !
18015 ! SUM OF ABSOLUTE VALUES OF A VECTOR
10017 !
10020 ! SYS ASUM,N,SX(),8

1ee3o !
10108 SASUM JBR GETN ! EVALUATE 18T PARAMETER
10110 !'###4
10120 JSR BETI ! (PTRL) =» 8X(O)
10140 !
10150 JER ZEROSTORE ! oSUMi=0

10160 !
1217@ LOOPSA LDA NLOW ! N=@7?

10180 ORA NHIGH
ie19@ BE® FINSA ! IF 80, FINISHED

10200 !

10210
10220
10230
10232
10235
10238
10240
10242
10243
10250
10260
10280
10300
10360
10420
10430
10440
10450
10460
10470
10480
10490
10998
18999

11010 :

11020

11025 !
11027 !
11030 !

11040
11050
11060
11070
11080
11090
11100
11110
11120
11130
11140
11150
11160
11170
11180
11190
11200
11210
11220
11230
1124@
11250
11260
11270
11280
11290
11300

SAXPY
Y

[}

LOOPSAX

LDA
LDY
JER

JER

LDA
LDY
J8R

JER

J8R
J&R
JMP

JER
JSR
TAX
JER
RTS

JER

JSR
J8R
JSR

LDA
ORA
BEQ

LDA
LDY
JER

LDA
LDy
JER

LDA
LDY
J8R

LDX
LDy
J&R

PLOWL
PHIGHI
LOADFP1

ABS
#<STORE
#>8TORE
ADDMEM
FP1TOSTORE
BUMP1
NEGNMIL
LOOPSA

COMMA
PTRGET

SAVEFP1

VECTOR=VECTOR+CONST*VECTOR:

SYS AXPY,N,S5A,S5X(),SY()

GETN

GET3
GET2
BET1

NLOW
NHIGH
FINSAX

PLOW3
PHIGH3
LOADFPI

PLOWZ
PHIGH2
MULTMEM

FLOWI
PHIGH!
ADDMEM

PLOWL
PHIGH1
SAVEFP1

"SUBROUTINE SAXPY (N,SA,SX,SY)"

8Y ()

! SET UP ACCUM.
! AND Y-REG.
! THEN CALL ROM ROUTINE

! FP1 1= ABS(FP1)

! FP1 := FP1 + BUM

! SUM := FPI

! CALL SUBROUTINES AT

! END OF LISTING.

! LOOP BACK

! STORE RESULT (FP1) IN

! VARIABLE. THIS CODE CALLED BY
! ISAMAX ALSO.

1= SY()+5A*5X ()

t (PTR3) -> SA
' (PTR2) -> 8X()
t (PTR1) => 8§Y()
I N=07

| FP1:=8A

! FP1:=FP1%8X ()

' FP1:=FP1+48Y()

! 8Y():=FP1

11310
11320
11330
11340
11400
11410
11420

11430 !
14998 | =—————ma-
14999 !
15000 !
15010 !
150820 !
15030 !

! 8YS ISAMAX,N,SX(),K

15040
15050
15060
15070
15080

15e90 !

15100
15110
15120
15130
15135
15140
15150
15155
151356
15157
15158
15159
15160
1517@
15180
15190
15200
15210
15220
15225
15230
15240
15250
15260
15270
15280
15285
15290
15300
15310
15320
15330
15340
15350
15360
15370

I
FINSAX
L}
1
|
i
|
1
|

[

ISAMAX
iR 23

LOOPMAX

LTE

JSR BUMP2 ! MOVE PTRS TO NEXT
JSR BUMPI ! ELTS OF 8X & 8Y.
J8R NEGNMI

JMP LOOPSAX

RTS

"INTEGER FUNCTION ISAMAX (N,SX)"

FIND INDEX OF ELT WITH LARGEST ABSOLUTE VALUE IN VECTOR X

JSR GETN
JSR GETI ' (PTR1) =-> 8X()
JSR ZEROSTORE ! 'CURRENT MAX' := 0

LDA NLOW
STA PLOW2
STA PLOW3
LDA NHIGH
STA PHIGH2
STA PHIGH3
INC PLOW3
BNE LOOPMAX
INC PHIGH3

N+1-INDEX OF
CURRENT MAX ELT.
SAVED VALUE OF N
PLUS 1.

PTR2

PTR3

LDA NLOW ! N=07
ORA NHIGH
BEQ FINMAX

LDA PLOWL
LDY PHIGH!
JSR LOADFPI ' FP1 1= 8X()

JSR ABS ! FP1 := ABS(FP1)

LDA #<STORE

LDY #>STORE

JSR COMPARE ! FP1 & BIGGEST S0 FAR
BMI LTE ' IF FPL < 44

BE® LTE ! IF FP1 = ...

LDA NLOW ! FP1 IS BIGGER

STA PLOWZ

LDA NHIGH

§TA PHIGHZ ! UPDATE ‘INDEX' OF MAX ELT
JSR FPITOSTORE ! SAVE CURRENT MAX ELT

JSR BUMP1

13390 JER NEGNMI

15400 JHP LOOPMAX

15410 !

15420 FINMAX SEC ! INDEX := N+1-PTR2
15422 LDA PLOW3

15424 SBC PLOW2

15426 TAY

15428 LDA PHIGH3

15430 SBC PHIGHZ

15435 !

