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CHAPTER 1. 

CFD Code: Introduction and Overview 

1.1 Objectives, limitations, and future possibilities 

CFD code has been developed to satisfy the need for a simple 
FORTRAN based language to control processing on the Illiac IV com­
puter. It is suitable for inherently parallel programs in which 
the bulk of computation involves "vectors" of length 64. Special­
ized routines, where direct use of hardware registers leads to a 
significant speed increase, should be programmed in ASK, the 
Illiac IV Assembler Language. 

The Illiac has a very special architecture and its full 
potential can be realized only by careful (and sometimes clever) 
design of algorithms and programs. For most applications, however, 
the parallelism in the problem (and hence the main structure of 
the program) will be obvious, and the major effort involved will 
be that of organizing the large low-speed memory (i.e., disks) 
for efficient use of Illiac's high-speed random access core. 

The structure and limitations of CFD code are determined by 
three factors: 1) the architecture and instruction set of Illiac, 
2) the expected nature of the "average" program, and 3) the ease 
of writing the translator. No attempt has been made to hide the 
hardware limitations from the user since he must know them in 
order to write an efficient program. The programmer refers to 
variable names which in fact refer to memory. As in FORTRAN, 
direct access to registers is not allowed. On the Illiac, how­
ever, there will be many algorithms which can be greatly speeded 
up by manipulation among registers. These algorithms will usually 
be prime candidates for library-subprogram status, and should be 
coded in ASK. CFD on the other hand performs best when used for 
heavy but straightforward calculations of vectors. 

The future development of CFD code depends strongly on the 
user reaction to the current version. The objective is to make 
the coding process {but not the program design) easier and less 
time consuming. The CFD branch is interested in any suggestions 
that would make CFD code more useful, or easier to use. 
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2.1 The ILLIAC as seen by a CFD programmer 

The ILLIAC IV is basically a 64 computer array led by a 
small highly specialized control computer. Each member of the 
array is called a processing element (PE) and the control com­
puter is the control unit (CU). The PE's operate in parallel, 
controlled by the instruction stream in the CU, and communicate 
data with the CU as well as among themselves. 

2.2 The Control Unit 

The primary functions of the control unit are program con­
trol and the scalar integer arithmetic involved in indexing PE 
variables. The CU memory contains 64 addressable memory loca­
tions. Locations 57 through 64 are reserved for system constants. 
Locations 49 through 56 are reserved for subprogram linkage when 
subprograms are used, but are available to the programmer in 
main programs that do not call subprograms. The remaining 48 
locations, 1 through 48,are available to the programmer without 
restriction. 

CFD has a command that allows the programmer to transfer 8-
word blocks between CU and PE memory to facilitate any juggling 
required by the small size of available CU memory. The CU memory 
as used in CFD code requires the introduction of some very simple 
and yet 11 non-FORTRAN 11 concepts: 1) the CU memory is shared among 
all routines as though it were in COMMON, and 2) the programmer 
must lay out his part of CU memory (1 through 48, or 1 through 56) 
explicitly, that is, he must assign a CU memory address to each 
CU variable. 

The arithmetic hardware of the CU has no provision for 
floating-point operations; all such operations must be performed 
in the PE's. The PE's operate on vectors, however, so that any 
scalar operation in the PE's is using only 1/64 of the machine 
potential. The CU can perform integer addition and subtraction, 
but most CU instructions are concerned with logical arithmetic 
and program control (branching). CFD control statements such as 
GOTO's, DO's, RETURN'&and the argument addressing when subpro­
grams are called are processed in the CU. CFD statements, or 
parts of them, that do not require the PE's can be performed at 
the same time as the preceding PE operations. This is called 
"overlap." When a long string of PE instructions appears, the 
CU may become idle at times. This time may be used if the pro­
grammer distributes primarily CU statements uniformally through 
the program. A much more serious problem occurs when the PE's 
become idle. This may occur when a long string of primarily CU 
statements is encountered. The moral here is that scalar state­
ments that are performed in the CU should be distributed as uni­
formly as possible among the vector statements. This will make 
optimum use of the instruction overlap of the CU and PE's. 
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2.3 The processing elements 

The bulk of computation on ILLIAC is done in the PE's. 
Each of the 64 PE's has a memory of 2048 64-bit words. This 
memory, which we will call core, should be viewed as a high 
speed working area only, since it is not likely that the average 
ILLIAC program and data base will fit into such a small area. 
At present, main memory is the ILLIAC disk system. The crucial 
problem in using ILLIAC is to prevent the PE's from becoming 
idle while waiting for I/O between core and disk. Failure here 
can result in execution times that are orders of magnitude 
greater than necessary. 

The arithmetic hardware in the PE's has a complete floating­
point as well as integer instruction set. The PE's operate in 
lock-step (i.e., they all execute the same instruction at the 
same time). The only control mechanism in the PE's is the abili­
ty of a PE to be "disabled." When a PE is disabled its memory is 
protected and will not be altered even though its arithmetic 
hardware continues to function. The memory of a disabled PE may 
be read, but not written over by the arithmetic hardware. The 
status of the PE's, whether enabled or disabled, is called the 
mode. The mode can be thought of as a 64-bit string. Each bit 
controls one PE; when the bit is 0 the corresponding PE is dis­
abled (off), and when the bit is 1 the PE is enabled (on). Con­
trol of PE processing then takes one of two forms: 1) a branch 
determines what CFD statement will be executed next, and 2) a 
mode pattern determines which PE's will execute the following CFD 
statements. These can be used separately or in combination. 
CU operations are not affected by the mode. 

CFD code does not hide ILLIAC limitations from the programer. 
For example, in an arithmetic statement involving multiplication 
the variable being defined must be a vector. Any arithmetic ex­
pression that involves multiplication, division, exponentiation, 
or floating-point addition or subtraction may appear only where 
vectors are allowed because the required hardware is available 
only in the PE's. 
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Overview of the CFD Language 

3.1 Card format 

CFD is written in a card form very similar to FORTRAN. 
The differences from FORTRAN are 

1) An* must appear in column 6 except for assignment 
statements. These must have column 6 blank (comment 
cards are excepted). 

2) A hyphen as the last non-blank character in columns 
7 through 73 indicates that the card is to be con­
tinued. Columns 1 through 6 are ignored on contin­
uation cards, which must number 19 or less. 

3) No blanks are required after column 6, and those 
present are ignored. 

4) Statement numbers may not be greater than 4 digits 
in length, must not contain embedded blanks, and 
must appear between columns 2 and 5, inclusive. 
Leading zeroes are permitted in statement numbers. 

5) The cards must be punched in EBCDIC (029 punch or 
equivalent). 

6) Column 1 is reserved for a C indicating a comment, 
an F indicating a FORTRAN statement, or an A indi­
cating an ASK statement. The ASK statements must 
appear in columns 2 through 64 and are not continued 
in the same way as CFD statements. Embedded ASK 
statements are not included in the relocatable object 
file. However,---rt" ASK output is requested, the trans­
lator emits the ASK unchanged except that the emitted 
ASK is shifted one column to the left. Every ASK 
statement must be flagged by an A in column 1. 

7) Columns 74 through 80 are ignored. 

8) A single quote (')maybe used in any column after 
column 6 to denote that the remainder of the card 
image is a comment. The continuation hyphen, if 
present, must preceded the quote. 

The most common programmer error with respect to card 
format will probably be the omission of the* in column 6. 
Remember, all statements except assignment statements, comment 
statements, and embedded ASK or FORTRAN statements require an 
* in column 6! 
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3.2 Naming conventions 

Names in CFD follow FORTRAN rules: they consist of an 
alphabetic character which may be followed by as many as five 
alphameric characters. Both the ASK assembler and CFD require 
some reserved names. The following symbols may not appear as 
names in a CFD program because they are reserved by the ASK 
assembler. 

ABS 
BEGIN 
BLOCK 
DEC 
DVI 

END 
ENTRY 
IOWDA 
LAYOUT 

MLI 
PAIR 
RELOC 
RWA 

SLA 
TAGC 
TAGI 
TAGR 

TAGS 
TAGW 
USE 
WDA 

The following symbols have a special meaning in CFD and may 
not be used as names 

MBITl MBIT2 MODE ON OFF 
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3.3 Classes of named quantities and their residences 

There are four classes of named quantities in CFD: 
1) variables, 2) subprograms, 3) common blocks, and 4) disk 
areas. Variables may be divided into three subclasses: 1) 
scalars, 2) arrays, and 3) vector aligned arrays. The 
distinction between the second and third subclasses is very 
important. An array may reside in either PE or CU memory 
and may be of any length, limited only by memory size. 
These arrays may not be used as vectors in vector expressions, 
and may not have inore than one subscript. Vector aligned 
arrays on the other hand must reside in PE memory, and may 
have one, two, or three subscripts. The range of the first 
subscript of a vector aligned array is always 64. All vector 
aligned arrays have their first word in the first PE, hence 
the nomenclature "vector aligned." A subprogram may be either 
a FUNCTION or a SUBROUTINE, and is referenced in the usual 
FORTRAN manner. 

There are five types of variables: CU INTEGER, CU REAL, 
CU LOGICAL, PE REAL, and PE INTEGER. As in FORTRAN there is 
a pre-defined convention: variable names beginning with A-H 
and 0-Z are taken as PE REAL and those beginning with I-N are 
taken as CU INTEGER. This convention can be overridden by 
IMPLICIT type statements which in turn may be overridden by 
explicit type statements. PE LOGICAL variables are not allowed. 

Examples: *IMPLICIT CU REAL(D), CU LOGICAL (M) 
*IMPLICIT PE INTEGER (I) 
*CU INTEGER INDEX 
*CU LOGICAL BOOLE 
*PE REAL MACH(*,64) 

CFO logical variables are quite different from FORTRAN 
logical variables. FORTRAN logical variables have one value 
(either .TRUE. or .FALSE.) while CFD logical variab'Ies always 
have 64 values, one in each bit of the 64-bit word. In this 
sense they are vectors, and when used to control the PE's, 
each PE receives 'one bit. CFD logical variables should then 
be viewed as a 64-bit string. The first bit corresponds to 
the first PE, the second to the second, and so on. CFD has 
three special logical variables: MODE, MBITl, MBIT2. All 
three of these variables reside in the PE's and are reserved 
symbols. MODE contains the current machine mode pattern; 
MBITl and MBIT2 refer to logical variables into which the MODE 
may be stored more quickly than all other CFO logical variables 
which reside in the CU. 
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3.4 Indexing arrays 

There are three classes of indices in CFD. The first class 
consists of integer scalar expressions involving not more than 
one nonsubscripted CU integer variable and not more than one 
integer constant. This is similar to the standard FORTRAN index. 
The second class of index is the* which may appear only in the 
first index of a vector aligned variable. The* indicates that 
the quantity is to be used as a vector. The* may be thought of 
as a generalized PE number. For example 

A(*) =B(*,J) (assume all PE's are on) 

means: A(I) = B(I,J), I= 1, 64 

The third class of index may also be used only with vector aligned 
arrays, and it must appear in the second index. This index is 
itself a vector aligned array and is called a "vector index." 
For example 

A(*) = B(*,J(*)) {assume all PE's are on) 

means: A(I) = B(I,J(I)), I = 1, 64 

This is the only place in CFD where a subscript may be subscripted. 
A vector index may not be indexed by a vector however. The quan­
tity 

VECTOR(*-I+S,-J(* + K-1, M+2, N-1)-INDEX-3, INDEX+2) 

shows the allowed indexing for vector aligned variables. CU 
arrays and PE arrays that are not vector aligned may have a single 
class 1 index. We will discuss indexing more fully in connection 
with PE arithmetic. 
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3.5 Allocation of storage 

CU Memory 

The programmer has 48 words (56 if execution involves a 
main program only) of CU memory at his disposal. Each CU 
variable must be assigned a CU address by use of an EQUIVALENCE 
statement. For example, the sequence 

*CU INTEGER D ( 5) 
*CU LOGICAL BOOLE . . . 
*EQUIVALENCE ( 3 ,D (2) ,BOOLE) , ( 1, I) , ( 2 ,J) 

assigns the variable I to the first word of CU memory, J to the 
second, BOOLE to the third, and the array D to the second through 
sixth words. 

PE Memory 

PE memory is allocated in the usual FORTRAN manner with 
several exceptions: 1) all common blocks must be allocated in a 
BLOCK DATA subprogram whether or not they are initialized by 
DATA statements, 2) all scalars must be declared before the 
first executable statement, and 3) vector alignment must be 
stated explicitly. 

The layout of PE arrays is done in the standard FORTRAN 
fashion. Subscripts vary most rapidly left to right. This is 
illustrated in the following example. 

*DIMENSION U(*,2,2) 

PE ( 1) 

U(l,1,1) 
U(l,2,1) 
U(l,1,2) 
U(l,2,2) 

PE (2) 

U ( 2, 1, 1) 
U(2,2,1) 
U(2,1,2) 
U(2,2,2) 

•••• 

. . . . 

PE ( 6 4) 

U(64,1,1) 
U(64,2,l) 
U(64,1,2) 
U(64,2,2) 

Vector 
Notation 

U(*,1,1) 
U(*,2,1) 
U(* ,1,2) 
U(*,2,2) 

It can be seen from this example that the first subscript ranges 
"across" the PE's while the second two range "down" the PE's. 
The second two subscripts behave in the normal FORTRAN manner, 
but the first index has some special properties that are unique 
to Illiac. These will be fully discussed in connection with PE 
arithmetic. 

Example: 

*PE INTEGER LIMIT, INDEX(*), SCRTCH(64) 
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This statement identifies LIMIT as a PE INTEGER variable and 
INDEX as a PE INTEGER vector aligned array. The* in the first 
index location declares a variable to be vector aligned, and 
the range of the first index as 64. Thus INDEX and SCRTCH are 
both arrays of length 64, but only INDEX is forced to be vector 
aligned. SCRTCH may not be used as a vector. 

The size of PE memory may demand the use of equivalence to 
conserve storage. The CFD EQUIVALENCE statement for PE vari­
ables is used in the same way as in FORTRAN. Thus 

*DIMENSION VINDEX{*), VECTOR(*,10) 
*EQUIVALENCE (VINDEX(l), SCALAR, VECTOR(l,2)) 

causes the second row of VECTOR to coincide with VINDEX, and 
the first word of this row to coincide with SCALAR. All common 
blocks must be allocated within a BLOCKDATA subprogram. For 
example 

*BLOCK DATA 
*IMPLICIT PE REAL (A-Z) 
*COMMON/VELOCT/U(*,64), V(*,64) 
*COMMON/THERMO/P(*,64), RHO(*,64), T(*,64) 
*COMMON/CONSER/MASS(*,64), MOMENT(*,64), ENERGY(*,64) 
*END 

allocates the space for block VELOCT, THERMO, and CONSER. 

No check is made to determine if the allocated block is the 
longest block under a given name, this is the programmer's 
responsibility. Common blocks appearing in the same BLOCKDATA 
subprogram may be overlapped through the use of EQUIVALENCE. 
Thus 

*EQUIVALENCE (MASS(l,1) ,RHO(l,l)) 

causes common blocks THERMO and CONSER to overlap. 

Common blocks are always vector aligned, that is their 
first word is in PE(l). Thus the statement 

*COMMON/WORK/SCRTCH(60), VDUMY(*) 

is in error because WORK and VDUMY cannot both be vector aligned. 
For the same reason, the following sequence is invalid 

*PE REAL MATRIX 
*DIMENSION MATRIX(*,64), ROW(*) 
*EQUIVALENCE (ROW(6), MATRIX(3,14)) 

since the first words of ROW and MATRIX cannot both be in PE(l). 
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3.6 Data initialization 

CU Memory 

Values of CU variables may not be defined by DATA state­
ments since the Illiac loader loads only PE memory. cu vari­
ables may be defined only by executable statements. 

PE Memory 

PE variables may be initialized by DATA statements in the 
usual FORTRAN manner. 

Example: 

*IMPLICIT PE INTEGER (X) 
*PE REAL MATRIX (*,64) 
*DIMENSION XX(*), S(40) 
*DATA MATRIX, S(S)/2048*0., 2049*1./ 
*DATA XX/0,1,2,3,60*0/ 

The variable list must have a one to one correspondence with 
the data list. 
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3.7 Program control 

There are two kinds of program control in ILLIAC: 
1) branching, and 2) enabling or disabling PE's. These may be 
used separately or in combination. Branching is the type of 
control used in serial computers and determines which state­
ment will be executed next. In ILLIAC, however, it is also 
necessary to specify which PE's will participate in the execu­
tion of a vector statement. 

Control of execution sequence 

The following statements are implemented in CFD with their 
standard FORTRAN form and meaning. 

GO TO (absolute, computed, and assigned) 
ASSIGN 
CONTINUE 
RETURN 
STOP 
CALL 
END 

One of the most frequently used control statements is the 
DO statement, and in CFD it is slightly more general than in 
FORTRAN. As in FORTRAN the index must be greater than zero. 
The differences from FORTRAN are: 

1) The increment must be a constant, but may be 
negative 

2) The starting and limit values may be simple 
arithmetic expressions of the form ±v, +c, 
±v±c where v is a CU INTEGER variable 
and c is a constant. Leading plus signs 
are optional. 

Example: 

*DO 1234 INDEX= J+l0, -K+2, -1 

Logical IF statements are implemented in CFD, but arith­
metic IF statements are not. IF statements are of two basic 
kinds: 1) those with a single true/false result, and 2) those 
with 64 true/false results, one for each PE. The first kind is 
similar to its FORTRAN counterpart, while the second is con­
cerned with enabling PE's. The first kind decides what is to 
be done and the second decides in which PE's it will be done. 
There are no single result (one bit) logical variables in CFD, 
so the form of the first kind of IF is quite restricted. There 
are three basic forms: 1) that involving arithmetic tests between 
CU INTEGER expressions using only addition and subtraction, 
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2) that involving quantified logical expressions, and 3) that 
testing for I/O request completion. A logical expression in 
CFO implies 64 true/false results, and "quantifying" it reduces 
it to one true/false result. The logical quantifiers in CFD 
are .ANY., .ALL., .NOT ANY., and .NOT ALL •• 

Examples: 

*IF(INDEX .GT. LIMIT) RETURN 
*IF ( .NOT ANY. ( (A ( *) • GT. EPSLON) ) ) STOP 

In the second example, the true/false result of the expres­
sion (A(*) .GT.EPSLON) is determined in every PE. If and only if 
the expression is false in ever~ PE the STOP Is executed, other­
wise the program continues at t enext statement. In other words, 
the program stops if and only if A is less than or equal to 
EPSLON in every PE. In the statement 

*IF(.ALL. ((SCALAR.LE.VALUE))) A(*)=0. 

the .ALL. is logically unnecessary, but is required because the 
floating-point comparison of SCALAR and VALUE is done in the PE 
arithmetic hardware. Remember that the CU has no floating-point 
hardware. The result of the comparison is the same in all PE's, 
and the .ALL. (.ANY. gives the same result here) is required to 
reduce the result to a single true/false value. 

Control of the PE's 

The PE's are controlled in two ways: 1) the instruction 
stream in the CU determines the machine instruction to be exe­
cuted, and 2) the enabling mode pattern in the PE's determines 
which PE's will perform the instruction and which will remain 
idle. At the CFD level, the enabling mode controls 9nly ~ 
thing, namely, those PE's whose values are being defined in a 
vector arithmetic assignment statement. Vector arithmetic 
statements do not alter variables in disabled PE's. The enabling 
mode pattern is the logical variable MODE, a reserved symbol, 
at all times except'when the vector assignment statement follow­
ing a vector IF is executed. In that case the enabling mode 
is the result of the vector IF. For example 

*IF((A(*).LT.0.))A(*) = -A(*) 

is one way to replace A(*) by its absolute value. 

If the sequence 

MODE = (A(*) • LT. 0.) 
A(*) = -A(*) 

is used A(*) is replaced by its absolute value as before, but 
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now the enabling mode has been set so that only the PE's in 
which A was negative will be active in following statements. 
Use of the IF is logically equivalent to 

MBITl = MODE 
MODE= (A(*) .LT.0.) 
A(*) = -A(*) 
MODE= MBITl 

This is the procedure used if more than one statement is to be 
executed with the enabling mode as (A(*).LT.0.) since only one 
vector arithmetic statement may follow a vector IF. The logi­
cal variable MODE is not altered by a vector IF statement. 

The distinction between scalar logical IF statements and 
vector logical IF statements is that the scalar IF determines 
what statement will be executed next while the vector logical IF 
determines which PE's will execute the vector assignment state­
ment that the IF controls. 

In the above example the logical result of the vector rela­
tion (A(*) .LT.0.) is evaluated in each PE and is not controlled 
by MODE. 

During execution the enabling mode will usually be MODE. 
MODE may be altered only by its appearance in a logical assign­
ment statement. The statement 

MODE= ON 

,for example, enables all PE's. In addition to MODE, the sym­
bols ON and OFF have special meanings in CFD. The symbols ON 
and OFF represent logical constants implying "all PE's enabled," 
and "all PE's disabled," respectively. With the exception of 
MODE, MBITl, and MBIT2 all logical variables must reside in the 
cu. 

In a logical assignment statement a logical variable is 
assigned the value of a logical expression. The basic building 
block of a logical expression is the "base mode" which may be 
a logical variable, logical constant, vector relation, or any 
of these preceded by .NOT., which implies logical negation. 

A vector relation consists of two vector arithmetic expres­
sions separated by one of the following: .GT., .LT., .GE., .LE., 
.EQ., or .NE •• Vector relations must always be enclosed in 
parentheses. 

The logical expression may simply be a base mode, or it 
may contain operators having base modes as operands. There are 
three kinds of operators: 1) bit setting operators, 2) bit 
shifting and rotating operators, and 3) logical operators. 
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The two kinds of bit setting operations are .TURN ON., 
and .TURN OFF. and are used to turn on (enable) or turn off 
(disable) discrete bits of the variable being defined. The 
bits themselves are specified in a list following the operator. 

Examples: 

MASK= ON .TURN OFF. 1, 64, INT 
MODE= MODE .TURN OFF .. FIRST. I+2, .LAST. J-1 
LOGICL =MASK.TURN ON. K-6 .TO. K+6 

The list may indicate individual PE's or ranges of PE's and the 
PE numbers may be simple arithmetic expressions containing one 
nonsubscripted CU INTEGER variable and/or one integer constant. 
PE numbers must be in the range 1, 64 for bit-settings operations. 

The two kinds of bit shifting operations are "end-off" 
shifts (.SHL., .SHR. for left and right shifts respectively) 
and "end-around" shifts (.RTL., .RTR. for left and right; these 
are usually called "rotates" rather than shifts). In the end­
off shifts, vacated bits are set to zero, for example 

(1111 .• 111) .SHR.3 + (0001 .... 1) 

In the end-around shifts, bits that are shifted off one end appear 
at the other, for example 

(111100 ••• 00) .RTL. 3 + (100 ••• 00111) 

Shift distances must be in the range 0,63 for bit-shifting opera­
tions. 

The three logical operators are .NOT., .AND., and .OR •• The 
following tables present the logical operators. The l's repre­
sent on, true, or enabled while the O's represent off, false, or 
disabled. 

A .NOT. A A B A .AND. B A 

0 1 0 1 0 1 

1 0 1 1 1 0 

0 0 0 1 

1 0 0 0 

The identities 

and 
• NOT • (A • AND. B) = • NOT • A • OR. • NOT. B 

.NOT. (A .OR. B) = .NOT. A .AND •• NOT. B 

may be useful to the programmer. 
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The logical quantifiers have the following meanings: 

.ANY. (A) is true if and only if at least one A. is true 
1 

.ALL. (A) II II ff II II 11 all A. are true 
1 

.NOT ANY. (A) is true if and only if all A. are false 
1 

.NOT ALL. (A) II II II II II 11 at least one A. is false 
1 

The following identities follow from these definitions: 

.NOT ANY. (A) = .ALL. (.NOT.A) 

.NOT ALL. (A) = .ANY. ( .NOT.A) 

Logical quantifiers may appear only in scalar logical IF 
statements, and their operand must be enclosed in parentheses. 

The operands of logical assignment statements are not 
altered by the statements. 

There are a number of logical expressions that, although 
logically and syntactically meaningful, are of little or no use. 
Such invalid expressions are eliminated by the following rules. 

1) ON and OFF may not be used with any logical operator, 
logical quantifier, or end-around shifting operator 
( • RTR. and • RTL • ) • 

2) OFF may not be used with end-off shifts (.SHL. and .SHR.) 
or with .TURN OFF •• 

3) ON may not be used with .TURN ON •• 

4) logical expressions containing the shifting operators 
.RTL. or .RTR. may not be quantified. 

5) logical expressions containing .TURN ON. may not be 
quantified by .ANY. or .NOT ANY •• 

6) logical expressions containing .TURN OFF. may not be 
quantified by .ALL. or .NOT ALL •• 

Examples of valid logical assignment statements: 

MASK= MASK .RTR. 1 

MODE= (U(*)**2 + V(*)**2 .GT. C(*)**2) 

MODE= MODE .AND. MASK 

No CFO vector logical expression may contain more than one non­
arithmetic operator (i.e. logical, bit setting, or shifting 
operators) with the exception of .NOT •• 
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3.8 Arithmetic 

CU arithmetic 

There are three kinds of scalar arithmetic statements, all 
of which are specific and restricted. The limited vocabulary 
for CU arithmetic reflects the absence of the required hardware. 
The first kind of statement is an arithmetic assignment state­
ment involving only cu INTEGER variables, integer constants, 
and the+ and - operators. No parentheses are allowed. 

Examples: 

KOUNT = KOUNT + 1 

NUMBER= LAST - INITL + l 

The second kind of statement involves the transfer of single 
words of data. No arithmetic is done, and the data may be real 
or integer and have any residence (CU or PE). 

Examples: 

PI= 3.14159 

VECTOR(6) = SCALAR 

SCALAR= VECTOR(6) 

The third kind of statement has no FORTRAN equivalent and 
is required in ILLIAC to facilitate any necessary juggling 
between CU and PE memory due to the limited size of CU memory. 
The TRANSFER command allows the programmer to move blocks of 8 
words between CU and PE memory. 

Examples: 

*TRANSFER(16) 

*TRANSFER (8) 

PEBLK = CUBLK 

BUFFER(L) = VECTOR (I,J,K) 

The first statement indicates that two blocks of 8, start­
ing at CUBLK are to be transferred to the two blocks of 8 
starting at PEBLK. The second statement specifies transfer of 
one block starting at VECTOR(I,J,K) in PE memory to the block 
starting at BUFFER(L) in the cu. The command always contains 
the number of words to be transferred (an integer multiple of 8), 
the source and the destination. If the source is CU, the 
destination must be PE,and vice versa. The first word in source 
and destination blocks should be the first word in a block of 8 
(but not necessarily the same block). In the cu, blocks of 8 
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begin at locations 1, 9, 17, •••• and in the PE's at PE 1, 9, 
17, •••• • This must be insured by the programmer through use 
of EQUIVALENCE. 

The two legal uses of the TRANSFER statement are: 

1) To save blocks of CU variables in PE memory when 
CU space is needed and to return such blocks to 
the cu. The blocks must not be used while residing 
in PE memorv. 

2) To fetch to the CU blocks of 8 PE floating-point 
words that will be broadcast as scalars back to 
the PE's in PE arithmetic statements. This is 
restricted to floating-point data. 

PE arithmetic 

PE arithmetic is vector arithmetic, even when an expression 
involves only scalars. Expressions must be either real or inte­
aer, and mixed type expressions are not allowed. Type changes 
across the"=" are also forbidden. Integer PE arithmetic is pri­
marily used for computation of vector indices. 

The standard FORTRAN operations+,-,*,/, and** are 
implemented. The order of computation is the same as FORTRAN. 
The exponents in CFD must be integer constants in the range 2 
through 10 and may not be exponentiated themselves. Thus, 
A**2**3 is invalid, but its equivalent (A**4)**2 is valid. 

The variable being defined in a PE arithmetic assignment 
must be vector aligned, and its first subscript must be* alone. 
This convention is followed because the enabling mode (MODE) then 
corresponds directly to the PE's of the defined variable. The 
exnression whose value is assigned to the defined variable may 
contain parentheses and FUNCTION references. 

Examples: 

F(*) = ((X(*)*A(*) + B(*))*X(*) + C(*))*X(*) + D(*) 

FTRAN(*) = FFT(VRTCTY(*,I,J))*OMEG(*) 

ZVORT(*,I,J) = DY(U(*,I,J)) - DX(V(*,I,J)) 

ENERGY(*,!) = U(*,I)**2 + V(*,I)**2 

In these examples, FFT, DY, and DX are FUNCTION subprograms. 
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When the first subscript contains an*, the subscript 
possesses some non-FORTRAN qualities. Assume that all PE's are 
enabled, then the statement 

A(*) = B(*-1) 

is equivalent to the statements 

A(l) = B(64), A(2) = B(l), A(3) = B(2), •• ••, A(64} = B(63) 

illustrated by the following diagram. 

A (1) 

/ 
B ( 1) 

A ( 2) 

B ( 2) 

A ( 3) 

B ( 3) 

. . . . 

. . . . 
A(63) A(64) 

/ 
B{63) B(64)1 

The array B may be thought of as being arranged on a cylinder, 
with the first subscript being wrapped around the cylinder and 
the second and third subscripts arrayed parallel to its axis. 
PE(l) follows PE(64). 

Suppose the central difference of the vector P(*) is 
needed, its value, given by 

DlP(*) = P(*+l) - P(*-1} 

may have no meaning in PE's 1 and 64 unless Pis in fact peri­
odic. The difference would not be computed in these PE's if 
the statement above were preceded by 

MODE= ON.TURN OFF. 1, 64 

An* in the first subscript then implies that the variable is 
a vector. When the first subscript contains no* the variable 
is used as a scalar, the same value being used in every PE. 
For example, the CFD statement 

A(*,I,J) = B(*,I)/C(J,I) 

is equivalent to 

A(l,I,J) 

t 
B(l,I) 
C(J,I) 

A(2,I,J) 

t 
B(2 1I) 
C (,J, I) • • • 

A(64,I,J) 

t 
B(64,I) 
C(J,I) 

The single value C(J,I) is the divisor in every PE. When the 
* is missing, the first subscript behaves in the usual FORTRAN 
manner. 
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When the first subscript contains an*, the second sub­
script, if present, may contain an integer vector. This allows 
each PE to refer to a different position in its memory. Sup­
pose the variable IV has been declared a PE INTEGER vector and 
has been assigned the value i in PE(i), that is 

IV (1) = 1 
IV (2) = 2 

IV (64) = 64 

Then, if AMATRX is a 64x64 matrix, 

DIAG(*) = AMATRX(*,IV(*)) 

defines DIAG as the diagonal of the array AMATRX. 

Example: 

Suppose we need the row sums of AMATRX. These are computed 
by the statements: (all PE's on) 

ROWSUM(*) = O. 
*DO 1 I= 1, 64 

1 ROWSUM(*) = ROWSUM(*-1) + AMATRX(*,IV(*-I+l)) 
ROWSUM(*) = ROWSUM(*-1) 

which leaves the sum of row 1 in ROWSUM(l), the sum of row 2 in 
ROWSUM(2), and so fortL. This algorithm uses the "end-around" 
nature of the* index. Verification of this algorithm is a 
useful exercise toward understanding of both vector indexing 
and the end-around nature of the* subscript. 
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3.9 Subprograms 

There are two kinds of subprograms in CFD, the FUNCTION 
and the SUBROUTINE. Both are used in the same way as their 
FORTRAN counterparts. There are, however, several differences 
in implementation between FORTRAN and CFD. 

Communication between programs is achieved in four ways. 
The first two, subprogram arguments and common blocks, are used 
in the same manner as in FORTRAN. The last two communication 
links are through cu memory and the special logical variables 
(MODE, MBITl, and MBIT2), which are shared by all programs. They 

may be thought of as being in common. 

There may be as many as seven subprogram arguments, each 
of which may be of three kinds: 1) subprogram names, 2) common 
block names, and 3) vector aligned arrays. At the call or 
function reference, the arguments may be subprogram names, 
common block names, or vector quantities. A vector quantity 
may be either an array name, a subscripted array name, or a 
PE arithmetic expression. If an array name is subscripted with 
anything other than* alone as the first subscript, or is indexed 

. by a vector in the second subscript it is considered a PE arith­
metic expression, even though no arithmetic operations are in­
volved. In FORTRAN, an arithmetic expression as an argument at 
call must coincide with a scalar argument in the subprogram to 
which the subprogram does not assign a value. In CFD the only 
variables passed through an argument list are vectors. Thus a 
PE arithmetic expression at call must coincide with a single 
row vector argument in the subprogram to which the subprogram 
does not assign values. All subprogram arguments are passed by 
row address in CFD except subprogram names which are passed by 
word address. PE arithmetic expressions are evaluated as a 
single vector at call, and placed in system's scratch space. 
The address of the scratch row used is then passed to the sub­
program. Constants are arithmetic expressions. The following 
list gives examples of arguments at call, and how they are passed. 

Argument at call Address passed to subprogram 

variables: A A(*) ' A(*,1), A{*,1,1) 
A(*) A(*) 
A(*,I) A(*, I) 
A(*,I,J) A(*,I,J) 

expressionst: A(*-1) scratch row 
A(*, IV(*) ) scratch row 

-A(*) scratch row 
A(*)*B(*) scratch row 
3.14159 scratch row 
SCALAR scratch row 

tThe expressions are evaluated and placed in a scratch row whose 
row address is passed to the subprogram. The evaluation is 
controlled by the current mode (MODE). Values passed through a 
scratch row are defined only in PE's enabled by the MODE. Thus, 
all disabled PE's will have garbage in the scratch rows. 
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The ability of the programmer to pass to the subprogram 
the name of a common block is a non-FORTRAN feature of CFO 
that serves several purposes. These purposes depend on one 
essential fact: when a subprogram requires more than one vari­
able, but all the variables required are stored in a fixed 
relationship to one another and this relationship is known when 
the subprogram is written, then onlyhone address is required by 
the subprogram at execution time. T esame end can be achieved 
through EQUIVALENCE to dummy variables within a subprogram. 
This is also allowed in CFO, but not in FORTRAN. This feature 
of CFO is useful when PE memory is laid out in blocks for I/O 
buffering. 

Example 1: 

Calling Program 

*DIMENSION A(*,10,10) ,C(*,3) ,U(*) ,V(*) 
*COMMON/COMBLK/VARIBL(*,3) 

*CALL SUBPRG(COMBLK,A,C(*,I) ,U(*)*V(*) l 

Called Program 

*SUBROUTINE SUBPRG(A,B,C,D) 

*DIMENSION B(*,10,10) ,C(*) ,D(*) 
*COMMON/A/X(*) ,Y(*) ,Z(*) 

X(*) = B(*,I,J) + C(*)*D(*)/Y(*) 

*RETURN 
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Example 2: 

Calling Program 

U(*) = CONT(U(*)) 

Called Program 

*FUNCTION CONT(VEL) 

*DIMENSION VEL(*,2) 

*CALL DIFF(VEL(*,2) - VEL(*,1) ,CONT} 

*RETURN 

Example 3: 

Calling Program 

D2V(*) = FORDIF(FORDIF(V(*+l))) 

Called Program 

*FUNCTION FORDIF(VECTOR) 
*DIMENSION VECTOR(*) 

FORDIF(*) = VECTOR{*) - VECTOR(*-1) 

*RETURN 
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3.10 CFD Supplied functions 

In CFD, an intrinsic function (CFD supplied function) is 
always a vector function whose argument is a vector arithmetic 
expression. The 10 ~ntrinsics 

(ABS, IABS, IFIX, FLOAT, EXP, ALOG, SIN, 
COS, ATAN, and SQRT) 

have their familiar FORTRAN meanings, and are invoked in the 
usual FORTRAN manner. 

Example: 

*PE INTEGER 
*PE REAL 

I(*), J(*) 
A(*), B{*), C(*) 

A(*) = EXP(FLOAT(I(*))*ALOG(B(*))) 

With the exception of ABS, the intrinsic symbols are not 
reserved symbols, and may be specified by the programmer. In 
other words, the pre-definition of these symbols as intrinsics 
may be overridden by the programmer. 

Example: 

*PE REAL FLOAT(*,2,5) 

This statement overrides the pre-defined specification of 
FLOAT as an intrinsic and specifies it as a PE vector aligned 
array. 

A CFD intrinsic must not be declared EXTERNAL. 

Example: 

*EXTERNAL SIN 

This statement specifies SIN as a~ ~up~lied subprogram, and 
overrides its pre-definition as an intrinsic. 
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4.1 Historical introduction to memory input/output 

Since EDSAC, the world's first operational computer, pro­
grammers have had to contend with the problem of memory hierar­
chy and cost effectiveness in computer operation. In the case 
of EDSAC, a University of Manchester computer, there was the 
1024-bit Williams Tube memory which had an access time on the 
order of microseconds, as well as a 128-word drum with a slower 
access time, measured in milliseconds. On the other hand, in 
terms of cost per bit stored the drum was cheaper than the fast 
access tube memory. In the case of today's conventional machines 
(IBM, CDC, Burroughs, etc.) the hierarchy of memory still exists, 
but these machines have very fast random access memory as well as 
magnetic rotating memory (drums, disks, tapes, etc.). The origi­
nal problem remains: given a larger, cheaper, slower memory in 
addition to a smaller, more expensive, and faster memory what is 
the most cost-effective way to use the total computer? 

SLOW 

MEMORY 

FAST 

MEMORY 

ARITHMETIC 

UNIT 

The common way to utilize a computer in a cost-effective 
manner is to minimize the time during which the arithmetic unit 
is idle. Two ways by which to minimize the idle time of the 
arithmetic unit will be discussed in the following paragraphs. 

In recent years sophisticated operating systems have been 
designed so that a computer may be used in a cost-effective man­
ner. In this case the basic concept is the partition of the 
fast memory into N parts. In each of these partitions the sys­
tem will place a separate program as well as part of its data 
base. When the job. (in partition A, say) using the arithmetic 
unit requires data that currently does not reside in fast memory 
the operating system allows the arithmetic unit to begin process­
ing a job resident in a different partition (say partition B). 
While the job in partition Bis utilizing the arithmetic unit 
the data needed in partition A is transferred from the slower 
memory to the faster memory. Thus this method minimizes the 
idle time of the arithmetic unit by having several programs all 
using the same arithmetic unit. 

Another method by which to minimize the idle time is to 
feed the small fast storage from the larger, slow one, trans­
ferring data in large blocks. The idle time is minimized by 
the fact that the programmer has insured that all data have 
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been moved to fast memory before they are needed by the arith­
metic unit. This method is called asynchronous I/0 since the 
data movement is not synchronized with the instruction stream, 
i.e., data movement may be taking place in one area of the fast 
memory while the arithmetic unit is processing data in another 
area. 

Thus, there are basically two ways to cost-effectively use 
a computer. In the first case, it is the responsibility of an 
operating system. In the second, it is the responsibility of the 
programmer. 

ILLIAC IV has a comparatively small, fast, random access 
memory (128 K words for 64 arithmetic units) and a large "slowly" 
rotating disk memory (15,900 K words). Furthermore, ILLIAC IV 
will have only a minimal operating system which implies that it 
will be the programmers responsibility to use ILLIAC IV in a 
cost-effective manner. The remainder of this section will be 
devoted to a discussion of how a CFD programmer migh~ use the 
ILLIAC IV in a cost-effective manner given the limited amount of 
high speed memory. 

4.2 Description of ILLIAC IV I/O hardware 

The user, in order to efficiently use ILLIAC IV, must be 
aware of some of the hardware architecture of the ILLIAC Array 
and ILLIAC disk system (Figure 1). The remainder of this sec­
tion will discuss each of the major parts. 

PUl PU2 PU3 PU64 

PEMl PEM2 PEM3 . . . PEM64 

t t t t -i 
( 

ILLIAC IV DISK SYSTEM 
\\ 

Figure 1. 
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4.3 Array memory 

A Processing Element Memory (PEM) consists of 2048 64-bit 
words. Thus the total array memory may be thought of as a 
64x2048 matrix of 64-bit words or 131,072 sequential locations 
as illustrated below. 

0 

64 

128 

130,994 

131,008 

PEM2 

1 

65 

129 

130,945 

131,009 

4.4 ILLIAC pages 

PEM3 

2 

66 

130 

130,946 

131,040 

PEM62 

61 

125 

189 

131,005 

131,069 

PEM63 

62 

126 

190 

PEM64 

63 

127 

191 

131,007 

131,071 

The smallest amount of data that may be moved to and from 
the Array memory is called an ILLIAC page. Each ILLIAC page 
contains 1024 64-bit words. Data may be transferred to or from 
the full array, either half of the array or any quarter of the 
array. 

If the transfer refers to the full array, consecutive Array 
memory locations beginning with an address in PEMl are affected. 
Thus, for each page transferred, 16 full rows (16 words in each 
PEM) are transferred. 

If the transfer refers to half of the array, locations in 
vertically adjacent half rows will be affected. The beginning 
address for these half rows is in PEMl or PEM33. Thus,for each 
page transferred 32 half rows (32 words in either the first 32 
PEMs or the last 32 PEMs) are transferred. 

Similarly, if the transfer refers to a quarter of the Array 
locations in vertically adjacent quarter rows will be affected. 
The beginning address for these quarter rows is in PEMl, PEM17, 
PEM33, or PEM49. Thus, for each page transferred 64 quarter rows 
(64 words in each of 16 adjacent PEMs) are transferred. 

See Figure 2 for a graphic example of the full, half, and 
quarter array transfers. 
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4.5 ILLIAC disks 

The ILLIAC disk system is made up of 13 ILLIAC disks. 
Each disk has four bands of three hundred ILLIAC pages each. 
The disks are synchronized so that all the corresponding pages 
of each band of each disk are under the fixed read/write heads 
at the same moment. As such, it consists of 52 bands with 300 
pages per band giving a total of 15,600 pages or equivalently 
15,974,400 64-bit words. 

The rotation period of the disks is 40 milliseconds and 
since 300 pages can be transferred each revolution, the transfer 
rate is 133 microsecond per page. Put another way, the time it 
takes to transfer 64 words is approximately equal to the time 
it takes to complete 19 PE additions or 15 PE multiplications. 

4.6 General concept of asynchronous I/O 

When a programmer uses a high-level language (e.g., ALGOL, 
COBAL, FORTRAN, PL/I, etc.) all I/O, be it to disks, tapes, etc., 
is logically synchronous. That is, when an I/O request is made 
all processing within the program is stopped until the I/O 
request is completed. This usually is not inefficient because 
most operating systems will have the arithmetic unit servicing 
another program while the I/O request is being completed. The 
assembly language programmer, on the other hand, has what is 
called asynchronous I/O. In brief, asynchronous I/O simply means 
that the arithmetic unit can be processing one block of data while 
I/O is being done on another block of data. The obvious restric­
tion here is that you must be sure an I/O request is completed 
before attempting to use any of the memory locations affected by 
the I/O request. 

Because there is only a minimal operating system for ILLIAC 
IV it is the programmer's responsibility to overlap his computa­
tion and disk I/O so as to prevent the PU's from becoming idle. 
Unlike conventional sequential machines ILLIAC IV's disks will 
be synchronized. That is, by keeping track of the execution time 
it will be possible to know exactly which page will be under the 
read/write heads at all times. Thus, if both the computation 
time and the amount of I/O is known it is possible to place the 
data on the ILLIAC disk so that when a certain block of data is 
needed from the disk it will just be corning under the read/write 
heads. Similarly, any disk area which is to be written into can 
be allocated such that when a write request is issued, this area 
is just coming to the read/write heads. In general, the disk's 
being synchronous allows the programmer to manage his data and 
disk transfers in such a way as to minimize the time required in 
accessing a rotating memory device. 
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5.1 ILLIAC IV ILO in CFO - Introduction 

CFO I/O, like the rest of the CFD language, reflects the 
hardware limitations of ILLIAC IV. CFD I/O is I/O between Array 
memory and the ILLIAC IV disks and this I/O is asynchronous in 
nature. Thus the CFO WRITE statements transfer the contents of 
Array memory locations to ILLIAC disk locations and CFO READ 
statements transfer the contents of disk locations to Array loca­
tions. 

Other ILLIAC IV limitations reflected in CFD I/O are: 1) 
the quantum in which I/O may be performed is one ILLIAC page 
(1024 64-bit words), 2) that all I/O is performed between quar­
ter Array boundaries. Additionally, there is a special CFO I/O 
IF statement to determine the status of a READ or WRITE request. 

5.2 DISK AREA statement 

Although disk areas are laid out by the MAP subsystem the 
CFD translator must be made aware of all disk areas to be acces­
sed by the main program and all its subprograms. (See System 
Guide for the ILLIAC IV User for details about the MAP subsystem.) 
The CFO translator must also know the total number of pages al­
located in each disk area. This information must be supplied in 
the DISK AREA statement which must be the statement immediately 
before the first executable statement. 

Example: 

*DISK AREA INPUT(20) ,OUTPUT(60) 

5.3 READ/WRITE statements 

There are three kinds of READ statements: READ, READH, 
and READQ. These statements transfer pages of data from the 
disk to the full, half, or quarter of the array, respectively. 
There are four arguments in a READ statement: a request number, 
an array location, ·a disk location, and the number of pages to 
be transferred. 