15440 JER INTFLP ! CONVERT RESULT TO
15450 JMP FINSA ! FL.PT. & GOTO SASUM
15500 !

19798 Kmmesm o i e e e e e e

15999 ¢

16000 ! "SUBROUTINE SSCAL (N,SA,S5X)"

|
I
16010 !
16820 ! SCALE VECTOR BY A CONSTANT: SX():= SA¥SX()
16030 !

}

16040 ! SYS SCAL,N,SA,SX()

16050 !

16060 SSCAL JSR GETN

16070 '#dk#

16075 JSR GET2 ' (PTR2) -> BA
16080 JSR GET! ' (PTRL) -» §X()
16090 !

16100 LOOPSC LDA NLOMW ' N=0?

16110 ORA NHIGH

16120 BE@ FINSC

16130 !

16140 LDA PLOMW1

16150 LDY PHIGHI

16160 JSR LOADFP1 ! FP1 1= 8X()
16170 !

16180 LDA PLOW2

16190 LDY PHIGH2

16200 JSR MULTMEM ! FP1 1= FP1%SA
16210 !

16220 LDX PLOW1

16230 LDY PHIGH1

16240 JSR SAVEFP1 ' §X() 1= FP1
16250 !

16260 JSR BUMP1

16270 ISR NEGNMI

16280 IMP LOOPSC

16290 !

16300 FINSC RTS

16310 !

16998 ! mmmmmm o e

20060 i ROUTINE TO EVALUATE THE PARAMETER ‘N’ AND STORE THE RESULT
20065 ' AS A 16-BIT INTEGER IN (NLOW, NHIGH).

20067 !

20100 GETN JSR COMMA
20110 '##%

20120 J8R EVAL

20130 JSR INTEGER

20140 STY NLOW
20150 STA NHIGH

201780 RTS

20180 !

20200 === e e

2049@ ! SET TO ZEROD 'FP3’" AND FP1, THE LATTER SO THAT SASUM, SDOT AND
20495 ! SNRM2 RETURN @ WHEN N=0.

20497 !

20500 ZEROSTORE LDX #4 ! § ELTS TO ZERO
20510 'Hudbnuue

20520 LDA #0

20530 !

20540 LOOPZ1 8TA STORE,X

20545 STA FPL,X

20550 DEX

20560 BPL LOOPZ1 ! BRANCH IF X»>=0
20565 STA FPL1+5

20570 RTS

20580 !

20088 !|=eecmremmcrmrnrn s e s s e nrm e s e n . m -

20598 ! THE FOLLOWING ROUTINES MOVE A POINTER ONTO THE NEXT ARRAY ELEMENT
205935 !

25000 BUMPI CLC ! BUMP PTR1 BY §
25005 !HuHd

25010 LDA PLOWL

25020 ADC #5

25030 STA PLOWI

25040 BCC FINI

25050 INC PHIGHI

25060 FINL RTS

25070 !

25200 BUMP2 CLC ! BUMP PTR2 BY 5
25210 '#iH#

25220 LDA PLOWZ

25230 ADC &5

25240 STA PLOWZ

25250 BCC FIN2

25260 INC PHIGH2

2327@ FIN2 RTS

25280 !

25300 BUMP3 CLC ! BUMP PTR3 BY 5
25310 !#h%s

25320 LDA PLOW3

23330 ADC #35

25340 STA PLOW3

25350 BCC FIN3

25360 INC PHIGH3

25370 FIN3 RTS

25380 !

NN | s o e e i 0 A S A A 1

25900 ! THE FOLLOWING ROUTINES SEARCH FOR A

2591@ ! NUMERIC VARIABLE (SIMPLE VAR, OR ARRAY ELEMENT) AND

25930 ! FLOATING POINT NUMBER IN (PTR1), (PTR2) OR (PTR3).

}
|
25920 ! STORE A POINTER TO THE FIRST BYTE OF THE
i
25940 !

26000 GETI JSR COMMA
26010 !#44

26020 JER PTRGET
26030 STA PLOWL
26040 STY PHIGHI
260350 RTS

26060 !

26100 GET2 JSR COMMA
26110 !'##%

26120 JSR PTRGET
26130 STA PLOW2
26140 S§TY PHIGH2
26150 RTS

26160 !

26200 BGET3 JBR COMMA
26210 !H¥#

26220 J8R PTRGET
26230 STA PLOW3
26240 S§TY PHIGH3
26250 RTS

26260 !

RATETER] (oo o e o o o S e e s A A SN
26999 !

27000 NEGNM1 LDA NLOW PN
27010 '#hded

27020 BNE NM1
27030 DEC NHIGH
27040 NM1 DEC NLOW
27050 !

27060 RTS

RTTTE | oo oo o o i o e o o e o i 0
29996 !

29997 END

Appendix D:

BBC Microcomputer Assembly Language BLAS Listing.