Example 1: 

*COMMON/ONE/RH0(*,16,6) ,PHI(*,16,6) . . 
*DISK AREA ONESAV(48) 

*READ (5,RHO(l,1,1) ,ONESAV(25) ,6) 
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Example 1 contains a READ statement which causes 6 full 
array pages to be transferred from the disk beginning at the 
25th page of ONESAVE to the Array beginning at RHO(l,1,1). 

There are also three kinds of WRITE statements: WRITE, 
WRITEH, and WRITEQ. These statements have the same general form 
and function as the three READ statements with the exception 
that the transfer is from the Array to the disks. 

The request number in these READ/WRITE statements is re­
quired because CFD I/O is asynchronous. That is, a read/write 
statement is only a request that I/O be performed, not an 
insurance that the I/O has been performed before the execution 
of the next statement. 

5.4 I/O IF statement 

Since CFD I/O is asynchronous in nature, CFD provides a 
way to determine if a particular I/O request is completed. In 
general, the I/O IF statement functions as a scalar IF statement: 
if the statement in the parentheses is true the statement after 
the parentheses is executed, if the statement is false, execu­
tion continues at the next statement. The truth values are as 
follows given that i is the request number of a previously 
executed READ/WRITE statement: 

request i completed request i not completed 

.COM. i TRUE FALSE 

.NOTCOM. i FALSE TRUE 

Example: 

*DIMENSION ABAR(*,32,6) 

*DISK AREA A(96) 

*READH (9,ABAR(l,1,3) ,A(l6) ,2) 

*IF (.NOTCOM.9) GO TO 1234 

1234 *CONTINUE 
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5.5 WAIT statement 

The WAIT statement causes a pause in execution until a 
particular I/0 request has been completed. 

Example: 

. . 
* READ ( 6 3 , A ( 1 , 1 , 1 ) , AREA ( 1 ) , 2 ) 

*WAIT 63 

Note: 

Since CFD is a FORTRAN based language, the FORTRAN conven­
tion of numbering beginning with one (1) has been followed. An 
example being that in this manual we speak of PEl through PE64. 
Thus, it should be noted that the majority of documents concern­
ing the ILLIAC IV and its languages do not follow this FORTRAN 
convention. Instead, these documents begin numbering with zero 
(0) and thus would, for example, refer to PEO through PE63. 
This convention of numbering from zero (0) is followed in the 
System Guide for the ILLIAC IV User, unlike this manual. 
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CHAPTER 2. ELEMENTS OF THE LANGUAGE 

STATEMENTS 

CFD statements are composed of CFD key words used in conjunc­
tion with the basic elements of the language (constants, variables, 
and expressions). The five categories of CFD statements are: 

1. Arithmetic and Lo ical Assi nment Statements: 
Replace the current values of a designated variable after 
calculations have been performed. 

2. Control Statements: Govern the flow and terminate the 
execution of the object program. 

3. Input/Output Statements: Exchange information between 
a user's program and a named collection of data residing 
on secondary ILLIAC memory. 

4. Specification Statements: Declare the properties of 
variables, arrays, and subprograms (e.g., type, residence, 
and amount of storage reserved). 

5. Subprogram Statements: Define and name functions and 
subroutines. 

All categories of CFD statements except category 1 
(Arithmetic and Logical Assignment Statements) must be flagged 
by an asterisk in column 6 of the first card. 

CODING CFD STATEMENTS 

Card Input 

The statements. of a CFD source program can be written on 
a standard FORTRAN coding form, Form GX28-7327 (see Figure 3). 
CFD statements are written one to a line from columns 7 through 
72. If a statement is too long for one line, it may be con­
tinued on as many as 19 successive lines by placing a hyphen in 
column 73, or as the last nonblank character (excluding comment), 
of each continued line. All blanks after column 6 are ignored. 

Columns 2 through 5 of the first line of a statement may 
contain a statement number consisting of from one through four 
decimal digits. Leading zeros in a statement number are ignored. 
Statement numbers may appear anywhere in columns 2 through 5 and 
may be assigned in any order; the value of statement numbers 
does not affect the order in which the statements are executed 
in a CFD program. 
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Columns 74 through 80 are not significant to the CFD 
compiler and may, therefore, be used for program identification, 
sequencing, comment, or any other purpose. 

Comments to explain the program may be written in columns 
2 through 80, if the letter C is placed in column 1. Comments 
may appear anywhere within the source program after column 7 if 
preceded by a quote ('). They are not processed by the CFD 
compiler, but are printed on the source program listing. Blanks 
may be inserted where desired to improve readability. 

ASK statements may be embedded within a CFD-code program by 
placing the letter A in column 1 of each ASK card. When the CFD 
translator encounters one of these cards, the A is deleted and 
the card is shifted left one column (column 2 becomes column 1, 
column 3 becomes column 2, etc.). This new card image is then 
inserted into the translator generated ASK. FORTRAN statements 
may be embedded by placing the letter Fin column 1 of each 
FORTRAN card. (See appendix for details.) 
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Figure 3. FORTRAN coding form (remember that columns 6 and 73 

are used differently in CFD code). 

CONSTANTS 

A constant is a fixed, unvarying quantity. The two classes 
of constants are those that deal with numbers (numerical constants) 
and mode values (logical constants). 
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Numerical constants may be integer or real numbers, 
logical constants may be ON or OFF. 

INTEGER CONSTANTS 

. f. . . I 
De 1n1t1on 1 

---------------------------------------------------------------J 
Integer Constant - a whole number written without a decimal 
point. 

2 3 
Maximum Magnitude: 8388607, i.e., (2 -1). 

I 
I 
I 
I 
I 
I 
I 
I ---------------------------------------------------------------~ 

An integer constant may be positive, zero, or negative; if 
unsigned, it is assumed to be positive. Its magnitude must not 
be greater than the maximum and may not contain embedded commas. 

Examples: Valid Integer Constants: 

0 
91 
173 
-12 

Invalid Integer Constants: 

0.0 
27. 
3145903612 
5,396 

REAL CONSTANTS 

(contains a decimal point) 
(contains a decimal point) 
(exceeds the allowable range) 
(contains embedded comma) 

---------------------------------------------------------------, 
I 

Definition 1 
I ---------------------------------------------------------------, 
I 
I 

Real Constant - a number with a decimal point optionally : 
followed by a decimal exponent. The exponent is written 1 

as the letter E followed by a signed or unsigned, one-or : 
two-digit integer constant. The value of the exponent must 1 

be between -75 and 75 inclusive if 64-bit is used. (If 32-biti 
arithmetic is used the value of the exponent must be between 
-19 and 19 inclusive.) The total length of a real constant; 
including the exponent, decimal point, and optional sign must 
not exceed 24 nonblank characters. 

6 5 6 3 

Magnitude: 0 or 16 through 16 (i.e., approximately 
75 

10 ) . 
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A real constant may be positive, zero, or negative (if 
unsigned, it is assumed to be positive} and must be of the 
allowable magnitude. It may not contain embedded commas. The 
decimal exponent E permits the expression of a real constant 
as the product of a real constant times 10, raised to a desired 
power. 

Examples: Valid Real Constants 

+o. 
-999.9999 
o.o 
5764.1 
7.0E+O 
19761.25E+l 
7.E3 
7.0E3 
7.0E03 
7.0E+03 
7.0E-03 
.7E-2 
21.98753829457168 
1. 0000000 

(i.e., 7.0 X 10° = 7.0) 
(i.e., 19761.25 X 10 1 = 197612.5) 

(i.e., 7.0 X 10 3 = 7000.0) 

( i • e • , 7 • 0 X 1 0-3 = • 0 0 7 ) 

Invalid Real Constants 

0 
3,471.1 
1.E 

l.2E+l13 

LOGICAL CONSTANTS 

(missing a decimal point) 
(contains embedded comma) 
(missing a one- or two-digit integer 
constant following the E; note that 
it is not interpreted as 1.0 x 10°) 
(Eis followed by a 3-digit integer 
constant} 

,---------------------------------------------------------------~ 
I Definition I 
I I ,---------------------------------------------------------------~ 
I I I Logical Constant -- The two logical values are: I 
I I 

I ON I 
I OFF l 
I I 
I I ----------------------------------------------------------------
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The logical constants ON and OFF specify that the value 
of the logical variable they replace, or the term of the 
expression they are associated with, is either all ON or all 
OFF (64 bits), respectively (see "Logical Expressions"). 

SYMBOLIC NAMES 

,---------------------------------------------------------------~ 
: Definition : 
,---------------------------------------------------------------~ I I 

l Symbolic Name -- from 1 through 6 alphameric (i.e., l 
1 0 through 9, or alphabetic, A through Z) characters, 1 
I I 
1 the first of which must be alphabetic. A list of 1 

: reserved names appears in chapter 1. l 
I I ---------------------------------------------------------------~ 

Symbolic names are used in a program unit (i.e., a main 
program or a subprogram) to identify elements in the following 
classes. 

• An array and the elements of that array (see "Arrays"} 

• A variable (see "Variables") 

• An intrinsic function (see "System Subprograms") 

• A FUNCTION subprogram (see "FUNCTION Subprograms"} 

• A SUBROUTINE subprogram (see "SUBROUTINE Subprograms"} 

• A block name (see "BLOCK DATA Subprograms") 

• A disk area (see "DISK AREA statement") 

Symbolic names must be unique within a class in a program 
unit and can identify elements of only one class with the ex­
ception that a FUNC~ION subprogram name must also be a variable 
name in the FUNCTION subprogram. 

Once a symbolic name is used as a FUNCTION subprogram name, 
a SUBROUTINE subprogram name, a block name, or an external 
procedure name in any unit of an executable program, no other 
program unit of that executable program can use that name to 
identify an entity of these classes in any other way. 

VARIABLES 

A CFD variable is a symbolic representation of a quantity, 
or quantities (i.e., a vector), that may assume different 
values. The value{s) of a variable may change either for dif­
ferent executions of a program or at different stages within 
the program. 
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For example, in the statement 

A(*) = B(*)+5.0 

both A and Bare vector variables. The values of Bare deter­
mined by some previous statement and may change from time to 
time; the values of A vary whenever this computation is per­
formed with new values for B. All variables must appear in at 
least one nonexecutable (specification) statement, other than a 
DATA statement, so that they may be put in the symbol table. 
In addition, all CU variables must be assigned a CU memory loca­
tion in an EQUIVALENCE statement. 

VARIABLE NAMES 

The use of meaningful variable names can serve as an aid 
in documenting a program. That is, someone other than the 
programmer may look at the program and understand its function. 
For example, to compute the distances some molecules have 
traveled in a certain length of time at a given rate of speed 
for each molecule, the following statement could have been 
written: 

X(*) = Y(*)*Z 

where the* in parentheses indicate vector quantities and the 
* outside parentheses indicates multiplication. However, it 
would be more meaningful to someone reading this statement if 
the programmer had written 

DIST(*) = RATE(*)*TIME 

Examples: Valid Variable Names: 

B292 
RATE 
SQ704 

Invalid Variable Names: 

B292704 
4ARRAY 
SI.X 

(contains more than 6 characters) 
(first character is not alphabetic) 
(contains a special character) 

The three ways a programmer may declare the type and 
residence of a variable are by use of the: 

1. Predefined specification contained in the CFD language, 

2. IMPLICIT specification statement, 

3. Explicit specification statements. 
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TYPE DECLARATION BY THE PREDEFINED SPECIFICATION 

The predefined specification is a convention used to specify 
variables as CU integer or PE real: 

1. If the first character of the variable name is I, J, K, 
L, M, or N, the variable is integer with CU residencer 

2. If the first character of the variable name is any other 
letter, the variable is real with PE residence. 

This convention is similar to the traditional FORTRAN method 
of implicitly specifying the type of a variable as being either 
integer or real. 

TYPE DECLARATION BY THE IMPLICIT SPECIFICATION STATEMENT 

This statement allows a programmer to specify the type and 
residence of variables in much the same way as was specified by 
the predefined convention. That is, in both, the type and resi­
dence is determined by the first character of the variable name. 
However, the programmer, using the IMPLICIT statement, has the 
option of specifying which initial letters designate a particu­
lar variable type and residence. Further, the IMPLICIT statement 
is applicable to all types of variables -- PE INTEGER, PE REAL, 
CU INTEGER, CU REAL, and CU LOGICAL. 

The IMPLICIT statement overrides the variable type and 
residence as determined by the predefined convention. For ex­
ample, if the IMPLICIT statement specifies that variables begin­
ning with the letters A through Mare PE REAL variables, and 
variables beginning with the letters N through Y are CU INTEGER 
variables, then the variable ITEM (which would be treated as a 
CU INTEGER variable under the predefined convention) is now 
treated as a PE REAL variable. Note that variables beginning 
with the letter Z are (by the predefined convention) treated 
as PE REAL variables. The IMPLICIT statement is presented in 
greater detail in the section "Type Statements." 

TYPE DECLARATION BY EXPLICIT SPECIFICATION STATEMENTS 

Explicit specification statements (PE INTEGER, PE REAL, 
CU INTEGER, CU REAL, and CU LOGICAL) differ from the first two 
ways of specifying the type of a variable, in that an explicit 
specification statement declares the type and residence of a 
particular variable by its name, rather than as a group of 
variables beginning with a particular character. 
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For example, assume: 

1. That an IMPLICIT specification statement overrode the 
predefined convention for variables beginning with the 
letter I, by declaring them to be PE REAL. 

2. That a subsequent explicit specification statement declared 
that the variable named ITEM is CU LOGICAL. 

Then, the variable ITEM is CU LOGICAL and all other vari­
ables beginning with the character I are PE REAL. Note that 
variables beginning with the letters J through N are specified 
as CU INTEGER by the predefined convention. 

The explicit specification statements are discussed in 
greater detail in the section "Type Statements." 

ARRAYS 

A CFD array is a set of variables identified by a single 
variable name. A particular variable in the array, either 
scalar or vector, may be referred to by its position in the 
array (e.g., first variable; third variable; seventh variable; 
first row, third plane, etc.). Consider the array named NEXT, 
which consists of five variables, each currently representing 
these values: 

273, 41, 8976, 59, and 2 

NEXT (1) represents 273 
NEXT (2) represents 41 
NEXT ( 3) represents 8976 
NEXT ( 4) represents 59 
NEXT ( 5) represents 2 

Each variable in this array consists of the name of the 
array (i.e., NEXT) followed by a number enclosed in parentheses, 
called a subscript. The variables that constitute the array are 
called subscripted variables. Therefore, the value of the sub­
scripted variable NEXT(l) is 273; the value of NEXT(2), is 41; 
etc. 

The subscripted variable NEXT(I) refers to the "Ith" sub­
scripted variable in the array, where I is an integervariable 
that can assume a value of 1, 2, 3, 4, or 5, in this array. 

To refer to the first element of an array, the array name 
must be subscripted; the array name does not represent the first 
element. The number of subscripts must correspond to the de­
clared dimensionality, except in the EQUIVALENCE statement, which 
is explained in "EQUIVALENCE Statement." 
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Because the ILLIAC IV is a parallel processor, the most 
efficient way to treat arrays for which the same calculations 
are to be performed on each element is to ensure vector align­
ment. If this is done, calculations may be performed on whole 
(or partial) rows of data. Each row contains 64 words with one 
numeric value to each word. Vector aligned variables are indi­
cated by an asterisk in the first subscript. 

Example: 

DO 10 I= 1,5 
DO 10 J = 1,64 

10 A(J,I) = B(J,I)+C(J,I) 

*DO 10 I= 1,5 
10 A(*,I) = B(*,I)+C(*,I} 

(FORTRAN) 

(CFD-code equivalent) 

The ILLIAC IV is not only faster than many machines in 
each PE, but because it can perform 64 operations at once, the 
ILLIAC's speed advantage is multiplied. It is to the programers 
advantage to treat the ILLIAC not as a serial machine that can 
process vectors, but rather as a parallel machine that can 
process scalars. 

SUBSCRIPTS 

A subscript is an index that specifies one of the coordinates 
that identify a particular element of an array. From one to 
three subscripts are used in accordance with the dimensionality 
of the array being subscripted. MultidirnensioDal subscripts are 
separated by commas. The subscripts, enclosed in parentheses, 
follow the array name. 
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I ------------------------------------------------------------ I 
' General Form 1 
I I ----------------------------------------------------------------~ 

Subscripts -- may be one of eleven forms: 

General subscript 

+c 

(all subscripts) 

+· _J. 

±i±c 

Vector subscript (first subscript, vector 
aligned PE variables only, 
* indicates vector usage) 

* 
*±c 
*+' -l. 

*±i±c 

Vector index subscript (second subscript, used 
only when first index is 
a vector subscript) 

where 

±v 

±v±c 

±v±i 

±v±i±c 

v represents the absolute value of a subscripted 
(first subscript must be a vector subscript and 
second subscript must not be a vector index sub­
script), vector aligned, PE variable 

i represents a nonsubscripted CU INTEGER variable 

c represents an integer constant 
I 

The leading plus signs are optional. : ________________________________________________________________ J 

Whatever subscript form is used, its evaluated result must 
always be greater than zero except where the vector subscript is 
used. In this case, the optional expression following the aster­
isk is a relative PE number and may be less than, equal to, or 
greater than zero. For example, when reference is made to the 
subscripted variable V(I-2), the value of I must be greater than 
2. If, however, Vis a vector aligned variable, reference to 
V(*-2) is legal under any circumstances. 
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Examples: 

ARRAY ( IHOLD) 
NEXT(19) 
MATRIX(I-5) 
A(*) 
B(6,10,2) 
C(*-2, N(*+l,J4+1,K)+J-16,2) 

These are valid subscripted variables for their corresponding 
arrays: 

Array Name 
E 
TABLE 
s 
INVRSE 

Subscripted Variable 
E(S, 100, J) 
TABLE ( 1, 1, 1) 
S(*, J, K) 
INVPSE(I+2, JOB-3,KFRAN) 

Consider the following array, named LIST, consisting of 
two subscript parameters, the first ranging from 1 through 64, 
the second from 1 through 3. 

Assume LIST is a vector aligned PE integer array. 

PE 1 PE 2 PE 3 PE 4 PE 5 PE 6 PE 7 ... PE 63 PE 

Row 1 82 44 4 24 7 10 1 2 

64 

1 

Row 2 12 2 13 16 14 2 31 . . . 7 10 

Row 3 91 14 1 8 31 91 12 13 2 

The correct reference for the number in PE 2 , Row 3, would be 

LIST (2, 3) 

LIST (2,3) has the value 14; LIST (4,1) has the value 24. 

Ordinary mathematical notations might use LIST i,j to repre­
sent any element of the array LIST, In CFD, this is written as 
LIST(I,J), where I equals 1, 2, 3, ... , 64, and J equals 1, 2, or 
3. 

DECLA.RING THE SIZE OF AN ARRAY 

The size of an array is determined by the number of subscript 
parameters of the array and the maximum value of each subscript. 
This information must be given for all arrays before using them 
in a CFD program so that a storage area of sufficient size may 
be reserved. Declaration of this information is made by a 
DIMENSION statement, a COMMON statement, or by one of the expli­
cit specification statements (PE INTEGER, PE REAL, CU INTEGER, 
CU REAL, and CU LOGICAL); each is discussed in "Specification 
Statements." 
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ARRANGEMENT OF ARRAYS IN STORAGE 

Arrays are stored in ascending storage locations, with the 
value of the first of their subscripts increasing most rapidly, 
and the value of the last increasing least rapidly. 

Examples: The array named A, consisting of one subscript 
parameter, which varies from 1 to 5, appears in storage as 

A(l} A(2} A(3) A(4) A(S) 

The vector aligned PE array named B consists of two sub­
script parameters; the first subscript varies over the range from 
1 to 64, and the second varies from 1 to 3. The array appears 
in ascending storage locations in this order 

Row 1 

Row 2 

Row 3 

PE 1 

B(l,1) 

B(l,2) 

B(l,3) 

PE 2 

B(2,l) 

B(2,2) 

B(2,3) 

PE 3 

B(3,1) 

B(3,2) 

B(3,3) 

PE 4 

B ( 4, 1) 

B(4,2) 

B(4,3) 

PE 5 

B ( 5, 1) 

B(S,2) 

B ( 5, 3) 

PE 6 

B ( 6, 1) 

B(6,2) 

B(6,3) 

PE 64 

B(64,l) 

B(64,2) 

B(64,3) 

Note that B(l,2) and B(l,3) follow in storage B(64,1) and 
B(64,2), respectively although they are on different rows. 

The following list is the order of an array named C that 
consists of three subscript parameters; the first subscript 
varies from 1 to 64; the second, from 1 to 2; and the third, 
from 1 to 3. 

PE 1 PE 2 PE 3 PE 4 PE 64 

Row 1 C(l,1,1) C(2,l,1) C(3,1,1) C(4,1,1) . . . C(64,l,1) 

Row 2 C(l,2,1) C(2,2,1) C(3,2,1) C(4,2,1) ... C(64,2,l) 

Row 3 C(l,1,2) C(2,1,2) C(3,1,2) C(4,1,2) . . . C(64,l,2) 

Row 4 C(l,2,2) C(2,2,2) C( 3,2,2) C(4,2,2) . . . C(64,2,2) 

Row 5 C(l,1,3) C ( 2 ,1, 3) C ( 3 ,1, 3) C(4,1,3) . . . C(64,l,3) 

Row 6 C(l,2,3) C(2,2,3) C ( 3, 2, 3) C(4,2,3) . . . C(64,2,3) 

Note that C(l,2,1), C(l,1,2), C(l,2,2), C(l,1,3), and 
C(l,2,3) follow C(64,l,l), C(64,2,1), C(64,1,2), C(64,2,2), 
and C(64,l,3) respectively in storage, although they are on 
different rows. 
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EXPRESSIONS 

Expressions in their simplest form consist of a single 
constant or variable. They may also designate a computation or 
show a relationship between two or more constants and/or vari­
ables. Expressions may appear in arithmetic and logical assign­
ment statements and in certain control statements. 

CFO provides two kinds of expressions: arithmetic and 
logical. The value of an arithmetic expression is always a num­
ber(s) whose type is integer or real. However, the evaluation 
of a logical expression always yields a truth value, true or 
false, for scalar logical expressions, or a 64 bit binary 
string, for vector logical expressions. 

ARITHMETIC EXPRESSIONS 

The simplest arithmetic expression consists of a single 
constant, variable, or subscripted variable of the type integer 
or real. If the constant, variable, or subscripted variable is 
of the type integer, the expression is integer. If it is of the 
type real, the expression is real. 

ExamEles: 

ExEression TiEe of Quantiti TiEe of ExEression 
3 Integer Constant Integer 
I Integer Variable Integer 
3.0 Real Constant Real 
A Real Variable Real 
3.14E3 Real Constant Real 
B(I) Real Variable Real 

In the expression B(I), the subscript I , which must 
always represent a CU integer, does not affect the type of the 
expression. That is, the type of the expression is determined 
solely by the type of constant, variable, or subscripted vari­
able appearing in that expression. 

More complicated arithmetic expressions containing two or 
more constants and/or variables may be formed by using arith­
metic operators that express the computations to be performed. 
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Arithmetic Operators 

The arithmetic operators are: 

Arithmetic Operator 

** 

Definition 

Exponentiation 
Multiplication 
Division 
Addition 
Subtraction 

* 
I 
+ 

RULES FOR CONSTRUCTING ARITHMETIC EXPRESSIONS: These are the 
rules for constructing arithmetic expressions that contain 
arithmetic operators: 

1. All desired computations must be specified explicitly. 
That is, if more than one constant, variable, subscripted 
variable, or function reference (see "SUBPROGRAMS") ap­
pears in an arithmetic expression, they must be separated 
from one another by an arithmetic operator. For example, 
the two vector aligned PE variables A and B will not be 
multiplied if written as 

A ( *) xB ( * ) or A ( * ) B ( *) or A ( *) • B ( *) 

If multiplication is desired, then the expression must 
be written as 

A(*)*B(*) or B(*)*A(*) 

2. No two arithmetic operators may appear in sequence in the 
same expression. For example, these expressions are 
invalid 

A(*)*/B(*) and A(*)*-B(*) 

However, in the expression, A(*)*-B(*), if the - is meant 
to be a minus sign rather than the arithmetic operator 
designating subtraction, then the expression could be 
written as 

A(*)*(-B(*)) 

In effect, -B(*) will be evaluated first, and then A(*) will 
be multiplied with it (for further uses of parentheses, 
see Rule 6). 

3. The type of an arithmetic expression is determined by the 
type of the operands (where an operand is a variable, 
constant, function reference, or another expression) in 
the expression. All variables and constants used in an 
arithmetic or comparison operation must be of the same type 
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because CFD supports no automatic conversion between dif­
ferent types. In an arithmetic statement, the type of the 
defined variable and the type of the arithmetic expression 
to the right of the equal sign must be the same because 
conversion of type across the equal sign is not supported. 

4. The arithmetic operator denoting exponentiation (i.e.,**) 
may be used to raise arithmetic expressions to integer 
constant powers (between 2 and 10 inclusive). 

5. Order of Computation: Where parentheses are omitted, or 
where the entire arithmetic expression is enclosed within a 
single pair of parentheses, the order in which the opera­
tions are performed is as follows: 

Operation 

Evaluation of Functions (see 
"Subprograms") 

Exponentiation (**) 
Multiplication and Division (*and/) 
Addition and Subtraction (+and-) 

Hierarchy 

1st (highest) 

2nd 
3rd 
4th 

Furthermore, if two operators of the same hierarchy 
are used consecutively, the component operations of the 
expression are performed from left to right. Thus the 
arithmetic expression A(*)/B(*)*C(*) is evaluated as if the 
result of the division of A(*) by B(*) was multiplied by C(*). 

For example, the expression 

(A(*)*B(*)/C(*)**2+D(*)) 

is evaluated in this order 

a. C(*)**2 
b. A(*)*B(*) 
c • Y ( * ) /X ( * ) 
d. Z(*)+D(*) 

Call the results X(*) 
Call the results Y(*) 
Call the results Z(*) 
.Final operation 

(exponentiation) 
(multiplication) 
(division) 
(addition) 

In CFD code, an exponent may not be raised to a power. If 
two or more exponents appear, parentheses must be used to 
force left to right processing of the expression. Also, the 
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value of the exponents must be between 2 and 10 inclusive. 
Thus the expression 

A(*)**l6 

must be written as 

(A(*)**4)**4 (values of exponents may vary but 
the basic structure of the expres­
sion must be the same) 

and not as 

A(*)**2**4 

(A(*)**4)**4 

a. A(*)**4 
b. Z(*)**4 

is evaluated as 

Call the results Z(*) 
Final operation 

6. Use of Parentheses: Parentheses may be used in arithmetic 
expressions, as in algebra, to specify the order in which 
the arithmetic operations are to be performed. Where paren­
theses are used, the expression within the parentheses is 
evaluated before the result is used. 

For example, the expression 

( B ( *) + ( (A ( *) + B ( *) ) *C ( *) ) +A ( *) * * 2) 

is evaluated in this order 

a. (A(*) +B (*)) 
b. (X(*)*C(*)) 
c. A(*)**2 
d. B{*)+Y(*)+Z(*) 

Call the results X(*) 
Call the results Y(*) 
Call the results Z(*) 
Final operations 

7. Integer Division: When division is performed using two 
integers, the answer is truncated and an integer answer is 
given. For example, if I=9 and J=2, then the expression 
(I/J) would yield an integer answer of 4 after truncation. 

8. Results of Arithmetic Expressions: The result of any arith­
metic expression will be a vector quantity unless: 

a. The expression consists entirely of the addition and 
subtraction of one or more CU integer variables, con­
stants, and expressions containing only these arithme­
tic operators and data items, 

b. The expression consists of any single real scalar 
variable or constant. 
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In these cases, the result may be a scalar. 

Arrays may be referenced either as vectors (assuming the 
array is PE vector aligned), if the first subscript is a 
vector subscript, or as scalars, if the first subscript is 
a general subscript. (See "Subscripts" for definitions of 
vector and general subscripts.) 

The following list illustrates legal and illegal assignment 
statements using scalar and vector variables and expressions. 

Variable = Expression Legality 

vector = vector legal computation in PE's 
vector = scalar legal computation in PE's 
scalar = scalar legal computation in cut 

scalar = vector illegal 

LOGICAL EXPRESSIONS 

The simplest form of logical expression consists of a single 
logical constant, logical variable, or logical subscripted vari­
able, the value of which is always a 64 bit binary string. 

More complicated logical expressions may be formed by 
using logical and relational operators. These expressions may 
be in one of two forms: 

tThis type of assignment is slow and should be avoided 
if possible. 
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1. Relational operators combined with arithmetic expressions 
whose type is integer or real, 

2. Logical, bit setting, and bit shifting operators and logi­
cal quantifiers combined with logical constants, logical 
variables, or vector logical expressions. 

Item 1 is discussed in the following section, "Relational 
Operators"; item 2 is discussed in "Operators and Quantifiers." 

Relational Operators 

The six relational operators, each of which must be preceded 
and followed by a period, are: 

Relational Operator 
.GT. 
.GE. 
.LT. 
.LE. 
.EQ. 
.NE. 

Definition 
Greater than (>) 
Greater than or equal to (>) 
Less than { <) 
Less than or equal to (<} 
Equal to {=) 
Not equal to (i) 

The relational operators express an arithmetic condition 
which can result in either a 64 bit binary string or a truth 
value. Those conditions that result in binary strings are 
vector relational expressions and those that result in truth 
values (i.e. true or false) are scalar relational expressions. 

All comparisons between arithmetic expressions involving 
only the addition and subtraction of CU integer variables and 
constants are performed in the CU and are scalar relational ex­
pressions. All other comparisons, including those involving 
single PE scalars, are done in the PE's and are vector rela­
tional expressions. If the comparison is performed in the CU, 
the result is a truth value. If the comparison is performed in 
the PE's, the result is a 64-bit binary string. This binary 
string consists of 64 truth values, one for each PE. If the 
comparison is true in PEn, bit n of the result is set to 1. 
If the comparison is false, bit n is set to O. Only arithmetic 
expressions whose type is integer or real may be combined by 
relational operators. For example, assume that the types of 
these variables have been specified as 

Variable Names 

ROOT, E 

A, I, F 

L 

~ 
Real variables: ROOT is a vector, E resides 
in CU 
Integer variables: Fis a vector, A and I 
reside in CU 
Logical variable 
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Then, the following examples illustrate scalar and vector 
relational expressions using the relational operators. 

Examples: Relational Expressions Using Relational Operators: 

Scalar Relational Expressions (no parentheses allowed) 

I.LT.2 
I.GT.A+32 
I+A.EQ.0 

Vector Relational Expressions (the outermost parentheses 
are required) 

(ROOT(*)*E.GT.2.714) 
(E**2.LT.0.0) 
(F ( *) • GE. F ( 1) ) 
(F ( *) • NE. F (I) ) 
(E.GT.97.420E-3) 
( ROOT ( * ) • LE • 0 • 0 ) 
(I. LT. 2) 

Only those conditions involving arithmetic expressions con­
sisting solely of addition and subtraction of CU integer vari­
ables and constants can be scalar relational expressions. All 
others will be vector relational expressions. Unlike arithmetic 
expressions, the use of single PE scalars results in a vector 
relational expression. 

Operators and Quantifiers 

Logical Operators 

The three logical operators, each of which must be preceded 
and followed by a period are as follows. a and b represent 
logical variables, or vector relational expressions; they are 
64 bit binary strings. a and b refer to bit n of a and b. 

-n -n 
a and bare not changed by logical operators. 

Logical Operator Definition 

.NOT. a If a is 1, then .NOT. a is 0. 
-n -n 

If a is o, then 
-n 

.NOT. a -n is 1. 

a .AND. b If a and b are both 1, then a .AND. b 
-n -n -n -n 

is 1. If either a or b or both are o, 
-n -n 

then a .AND. b is o. 
-n -n 
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a .OR. b If a is 1 orb is 1 or a and b are 
-n -n -n -n 

both 1, then a .OR. b is 1. If a and b -n -n -n -n 
are both 0' then a • OR. b is 0 • 

-n -n 

The operand(s) and result of all three logical operators 
are 64-bit binary strings. 

Two logical operators may appear in sequence only if the 
second one is the logical operator .NOT •• 

Bit-Setting Operators 

The two bit-setting operators, both of which must be pre­
ceded and followed by a period, are as follows. a represents a 
logical constant or variable, or a vector relational expres­
sion. a is a 64-bit binary string. c is a range of PE's. The 
definitTon of a range of PE's follows-the discussion of the bit 
setting operators. ~ is not changed by bit setting operators. 

Operator 

a .TURN ON. c 

a .TURN OFF. c 

Definition 

Turn on (set to 1) all bits of a that are 
specified in range c. A specified bit may 
already be on; this-has no adverse effect 
on the execution of this operation. 

Turn off (set to 0) all bits of a that are 
specified in range c. A specified bit may 
already be off; this has no adverse effect 
on the execution of this operation. 

A range of PE's is defined as a list of range elements, each 
of which specifies a single PE, or group of adjacent PE's to be 
turned on or off. The basic structure of the range element is the 
PE number. A PE number takes the form of a general subscript. 
It's value when evaluated must lie between 1 and 64 inclusive. 
Range elements consist of PE numbers, or range specifiers. There 
are three range spe'cif iers, each of which must be preceded and 
followed by periods. The four kinds of range elements and their 
definitions are listed below. d and e represent PE numbers. 

Range Elements 

d 

.FIRST. d 

Definition 

Evaluated and set bitd according to the bit 

setting operator specified. 

Evaluated and set all bits between bit1 and 

bitd inclusive according to the bit setting 

operator specified. 
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.LAST. d 

d .TO. e 

Evaluated and set all bits between 
bit(64-£+1) and bit64 inclusive according 

to the bit setting operator specified. 

Evaluated and~ (this range element is un­
defined if dis greater thane) and set all 
bits between bitd and bite inclusive accord-

ing to the bit setting operator specified. 

Either bit setting operator must be followed by a list of 
one or more range elements. If more than one range element is 
provided, they must be separated by commas. The bit setting 
operator .TURN ON. may not be used in conjunction with the logi­
cal constant ON and .TURN OFF. may not be used with OFF. The 
result of a bit setting operation is a 64-bit binary string. 

Bit-Shifting Operators 

The four bit-shifting operators, each of which must be 
preceded and followed by a period, are listed below. a repre­
sents a logical constant or variable, or a vector relational 
expression. f represents a shift distance. A shift distance 
is identical In syntax to a general subscript. The value off 
is computed modulo 64 and the result is between O and 63 inclu­
sive. a is not changed by bit-shifting operators. 

Operator 

a .SHL. f 

a .SHR. f 

a .RTL. f 

a .RTR. f 

Definition 

Shift a (a 64 bit binary string) left 
(end orf) f bits, filling on the right 
with zeros7 

Shift a right (end off) f bits, filling 
on the-left with zeros. -

Rotate a left (end around) f bits. Bits 
rotated-off the left end reappear on the 
right end. 

Rotate a right (end around) f bits. Bits 
rotated-off the right end reappear on the 
left end. 

The logical constant OFF may not be used in conjunction with 
bit-shifting operators; ON may be used only with .SHL. and .SHR •• 
The result of a bit-shifting operation is a 64-bit binary string. 

Logical Quantifiers 

Logical quantifiers are used to reduce a 64-bit binary 
string to a single truth value. Since the result of a compari­
son in the PE-sis a 64-bit binary string, a logical quantifier 
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must be used if a branch in the program is to be controlled by 
such a comparison. s_ stands for a logical variable, a vector 
relational expression, or a vector logical expression (logical 
expressions will be defined later). (All of the items listed 
above are in fact vector logical expressions.) s_, of course, is 
in the form of a 64-bit binary string. The four logical quanti­
fiers are as follows: ~ refers to bit n of 9:.• 9:. is not changed 
by logical quantifiers. 

Quantifier 

.ANY. (s_) 

• ALL. (s_) 

• NOT ANY. (s_) 

• NOT ALL. (9:.) 

Definition 

If 9:.n=l for any n then .ANY. (s_) is true. 

If s.n=0 for all n then .ANY. (9:.) is false • 

• ANY. is equivalent to a logical OR of all 
64 bits • 

If s.n=l for all n then .ALL. (s_) is true. 

If ~=0 for any n then .ALL. (9:.) is false . 

• ALL. is equivalent to a logical AND of all 
64 bits. 

If s.n=l for any n then .NOT ANY. (9:.) is false • 

If s.n=0 for all n then .NOT ANY. (2_) is true • 

• NOT ANY. is equivalent to a logical AND 
of the logical complements of all 64 bits. 

If s_n=l for all n then .NOT ALL. (s_) is false • 

If 9:.n=0 for any n then .NOT ALL. (9:.) is true • 

• NOT ALL. is equivalent to a logical OR of 
the logical complements of all 64 bits. 

The parentheses surrounding the operand of a logical quanti­
fier are required. See page 1.15 for restrictions in the use of 
quantifiers. 

Logical Ex2ressions 

There are two kinds of logical expressions in CFD code. 
Scalar logical expressions control the flow through the program 
and vector logical expressions control the pattern of enabled 
and disabled PE's during computation. No more than one logical, 
bit shifting, or bit setting operator may appear in a single 
logical expression. Also, only one logical quantifier may appear. 
This restriction does not apply to the logical operator .NOT •• 
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,---------------------------------------------------------------~ 
: General Form I 
•---------------------------------------------------------------~ 

Vector logical expressions 

a 
a .AND. b - -a .OR. b 
a • TURN -ON • C -a .TURN 
a .SHL. 
a • SHR. 
a • RTL. -a .RTR. 

where 

OFF. C 

f 
f 
f 
f 

a and bare logical variables or constants, or 
vector-relational expressions (remember the 
required parentheses). They are 64-bit binary 
strings. a orb may be the logical complement 
of a orb (.NOT7 a, .NOT. b). 
c is a range of PE's. -
f is a shift distance (in general subscript syntax). 

Scalar logical expressions 

h 
7°ANY. (9:) 
• ALL. (.9:) 
.COM. n 
• NOT ANY. (9:) 
• NOT ALL. (9:) 
.NOT COM. n 

where his a scalar relational expression (no parentheses 
allowed). 
~ is a vector logical expression 
~ is an I/0 request number 

ALL OF THE ABOVE GENERAL FORMS ARE SUBJECT TO THE RESTRIC­
TIONS GIVEN IN THE DISCUSSION OF EACH OPERATOR OR QUANTI­
FIER. 

_______________________________________________________________ J 

Only those expressions which, when evaluated, have the form 
of a 64-bit binary string may be combined with the operators and 
quantifiers mentioned above to form logical expressions. 

Assume that the types of the variables are specified as 

Variable names 
ROOT, E,X,Y 
A,I,F 
L,M 

~ 
Real variables: ROOT is a vector; X,Y reside in CU 
Integer variables: Fis a vector; A,I reside in CU 
CU logical variables 
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Then the following illustrates both scalar and logical 
expressions. All parentheses appearing in these examples are 
required. 

Examples: Scalar Logical Expressions 

I.LT.2 
I. GT. A+32 
I+A.EQ.0 
• ANY • ( ( ROOT ( *) *E . GT • 2 • 714) ) 
• NOT ALL. (L) 
• NOT ANY. (MODE) 
.ALL.({X.GT.Y)) (comparison of CU real variables is 

done in PE's) 
• ALL. ( (F ( *) • EQ. F ( 1) ) ) 
.NOT ALL. ( (ROOT(*) .GT.0.0) .OR.M) 
.NOT ANY. ((E.GT.ROOT{*)).AND.MODE) 

Examples: Vector Logical Expressions 

( F ( *) • LE. 0) • TURN OFF. 1, 6 4 , A. TO. 3 2 
(ROOT(*) .GT.3.14159) .AND.L 
MODE.OR.L 
(X.GT.Y) .AND •• NOT.MODE 
• NOT. (F ( *) • EQ. 0) 
ON.SHL. A-6 
OFF.TURN ON. A .TO. I 
MODE.RTL. 2 
L.OR •• NOT. (ROOT(*-I)+X.GT.E**2-Y) 
MODE 

Order of Computations in Logical Expressions 

The heirarchy of operations in a logical expression is given 
below. Operations with higher hierarchy (smaller numbers) are per­
formed first. No more than one logical, bit shifting or bit set­
ting operator may appear in a logical expression. Also, only one 
logical quantifier may appear. 

Operation 

Evaluation of functions 
Exponentiation (**) 
Multiplication and di vision (* and /) 
Addition and subtraction (+and-) 
. LT. , • LE . , • EQ • , • GE • , • GT. , • NE • 
.NOT. 
.AND., .OR., .TURN ON., .TURN OFF., 

.SHL., .SHR., .RTL., .RTR • 
• ANY., .ALL., .NOT ANY., .NOT ALL. 
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1st (highest) 
2nd 
3rd 
4th 
5th 
6th 
7th 

8th ( lowest) 



Use of Parentheses in Logical Expressions 

Parentheses must be used to surround both vector rela­
tional expressions and the operand of a logical quantifier. 
If a vector relational expression is quantified, two sets of 
parentheses are required. 

Example: 

IF (.ANY. ( (RES.GT.EPSLON))) GO TO 5 

Aside from these uses, parentheses are prohibited except for 
use within vector relational expressions to alter the order 
of arithmetic operation. 

Evaluation of Vector Relational Expressions 

Vector relational expressions are evaluated in all PE's 
unless explicitly masked by the programmer. 

Example: 

LOGICL = (A(*)/B(*).GT.C(*)) 

The operations are carried out in all PE's. If A(*), B(*), 
and C(*) had been defined under the mode pattern MASK, then they 
are undefined in PE's that were not enabled by MASK. This could 
lead to overflow of A(*)/B(*} and certainly leads to meaningless 
results in those PE's. This possibility can be avoided by use of 
the statement 

LOGICL = MASK.AND. (A(*)/B(*) .GT.C(*)) 
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ARITHMETIC AND LOGICAL ASSIGNMENT STATEMENT 

, 7 
I General Form I 
----------------------------------------------------------------~ 

a = b 

where 

Note: 

a is any subscripted or nonsubscripted variable 

bis any arithmetic or logical expression 

Variable a must be of the same type as expression b. 
That is, 1f a is a real variable then b must be a 
real express1on. If a is a logical variable then b 
must be a vector logical expression (logical vari­
ables do not store truth values, only 64 bit mode 
patterns). If a is integer then b must be integer. 
If a is a vector, it's first subscript must consist 
ent1rely of an asterisk. THE DEFINED VARIABLE IN 
AN ARITHMETIC STATEMENT MUST NOT BE A ROTATED VECTOR. 

________________________________________________________________ J 

The CFD arithmetic and logical assignment statements closely 
resemble conventional algebraic equations; however, the equal 
sign of the CFD arithmetic statement specifies replacement rather 
than equivalence. That is, the expression to the right of the 
equal sign is evaluated, and the resulting value replaces the 
current value of the variable to the left of the equal sign. 

Assume that the type of the following variables has been 
specified as: 

Variable Names ~ 
I, J, w Integer variables: J, w are vectors, I resides 

in the CU 
A, B, c, D Real variables: A is a vector 
G, H cu logical variables (64 bi ts) 

Then, the following examples illustrate valid arithmetic and 
logical assignment statements using constants, variables, and 
subscripted variables of various types. 
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Statements 

A(*) = B 

I = I + 1 

A(*) = C*D 

G = ON 

H = .NOT.G 

G = ( A ( *) • GT . 3 . 0 ) 

H = G.AND .. NOT. (A(*).GT.B) 

MODE= ON.TURN OFF.I 

G = H.OR. (C.LT.D) 

MODE= MODE.RTL.2 

Description 

The values of A are replaced by the 
current value of B. 

The value of I is replaced by the 
value of I+ 1. 

The most significant part of the 
product of C and D replaces the 
values of A. 

The value of G is replaced by the 
logical constant ON. 

His replaced by the logical comple­
ment of G (see "Logical Operators"). 

For each PE where A> 3.0 set bit 
n n 

of G to 1. For all others, bit = O. n 

For each PE where A> B set bit of 
n n 

a temporary result to 1. The result 
of a logical AND between G and the 
logical complement of this temporary 
result is H. 

All PE's except PEI are enabled. 

Bit is set to 1 for all PE's in n 
which either C <Dor bit of His 1. n 

PE assumes the enabled/disabled n 
status of PEn+ 2 (end around). 

Note: The use of MODE, MBITl, or MBIT2 on the right side of a 
logical assignment statement when the left side is a CU logical 
variable inhibits overlap and should be avoided if possible. 
On the other hand, the use of MODE, MBITl, or MBIT2 on the left 
side of a logical assignment statement is preferable to the use 
of a CU logical variable when the right side is a vector rela­
tional expression. 
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CONTROL STATEMENTS 

Normally, CFD statements are executed sequentially; that is, 
after one statement has been executed, the statement immediately 
following it will be executed. This section discusses the state­
ments that may be used to alter and control the normal sequence 
of statement execution in the program. Also, the Vector Logical 
IF statement as a means of temporarily changing the mode is dis­
cussed here because of syntactic similarities with the Scalar 
Logical IF statement. 