10
20
30
40
50
&0
70
80
20
100
110
120
130
140
150
160
170
180
190
200
210
22
230
240
25
260
270
280
290
300
310
320
330
340
350
352
353
360
370
375
380
390
400
410
420
430
440
450
4450
470
480
490
500
512
515

Slé

REM 2.45 P.M. 25-3-85
REM SAVE"BLAS. 1&"

FROCBLAS

REM TEST THE M/C BLAS
N%=22: M%L=5% (N%+1)
DEF FNF (X)=—1+2%RND(1)
INFUT “SEED>0"3;SEED: T=RND(-SEED)
DIM X(N%,N%Z), Y(N%Z,N%Z), Z(N%,N%)
T=FNF(1): J=INT(N%/2)
FOR I=1 TO N%

X(I,J)=FNF(1):Y(I,J)=FNF (1)

NEXT
REM TEST SSCAL
FOR I=1 TO N%Z:Z(I,J)=T*X(I,J):NEXT
CALL SSCAL,N%,T,X(1,J)
FOR I=1 TO N%Z:PRINTABS(X(I,J)-Z(I,J));:NEXT:PRINT
REM TEST SAXPY
FOR I=1 TO N%:Z(I,J)=Y(I,J)+T*X(I,J):NEXT
CALL SAXPY,N%Z,T,X(1,3),Y(1,d)
FOR I=1 TO N%Z:PRINTABS(Y(I,J)-Z(I,J))" : ";:NEXT:PRINT
REM TEST ISAMAX
5=0
FOR I=1 TO N%:T=ABS(X(I,J)): IF T»S THEN S=T:K=I

NEXT
L%=0

CALL ISAMAX,N%,X{(1,J),L%

PRINTK,L%

END

REM —— = = = e
REM FPROCEDURE TO ASSEMBLE THE MACHINE CODE BLAS
DEF FROCEBLAS
REM ##H#HHE#HEH

REM MACHINE CODE BLAS ROUTINES BAXPY, SS5CAL % ISAMAX FOR THE

REM BEC MODEL B (&502) MACHINE WITH BASICZ2.
REM SIMILAR TO COMMODORE &4 VERSION BUT

REM (1} BEC BASIC S5TORES ARRAYS BY ROW, THUS THE INCREMENT BETWEEN

REM ELEMENTS {I,J) AND (I+1i,J) IN STORAGE DEFENDS ON
REM THE COLUMN DHMENSION. THIS IMPLEMENTATION ASSUMES
REM THAT MXZ HOLDS THE INCREMENT. INTENDED USE IS
REM FOR FLOATING POINT ARRAYS OF THE FORM

REM DIM ANKL,NLY ONLY, FOR WHICH ML = S®(NX+1?

REM IS REGUIRED.

REM (2} IN SAXFY, S5CAL %2 ISAMAX PARAMETERS NX AND KX
REM BE INTEGER VARIABLES, NOT EXFRESSIONG.

REM #¥## ASSEMBLER NOTES ###
REM "\° DENOTES A& COMMENT LINE OR REMAINDER OF LINE

517
518
519
520
530
535
536
540
550
560
570
580
590
600
610
620
&30
&40
&50
&&0
&70
&80
&F0
700
710
720
730
740
750
760
770
780
7530
800
810
820
0
840
850
860
870
880
890
900
210
20
930
240
950
P60
970
980
990
1000
1005
1010
1020
1030
1040
1050

REM "%° GSPECIFIES A HEXADECIMAL (BASBE 14} NUMBER

REM “.LABEL DEFINES "LABEL® TO TAKE THE VALUE OF THE CURRENT ADDRESS

REM = = —

REM ### LABEL DEFINITIONS ###

REM FARAMETER BLOCK, OF FORM

REM (NO. PARAMETERS), <Z-BYTE FARAMETER ADDRESS,
BLOCK=%600

REM ZERO PAGE FOINTERS FOR ARRAY ELEMENTS ETC.
FLOW1I=270

FHIGH1=2%71

FPLOWZ=272

FHIGHZ2=%72Z

FLOWZ=274

FHIGHZ=75

REM COUNTER FOR NUMBER OF ELEMENTS

NLOW=%74

NHIGH=%77

REM TEMPORARY ZERO FPAGE FOINTER

TEMFPLOW=%78

TEMPHIGH=%7%

REM FPOINTER TO FL.PT. VARIABLE FOR ROM ROUTINES
FPLOW=%4B

FFHIGH=%4C

REM LOW 2 BYTES OF STATIC VARIABLE MX.
INCLOW=4Z=4

INCHIGH=%435

1-BYTE FARAMETER TYFE>

REM TEMFORARY STORAGE FOR A FL.PT. VALUE: &446C-2470

FFETORE=%44C

REM ROM ROUTINES

REM FWA, FWEB DENDTE FLOATING FOINT WORK AREAS A AND B

AUNF=%A3B5: REM FWA := FF.VAR
AFPACK=%AZBD: REM FF.VAR := FHWA
AMULT=%A&546: REM FWA = FWAXFF.VAR
AFLUS=%A500: REM FWA 1= FWA+FF.VAR
AFPACK1=2AZ85: REM FFSTORE1l == FUWA
AUNF1=2AZBZ2: REM FWA := FFPSTORE1L
ACLEAR=2A&L84: REM FWA == O
ASIGN=%A1DA: REM A := SIGN (FW&A)
ACOMF=%AD7E: REM FWA 2= —-FWA
ATEST=%2A5F: REM TEST FF.VAR <{-> FWA

rEM ————————— e ———— = —————— e
REM ### ASSEMBLER CODE ###
DIM MCZ S00
REM INPUT"LISTING (Y/N}":ZIF

FS5=2:REM IF Z#="¥Y" THEN P5=3 ELBE FS5 =2
FOR PASSYX=0 TO PS5 STEF FB

10460
1070
1080
1090
1100
1110
1120
1130
114G
1150
1150
1170
1180
11390
1260
1210
1220
12Z0
1240
1250
1260
1270
1280
1220
1300
1310C
320
133
13240
13250
1360
1370
1380
13590
1400
1410
1420
14Z=0
1440
1450
1440
1470
14806
1490C
1500
1510
1520
1530
1540
1550
1560
1570
1580
1390
14600
1610
14620
1630
14640
1650