GO TO STATEMENTS 

The GO TO statements cause control to be transferred to the 
statement specified by a statement number. The three GO TO state­
ments are: unconditional GO TO, computed GO TO, and assigned 
GO TO. Every time the same unconditional GO TO statement is exe­
cuted, a transfer to the same specified statement is made. How­
ever, the computed and assigned GO TO statements cause control 
to be transferred to one of several statements, depending upon 
the current value of a particular variable. 

Unconditional GO TO Statement 

~---------------------------------------------------------------, I I I General Form I 
~---------------------------------------------------------------, I GO TO X I 
I I 
I h . I 
1

1 
w ere X is an executable statement number , 

- I ~---------------------------------------------------------------· 
This GO TO statement causes control to be transferred to 

the statement specified by the statement number. Every subse­
quent execution of this GO TO statement results in a transfer to 
that same statement. 

Example: 

S0*GO TO 25 
10 A(*)=B(*)+C(*) 

. . 
25 C(*) = E(*)**2 . . . 

Explanation: Every time statement 50 is executed, control is 
transferred to statement 25. Note that the statement following 
an unconditional GO TO must be numbered. 
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Computed GO TO Statement 

r-------------------------------------------------------------4 I 
: General Form I 
~-------------------------------------------------------------4 

where ~l' ~ 2 , ••• ,xn are executable statement numbers, 

i is a nonsubscripted CU integer variable 

L _____________________________________________________________ J 

This statement causes control to be transferred to the 
statement numbered ~l' ~ 2 , ~ 3 , ••• , or ~n' depending on whether 

the current value of i is 1, 2, 3, ••• , or n, respectively. If 
the value of i is outside the allowable range, the next state­
ment is executed. 

Example: 

*GO TO (25, 10, SO, 7), ITEM 
l00*CALL SUBROT 

5 0 A ( *) = B ( * ) +C ( *) 

7 C(*) = E(*)**2+A(*) 

2 5 L = ( C ( * ) . GT • D ( * ) ) . AND • L 

10 B(*) = 21.3E02 

Explanation: If the value of the integer variable ITEM is 1, 
statement 25 will be executed next. If ITEM is equal to 2, 
statement 10 will be executed next, and so on. If ITEM is 
outside the range 1,4 statement 100 is executed next. 
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ASSIGN and Assigned GO TO Statements 

r-------------------------------------------------------------, 
l Gener al Form I 
L-------------------------------------------------------------1 

ASSIGN i TO m 

where i is an executable statement number, 

~ 1 ,~2 ,~3 , ••• ,xn are executable statement numbers, 

mis a nonsubscripted CU integer variable to which 
Ts assigned one of these statement numbers: ~l' 
X21X31•• .X • - - -n 

L-------------------------------------------------------------
The assigned GO TO statement causes control to be transferred 

to the statement number7d x 1 ,~2 ,x3 ,.:.,or xn, depending on 
whether t~e current assignment ot ~ is ~ 1 ,~2 ,~3 , .•. ,or ~. For 
example, in the statement n 

* GO TO N , ( 10 , 2 5 , 8) 

if the current assignment of the integer variable N is statement 
8, that statement is executed next. If the current assignment 
of N is statement 10, that statement is executed next. Similarly, 
if N is assigned statement number 25, that statement is executed 
next. 

The current assignment of the integer variable mis deter­
mined by the last ASSIGN statement executed. Only an ASSIGN 
statement may be used to initialize or change the value of the 
integer variable m. The value of the integer variable mis not 
the integer statement number; ASSIGN 10 TO I is not the-same 
as I = 10. 

Example 1: 

*ASSIGN 50 TO NUMBER 
l0*GO TO NUMBER, (35, 50, 25, 12, 18) 
35 A(*) = 1.0 

50 A(*) = B(*)+C(*) 
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Computed GO TO Statement 

r-------------------------------------------------------------7 
I General Form I 
r-------------------------------------------------------------, 
I 
I 
I 
I 
I l where 
I 

x 1 , x 2 , .. . ,x 
- - -n 

are executable statement numbers, 

I 
I 
I 

i is a nonsubscripted CU integer variable 
I 
I 
I L _____________________________________________________________ J 

This statement causes control to be transferred to the 
statement numbered ~l' ~ 2 , ~ 3 , ••• , or ~n' depending on whether 

the current value of i is 1, 2, 3, ••• , or n, respectively. If 
the value of i is outside the allowable range, the next state­
ment is executed. 

Example: 

*GO TO (25, 10, 50, 7), ITEM 
l00*CALL SUBROT 

5 0 A ( *) = B ( *) +C ( *) 

7 C(*) = E(*)**2+A(*) 

2 5 L = ( C ( *) • GT. D ( *) ) • AND. L 

10 B(*) = 21.3E02 

Explanation: If the value of the integer variable ITEM is 1, 
statement 25 will be executed next. If ITEM is equal to 2, 
statement 10 will be executed next, and so on. If ITEM is 
outside the range 1,4 statement 100 is executed next. 
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ASSIGN and Assigned GO TO Statements 

r-------------------------------------------------------------, 
I Gener al Form I 
L-------------------------------------------------------------1 

ASSIGN i TO m 

where i is an executable statement number, 

~ 1 ,~2 ,~3 , ••• ,xn are executable statement numbers, 

mis a nonsubscripted CU integer variable to which 
is assigned one of these statement numbers: ~l' 
x

2
,x

3
, ••• x . 

- - -n 

L-------------------------------------------------------------
The assigned GO TO statement causes control to be transferred 

to the statement number7d x 1 ,~2 ,x3 ,.: .,or xn' depending on 
whether t~e current assignment ot ~ is ~ 1 ,~2 ,~3 , ••. ,or xn. For 
example, in the statement 

*GO TON, (10, 25, 8) 

if the current assignment of the integer variable N is statement 
8, that statement is executed next. If the current assignment 
of N is statement 10, that statement is executed next. Similarly, 
if N is assigned statement number 25, that statement is executed 
next. 

The current assignment of the integer variable mis deter­
mined by the last ASSIGN statement executed. Only an ASSIGN 
statement may be used to initialize or change the value of the 
integer variable m. The value of the integer variable mis not 
the integer statement number; ASSIGN 10 TO I is not the-same 
as I= 10. 

Example 1: 

*ASSIGN 50 TO NUMBER 
l0*GO TO NUMBER, (35, 50, 25, 12, 18) 
35 A(*) = 1.0 

50 A(*) = B(*)+C(*) 
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Explanation: Statement 50 is executed immediately after state­
ment 10. Note that the statement following an assigned GO TO 
must be numbered. 

Example 2: 

*ASSIGN 10 TO ITEM 

13*GO TO ITEM, (8, 12, 25, 50, 10) 
12 A(*) = 0.0 

8 A ( *) = B ( *) +C ( *) 

10 B(*) = C(*)+D(*) 
*ASSIGN 25 TO ITEM 
*GO TO 13 

. 
25 C(*) = E(*)**2 

Explanation: The first time statement 13 is executed, control 
is transferred to statement 10. On the second execution of 
statement 13, control is transferred to statement 25. 

THE IF STATEMENTS 

There are two kinds of IF statements: the Scalar Logical IF 
statement and the Vector Logical IF statement. 

The Scalar Logical IF statement enables the user to evaluate a 
scalar logical expression and execute or skip a specified state­
ment depending on whether or not the scalar logical expression 
is true or false. The mode is not changed by a Scalar Logical 
IF statement. 

The Vector Logical IF statement enables the user to set the mode 
temporarily to the 64-bit result of a vector logical expression. 
After the mode is set, the Vector Arithmetic Assignment state­
ment specified is executed (unlike a Scalar Logical IF, the 
specified statement is always executed) and the old mode is then 
restored. 
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Scalar Logical IF Statement 

,-----------------------------------------------------------------, I General Form I 

where a is a scalar logical expression 

sis any statement except a specification statement, 
DO statement, or another logical IF statement 

The Scalar Logical IF statement is used to evaluate the 
logical expression a and to execute or skip statements, depend­
ing on whether the expression is true or false, respectively. 

Example 1: 

5*IF(J.LE.0) GO TO 25 
10 C(*) = D(*)+E(*) 
15*IF(.ANY.((A(*).GT.B(*))))C(*)=2.0*A(*)/C(*) 
20 MODE= G.AND.H 

25 W(*) = X(*)**2 

E~lanation: In statement 5, if the expression is true (i.e., 
J is less than or equal to 0), the statement GO TO 25 is 
executed next, and control is passed to statement 25. If the 
expression is false (i.e., J is greater than 0), the statement 
GO TO 25 is ignored·, and control is passed to statement 10. 

In statement 15, if the value of the expression is true 
(i.e., A is greater than Bin any PE), the values of C{*), in 
PE's enabled by MODE, are replaced by the values of the expres­
sion 2.0*A(*)/C{*), and statement 20 is executed. If the value 
of the expression is false, the values of C(*) remain unchanged, 
and statement 20 is executed next. Note that the vector rela­
tional expression is surrounded by parentheses and that the 
operand of an .ANY. or .ALL. operation must be surrounded by 
parentheses. When a vector relational expression is used as the 
operand of an .ANY. or .ALL. both pairs of parentheses are 
required. 
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Example 2: Assume that P and Qare logical variables. 

S*IF(.ANY. (P.OR •• NOT.Q) )A(*) = B(*) 
10 C(*) = B(*)**2 

Explanation: In statement 5, if the expression is true, the 
statement A(*)=B(*) is executed next, for PE's enabled by MODE, 
and control continues to statement 10. If the expression is 
false, the statement A(*)=B(*) is skipped and statement 10 is 
executed. 

Example 3: Assume that A and Bare vector aligned PE arrays 

. 
10 * IF ( • ALL. ( (A ( *) • GT. B ( *) ) ) ) A ( *) = A ( *) - B ( *) 
20 B(*)=B(*)*2.0 

Explanation: In statement 10, if the expression is true, the 
statement A(*)=A(*)-B(*) is executed, for PE's enabled by MODE, 
and control passes to statement 20. If the expression is false, 
control passes directly to statement 20 and the statement 
A(*) = A(*)-B(*) is skipped. 

Vector Logical IF Statement 

,-------------------------------------------------------------, I General Form l 
~-----------------------------------------------------------J 
I I 
1 IF (a) S I 
I - - I 
I I 
: where ~ is a vector logical expression : 

: sis a vector arithmetic assignment statement l 
I - I 

~------------------------------------------------------------• 
The Vector Logical IF statement is used to evaluate the 

logical expression a and to execute statements using the result 
of~ (a 64-bit binary string) as the temporary-mode. 

Example 1: 

* IF ( (A ( *) • LT. 0. 0) ) A ( *) = 0 • 0 . 
• . 

Ex~lanation: The value of A is set to 0.0 in all PE's in 
which A was originally negative. Note that the parentheses 
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surrounding the vector logical expression and the parentheses 
in the vector relational expression are both required. 

Example 2: Assume Land Mare CU logical 

• • 
*IF (.NOT.L.OR.M)A(*) = B(*) 

Explanation: The complement of Lis logically OR'ed with M 
(both are 64-bit binary strings) and the statement A(*)=B(*) 
is executed using the result of the OR as the mode (A is set 
equal to Bin every PE , where bit n of Mis on or bit n of 
Lis off). n 

Example 3: 
• . . 

*IF(.NOT.MODE)A(*) = 0.0 . . . 
Explanation: A is set to zero in all PE's disabled by MODE. 

DO Statement 

r---------------------------------------------------------------, I General Form I 
L---------------------------------------------------------------

DO 

where 

End of DO Initial Test 
range variable value value Increment 

X i = 
xis the statement number of an executable statement 
that follows the DO statement 

i is a nonsubscripted CU integer variable (i must 
never be less than or equal to zero) 

~1 and m2 are signed or unsigned CU integer variables 
or integer constants, or the sum or difference of a 
CU integer and a constant (±v, +c, ±v±c where v is a 
CU integer and c is an integer constant). When m1 
~2 are evaluatea, both results must be greater tnan 
zero. m3 must be an integer scalar constant whose 
sign is-that of the expression (~2-~1). (~3, is 
optional: if it is omitted, its value is assumed to 
be +1. In this case, the preceding comma must also 
be omitted. ) L ______________________________________________________________ J 
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The DO statement is a command to execute repeatedly the 
statements that follow, up to and including the statement 
numbered x. The range of a DO is that set of statements that 
will be executed repeatedly; i.e., it is the sequence of con­
secutive statements immediately following the DO statement. 
The first time the statements in the range of the DO are 
executed, i is initialized to the value ~

1
; each succeeding 

time i is incremented by the value ~
3

• The statements within 

the range of the DO loop will be executed for all values of 
i that are between m

1 
and m2 inclusive. The test is performed 

at the end of the loop; therefore, all DO loops are executed 
at least once. Deliberately specifying a DO loop in which the 
sign of the increment is wrong is an error. For example: 

l0*DO 40 I= L,10,-1 
20*DO 40 J = 2,16,-1 
30*DO 40 K = 16,2 
40*CONTINUE 

(where L=2) 

In the above example, all three DO statements are in error. 
Statement 10 will compile, however, as the value of L cannot 
be known at compile time. If statement 10 was executed, the 
statements within the range of the DO loop would be executed 
once. Statements 20 and 30, however, are recognized as errors. 

Programming Considerations in Using a DO Loop 

1. The index of a DO statement (i) may not be changed by a 
statement within the range of the DO loop, or by any 
subprograms that are called within the range of a DO loop. 

2. A DO statement may contain other DO statements within 
its range. All statements in the range of an inner DO 
must be in the range of the outer DO. A set of DO state­
ments satisfying this rule is called a nest of DOs. 

Example 1: 

*DO 50 I= 1, 4 

A(*,I) = B(*,I)**2 

*DO 50 J = 1, 5 

50 C(*,J+l) = A(*,I) 
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Example 2: 

*DO 10 INDEX= L, M 

N =INDEX+ K 

*DO 15 J = 1, 

15 TABLE(*,J,N) 

100, 2 l 
= SUM(* ,J ,N)-1.) 

10 B(*,N) = A(*,N) 

Range of 
inner DO 

Range of 
outer DO 

3. A transfer out of the range of any DO loop is permissible at 
any time. 

4. If, and only if, a transfer is made from the range of an 
innermost DO loop, transfer back into that loop is allowed, 
provided the index (i) is not changed outside the range. 
A transfer back into-the range of any other DO within a 
nest of DOs is not permitted. 

Example: 

00 00 

...----00-) 1 
_______ oo_) 4 

------- 2 ~----5 

....__ __ ) 3 

ExtManation: The transfers specified in the example by the 
nu ers 1, 2, and 3 are permissible~ those specified by 4, 
5, and 6 are not. 

5. The index (i) may be changed by statements outside the range 
of the DO statement only if no transfer is made back into 
the range of the DO statement. 

6. The last statement in the range of a DO loop (statement x) 
may not be a GO TO, STOP, RETURN, or another DO statement. 
Also, the l~st statement may not be a logical IF statement 
containing any of those statements. 
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CONTINUE Statement 

.-------------------------------------------------------------, 
I General Form I 
~-------------------------------------------------------------1 
I CONTINUE I ._ _____________________________________________________________ J 

CONTINUE is a dummy statement which may be placed anywhere 
in the source program without affecting the sequence of execu­
tion. It may be used as the last statement in the range of a 
DO statement to avoid ending the DO loop with any of the state­
ments that are not permitted as the last statement in the range 
of a DO. 

Example 1: 

*DO 30 I= 1, 20 
A(*,I) = B(*+I) 

*IF(.ANY. ((A(*,I) .LT.0.0))) RETURN 
30 *CONTINUE 

C(*) = A(*,l)*B(*) 

Explanation: The CONTINUE statement is used as the last state­
ment in the range of the DO statement, to avoid ending the DO 
loop with an IF statement containing a RETURN. 

Example 2: 

*DO 30 I=l,20 
*IF ( • ANY • ( ( A ( * , I ) • GT • B ( * , I) ) ) ) GO TO 4 0 
A(*,I) = B(*,I) 

*GO TO 30 
40 A(*,I) = 0.0 
30*CONTINUE 

Explanation: The CONTINUE statement provides a branch point 
that enables the programmer to bypass the execution of 
statement 40. 
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STOP Statement 

1--------------------------------------------------------------7 
I General Form I 
1--------------------------------------------------------------~ I I 
I STOP I 
I I l ______________________________________________________________ J 

This statement terminates the execution of the object 
program. 

END Statement 

,--------------------------------------------------------------7 
I General Form I 
·--------------------------------------------------------------~ I I , no , 
I I l ______________________________________________________________ J 

The END statement is a nonexecutable statement that defines 
the end of a source program or source subprogram for the compiler. 
Physically, it must be the last statement of each program or 
subprogram. Execution of an END statement is equivalent to 
execution of a STOP statement. 
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SPECIFICATION STATEMENTS 

The specification statements provide the compiler with infor­
mation about the nature of the data used in the source program. 
In addition, they supply the information required to allocate stor­
age locations for this data. Specification statements describing 
data must appear at the beginning of the source program, and must 
precede any statements which refer to that data. The specifica­
tion statements are the IMPLICIT, Type, DIMENSION, COMMON, SCRATCH, 
EQUIVALENCE, and DATA statements. All variables used in the program 
must appear in at least one of these statements, other than the DATA 
statement. 

THE TYPE STATEMENTS 

There are two kinds of type statements: the IMPLICIT 
specification statement and the explicit specification statements. 

The IMPLICIT specification statement enables the user to specify 
the type and residence (CU or PE) of a group of variables or arrays 
according to the initial character of their names. 

The explicit specification statements enable the user to 

1. Specify the type and residence (CU or PE) of a variable or 
array according to its particular name. 

2. Specify the dimensions of an array. 

IMPLICIT Statement 

1------------------------------------------------------------------, 
I I 
1 General Form 1 
I I 
1 __________________________________________________________________ I 

where type represents one of the following: 

CU INTEGER 
CU REAL 
CU LOGICAL 

PE INTEGER 
PE REAL 

~1 ,~2 , ... represent single alphabetic characters each 

separated by commas, or a range of characters (in 
alphabetic sequence) deonted by the first and last 
characters of the range separated by a hyphen (e.g., 
(A-D)) 

1-------------------------------------------------------------------1 

2.39 



IMPLICIT statements, if specified, should be the first 
statements in a program, except for the FUNCTION, SUBROUTINE, 
or BLOCK DATA statements in a subprogram. 

The IMPLICIT type statement enables the user to declare the 
type and residence of the variables appearing in his program by 
specifying that variables beginning with certain designated 
letters are of a certain type. 

Example 1: 

*IMPLICIT PE REAL (A-H, 0-Z), CU INTEGER (I-N) 

Explanation: All variables beginning with the characters I through 
N are declared as CU INTEGER. 

All other variables (those beginning with the characters 
A through Hand O through Z) are declared as PE REAL. 

Note that the statement in Example 1 performs the same 
function of typing variables as the predefined convention (see 
"Type Declaration by the Predefined Specification"). 

Example 2: 

*IMPLICIT CU INTEGER (A-H), CU REAL (I-K), CU LOGICAL (L,M,N) 

Explanation: All variables beginning with the characters A through 
Hare declared as CU INTEGER. All variables beginning with the 
characters I through Kare declared as CU REAL. All variables 
beginning with the characters L, M, and N are declared as CU 
LOGICAL. 

Since the remaining letters of the alphabet (0 through Z) 
were left undefined by the IMPLICIT statement, the predefined 
convention will take effect. Thus, all variables beginning with 
the characters O through Z are declared as PE REAL. 
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Explicit Specification Statements 

r--------------------------------------------------------------. 
I General Form I 
L--------------------------------------------------------------~ 
~ ~(kl) ,b(~2) , ••• ,~(kn) 

where ~is 

CU INTEGER 
CU REAL 
CU LOGICAL 

PE INTEGER 
PE REAL 

a,b, ••• ,z represent variable, array, or 
function-names (see "SUBPROGRAMS") 

(k1), (k2) , ••• ,(k) are optional; each k is 
composed of one 0¥ the following array allocation 
specifications: 

PE variables only 

in which i 1 ,i 2 , and i 3 are unsigned integer constants. 
If the first index is an asterisk, the variable must 
reside in the PE's because an asterisk denotes vector 
alignment. In vector aligned arrays, the range of the 
first index is taken to be 64. Only PE arrays may be 
vector aligned, or have more than one subscript. 

L--------------------------------------------------------------~ 
The explicit specification statements declare the type 

(INTEGER, REAL, or LOGICAL) and residence (CU or PE) of a vari­
able or array by its name, rather than by its initial character. 
This differs from the other ways of specifying the type and 
residence of a variable or array (i.e., the predE~ined conven­
tion and the IMPLICIT statement). Also, the information neces­
sary to allocate storage for arrays (dimension information) may 
be included within the statement. However, if this information 
does not appear in an explicit specification statement, it must 
appear in a DIMENSION or COMMON statement (see "DIMENSION 
Statement" or "COMMON Statement"). 

In the same manner in which the IMPLICIT statement over­
rides the predefined convention, the explicit specification 
statements override the IMPLICIT and predefined convention. 
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Example 1: 

*CU INTEGER ITEM,VALUE(8) 

Explanation: This statement declares the variables ITEM and 
VALUE to be CU INTEGERS. VALUE is an array, 8 words long. Both 
ITEM and VALUE must appear in an EQUIVALENCE statement, so that 
they may be assigned a CU address. 

Example 2: 

*PE REAL ALPHA(*) ,BETA,U(*,64) ,V(*,64) ,Z(*,64) 

Explanation: This statement declares ALPHA,BETA,U,V, and z to 
be PE REAL variables. ALPHA,U,V, and z are also dimensioned. 
Note that BETA is PE REAL by predefined convention. One reason 
BETA might be present is because: 

Any variable used in a program must appear in at least 
one specification statement, other than a DATA statement, 
so that it may be put in the symbol table. 

An Explicit type statement is an excellent method of including 
PE scalars that do not appear elsewhere. 

ADDITIONAL SPECIFICATION STATEMENTS 

DIMENSION Statement 

r----------------------------------------------------------------, I General Form I 
I I r----------------------------------------------------------------

DIMENSION ~ 1 (k1 ) ,~2 (k 2 ) ,~3 (k 3) , ••• ,an(kn) 

where a 3 , ••• , a are array names 
- -n 

k 1 , k 2 , k 3 , .... ,kn are each composed of one of the 

following array allocation specifications: 

: . l ,1.2 

*,i2,i3 

PE variables only 

in which i
1
,i

2
, and i

3 
are unsigned integer constants. 

If the first index is an asterisk, the variable must 
reside in the PE's because an asterisk denotes vector 
alignment. In vector aligned arrays, the range of the 
first index is taken to be 64. Only PE arrays may be 
vector aligned, or have more than one subscript. 

~----------------------------------------------------------------
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The information necessary to allocate storage for arrays 
used in the source program may be provided by the DIMENSION 
statement. The following examples illustrate how this informa­
tion may be declared. 