FA=MC%

L

OFT FPASSZ

X

-PGETN \get no. of slements

NHHEH

LDA BLOCE+1

STA TEMPLOW

LDA BLOCK+2

S5TA TEMFHIGH

N

LDY #1 Y N = 146 BIT INTEGER

. NLOOF

LDA (TEMFLOW) ,Y

STA NLOW,Y

DEY

BFL NLOOF

RTS

N

%

-FGET1 \ get pointer to parameter #1
NHHEEHE

LDA EBLOCK+4

STA PLOW1

LDA BLOCK+S

STA FPHIGH1

RTS

\

A\

-FGETZ \ get pointer to parameter #2
\NHHHHE

LDA BLOCK+7

STA PLOWZ

LDA BLOCK+8

STA PHIGHZ

RTS

X

\

-PGETZ \ get pointer to parameter #3
NHEEH

LDA BLOCK+10
STA PLOW=
LDA BLOCK+11
STA PHIGH=
RTS

\

;"

-FFTR1 \ fplow
NHEHHEYE

LDA PLOW1
5TA FFPLOW
LDA FHIGHI1
STA FFHIGH
RTS

N

N

.FPTRZ \ fplow
AHEHEH

LDA FPLOWZ
STA FFPLOW

ptri

ptr2

1660
14670
14680
14670
1700
1710
1720
1730
174G
1750
17460
1770
1780
1720
1800
1810
1820
1830
1840
1850
18460
1870
1880
1820
1200
1210
1220
1930
1240
1950
19240
1970
19280
1270
2000
2010
2020
2030
2040
2050
20460
2070
2080
2090
2100
2110
2120
2130
2140
21350
2160
2170
2180
2190
2200
2210
222

223

2240

2250

LDA PHIGHZ
STA FFHIGH

RTS

Y

N

-FFTRZ \ fplow = ptr3
NHHEHHE

LDA FLOWZE

STA& FPLOW

LDA PHIGHZ

STA FFHIGH

RTS

N

Y

-BUMF1 \ move pointer 1 to next array element
N OHHEH

CLC

LDA FLOW1

ADC INCLOW

STA PLOW1

LDA FHIGHI1

ADC INCHIGH

STA FHIGH1

RTE

AY

.

-BUMF2Z2 \ move pointer 2 to next array element
N OHHEHE

CLC

LDA PLOWZ

ADC INCLOW

STA PLOWZ

LDA PHIGHZ

ADC INCHIGH

STA FPHIGHZ

RTS

Y

Y

-BUMFZ \ move pointer 3 to next array slement
N OHHEEH

CLC

LDA PLOWZ

ADC INCLOW

STA FLOWE

LDA FHIGHZ

ADC INCHIGH

STA FPHIGHZ=

RTS

AY

N

-NEEGNM1 “decrement count
N OHEHEHE

LDA NLOW

ENE NM1

DEC NHIGH

- RM1

DEC MNLOW

RTS

AN

A\

22460
2270
2280
2290
2300
2310

232

3T
.-'LE-_"

2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2440
2470
2480
2490
2500
2510
2520

=T
293

2540
2350
2560
2370
2580
2590
2600
25610
2620
2630
2640
2650
26460
28670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2770
2800
2810
2820
2830
284G
2850

- ZEROSTORE \ zero f1.pt.
N HHEHHEE
JE5R ACLEAR
J5R AFACK1
RTS
N
N\
-FABS \ FWA = ABS (FuWa).
N OHHEHE
JSR ASIGN
AND #&FF
BFL FINAEBS
JSR ACOMF \ negate FWA
-FINABS
RTE
AY
A\

temporary store

Is there a ROM routine for this?

% e - -
- SECAL

NHHEHHE

X

\ SCALE VECTOR BY A CONSTANT, SX = SA*SX

\
\ CALL (),N%,5A,5X ()

X

JSR PGETN

JSR PGET1 \ (PTR1) -> SA

JSR PBETZ \ (PTR2) -> BX (O

N

- LOOFSC

Y

LDA NLOW
ORA NHIGH

BEG FINSC \ FINISHED IF N=0O

X

J5R FFPTR1

JSR AUNF \ FWA = SA
N

JS5R FPTRZ

JSR AMULT \ FWA = FWA*SX ()

\

J5R FFTRZ
JSR APACKE \ SX ()} = FWA
Y

JSR BUMFZ
JS5R NEGNM1
JMF LOOPSC
\

-FINSC

RTS

%

b1

\ v —— i s

- SAXFY
\HEHHEHE
A

N VECTOR =VECTOR + CONST#VECTOR, SY() = SY()+SA*SX{)

x
N CALL) ,NZ,5A,5X () ,5Y ()
Y

28&0 JS5R FPGETHN

2870 5 S

2880 JSR FGET1 \ (FTR1) -> SA
2870 JSR PGETZ2 \ (PTR2) —-> SX QO
2900 JSR PGETZ \ (PTR3) —->» SY()
27210 b

2220 - LOOPSAX

2930 LDA NLOW

2940 ORA NHIGH

2950 BER FINSAX

2940 \

2970 JS5R FFTR1

2280 JESR AUNF \ FWA = 54

2970 N

2000 JSR FFTRZ2

2010 JSR AMULT \ FWA
3020 A\

Z0Z0 J5R FFPTRZE

Z040 JER AFLUS \ FWA = FWA+SY ()

FWAXEX ()

2050 h

Z060 JSR FFTR3

Z070 JSR APACK \ SY () = FuWAa
Z080 N

Z090 JSR BUMFZ2
Z100 JSR BUMFZ
2110 JSR NEGNM1
3120 JMF LOOFSA&X

3130 \

3140 - FINSAX

2150 RTS

Z1460 N

Z170 A

3180 \ — - —— =
2170 - I5AMAX

Z200 NHEHEHE

3210 N

3220 N\ FIND INDEX OF ELT WITH LARBEST ABSOLUTE VALUE IN VECTOR X
3230\

3240 \ CALL) ,N%,SX O ,K%

3250 \

3260 JSR PBETN

3270 JSR PBET1 \ (PTR1) -3 SXO

Z2B0 AN
IZ270 JSR ZEROSTORE \ CURRENT MAX = ©
Z300 A\

2310 LDA NLOW

3320 STA PLOWZ2

333 5TA FPLOWS

2340 LDA NHIGH

I350 STA PHIGHZ \ FTRZ = N+1-INDEX OF CURRENT MAX ELT
ZI60 STA PHIGHZ \ PTR3 = SAVED VAUE OF N FLUS 1
II70 INC FPLOWZ

Z380 ENE LOOFMAX

ZI70 INC PHIGHZ

2400 X

3410 - LOOPMAX

I420 LDA NLOW

3430 ORA NHIGH

2440 BEG FINMAX

Z450 !

2460 J8R FPTR1

2470 J5R AUNF N\ FWA = BX ()

Z480 N

Z470 J5R FABS N\ FWA = ABS (FUWA)
3500 Y

3510 LDA #FFSTORE MOD 254
520 S5TA FPLOW
530 LDA #FPSTORE DIV 254
3540 S5TA FFHIGH
3550 Y
3560 J8R ATEST \ COMPARE FWA AND BIGGBEST 50 FAR
3570 Y
3580 BCS LTE N IF FWA < OR = FPSTORE
33720 h
2600 LDA NLOW
3610 STA FLOWZ
2620 LDA NHIGH
2630 S5TA PHIGHZ
2640 JSR AFACEKEL N STORE NEW BIGGBEST
2650 b *
2660 <LTE
2670 JSR BUMP1
3680 JSR NEGNMI
2670 JHMF LOOFPMAX
2700 h.}
Z710 - FINMAX
I720 SEC \ ADJUST INDEX ACCORDING TO K —-> N+i1-K
373 LDA FLOWE
2740 SBC FLOWZ
3750 STA FLOWZ
27460 LDA PHIGHS
E770 SBC PHIGHZ
=780 STA PHIGHSZ
Z720 %
3800 LDY #O
=810 JSR PBETZ N PTR TO VAR TO ACCEFT RESULT
IBZ20 LDA FPLOWZ
3830 5TA (FPLOW2),Y
28B40 INY
2850 LDA FPHIGHS
Z8&0 SETA (PLOWZ2) ,Y
870 LDA #0 N\ NOW ZERO THE HIGH TWO BYTES
=880 INY
ZBR0 STA (FLOW2) ,Y
IF00 INY
3210 STA (PLOWZ) .Y
2920 RTS

3930 3
2940 NEXT FABSX
I950 =

E24&0 ENDFROC

Appendix E: BBC Microcomputer SGEFA/SGESL Listing.

10 REM 6-2-85 10.30 A.M.
20 REM SAVE"SGEFA. 4"
30 =
40 I %
S0 T=0:5=0
&0 s
70 SEED=1
80 INFUT"M: "3NZ
90 =
100 VDU Z: REM VDU 2: REM FRINTER/SCREEN
110 =
120 DIM AN NL) JBINZY (X (NX) ,IPVTHE (NX)
130 :
140 REM SET UF FROBLEM — RANDOM MATRIX A AND R.H.S. E
150 T=RND({(-SEED:
160 FOR I%=1 TO NL:FOR J%=1 TO NA:A(IZL,JL)=—1+2xRND(1):NEXT J%Z:MNEXT I%
170 FOR I%=1 TO NAL:X{(IX)=—14+2%RND{1):NEXT 1%
180 REM B=Aa%X
170 FOR I%=1 TO NXL:5=0
200 FOR J%4=1 TO NA:S5=5+A(IXL,JLr=X{{(JX):NEXT J%
210 B{IX)}=5:NEXT I%
220 PRINTY"N = "3N#sz™ SEED = ":SEED
230 ¢
24C REM FACTORISE AND SOLVE (AX=EB)
250 T1=TIHME
260 FROCSGEFA
270 TI=TIME-T1:PRINT"SGEFA: ":T1/10C;" SECONDS"
280 =
290 JOBXL=0:Ti=TIHE
Z00 FROCSGESL
Z10 TI=TIME-T1:FRINT"SGESL: ":;T1/1003;" SECONDS"
S20 =
330 REM CHECE ANSKHER
Z40 S5=0:FOR I%=1 TO NZ
B0 S=S5+ABS(B(IX) X {(I%) s NEXT
F60 PRINTUONE-NORM OF ERROR = "35
370 =
ZHO PRENT" == = =
Z70 END
400 2
41C REM = = == RS e S S ol 55 0 S s s ey i 555
420 DEF FROCSGEFA
Z0 REM WITH IN-LINE BLAS
440 =
450 INFOXL=0:NM1¥=Ni-1
450 IF NM1%X<1 THEM &70
470 =
480 FOR EX=1 TO HMNM1ZL
420 EF1¥=KX{+1
500 T=ABS{A (KL KLy : LYL=KX
510 FOR J%=KF1% TO N%:IF ABS(A(JZ,K%}}>T THEN T=ABS(A{(JL,KXL)}:L%U=J%
S20 NEXT J%
oS IPVTALELI =LA
540 IF A(L%L,KX}=0 THEN INFOX=KX:G60TO &350
S50 IF LELI>KE THEN T=A((LL, KL A (LL KL =KL, KO AL KL =T
S6C :
570 T=—1/A8{KL,KL)