Examples: 

*DIMENSION A(l0), ARRAY (*,5,5), LIST(*,100) 
*DIMENSION B(*,50) ,TABLE(*,8,2) 

Adjustable Dimensions 

Adjustable dimensions are not allowed. 

COMMON Statement 

r---------------------------------------------------------------- I 

1 General Form 1 

L----------------------------------------------------------------~ 
COMMON /~/~ (~1 ),£(~2), ••• /~/£(~3) ,~(~4) ,... : 

where are PE variable or array names 
I 
I 
I 
I 
I 

~ 1 ,~, ••. ~ 3 , ••. ,~n are optional and are each composed : 

of one of the following array allocation specifications:! 

* 

in which i 1 ,i 2 , and i 3 are unsigned integer constants. 

In vector aligned arrays, the range of the first index 
is taken to be 64. 

/r/ ••. represent common block names consisting of one 
through six alphameric characters, the first of which 
is alphabetic. These names must always be embedded in 
slashes. 

I 

~----------------------------------------------------------------J 
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If common is to be used within a group of programs, a 
BLOCK DATA subprogram must be included. The BLOCK DATA sub­
program must contain the longest version of every common block 
used (see "Arguments Passed to Subprograms" for the single 
exception to this rule). 

Variables or arrays that appear in a calling program or a 
subprogram may be made to share the same storage locations with 
variables or arrays in other subprograms by use of the COMMON 
statement. For example, if one program contains the statement 

*COMMON/COMMN/TABLE 

and a second program contains the statement 

*COMMON/COMMN/LIST 

the variable names TABLE and LIST refer to the same storage 
locations. 

If the main program contains the statements: 

*PE REAL A,B,C 
*COMMON/COMMN/A,B,C 

and a subprogram contains the statements: 

*PE REAL X, Y , Z 
*COMMON/COMMN/X,Y,Z 

A shares the same storage location as X; B shares the same 
storage location as Y; and C shares the same storage location 
as z. 

Consider the following examples: 

Example 1: 

Main Program 

*COMMON/ALPHA/R(*) ,A,B,C,D(l0) 

Subprogram 

*COMMON/ALPHA/S(*) ,W,X,Y,Z(l0) 

Explanation: The main program references the common block with 
the variables R,A,B,C, and D. The subprogram refers to the same 
storage as the variables s,w,X,Y, and z. For proper alignment 
vector aligned arrays appear first in the common blocks. The 
importance of this will be explained in Example 2. 
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Example 2: 

Main Program 

*COMMON/MATRX/R(l024) ,A(*) ,B 

Subprogram 

*COMMON/MATRX/S(*,16) ,Z(*) ,R 

Explanation: In the main program, R begins on a row boundary, 
because all common blocks begin on a row boundary. R may not be 
used as a vector variable, however, because it is not specified 
as one. The size of R is quite important. If R was not a multi­
ple of 64 in length A would not begin on a row boundary. In the 
subprogram, Smay be used as a vector variable even though it 
refers to the same storage as R (the R in the main program). 
Also Zand A refer to the same row. Note that the R in the sub­
program refers to Bin the main program, not the array R. The 
two R's are different variables referring to different storage 
locations. The correspondence of variables in different sub­
programs that appear in COMMON depends on the position of the 
variables in the COMMON statements, not on the variable names. 

Example 3: 

*COMMON /W/ A(*), B(*), C(l5), D(48), E 
*COMMON /X/ A(*), C(15), D(48), E, B(*) 
*COMMON /Y/ A(*), C(15), B(*), D(48), E 
*COMMON /Z/ C(15), DMY1(49), A(*), D(48), DMY2(16), B(*), E 

Explanation: These four sample common statements show various 
arrangements of five variables in common. Block Wis the recom­
mended method of arranging variables. Xis also correct; however 
a mistake in adding the dimension of C, D, and E, or a change in 
their dimensions could throw B off the row boundary it must be on. 
Y is in error because B cannot follow C and still begin on a row 
boundary. z is also correct; however the insertion of dummy 
variables into the common block can be extremely wasteful of 
storage. 

Arrays need not be dimensioned in the COMMON statement in 
which they appear. If the arrays are dimensioned in a DIMENSION 
or Explicit type statement, only the name need appear in the 
COMMON statement. Vector aligned arrays must fall on row boundar­
ies and should appear first, regardless of where they are dimen­
sioned. 

Labeled Common 

In each of the preceding two examples, the common storage 
area (common block) established is called a named common area. The 
variables that appeared in the COMMON statements were assigned loca­
tions relative to the beginning of this named common area. Variables 
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and arrays may be placed in separate common areas. Each of 
these separate areas (or blocks) is given a name consisting of 
one through six alphameric characters (the first of which is 
alphabetic); those blocks that have the same name occupy the 
same storage space. The use of blank (unnamed) COMMON is pro­
hibited. 

Variables that are to be placed in labeled (or named) 
common are preceded by a common block name enclosed in slashes. 
For example, the variables A,B, and C will be placed in the 
labeled common area HOLD by this statement 

*COMMON/HOLD/A,B,C 

Common entries appearing in COMMON statements are cumula­
tive throughout the program. For example, consider 

*COMMON /R/ D, E /S/ F 
*COMMON /S/ I, J /R/ P 

These two statements have the same effect as the single statement 

*COMMON /R/ D, E, P /S/ F, I, J 

The length of a common area may be increased by using an 
EQUIVALENCE statement (see "EQUIVALENCE Statements") only within 
a BLOCK DATA subprogram. 

Programming Considerations 

Variables in a common block may be in any order. However, 
all vector aligned variables must fall on row boundaries. 

Proper alignment is achieved either by arranging the vari­
ables so that vector aligned variables come first, or by con­
structing the block so that dummy variables force proper align­
ment. 

2.46 



SCRATCH Statement 

r-------------------------------------------------------------
1 
1 General Form 
I 

L-------------------------------------------------------------
SCRATCH 

where 

-
al (~1) , ~2 (~2) , ~3 (~3) , ... ,a (k ) 

-n -n 

are PE variable or array names 

k 1 ,k 2 ,k3, ... ,k are optional and are each com-
- - - -n 
posed of one of the following array allocation 
specifications: 

i1 

* 
*,i2 

*,i2,i3 

in which i1,i2, and i 3 are unsigned integer 
constants. In vector aligned arrays, the range 
of the first subscript is taken to be 64. 

~-------------------------------------------------------------

1 , 

The variables listed in a SCRATCH statement will be assigned 
to a block of memory. Moreover, the order in the list strictly 
determines the position in the block. Variables listed in a 
SCRATCH statement may be in any order. However, all vector 
aligned variables must fall on row boundaries. Thus variables 
in SCRATCH are allocated in a manner similar to variables in 
COMMON. Multiple use of SCRr'\'TCH may be made via EQUIVALENCE, 
as with COMMON. 

Information (data) declared SCHJI.TCH may be communicated 
down a CALL chain onJ.y through the argument list of the called 
subprograms, and can not be communicated u:o the c.n..LL chain. 
(Note: SCRl\'I'CH variables, therefore, may not be equivalenced 
to COMMON variables or incoming subprogram-dummy arguments.) 

* SUBROUTINE A(D) 

* EXTERNAL SUBRTN 

* DIMENSION D(*) ,E(''') 
* SCRA'I'CH B(*) ,C(*) 

* EQUIVALENCE (B ( l) , E ( 1) ) . 
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* CALL SUBRTN (B,C) 
D(*)=B(~') IC(*) 

* RETURN 

Explanation: Subroutine A allocates 2 user rows requested of PE 
memory for temporary storage. The allocation is active from entry 
into A until RETURN from A. Variables Band E occupy the same row 
and since Bis in SCR"'.TCH ~ must also be ccnsidered to be in SCRATCH. 
Since the memory addresses of B,C, and E are known only at execution 
(and may differ for each entry to A!) the information in B,C, and E 
must be passed through the argument lists of called routine. Other­
wise, the information is completely local to i~he current execution 
of subroutine A. Upon RETURN from A, the information in B,C,E is lost. 

EQUIVALENCE Statement 

I 
I 

General Form 1 
I I 

'-------------------------------------------------------------------' I 
I 

: E0i.JIVi1.i.El~CE 
I 
I 
I 
, where 
I 
I 
I 
I 
I 
I 

£
1

,22 ,E , ... are PE variables (may be subscripted) a is 
a cu-address (1-48 or 1-56 if no subprograms are used) 

£
1

,£2 ,£
3

, ... are CU variables (may be subscripted) 

'---------------·----------------------------------------------------
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The EQUIVALENCE statement must be used to assign a CU 
memory location to each CU variable used. There are 48 CU 
memory locations available for programer use (56 if the program 
unit contains no subprograms). It is the programer's 
responsibility to assign addresses in such a way as to avoid 
conflict. It is important to remember that all CU variables 
are effectively in common all the time. If a CU variable is 
changed, all other CU variables assigned to that same location 
are changed, no matter what routine they appear in. Each CU 
variable must appear once and only once in an EQUIVALENCE 
statement. 

Example 1: CU variables 

*DIMENSION I(B), J(4), L(6) 
*EQUIVALENCE ( 1 , I 1 , J ( 1) ) , ( 5 , I ( 1) , L ( 3) ) 

Explanation: Variables Il and J(l) are assigned to the first 
word of CU memory. Arrays are arranged in storage such that 
J(2) is the second word of CU memory and J(3) is the third, etc. 
L(l) is assigned to the third word also, and L(3) and I(l) are 
assigned the fifth word, etc. EQUIVALENCE statements must not 
be constructed in such a way as to extend arrays beyond either 
end of CU memory. 

The EQUIVALENCE statement also provides the option for 
controlling the allocation of PE storage within a single program 
or subprogram. It is analogous to the option of using the 
COMMON statement to control the allocation of data storage among 
several programs. When the logic of the program permits, the 
number of storage locations used can be reduced by causing loca­
tions to be shared by two or more variables of the same or dif­
fering types. The EQUIVALENCE statement cannot be used to obtain 
mathematical equality of two variables. 

Example 2: PE variables 

*DIMENSION B(S), C(*,10), D(*,8,5) 
*EQUIVALENCE (A,B(l) ,C(S,3)}, (D(36,2,l) ,E) 

Ex1lanation: This EQUIVALENCE statement indicates that the vari­
ab es A,B(l), and C(S,3) are assigned to the same storage loca­
tions; also that D(36,2,1) and E are assigned to the same storage 
locations. In this case, the subscripted variables refer to the 
position in an array. Note: Variables or arrays that are not 
mentioned in an EQUIVALENCE statement are assigned to unique 
storage locations. The EQUIVALENCE statement must not contradict 
itself or any previously established equivalences. For example, 
the further equivalence specification of B(2) with any 
element of the array C, other than C(6,3), is invalid. 
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Example 3: 

*DIMENSION B(S), C(*,10), D(*,8,5) 
*EQUIVALENCE (A,B(l) ,C(133)), (D(l00) ,E) 

Ex11anation: This EQUIVALENCE statement indicates that the vari­
ab e A, the first variable in the array B, namely B(l), and the 
133rd variable in the array c, namely C{S,3), are to be assigned 
the same storage locations. Also, it also specifies that D(l00), 
i.e., D(36,2,1), and E are to share the same storage locations. 
Note: The effects of the EQUIVALENCE statements in examples 1 
and 2 are the same. Also, EQUIVALENCE statements must not be 
constructed in such a way as to prevent vector alignment of vector 
variables (including common blocks, see "BLOCK DATA Subprograms"). 
For example: 

*DIMENSION A(*), B(*,2) 
*EQUIVALENCE (A(3), B(l,1)) 

A and B cannot both begin on a row boundary if A(3) and B(l,l) 
are to occupy the same location in PE memory. Therefore, one or 
both of these two statements are in error. 

Variables that are brought into COMMON through EQUIVALENCE 
statements may not increase the size of the block, except in a 
BLOCK DATA subprogram, as indicated by these statements: 

*BLOCK DATA 
*DIMENSION D(*,3) 
*COMMON /X/ A(*) ,B(*) ,C(*) 
*EQUIVALENCE {B(l) ,D(l,1)) 

This would cause a common area {i.e., X) to be established con­
taining the vector aligned row variables A, B, and c. The 
EQUIVALENCE statement would then cause the variable D(l,1) to 
share the storage location with B(l), D(l,2) would share with 
C(l), and D(l,3) would extend the size of the common area, in 
this manner 

A( 1) (lowest location of the common area i.e., X) 

. 
B ( 1) , D(l,1) 

• . 
C ( 1) , D(l,2) . . . 

0(64,3) (highest location of the common area) 
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Since arrays must be stored in consecutive forward locations, 
a variable may not be made equivalent to another variable of an 
array in such a way as to cause the array to extend before the 
beginning of the common area. For example, this EQUIVALENCE state­
ment is invalid 

*BLOCK DATA 
*DIMENSION D(*,3) 
*COMMON /X/ A(*) ,B(*) ,C(*) 
*EQUIVALENCE (B(l) ,D(l,3)) 

because it would force D(l,l) to precede A(l), as follows: 

D(l,1) . 
. 

A ( 1) , D(l,2) (lowest location of the common area X) 

. 
B ( 1) , D(l,3) 

. . 
C(64) (highest location of the common area) 

Programming Considerations 

Two variables in one common block may not be made equivalent. 
Two or more variables from separate common blocks may be equiv­
alenced only within a BLOCK DATA subprogram. The equivalencing 
of variables from two or more common blocks causes the cowmon 
blocks to overlap. This equivalencing must be done in such a 
way as to preserve the vector alignment of all common blocks, 
and of all vector aligned variables contained within them. 

DATA Initialization Statement 

r----------------------------------------------------------------------, 
, General Form I 
I I ,----------------------------------------------------------------------

DATA v 1 , ••• ,v /i 1 *d1 , ••• ,i *d /,v +1 , •.• ,v /i +l*d 1 , .•• ,i *d /, •.. 
- -n - - -n -n -n - -n -n+ - -

where ~ 1 , ••• ,~ are PE variables, subscripted PE variables (in 

which case, the subscripts must be integer constants), or 
PE array names 

~ 1 , ••• ,~ are values representing integer or real data 

constants 

!
1

, ••• ,! represent unsigned integer constantsindicating 

the number of consecutive variables that are to be assigned 
the value of ~ 1 , ••• ,d 

L----------------------------------------------------------------------
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A data initialization statement is used to define initial 
values of PE variables and arrays. There must be a one-for-one 
correspondence between these variables (i.e., v1 , ••• ,v} and the 
data constants (i.e., d1 , ••• ,d}. - -

Example 1: 

*DIMENSION D(*,10) 
*DATA A, B, C/S.0,6.l,7.3/,D/320*1.0,320*2.0/ 

Explanation: The DATA statement indicates that the variables A, 
B, and Care to be initialized to the values 5.0, 6.1, and 7.3, 
respectively. Also, the statement specifies that the first 
5 rows (320 words) in the array Dare to be initialized to the 
value 1.0, and the second 5 rows to the value 2.0. 

Example 2: 

*DIMENSION A(S}, B(*,3) 
*DATA A/5*1.0/,B/192*2.0/ 

Explanation: The DATA statement specifies that all the variables 
in the arrays A and Bare to be initialized to the values 1.0 and 
2.0, respectively. 

A variable or array residing in a COMMON block may be given 
initial values, by use of the DATA statement, only in the 
BLOCK DATA subprogram in which the block is declared. 
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SPECIAL STATEtIBNTS 

TPANSFER Stat.cmcnt 

r-------------------------------------------------------------, 
I General Form l 
L-------------------------------------------------------------~ 

I 

TRANSFER (n) a = b I 

I 
I 
I 
I 

·where n 

a 

is the number of words to be transferred 
Ca multiple of 8) 

is a CU location and bis a PE location, or 

I a is a PE location and bis a CU location. 
I L _____________________________________________________________ J 

The 'l1 RANSFER statement causes the block of 8 words contain­
ing a to be assioned the values of the block of 8 words contain­
ing E. In the cii, blocks of 8 words begin at locations 1, 9, 17, 
... ,-and in the PE's blocks of 0 wo~ds begin in PE(l), PE(9), 
PE(l7), .... Use of the 'l'RZ\NSFER statement requires explicit 
lay~ut of PE memory by the programmer. This can be achieved by 
specif ic2,tion with *, or through EQUIVALEHCE. For example 

r:nrwrns ION 
*EQUl VJ\LENCE 

*'J1FANSFER ( 8) 
+ '1' Rl'-,,N S FER ( 8 ) 
*TRl\NSFER ( 8) 

SAVE(*), LOGTCL(lG) 
(SAVF:(57) ,BLK8), (l,MJ:MORY), (9 ,LOGICL(l)) 

l·1Ei'v10RY = Sl\VE(9) 
BLKB = LOGICL(9) 
Sl~VE ( 6) = LOG I CL ( 12) 

The first 'I'PJ\NSI'ER s ta t.ernent cause,, CU locations l through 8 to 
be c1.ssigned thE! vaJ.1.10s SAVE(9) t:Jnough SAVE(l6), respective1y. 
'rhE· "econa' n1-'P" 0 T0 PPD c:•~--,-'-·r,r,1pnt C"U"C'' c:-,p,-,, .... )7) triroi·ah S 1\UPf(,11) 

-. ;:-, ~~ ✓ J, .. 'J".el,o)., ~-•.!.\_ ,.._;; Lc~L._.,1., -··'- (l .;:,:;, .. ~ L).l."~~'J_: \~ -,. • u__!~ ~ ... :i. .. .J..J \ ) .... 

to be assigned Lhe values of LOGICL(9) through LOGICL(l6), 
respectively. In both of these cases the locations indicated 
are the first word in a block of 8 words. 

The thi :r:d 'I'PJ\NSFER s tate:rnent causes SA.VE ( 1) throt:gh Sl\VE ( 8) to 
be assigned the valLes of LOGICL(9) through LOGICL(lG), respec­
tively. In this stc,tei,,cnt the locatiorH:; specified &re not the 
first words in their respective blocks of 8 words. 
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The ~L1 Ri\1,;r)rs~R stc1i::.cc'.m0~nt transfers blocks of 8 6 11--bit words 
regardlc:s~; of type; ho':1ever, there are only l::.1.10 legal uses for 
a '1'81\NSFER stc:itcrncnt: 

1) To sa'JG blocks of CU mc:,mory by TRJIJ,JSFER to PE. 
memory, an.d to retnrn ::ouch blocks to .cu m(,mory. 
Use of these blocks while rcsid2nt in PE memory 
is illegal <lnd may lead to erroneous results. 

2) To TRANSFER b1ocks of PE f1oating-point data to 
the CU when the a~ta are ta be used as scalars 
in PE c1ri tl:uni:,tic expre<,::d.0,1s. 'I'h(~ use of TPJ1.trnFER 
vvi th integer da t..::t for this use is illegal a1~d may 
lead to erroneous results. 

CHECX Statement 

r-----------------------------------------------------------, 
I I 
' General Form ' 
I I 
I I r-----------------------------------------------------------, 
I I 
I 
1 CHECK 
I 
I 
I 
1 where x is 
I 

the statement number of an executable state-
1 ment 
I 

a is a CU LCGICAL variable. Either x or 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

a or both x and a must be present. If only one is 

present the comma must be omitted. 

v
1

, v 2 , ..• v 
-. -- -n 

are variable names (may be 

or CO~MON block names 

subscripted), 
I 
I 
I 
I ------------------------ ·------------------------------------

The CHECK statcwent may only be us0d when all CFD arithmetic 
.1.s to b2 done in 32-bi t rnode. T:1e CEECK statement causes the two 
halves of the listed variables to be compared in all enabled PE's. 
Tf a st'.'."l·',·tC>P"IC~J'+- ,,-,m'1•,,,, ,,-,,,,~,a,-,, in i·h,:, rrrr:r·,r; c+-;c,t- 0 ~1° 0 nt a>1rl '.'."ll"'Y P"'l

0 

,_.. .L •',•· _ ... _ ... ~lC 1,._ .!,,_1,_l ... ,c • ..,t '"" - ,_. ,-,•~- '-• ,t. __ ,:, --- ._, ~t:::~ -l- _, ._,..1.-"""'\ ,;:) _.,.A. _t::::, :.r,,__ - .....__,_ -- Ct ~ -{l. .. -'-

of halves have been fou~~ to be not equal control will be· 
tr.J.nsferren to tJw i_,1,,ic,:1t-0.c: :=,t::iterr,~nt. T.f ~ Jos.i.cal variable 
appears after the CHfCK st.:, t.cment tho bit ( s) corresponding to the 
PE ( 's} whc!re the co:~parc fails wi 11 be set to l ( . TRUE~) , the re­
maining bits will be set to O (.FALSE.). 
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The CHECK statement may not terminate a DO loop, or 
appear in an IF statement. 

Example: 

* SUBROUTINE FUN (DUM,A) 
* CU LOGICAL ERROR 
* CU REAL RSCLR 
* PE INTEGER I(*) ,ISCLR 
* DIMENSION A(*) ,B(*) ,E(6) 
* COMMON /BB/ C(*,20) 
* COMMON /DUM/ D(*) 
* EQUIVALENCE (1,RSCLR), (2,INDEX) 

* CHECK ( 9 9 ) BB , A ( * ) , D ( 6 ) 

* CHECK (ERROR) E(2) ,B(INDEX) ,C(*-3,INDEX) ,DUM 

* CHECK (99,ERROR) RSCLR, C(*,I(*+2)),ISCLR 

Explanation: In the first CHECK statement the enabled PE's 
will compare the halves of the following: the entire COMMON 
block BB (or the amount of BB known to this subprogram), the 
row A(*), and the word D(6). The program will branch to state­
ment 99 if one of the compares fails (i.e., if the two halves 
of any of the compared words are unequal.) 

The second CHECK statement compares all the listed variables 
in enabled PE's and places the failure information (.TRUE. for 
PE's which failed) in the CU LOGICAL variable ERROR. The third 
CHECK statement compares the indicated data and places the fail­
ure pattern in ERROR. It will ·also branch to statement 99 if a 
failure was detected. 
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SUBPROGRAMS 

It is sometimes desirable to write a program that, at vari­
ous points, requires the same computation to be performed with 
different data for each calculation. Writing that program would 
be simplified if the statements required to perform the computa­
tion could be written only once and then could be referred to 
freely, with each subsequent reference having the same effect as 
though these instructions were written at the point in the 
program where the reference was made. 

For example, to take the cube root of a number, a program 
must be written. If a general program were written to take the 
cube root of any number, it would be desirable to be able to 
combine that program (or subprogram) with other programs where 
cube root calculations are required. 

The CFD language provides for the above situation through the 
use of subprograms. There are two classes of subprograms: 
FUNCTION subprograms and SUBROUTINE subprograms. 