=80
570
&00
&10

20
&30
&40
&350
&60
&70
&80
&F0
700
710

20
730
740
7350
760
770
780
770
800
810
220
830
840
850
840
870
880
8790
F00
2?10
G20

FOR IZ=KF1%L TO NA:A(IL, KA =T*A(I%L,KXL) :NEXT I%

FOR J%Z=KPFP1%Z TO N%
T=A{LAZ,JZ): IF LZ<>KZL THEN AL, JA)=AKL,JL) : AL, I =T
FOR I%Z=KP1%Z TO NL:A(IL,JA)=A(IZL,JA)+T*A(IL KL :NEXT I%
MEXT J%

NEXT K%
IPVTZ (N%) =N%L
IF ANKL,NAL) =0 THEN INFOX=NZL
ENDFROC

REM —= = N

DEF FPROCSGESL
REM WITH IN-LINE BLAS
NM1%=N%i-1
IF JOBX< >0 THEN T00
IF NM1%<1 THEN 8350
FOR EZ=1 TO NM1Z
LA=IPVTAL(KL) s T=B (L%} .
IF LZC KA THEN B(LXL)=B(KXL) :B(KX)=T
FOR J%=KZ+1 TO NA:B(JLD)=B(JA)+T*A(JL,KXL) :NEXT J%
NEXT K%
FOR KX=NZ 70O 1 STEF -1
B(KL) =B (KX) /AL KL) : T=—B (K%)
IF KE%X>1 THEN FOR J%=1 TO KL-1:B(JX)=B(JL)+T#A(JL KL : NEXT
NEXT K%

REM CODE FOR TRANSFOSE SOLVE OMITTED

ENDFROC

Versions of SGEFA/SGESL Using Assembly Language BLAS.

Note:

420
4320
440
450
4560
470
480
490
300
510
520
53

540
550
S60
570
580
570

Here the vector b sits in the zero’'th column of [

DEF FROCSGEFA
REM WITH CALLS TO CODED BLAS

INFOX=0: NM1%=N%-1
IF NM1%Z<{1 THEN &70

FOR K%Z=1 TO NM1i%
KP1%=K%+1
OZ=NZ-K%+1: CALL ISAMAX,0%,A(K%,K%L) ,L%: L%=L%+K%Z-1

IPVTEA(KA) =LXL

IF A(L%L,KL)=0 THEN INFOZ=KZ:GO0TO &S50

IF L%<>KYZ THEN T=A(L%L,KL) AL, KL =AKL KL : AL, KL =T
T=—1/A(K% KL}

D¥=N%-K¥%: CALL SSCAL,Q%L,T,AKF1%,K%L)

J%4

&00
&10
L£20
&30
&40
&50
&60
&£70
&80
&0
700
710
720
730
740
730
740
770
780
790
800
810
820
830
840
8350
840
870
880
820
F0O0
2?10
F20

FOR J%=KFP1% TO N%Z

T=AL%L,J4): IF L%<>K%Z THEN ALZ,JX) =AKL,JZ) t AKL,IL) =T

BZ=NX-KZ%Z:CALL SAXPY,QZ,T,Q(KPIZ,KZ),Q(KPIZ,JZ)
NEXT J%

NEXT K%
IPVTL (NZ) =N%
IF A(NZL,N%Z)=0 THEN INFOX%=NY%
ENDFROC

REM e — ——— ———
DEF FROCSBGESL
REM WITH CALLS TO CODED BLAS

NM1%=N%—-1

IF JOB%<>0 THEN 900

IF NM1%Z<1 THEN 850

FOR KZ%Z=1 TO NM1%
L%=IPVTZ(KZL) : T=A(L%L,0) ,
IF LZ<>KZ THEN A(LY%,0)=A(K%Z,0) s AKYL,0) =T
QZ=NZ-KZ:CALL SAXPY,0%,T,A(K%+1,K%L) ,AK%Z+1,0)
NEXT K%

FOR K%Z=N% TO 1 STEF -1
ACKZ,0)=A(KYL,0) /A(KL,KL) : T=—A (K%, 0)
B%=KZ-1: CALL SAXPY,@%,T,A(1,K%),A(1,0)
NEXT K%

REM CODE FOR TRANSFOSE SOLVE OMITTED

ENDFROC

Appendix F: CBM Comal-8@8 SGEFA/SGESL Test program.

aiaa
aiia
@ai1z8
@ize
Bi4@
aise
aisad
817a
aige
2iga
azaa
az1@
222

azz

A248
@256
@2s@
az7a
@286
[27a
azaa
@azia
az2a
Bz=8
2348
AZ58
@468
az7a
aze8
az2a
@404
a41ad
a42@
a4=a
a44a
a45a
B458
a47@
G488
a47a
asae
asia
2526
a5
a54a
as5a
B568
as7a
as8a
as7a
asaa
asid
B&LZ0
B&=a

/7 4.38 P.HM. 13-1-85
// SAVE"@: 5G6GEFA. 18"

L/

// CBM COMAL-8@ VER. 8.545

oy

f/ /777 DENOTES A REMAREK STATEMERNT

A4 "G:+T7 IS5 SHORTHAND FOR "S:=5+T°

// SUFFIX “#° DENOTES AN INTEGER VARIABLE

// REF PARAMETERS IN PROCS ARE CALLED BY REFERENCE - OTHERS BY VALUE
'y

SEED:=1

ZONE 2

INPUT "N ="z N

DIM DV OF 2

DV$:="DS"

SELECT OUTFUT DV$ // PRINTER OR SCREEN

77

DIM A(N,N), B{(N), X(N), IPVT#(N)

77

// SET UF PROBLEM - RANDOM MATRIX A AND R.H.S. B (AX=R)

I:=RND{-SEED)
FOR I=:==1 TO N DO
FOR J:=1 TO N DO AL, J):=—1+2%RND {1}
ENDFOR I
FOR I:=1 TO N DO X(I}):=—1+2%RND{1}
// B=a%X
FOR I:=1 TO N DO
S:=0
FOR J:=1 TO N DO S:+A(I J)=*X (I}
B{I):=5
ENDFOR I
PRINT "N = "3;N,"SEED = "3;SEED
v
/74 FACTORISE AND SOLVE
Tl:=JIFFIES
SGEFA{AN, IPVTH, INFO)
Til:=JdIFFIES-T1
PRINT "SGEFA: ";Ti3"JIFFIES,",T1/68; "SECONDS”
s
JOB:=8; Ti:=JIFFIES
SGESL (AN, IPVT#,B,J08)
Ti:=JIFFIES-T1
PRINT "SGESL: ";Ti;"JIFFIES,",T1i/68; "SECONDS"
i
4/ CHECE ANSHER
S:=@
FOR I:=1 TO N DO S:+ABS(B{I)-—-X(I1})
PRINT "ONE NORM OF ERROR = "38
v 4
FRINT — i
SELECT OQUTPUT *Dg™
END
s
£ - S = S =

@648 PROC SGEFA(REF A(,),N,REF IPVT#(),REF INFO) CLOSED
Bes@ 7/

P&56@ INFO:=8; NM1:=N-1

@678 IF NMi<1 THEN GOTO DONE

BoB@ 7/

P&9B FOR K:=1 TO NM1 DD

@708 KP1l:=K+1

@718 T:=ABS{A{K,K)); Li=K

@728 FOR J:=KP1 TO N DO

B730 IF ABS(A(J,K))>T THEN T:=ABS(A(J,K)); L:=J

@74@ ENDFOR J

@75@ IPVTH#(K):=L

B768 IF A(L,K)=B THEN

@77@ INFO: =K

@78@ GOTO LOOPK

@798 ENDIF

@80@ IF L<>K THEN T:=A(L,K); A(L,K):=A(K,K); AK,K):=T
@si@a 7/

@828 T:i=—1/A(K,K)

@83@ FOR I:=KP1 TO N DO A(I,K):=T#A(I,K)

@s4@ 7/
@85@ FOR J:=KF1 TO N DO

2850 T:=A(L,d)

2870 IF L<>K THEN A(L,J):=A(K,J); AK,J):=T
@8ca FOR I:=KP1 TO N DO A(I,J):+T=*A(I,K)
@89@ ENDFOR J

gea@ /7

a7i@ LOo0OPK:

@928 ENDFOR K

a9za 7/

A943@ DONE:

@258 IPVTH(N) =N

@268 IF AN,N)=B THEN INFO:=N
@978 ENDPROC SGEFA

a28@a /s

age|a /7 ‘mae ———
1888 PROC SGESL(REF A, ,N,REF IPVT#({),REF E(),JOB) CLOSED
i@ia s/

1828 nNMl:=N-1

1838 IF JOB<:>@ THEN

1848 GOTO TRANSPOSE

1858 ENDIF

1868 IF NM1<1 THEN

i@a7@é GO0TO BACKSUER

1@8@ ENDIF

i@gga s/

11883 FOR K:=1 TO NM1 DO

i1i@a L:=IPVT#({K}; T:=B({L)

1128 IF L<>K THEN B{L):=B{K); B{K):=T
11358 FOR J:=K+1 TO N DO B(I):+T®A(JT K]
1148 ENDFOR K

iis@ 7/

1168 BACKSUR:

1178 FOR K:=N TO 1 STEFP -1 DO

1188 B} :=B({K})/A{K,K}); T:=-B({K)

1198 FOR Jz=1 TO K—-1 DO B{(J):+T=A{J K}
i268 ENDFOR K

121@
1228
1238
124@
1258
1255
12468
1265
1278
1286
1298
1388
1318

7/
TRANSFPOSE::
// CODE FOR TRANGSFPOSE SOLVE OMITTED
P
ENDPROC SGESL
'
- Tl S
/4 TIME FUNCTION. 1 JIFFY = 1/68 SECONDS.

FUNC JIFFIES CLOSED
MEM:=168 // MEM=141 FOR PET
: =465536#PEEK (MEM) +2546%FEEK (MEM+1) +FPEEK (MEM+2)
RETURN J
ENMDFUNC JIFFIES

App

endix G:

Amstrad CPC &4 Benchmark Program.

The versions for the other machines are similar.
defines variables in the specified range to be of type integer.

1@

28

=8

43

58

&8

7@

8a

Fa

i@a
1i@
12a
i3@
146
156
148
178@
1808
12@
2@a
21@a
228
238
248
258
260
278
280
298
80
Iia

A
!