The first class of subprograms are called functions, which 
differs from SUBROUTINE subprograms, in that functions return at 
least one value to the calling program; SUBROUTINE subprograms 
need not return any (and are more efficient if they don't). 

MODE AND SUBPROGRAMS 

The MODE is, in effect, in common when calling a SUBROUTINE 
subprogram; i.e., if the MODE is altered in the SUBROUTINE sub­
program, upon return to the calling program this altered MODE will 
be in use. On the other hand, if the MODE is altered in a FUNCTION 
subprogram it must be remembered that the altered MODE is not 
communicated to the calling program; i.e., the old MODE is restored 
prior to returning to the calling program. Deliberately changing 
the mode within a subprogram may be a useful and even valuable 
technique. However, the differences between the way MODE is 
treated in a FUNCTION subprogram and a SUBROUTINE subprogram must 
be kept in mind. 

MBITl and MBIT2 are, in effect, in common. 

NAMING SUBPROGRAMS 

A subprogram name consists of from one through six alpha­
meric characters, the first of which must be alphabetic. Cer­
tain subprogram names must be typed (as variables are) according 
to the following rules. 
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1. 

2. 

T~pe declaration of FUNCTION subprograms - Such declara­
tion must be made in one of three ways: by the predefined 
convention, by the IMPLICIT statement, or by an explicit 
specification (see "Type Specification of the FUNCTION 
Subprogram" ) 

Type declaration of a SUBROUTINE subpra7ram - The type of a 
SUBROUTINE subprogram cannot be define~ because the results 
that are returned to the calling program are dependent only 
on the type of the variable names appearing in the argument 
list of the calling program and/or the arguments in 
COMMON. 

ARGUMENTS PASSED TO SUBPROGRAMS 

The means by which arguments are passed to subprograms differ 
somewhat from FORTRAN. First, CPD-code allows certain arguments 
not allowed in FORTRAN (i.e., common block names). The common 
block name in the calling program corresponds to a dummy name in 
a subprogram. For example: 

Block Data 

*COMMON/X/A(*) ,B(*) 

*END 

Calling Program 

. . 
*COMMON/X/A(*) ,B(*) . . . 
*CALL SUB(X) 

*END 

. . 
• 

Subprogram 

*SUBROUTINE SUB(Y) 

. 
*COMMON/Y/C(*) ,D(*) 

*END 

. . 

In the above example, common block Xis passed to SUB. There, 
it is referenced as common block Y. Note that common block Y is 
a dummy argument and it need not appear in a BLOCK DATA subprogram. 
This is the single exception to the rule. All common blocks whose 
names are used as dummy arguments need not appear in the BLOCK DATA 
subprogram, all others must appear. Within subroutine SUB, C and 
D may be assigned values. These values will be in A and B respec­
tively when control returns to the calling program. 

All arguments are passed to subprograms as PE memory row 
addresses. Addresses of scalar variables and constants are not 
passed. Rather, these variables and constants are evaluated as 
arithmetic expressions. The results of the evaluations (controlled 
by MODE) are stored in a scratch row of PE memory. The address 
of this row is then passed to the subprogram. Thus subprograms 
are limited, as far as returning results through the argument list 
goes, to vector aligned PE arrays and elements of common blocks, 
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the names of which have been passed to them. This also means 
that the dummy arguments corresponding to constants, scalars, 
and expressions in the calling program must be vector aligned 
PE arrays. Scalars may only be returned through CU memory. 

Calling Program 

common block name 

subprogram name 

everything else 

Called Program 

common block name 

subprogram name 

PE vector aligned array name 

System subprograms are not limited to these types of arguments. 
Before using a system supplied subprogram, the user should check 
the write-up to be sure his arguments conform to the type required 
(see "CFD Supplied Mathematical Function Subprograms"). 

FUNCTIONS 

A function is a statement of the relationship between a num­
ber of variables. To use a function in CFD, it is necessary to 

1. Define the function (i.e., specify what calculations are 
to be performed), 

2. Refer to the function by name, where required in the program. 

Function Definition 

The three steps in the definition of a function are 

1. The function must be assigned a unique name by which it 
may be called (see "Naming Subprograms") • 

2. The arguments of the function must be stated. 

3. The procedure for evaluating the function must be stated. 

Function Reference 

The name of a function, appearing in any CFD arithmetic 
expression, refers to the function. Thus, the appearance of a 
function, with its arguments in parentheses, causes 
the computations to be performed as indicated by the function 
definition. The resulting quantity replaces the function 
reference in the expression and assumes the type and residence 
of the function. The type and residence of the name used for 
the reference must agree with the type and residence of the 
name used in the definition. 
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FUNCTION SUBPROGRAMS 

The FUNCTION subprogram is a CFD subprogram consisting of 
any number of statements. It is an independently written pro­
gram that is executed wherever its name appears in another 
program. 

r-------------------------------------------------------------~ 
: General Form : 
~-------------------------------------------------------------1 

FUNCTION~ (~1,a2,a3,•••1~) 

RETURN 

END 

where name is subprogram name (see "Naming Subprograms") 

al'a2 ,a3 , ••• ,~ (l~_n,~_7) are vector aligned 

array names, conunon block names, or dummy names of 
SUBROUTINE or other FUNCTION subprograms. 

L--------------------------------------------------------------
Since the FUNCTION is a separate subprogram, the PE vari­

ables not in common and statement numbers within it do not 
relate to any other program. 

The FUNCTION subprogram may contain any CFD statement ex­
cept a SUBROUTINE statement, another FUNCTION statement, or 
BLOCK DATA statement. 

The arguments of the FUNCTION subprogram (i.e., ~ 1 ,~2 ,~3 , 

••• ,a) may be considered as dummy variable names. These are 
--n 

replaced at the time of execution by arguments supplied in the 
function reference in the calling program (see "Arguments Passed 
to Subprograms"). The actual arguments may be: A common block 
name, any real or integer constant, any real or integer sub­
scripted or nonsubscripted variable, a PE array name, an arith­
metic expression, or the name of another subprogram. The 
actual arguments must correspond in number, order, and type 
(not residence) to the dummy arguments. If the actual argument 
corresponds to a durnrny argument that is defined or redefined 
in the subprogram, the argument must be a PE vector or a vector 
aligned PE array name. All arguments in a subprogram refer to 
the storage area assigned to the arguments by the calling 
program or to temporary storage areas (see "Arguments Passed 
to Subprograms"). 
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The relationship between variable names used as arguments 
in the calling program and the dummy variables used as arguments 
in the FUNCTION subprogram is illustrated by 

Example 1: 

Calling Program 

*DIMENSION B(*),C(*) 

A(*) = SOMEF(B,C) 

FUNCTION Subprogram 

*FUNCTION SOMEF(X,Y) 
*DIMENSION X(*) ,Y(*) 

SOMEF(*) = X(*)/Y(*) 
*RETURN 
*END 

Explanation: The values of the variable B of the calling program 
are used in the subprogram as the values of the dummy variable X; 
the values of Care used in place of the dummy variable Y. Thus 
if B(l) = 10.0 and C(l) = 5.0, then A(l) = B(l)/C(l), which is 
equal to 2.0. 

The name of the function must be assigned a value at least 
once in the subprogram as the argument of a CALL statement or as 
the variable name on the left side of an arithmetic statement. 

Example 2: 

Calling Program 

*PE INTEGER I 
*DIMENSION X(*) ,Y(*,64) ,I(*) 

ANS(*)= ROOTl*CALC(X,Y,I) 

FUNCTION Subprogram 

*FUNCTION CALC (A,B,J) 
*PE INTEGER I,J 
*CU INTEGER K 
*DIMENSION A(*) ,B(*,64) ,I(*) ,J(*) 
*EQUIVALENCE(40,K) 
I(*)= J(*)*2 

*GO TO (10,20) ,K 
10 CALC(*) = A(*)*B(*,I(*)) 

*RETURN 
20 CALC(*) = 0.0 

*RETURN 
*END 

Eilanation: The values of X, Y, and I are used in the FUNCTION 
s program as the values of A, B, and J, respectively. The values 
of CALC are computed, and these values are returned to the calling 
program, where the values of ANS are computed. The variable I 
in the argument list of CALC in the calling program is not the 
same as the variable I appearing in the subprogram. 

When a dummy argument is an array or cowmen block name, an 
appropriate DIMENSION, COMMON, or explicit specification statement 
must appear in the FUNCTION subprogram. None of the dummy argu­
ments may be given initial data values nor may they appear as 
variables in a common block. 
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All user supplied functions must be indexed by a single 
asterisk when they are assigned a value. This need not be pre­
sent if the function name appears in a CALL statement. 

Type Specification of the FUNCTION Subpro·gram 

Every FUNCTION name must be assigned a type and residence, 
both in the FUNCTION subprogram and in all routines that call it. 
The type and residence must be the same in all routines. The 
specification may be by predefined convention, IMPLICIT statement, 
or explicit statement. All FUNCTIONS must be declared PE resident. 
The FUNCTION name may not be typed in the FUNCTION statement. 

RETURN and END Statements in a FUNCTION Subprogram 

All FUNCTION subprograms must contain both an END and at 
least one RETURN statement. The END statement specifies, for the 
compiler, the end of the subprogram; the RETURN statement signi­
fies a logical conclusion of the computation and returns any com­
puted value and control to the calling program. More than one 
RETURN statement may be used in a CFD subprogram. 

Example: 

*FUNCTION DAV (D,E,F) 
*DIMENSION A(*),B(*) 
*DIMENSION D(*) ,E(*) ,F(*) 

*IF (.ANY. ( (D (*) .GT.E (*)))) GO TO 20 
10 A(*) = D(*) + 2.0*E(*) 

5 A(*)= F(*)+2.0*E(*) 

* IF ( • ANY. ( (A ( *) • LT • 0 • 0) ) ) GO TO 3 0 
20 DAV(*)= A(*)+B(*)**2 

*RETURN 
30 B(*) = A(*-1)-B(*+l) 

DAV(*) = B(*)**2 
*RETURN 
*END 
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SUBROUTINE SUBPROGRAMS 

The SUBROUTINE subprogram is similar to the FUNCTION sub­
program in many respects: the rules for naming FUNCTION and 
SUBROUTINE subprograms are the same, they both require an END 
statement, and they both contain the same sort of dummy arguments. 
Like the FUNCTION subprogram, the SUBROUTINE subprogram is a set 
of commonly used computations, but it does not need to return 
any results to the calling program, as does the FUNCTION sub­
program. 

The CALL statement (discussed later in this section) is 
used in a main program or another subprogram to invoke a 
SUBROUTINE subprogram. 

Since the SUBROUTINE is a separate subprogram, the PE 
variables not in common and statement numbers within it do not 
relate to any other program. 

The SUBROUTINE statement must be the first statement in the 
subprogram. The SUBROUTINE subprogram may contain any CFD state­
ment except a FUNCTION statement, another SUBROUTINE statement, 
or a BLOCK DATA statement. If IMPLICIT statements are used in 
a SUBROUTINE subprogram, they must immediately follow the 
SUBROUTINE statement. 

r---------------------------------------------------------------7 
I General Form I 
~---------------------------------------------------------------~ 

SUBROUTINE~ (~1 ,~2 ,~3 , ••• ,an) 

RETURN 

END 

where name is the subprogram name (see "Naming Subprograms") 

~ 1 ,~2 ,~3 , ••• ,an(0~n~7) are arguments. (There need not 

be any.) Ea~h argument used must be a vector aligned 
array name, a common block name, or the dummy name of 
another SUBROUTINE or FUNCTION. 

~---------------------------------------------------------------J 
The SUBROUTINE subprogram may use one or more of its argu­

ments to return values to the calling program. Any arguments so 
used must appear on the left side of an arithmetic statement 
within the subprogram, as arguments of a CALL statement, or as 
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arguments in a function reference. The SUBROUTINE name must not 
appear in any other statement in the SUBROUTINE subprogram. 

The arguments (~1 ,a2 ,~3 , ••• ,~) may be considered as dummy 

variable names that are replaced at the time of execution by 
arguments supplied in the CALL statement. The actual arguments 
must correspond in number, order, and type (not residence) to 
the dummy arguments. Dummy arguments may not be given initial 
data values. 

Example: The relationship between variable names used as argu­
ments in the calling program and the dummy variables used as 
arguments in the SUBROUTINE subprogram is illustrated in this 
example. The object of the subprogram is to copy one array 
directly into another. 

Calling Program 

*DIMENSION X(*,64),Y(*,64) 

*CALL COPY (X,Y,K) 

SUBROUTINE Subprogram 

*SUBROUTINE COPY (A,B,N) 
*PE INTEGER N 
*DIMENSION A(*,64) ,B(*,64) ,N(*) 
*EQUIVALENCE(18,J) 

J = N (1) 
*DO 10 I= 1, J 

10 B(*,I) = A(*,I) 
*RETURN 
*END 

As you can see, an integer scalar has been passed through 
the argument list. The method is very crude however. If the CU 
location of J is known in the main program, the above effect 
could have been produced by assigning K to J and leaving Kand N 
out of the argument lists altogether. The above example shows 
a method of passing scalars through the argument list. It is 
much easier to pass scalars through the CU because CU memory is 
shared among all routines. The above method should not be used 
unless absolutely necessary. 

CALL Statement 

The CALL statement is used only to call a SUBROUTINE subprogram. 

~-----------------~--------------------------------------------~ I I 
1 General Form 1 

L--------------------------------------------------------------J 
CALL ~ · (~1, a2, ••• , ~n) 

where name is the subroutine's subprogram name. 

~ 1 ,~2 ,~3 , ••• ,~ (0~n~7) are the actual arguments 

(if any) that are being supplied to the SUBROUTINE 
subprogram 

----------------------------------------------------------------
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Entry into a SUBROUTINE subprogram is made by a CALL state­
ment that refers to that subroutine's subprogram name. Entry 
is made at the first executable statement following the 
SUBROUTINE statement. 

Examples: 

CALL OUT 
CALL MATMPY (X,5,40,Y,7,2) 
CALL QDRTIC (X,Y,Z,ROOT1,ROOT2) 
CALL SUBl (X(*)+Y(*)*S,SINE) 

The CALL statement transfers control to the SUBROUTINE 
subprogram and replaces the dummy variables with the value of 
the actual arguments that appear in the CALL statement. The 
arguments in a CALL statement may be: a common block name, any 
constant, any real or integer subscripted or nonsubscripted 
variable, a PE array name, an arithmetic expression, or the name 
of a subprogram. 

The arguments in a CALL statement must agree in number, 
order, and type (not residence) with the corresponding arguments 
in the SUBROUTINE subprogram. If an actual argument corresponds 
to a dummy argument that is defined or redefined in the refer­
enced subprogram, the actual argument must be a PE vector aligned 
array name or the name of a common block, some part of which is 
changed. All arguments in a subprogram refer to the storage 
area assigned to the arguments by the calling program or to 
temporary storage areas (see "Arguments Passed to Subprograms"). 

RETURN Statement in a SUBROUTINE Subprogram 

r--------------------------------------------------------------7 
I General Form I 
~--------------------------------------------------------------, ! RETURN I 
I I 
I I ~-----------------. ____________________________________________ J 

The sequence of execution following the RETURN statement of 
a SUBROUTINE subprogram is to the next statement following the 
CALL in the calling program. In a main program, a RETURN state­
ment performs the same function as a STOP statement. 
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Example: 

Calling Program 

l0*CALL SUB (A,B,C) 
20 Y(*) = A(*)+B(*) 

*END 

Subprogram 

*SUBROUTINE SUB (X,Y,Z) 

*RETURN 
*END 

Explanation: After SUB is called, execution of the main program 
resumes at statement 20. 

The EXTERNAL Statement 

1---------------------------------------------------------------7 
I General Form I 
---------------------------------------------------------------~ 

EXTERNAL ~,b,£,••• 
I 
I 
I 
I 
I 

where ~,~,£,•·· are names of all subprograms in the user's I 
library that are referenced by the program, whether I 
or not thex are used as arguments. I 

---------------------------------------------------------------~ 
BLOCK DATA SUBP~OGRAM 

To allocate storage for and enter data into COMMON blocks, 
a separate subprogram must be written. This separate subprogram 
contains only the DATA, COMMON, DIMENSION, EQUIVALENCE, and type 
statements associated with the common blocks being defined. 

1---------------------------------------------------------------7 I General Form I 
------------------------------------------------------- --- -1 

BLOCK DATA 1 
I 
I 
I 

I 
I 

END I _______________________________________________________________ J 

1. The BLOCK DATA subprogram may not contain any executable 
statements. 

2. The first statement of this subprogram must be the BLOCK DATA 
statement. 
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3. All elements of all COMMON blocks must be listed in the 
COMMON statement, even though they do not all appear in 
the DATA statement. 

4. Data may be entered into more than one COMMON block in a 
single BLOCK DATA subprogram. 

CFD SUPPLIED MATHEMATICAL FUNCTION SUBPROGRAMS 

The intrinsic functions, listed in the following table, may 
appear anywhere in a vector arithmetic expression, subject to 
the following rules. 

1.) the function must be of the same type as the 
remainder of the expression, 

2.) the function argument must be a vector arithmetic 
expression of the required type, 

3.) the function mnemonic has not been specified by 
the user (e.g. declared EXTERNAL). 
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N . 
CT\ 
,,:. 

.------------------r-------.--------,--------------------------, -----------------,------------, 
I I I I I I I 
I I I I Arguments I I I 
I I I 1--------------------------1 I I 
1 Function I Name I Type l No. : Type l Definition : Code l 
l l l (Vector) 1 1 (Vector Expression) 1 1 l 
r------------------¼-------+--------~-----i--------------------~-----------------~------------T 
I I I I I I arg I 
•Exponential I EXP I Real 1 1 1 Real 1

1 
e 1

1 
out-of-line 

I I I I I 
I J I I I I I 
I I I I I I I 

: Natural Logarithm : ALOG : Real l 1 l Real l ln (arg) l out-of-line 
I I I I I I I 

I I J I 

Arctangent : ATAN : Real l 1 : Real l arctan (arg) l out-of-line 

Trig. Sine 

Trig. Cosine 

Square Root 
I 

I 
I 
l Absolute Value 

I 
I 
t 

Float 

I SIN i Real . 
I I 

. cos i Real I I 
I I 
I I 
I I 
I SQRT ! Real I 

I I 

I ABS l Real I 
1 IABS 

I 
1 Integer 1 

I 
I 
I 

! FLOAT ! Real I 

1 
. Real I 

1 I Real 

1 I Real 

1 I Real I 
1 I Integer 

I 
I 
I 

1 I Integer 

sin(arg) 

cos (arg) 

varg 

largl 

Convert from 
Integer to Real 

out-of-line 

out-of-line 

out-of-line 

in-line 

in-line 

l Fix i IFIX I Integer 1 1 1 Real I Convert from 
1
1 in-line 

I I I I I I 
I I I I I I Real to Integer I I 
I I I I I I I I L------------------~-------~--------J _____ J ____________________ L _________________ j ____________ j 

Table 1.- Intrinsic Mathematical Functions 



N . 
C) 

,!:>, 

I-' 

I------------------,------- ,--------,, --------------------------, -----------------,, ------------
! I I I I I 
I I I I I I 
I I I I ! I 

I I r----r-------------------- I I 
I I Type I I I I 

Function I Name 1 (Vector) 1 No I Type I Definition I Code 
I I I I . I I 

1 1 1 , 1 (Vector Expression) 1 1 1 l __________________ i _______ J ________ L ____ L _____________________ L _________________ L _____________ , 
I I I I 
I ! I 
I I I 

Maximum variable : ROWMAX Real 1 Real max (arg (1), ..• , out-of-line : 
1 arg(64)) , 
I I 
I I 

Minimum variable : ROWMIN Real 1 Real min (arg (1) ,.~., out-of-line: 
: arg ( 6 4) ) l 
I I 

Sum of the values: 64 l 
in a row : ROWSUM Real 1 Real ~ arg(j) out-of-line: 

I J=l I 
I I 

i I I 
L-----------------------------------------------------------------------------------· ----------1 



CFD SUPPLIED RUN-TIME CLOCK 

The ILLIAC IV has an external progrmable clock. This 
clock has a 100 microsecond "tick". The following two CFD st.ate­
ments allow the programmer to set -and read this clock. 

I 
I General Form , 

I I 
1----------------------------------------------------------------~ 
I 
I 

: CLOCKS ET ( i) 
' 

CLOCKREAD ( ' ) ,l_ 

where i is an integer constant or variable. 

i is a PE INTEGER scalar. 

The clock always has a 48-bit value, even if 32-bit pro­
cessing is requested. Reading the clock is synchronous, but 

setting the clock is not. 

"'r'-, - -. T '·' 1 , , ~ 
~~),,,(.;._.J.l.i.1..J..1..t.....,;. 

* PE INTEGER TIME 
* EXTERNAL SUB 

* CLOCKSET (0) 
* CALL SUB 
* CLOCKREAD (TIME) 

Explanation: TIME*.0001 is the number of seconds needed to execute 

SUBROUTINE SUB. 

2.64.2 



DISK AREA Statement 

·------------------------------------------------------------~ I I 
1 General Form 1 
I I -------------------------------------------------------------

DISK AREA x 1 (n1 ), x 2 (n2 ), • • • , ~(~} 

where ~1 ,x2 ..• , ~n are disk area names that are 

accessed by the program. These disk areas must 
also be known to the proper ILLIAC subsystem at 
the time of execution. 

n1 , n"1, • • • , n 
- -..:. -i'l 

are the number of ILLIAC pages 

in their respective disk area. 

I 
I 
I 
I 
I 
I ------------------------------------------------------------~ 

Note: 1) All areas to be accessed by the main program or 
any of its subprograms must appear in a DISK AREA statement in 
the main program. 2) All subprograms must declare all disk 
areasto be referenced by the subprogram by placing them in a 
DISK AREA statement. 3) The disk area size must be the same in 
the main program and all subprograms. 4) There may be a maximum 
of 64 different disk areas accessed by a program. 

Example: 

main program 

*EXTERNAL RW, OUT, RELAX 

*DISK AREA INPUT(20), OUTPUT(60), PHI(l20) 

*CALL RW 

subprogram 

*SUBROUTINE RW 

*DISK AREA PHI(l20) 

Note that the main program allocates the disk areas INPUT, 
OUTPUT, and PHI of size 20, 60, and 120 ILLIAC pages respectively. 
Furthermore, PHI has been allocated 120 pages in both the main 
program and subprogram. 
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I 
I 
I 
I 
I 
I 
I 

READ/WRITE Statements 

General Form 

READ 
READH 
READQ 
WRITE 
WRITEH 
WRITEQ 

The READ statement transfers from the disk to the full 
array. 

The READH statement transfers from the disk to half of the 
array. 

The READQ statement transfers from the disk to a quarter of 
the array. 

The WRITE statement transfers from the full array to the 
disk. 

The WRITEH statement transfers from half of the array to the 
disk. 