3@
348
358

REM 16.28 A.M. 2-1-85

REM af="bench.3Z":speed write l:save af:speed write B:save aF

DEFINT i-—n

i=@: i=0:n=0:r=0:s5=0:t=0: k=B:t 1=0:1t2=0: seed=0

n=25

BIM ain,n?,; bin}
seed=1: RANDOMIZIE seed
DEF FNr(x)=—1+2®RND{1}

FOR i=1 TO n:FOR j=1 TO n:za{i,j)=FNr{1):NEXT J:NEXT i

FOR i=1 TO n:b{(i)=FMNr(1):NEXT i
k=1
r=FNr{i1):s=FNr {1}

t1=TIME

FOR i=1 TO n
FOR j=1 TO n
NEXT 3

NEXT i1
t2=TIME-t1

t1=TIME

FOR i=1 70 n

FOR 3=1 7O n

taf{i jl=ad{i ji+r#*a(k,j?
NEXT j

NEXT 1

ti=TIME-ti

dv=@: ~ dv=8 Ffor printer
PRINT #dv," s

PRINT #dv,"time: ";ROUND{ (ti1-t2)/73288,2

LIST 278, #dv

}: "seconds”

Note that DEFINT

REFERENCES

D. ALCOCE, Illustrating Basic, Cambridge University Press,
Cambridge, England, 1977.

AMSOFT, Amstrad CFC 444 User Instructions, AMSOFT,
Brentwood, England, 1984.

ANSI, American National Standard for minimal Basic,

ANSI XZ.4&68B, 1978.

R. ATHERTON, Structured programming with Comal, Halsted
Press, John Wiley, London, 1982Z.

M. BATHURET,; Inside the Commodore &4, DataCap, Belgium,
1983,

F.J. BROWN, Writing Interactive Compilers and
Interpreters, John Wiley, Chichester, England, 177%.

J. COLL and D. ALLEN, The BBC Microcomputer User Guide,
British Broadcasting Corporation, London, 1%982.

COMMODORE BUSINESS MACHIMES, Commodore &4 Programmer s
Reference Guide, Howard W. Sams, Indianapolis, Indiana,
1982,

J-J. DONGARRA,; J.R. BUNCH, C.E. MOLER and G.W. STEWART,
LINPACK Users’ Guide, SIAM Publications, Philadelphia,
1979

J.Jd. DONGARRA, Ferformance of wvarious computers using
standard linear equations software in a Fortran
environment, Manuscript, Argonne National Laboratory,
July 1284.

A.C. GENZ and T.R. HOPKINS, Fortable numerical software for
microcomputers, in Production and Assessment of Numsrical
Software, M.A. HENNELL and L.M. DELVES, =ds., Academic

FPress, London, 1988, pp. 179-18%.

GOLUER and C.F. VAN LOAN, Matrix Computations, Johns
Hopkins University Press, Baltimore, Marvyiand, 1983.
HIGHAM, Efficient algorithms for computing the
condition number of a tridiagonal matrix, Numerical
Analysis Report No. 88, University of Manchester,
England, 1984a; to appear in SIAM J. Sci. Stat. Comput.
HIGHAM, Computing real square roots of a real matrix,
Numerical Analysis Report No. B89, University of
Manchester, England, 1984b; to appear in Linear Algesbra
and Appl.

HIGHAM,; Newton’'s method for the matrix sguare root,
Numerical Analysis Report No. 21, University of
Manchester,; England, 1984c; submitted for publication.
KEMENY and T.E. KURTZ, Basic Programming {(Third
edition}, John Wiley, New York, 1788.

LAWSON, R.J. HANSON, D.R. KINCAID and F.T. KROGH, Basic
linear algebra subprograms for Fortran usage, ACH TOMS, S
{1979}, pp. 3@B-323.

LIENTZ, A comparative evaluation of versions of BASIC,

Comm. ACM, 19 (197&), pp. 175-181.

L. LINDSAY, Comal Handbook, Reston Fublishing Companvy,

Virginia, 1%83.

LOCOMOTIVE SOFTWARE, Amstrad Concise Basic Specification,

J.C.

AMSOFT,; Brentwood, England, 1984.

NASH, Compact Mumerical Methods for Computers: Linear
Algebra and Function Minimisaton, John Wiley, New York,
1979.

NASH, Design and implementation of a very small linear

algebra program package, Comm. ACH, 2B (i285), pp. B89-F4.

C. PHARO, The Advanced Basic ROM User Guide for the BEC

Microcomputer, Cambridge Microcomputer Centre, England,
i784.

RUSSELL, BBEBCBASIC Z88 Documentation, M-TEC Computer
Services, Morfolk, England, 1%83.

STEWART, Research, development, and LINPACK, in
Mathematical Software III, J.R. RICE, =d., Academic
Press, New York, 1977, pp. 1—-14.

STEWART; Matrix calculations on hand—held calculators,

ACM SIGHNUM Newsletter, 146 (1981i), pp. 18-13.

K. STEWART, The microcomputer as a tool in numerical

analysis, ACM SIGHNUM Newsletter, 15 (198@), p. 27.

TORCH COMPUTERS,; Torch Programmers’® Guide, Torch Computers

Ltd., Cambridge, England, 1%82.

WEST,; Programming the PET/CBM, Level Limited,

Hampstead, England, 198Z.

WICHMANN, A note on the accuracy of two microprocessors,
MNPL Report DITC 18/83Z, Natiocnal Physical Laboratory,

England, 1783