The WRITEQ statement transfers from a quarter of the array 
to the disk. 

where i is a general subscript (a CU integer± an integer 
constant) whose value is(the request number) 
between 1 and 64. 

v (the array location) is a vector aligned array 
name whose first subscript is a general subscript 
Furthermore, the value of the first subscript mus~ 
be 
1 
1 

if the transfer is to/from the full array. 
or 33 if the transfer is to/from half of the 
array. 

1, 17, 33 or 49 if the transfer is to/from a 
quarter of the array. 

dis a disk area name which has been specified in a 
DISK AREA statement. 

i is a general subscript which indicates the start­
ing page of the transfer within the disk area. 

k is a general subscript which indicates the total 
number of pages to be transferred. 

·---------------------------------------------------------------
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Example 1: 

256 

*COMMON/ALPHA/ P(*,16,16) ,PTILDA(*,16,4) 
*EQUIVALENCE (1,I), (2,J), (3,K) 
*DISK AREA PHI(120) ,OUTPUT(240) 

1 *READ ( 3, P ( 1, 1, 3) , PHI (K+ 3) , 2) 

2 *WRITEQ(27,PTILDA(l7,1,l),OUTPUT(J) ,1) 

P(l,1,1) 

t 
32 rows 

t 
rows 

! 

Array Memory 

Figure 4. 

64 rows 

f TILDA(32,16,4) 

(K+3) page 

(K+4) page 

disk area PHI 

j th page 

Array Memory disk area OUTPUT 

Figure 5. 
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Explanation: In statement 1, pagesK+3 and (K+3)+1 of disk 
area PHI are transferred to core locations P(l,1,3) to P(64,16,4), 
(see Fig. 4). Note that 32 full rows of array memory were filled 
from the disk. 

In statement 2, 64 quarter rows of PTILDA 
the jth page of disk area OUTPUT (see Fig. 5). 
PTILDA in PE17 through PE32 are transferred to 
OUTPUT. 

Example 2: 

*DIMENSION X(*,16,16) 
• • • 

*EQUIVALENCE (7,IREQNO) 

. . 
*DISK AREA XSAVE(90) 

. 
*WRITEH(IREQNO,X(33,1,l) ,XSAVE(l) ,2) 

64 rows 

t 

are transferred to 
That is all of 

the jth page of 

1st page 

2nd page 

Array Memory disk area XSAVE 

Figure 6. 

Explanation: In this example, half rows are transferred from 
array memory to the disk. The transfer will be from X(33,l,1) 
through X(64,1,1) and the next 63 half rows stored below this row 
(see Fig. 6). This transfer is made to the first two pages of 
disk area XSAVE. 
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I/O IF Statement 

Since CFD I/O is asynchronous in nature it provides a way 
to determine if a particular I/O request is completed. 

,------------------------------------------------------------, I General Form : 
L-----------------------------------------------------------1 

IF (~ i) b 

where a is either .COM. or .NOT COM. 

i is a general subscript whose value .,.. 
is the request number of a previously executed 
READ or WRITE statement. 

b is any executable CFD statement except a DO 
statement or another IF statement. 

In general, the I/O IF statement functions as a scalar IF 
statement: if the statement in the parenthesis is true, the 
statement after the parenthesis is executed; if the statement is 
false, execution continues at the next statement. The truth 
values are as follows given that i is the request number of a 
previously executed READ or WRITE-statement: 

request i completed 

.COM. i TRUE 

.NOTCOM. i FALSE 

Example 1: 

40 *WRITEQ(6,P(l,1,1) ,AREAP(l) ,2) 

20 *IF(.COM.6) GO TO 10 
30 *CALL SUBA 

*GO TO 20 

10 *CONTINUE 
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request~ not completed 

FALSE 

TRUE 



Explanation: If at statement 20 the last I/0 request having 
6 as a request number has been completed the program will branch 
to statement number 10. On the other hand, if the I/0 request 6 
has not been completed execution continues a statement number 30. 

Example 2: 

*WRITE(9,P(l,J,1) ,AREAP(K),2) 

10 *CONTINUE 

20 *IF(.NOTCOM.9)GO TO 10 
30 *READ(l0,P(l,J,l) ,AREAP(K+2) ,2) 

Explanation: When the program reaches statement 20 if the 
I/O request with request number 9 is completed execution con­
tinues at statement number 30. However, if the request has not 
been completed execution will continue at statement number 10. 

WAIT Statement 

,-------------------------------------------------------, 
: General Form l 
•-------------------------------------------------------~ I I 
1 WAIT n 1 
I I 
I I 
1 where n is a general subscript which represents an 1 

: outstanding I/0 request number l 
I I 

'-------------------------------------------------------~ 
Example: 

*WRITE(23,T(l,1,1),AREA2(3),1) 
*WAIT 23 
*READ(24,T(l,1;1),AREA1(4) ,1) 

Explanation: The READ statement will not be executed until 
the WRITE statement with request number 23 has been completed. 

Note: 

*WAIT 23 
is equivalent to 

10 *CONTINUE 
*IF(.NOTCOM.23) GO TO 10 
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APPENDIX: CFO TO FORTRAN TRANSLATION 

The CFDX translator will translate programs written in 
slightly restricted CFO into serial FORTRAN programs. The pur­
pose of this document is to set forth the small subset of CFD 
that cannot be translated into FORTRAN and where possible to 
give a method by which to overcome these restrictions to the 
full generality of CFD. 

The features of CFD that cannot be translated by CFDX are 
some of the non-FORTRAN features of CFD. These features will 
be listed in tabular form and where possible an alternative will 
be given. 

Inserted ASK Statements 

Clearly, FORTRAN compilers will not understand an ASK state­
ment. However, the CFDX translator makes provision for this by 
allowing the CFDX user to place an Fin column one of a card, in 
which case the CFDX translator will remove the F and insert the 
remainder of the card into the CFDX generated FORTRAN program. 
(Note: The card is .llQ.!;_ shifted one place to the left as is the 
case with an imbedded ASK statement.) Therefore, the alterna­
tive is to insert equivalent FORTRAN statements for non-trans­
latable ASK statements. CFDX will ignore any card with an A in 
column one and similarly CFD will ignore any card with an Fin 
column one. Thus both types of non-CFD statements may appear in 
a program with no ill effect on either translator. 

An example of how this alternative may be used can be seen 
in the following lines from a CFD program. 

C 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
C 

MASK=MODE 
MODE=ON 
LOGSUM OF 
LOA 
RTL 
ADRN 
RTL 
ADRN 
RTL 
ADRN 
RTL 
ADRN 
RTL 
ADRN 
RTL 
ADRN 
STA 
LOGSUM OF 

RHO(*) IN ASK 
RHO; 
$A,-l; 
$R; 
$A,-2 
$R; 
$A,-4 
$R; 
$A,-8; 
$R; 
$A,-16; 
$R; 
$A,-32; 
$R; 
SUM; 

RHO(*) IN FORTRAN 
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F SUMT=0. 
F DO 1234 K=l,64 
F 1234 SUMT=SUMT+RHO(K) 
F DO 5678 K=l,64 
F 5678 SUM(K)=SUMT 

MODE=MASK 

COMMON BLOCK Names as SUBROUTINE Argument 

The reason CFO allows COMMON BLOCK names to be used as 
SUBROUTINE arguments is that the number of arguments is re­
stricted to seven. FORTRAN does not allow COMMON BLOCK names 
to be used as arguments; however, FORTRAN allows unlimited 
arguments in a subroutine call. Thus, the alternative to passing 
COMMON BLOCK names as arguments is to increase the argument list 
to contain all the members of the COMMON BLOCK ( this is permis­
sible because the seven argument restriction does not apply to 
CFDX). 

The following is an example of a CFO program that cannot 
be translated by CFDX: 

main program CFO 

COMMON/COMl/A(*) ,B(*) ,C(*) 

CALL SUB(COMl,D,E,X,Y,Z) 

subroutine CFO 

SUBROUTINE SUB(COM2,P,Q,R,S,T) 

COMMON/COM2/U(*) ,V(*) ,W(*) 

The following is an equivalent program that can be trans­
lated by CFDX: 

main program CFDX 

COMMON/COMl/A(*) ,B(*) ,C(*) 

CALL SUB(A,B,C,D,E,X,Y,Z) 

A.2 

subroutine CFDX 

SUBROUTINE SUB(U,V,W,P,Q,R,S,T) 

DIMENSION U(*) ,V(*) ,W(*) 



Overlapping COMMON BLOCKS 

FORTRAN does not permit COMMON blocks to be overlapped by 
EQUIVALENCE statements. Therefore CFDX will not allow such 
overlapping. There is no simple alternative to this problem. 
However, such overlapping in CFD is done to minimize storage 
requirements in ILLIAC IV; the machine upon which CFDX generated 
FORTRAN will be executed should have sufficient storage to allow 
the rearrangement of COMMON blocks so that there is no overlap. 
This is achieved by removal of the EQUIVALENCE statements that 
cause the overlap. 

TRANSFER statement 

Although CFD allows the transfer of CU logical words to PE 
memory for temporary storage the CFDX translator does not allow 
such a transfer due to word size conflicts. Thus the TRANSFER 
statement may be used to transfer real and/or integer words, but 
may not transfer logical words. 

The CFDX translator also requires that the PE location given 
in the TRANSFER statement must reside in PE(l), PE(9), PE(l7), 
•.• , or PE(57). Moreover the PE location must be specified by 
an array which is of sufficient length to accommodate the number 
of words being transferred. The necessary PE alignment can be 
achieved by specification with*, or through EQUIVALENCE. For 
example 

*DIMENSION 
*EQUIVALENCE 

*TRANSFER ( 8) 
*TRANSFER ( 8) 
*TRANSFER ( 8) 

SAVE(*), LOGICL(16) 
(SAVE (57) ,BLK8), (1,MEMORY), (9 ,LOGICL (1)) 

MEMORY=SAVE (9) 
SAVE(21)=LOGICL(12) 
BLK8=LOGICL(12) 

The first TRANSFER statement causes CU locations 1 through 8 to 
be assigned the values SAVE(9) through SAVE(16), respectively. 
The second TRANSFER statement is not allowed by the CFDX trans­
lator although it is permissible I°i1CFD and would cause SAVE(17) 
through SAVE(24) to be assigned the values of LOGICL(9) through 
LOGICL(16), respectively. The CFDX translator does not allow 
this transfer statement because SAVE(21) is not in~PE with 
a number equal to one modulo eight. An equivalent statement 
which would be acceptable to the CFDX translator would be 

*TRANSFER(8) SAVE(l7)=LOGICL(l2) 
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This TRANSFER statement is acceptable to CFDX because SAV(17) 
resides in PE(l7) and 17=1 (mod 8). [Note in this example 
SAVE(21) is not assigned the value of LOGICL(12). The value of 
LOGICL(l2) is assigned to SAVE(20).] 

The third TRANSFER statement is also not allowed by CFDX 
although it is permissible in CFD and woulctc'ause SAVE(57) 
through SAVE(64) to be assigned the values of LOGICL(9) through 
LOGICL(16), respectively. In this case as in the first the PE 
location indicated is the first word of a block of eight words. 
However, unlike the first case the PE location is specified by 
a scalar and not an array of sufficient length to accommodate 
a transfer of eight words. Two equivalent groups of statements 
which are acceptable to the CFDX translator would be 

and 

*DIMENSION 
*EQUIVALENCE . 

*TRANSFER ( 8) 

*DIMENSION 
*EQUIVALENCE 

*TRANSFER ( 8) 

SAVE(*), LOGICL(16) 
(SAVE (57) ,BLK8) , (1,MEMORY) , (9 ,LOGICL ( 1)) 

SAVE(57)=LOGICL(l2) 

SAVE(*), LOGICL(l6), BLK8(8) 
(SAVE ( 57) , BLK8 ( 1)) , ( l ,MEMORY) , (9, LOGICL ( 1)) 

BLK8(1)=LOGICL(12) 

Note in both cases the PE location is specified by an array with 
at least seven more words beyond the location specified. And 
that the location specified resides in a PE whose number is equal 
to one modulo eight. 

FUNCTION Subprograms 

The CFDX translator will not accept user written FUNCTION 
subprograms because FORTRAN FUNCTION subprograms return only 
one value and CFD FUNCTION subprograms return 64 values. The 
alternative is to replace FUNCTION subprograms and their uses 
with SUBROUTINE subprograms and the appropriate CALL and assign­
ment statements. This restriction does not apply to intrinsic 
FUNCTION subprograms. 

An example of a CFO FUNCTION subprogram and its use is 
illustrated by 
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Overlapping COMMON BLOCKS 

FORTRAN does not permit COMMON blocks to be overlapped by 
EQUIVALENCE statements. Therefore CFDX will not allow such 
overlapping. There is no simple alternative to this problem. 
However, such overlapping in CFD is done to minimize storage 
requirements in ILLIAC IV; the machine upon which CFDX generated 
FORTRAN will be executed should have sufficient storage to allow 
the rearrangement of COMMON blocks so that there is no overlap. 
This is achieved by removal of the EQUIVALENCE statements that 
cause the overlap. 

TRANSFER statement 

Although CFD allows the transfer of CU logical words to PE 
memory for temporary storage the CFDX translator does not allow 
such a transfer due to word size conflicts. Thus the TRANSFER 
statement may be used to transfer real and/or integer words, but 
may not transfer logical words. 

The CFDX translator also requires that the PE location given 
in the TRANSFER statement must reside in PE(l}, PE(9), PE(l7), 
•.• , or PE(57). Moreover the PE location must be specified by 
an array which is of sufficient length to accommodate the number 
of words being transferred. The necessary PE alignment can be 
achieved by specification with*, or through EQUIVALENCE. For 
example 

*DIMENSION 
*EQUIVALENCE 

*TRANSFER ( 8) 
*TRANSFER ( 8) 
*TRANSFER ( 8) 

SAVE(*), LOGICL(16) 
(SAVE (57) ,BLK8), (l,MEMORY), (9 ,LOGICL (1)) 

MEMORY=SAVE (9) 
SAVE(21)=LOGICL(12) 
BLK8=LOGICL(12) 

The first TRANSFER statement causes CU locations 1 through 8 to 
be assigned the values SAVE(9) through SAVE(16), respectively. 
The second TRANSFER statement is not allowed by the CFDX trans­
lator although it is permissible in CFD and would cause SAVE(17) 
through SAVE(24) to be assigned the values of LOGICL{9) through 
LOGICL(16), respectively. The CFDX translator does not allow 
this transfer statement because SAVE(21) is not ina"°PE with 
a number equal to one modulo eight. An equivalent statement 
which would be acceptable to the CFDX translator would be 

*TRANSFER(8) SAVE(17)=LOGICL(l2) 
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This TRANSFER statement is acceptable to CFDX because SAV(17) 
resides in PE(17) and 17=1 (mod 8). [Note in this example 
SAVE(21) is not assigned the value of LOGICL(l2). The value of 
LOGICL(12) is assigned to SAVE(20) .] 

The third TRANSFER statement is also not allowed by CFDX 
although it is permissible in CFD and woulctcause SAVE(57) 
through SAVE(64) to be assigned the values of LOGICL(9) through 
LOGICL(16), respectively. In this case as in the first the PE 
location indicated is the first word of a block of eight words. 
However, unlike the first case the PE location is specified by 
a scalar and not an array of sufficient length to accommodate 
a transfer of eight words. Two equivalent groups of statements 
which are acceptable to the CFDX translator would be 

and 

*DIMENSION 
*EQUIVALENCE . 

*TRANSFER ( 8) 

*DIMENSION 
*EQUIVALENCE 

*TRANSFER ( 8) 

SAVE(*), LOGICL(16) 
(SAVE (57) ,BLK8), (1,MEMORY) , (9 ,LOGICL ( 1)) 

SAVE(57)=LOGICL(12) 

SAVE(*), LOGICL(l6), BLK8(8) 
(SAVE(57), BLK8(1)), (1,MEMORY), (9,LOGICL(l)) 

BLK8(1)=LOGICL(12) 

Note in both cases the PE location is specified by an array with 
at least seven more words beyond the location specified. And 
that the location specified resides in a PE whose number is equal 
to one modulo eight. 

FUNCTION Subprograms 

The CFDX translator will not accept user written FUNCTION 
subprograms because FORTRAN FUNCTION subprograms return only 
one value and CFD FUNCTION subprograms return 64 values. The 
alternative is to replace FUNCTION subprograms and their uses 
with SUBROUTINE subprograms and the appropriate CALL and assign­
ment statements. This restriction does not apply to intrinsic 
FUNCTION subprograms. 

An example of a CFD FUNCTION subprogram and its use is 
illustrated by 

A. 4 



calling program 

*DIMENSION B(*) ,C(*) 

A(*) = SOMEF(B,C) 

FUNCTION subprogram 

*FUNCTION SOMEF(X,Y) 
*DIMENSION X(*) ,Y(*) 

SOMEF(*)=X(*)/Y(*) 
*RETURN 
*END 

The following is an equivalent usage of a SUBROUTINE 
subprogram which is acceptable to the CFDX translator: 

calling program 

*DIMENSION B(*) ,C(*),SOMEF(*) 

*CALL SOMEFS(B,C,SOMEF) 
A(*)=SOMEF(*) 

Equivalence to dummy arguments 

SUBROUTINE subprogram 

*SUBROUTINE SOMEFS(X,Y,Z) 
*DIMENSION X(*) ,Y(*) ,Z(*) 

Z(*)=X(*)/Y(*) 
*RETURN 
*END 

CFDX will not allow the user to equivalence to dummy 
arguments of a subprogram. Thus, 

*SUBROUTINE SUB(X,Y,Z) 
*DIMENSION X(*) ,Y(*) ,Z(*) ,A(*,16) 

*EQUIVALENCE(X(l) ,A(l)) 

is~ allowed by the CFDX translator. 
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Input-Output 

The CFD statement 

will be translated into the following FORTRAN statement: 

The CFD statements 

~

READ ] READH 
READQ 

will be translated into the following FORTRAN CALL statement: 

CALL DISKIN(i,~ 1 d,~ 1 k) 

where 

i = 1 if it was a READ statement. 

i = 2 if it was a READH statement. 

i = 3 if it was a READQ statement. 

Similarly, 

[WRITE ] WRITEH (E_,~,d (!2_) ,k) 
WRITEQ 

would be translated as follows: 

where 

i = 1 

i = 2 

i = 3 

if it was a WRITE statement. 

if it was a WRITEH statement. 

if it was a WRITEQ statement. 

It is up to the user to supply to appropriate subroutines, 
DISKIN and DISKOT. The following are examples of appropriate 
subroutines for an IBM 360/67 (virtual memory). 
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SUBROUTINE DISKIN(IBNDRY,IARRAY,IDISK,IBEGIN,NOPAGE) 
DIMENSION IARRAY(l),IDISK(l) 
IF((IBEGIN.LE.0).OR. (NOPAGE.LE.0)) GO TO 9 
ISTART=(IBEGIN-1)*1024+1 
IFIN=ISTART+(NOPAGE*l024)-l 
IF(IBNDRY.NE.l) GO TO 1 
INDXA=0 
DO 2 INDXD=ISTART,IFIN 
INDXA=INDXA+l 

2 IARRAY(INDXA)=IDISK(INDXD) 
RETURN 

1 IF(IBNDRY.NE.2) GO TO 3 
INDXD=ISTART 
IRDWA=0 

5 DO 4 INDXA=l,32 
INDXRA=INDXA+IROWA 
IARRAY(INDXRA)=IDISK(INDXD) 

4 INDXD=INDXD+l 
IF(INDXD.GE.IFIN) RETURN 
IROWA=IROWA+64 
GO TO 5 

3 IF(IBNDRY.NE.4) GO TO 6 
INDXD=ISTART 
IROWA=0 

8 DO 7 INDXA=l,16 
INDXRA=INDXA+IROWA 
IARRAY(INDXRA)=IDISK(INDXD) 

7 INDXD=INDXD+l 
IF(INDXD.GE.IFIN) RETURN 
IROWA=IROWA+64 
GO TO 8 

6 WRITE(G,100) 
100 FORMAT(' !!!!SYSTEMS ERROR, INVALID I/O BOUNDARY') 

STOP 
9 WRITE(G,101) 

101 FORMAT('**** I/O FAULT, STARTING PAGE OR NUMBER OF PAGES 
*IN I/O REQUEST WAS NONPOSITIVE') 

STOP 
END 

SUBROUTINE DISKOT(IBNDRY,IARRAY,IDISK,IBEGIN,NOPAGE) 
DIMENSION IARRAY(l),IDISK(l) 
IF((IBEGIN.LE.0).OR. (NOPAGE.LE.0)) GO TO 9 
ISTART=(IBEGIN-1)*1024+1 
IFIN=ISTART+(NOPAGE*l024)-l 
IF(IBNDRY.NE.l) GO TO 1 
INDXA=0 
DO 2 INDXD=ISTART,IFIN 
INDXA=INDXA+l 

2 IDISK(INDXD)=IARRAY(INDXA) 
RETURN 
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1 IF(IBNDRY.NE.2) GO TO 3 
INDXD=ISTART 
IROWA=0 

5 DO 4 INDXA=l,32 
INDXRA=INDXA+IROWA 
IDISK(INDXD)=IARRAY(INDXRA) 

4 INDXD=INDXD+l 
IF(INDXD.GE.IFIN) RETURN 
IROWA=IROWA+64 
GO TO 5 

3 IF(IBNDRY.NE.4) GO TO 6 
INDXD=ISTART 
IROWA=0 

8 DO 7 INDXA=l,16 
INDXRA=INDXA+IROWA 
IDISK(INDXD)=IARRAY(INDXRA) 

7 INDXD-INDXD+l 
IF(INDXD.GE.IFIN) RETURN 
IROWA=IROWA+64 
GO TO 8 

6 WRITE(G,100) 
100 FORMAT('!!!! SYSTEMS ERROR, INVALID I/O BOUNDARY') 

STOP 
9 WRITE(G,101) 

101 FORMAT(' **** I/O FAULT, STARTING PAGE OR NUMBER OF PAGES 
*IN I/O REQUEST WAS NONPOSITIVE') 

STOP 
END 

If the FORTRAN generated by the CFDX translator is to run 
on a machine without virtual memory it may be necessary for the 
user to remove the COMMON statements which were a result of the 
DISK AREA statements. Furthermore, these I/O subroutines may 
have to be written in such a way as to make use of some external 
storage device, e.g., tapes, disk, etc. 

In the case of the I/O IF statement the CFDX translator 
assumes that all I/O requests have been completed. Thus, .NOT 
COM. n is always assumed to be false and .COM. n is always 
assumed to be true. -

In the same vein the WAIT statement has no real meaning in 
CFDX and is thus translated into a FORTRAN CONTINUE statement. 
It should be noted, however, that if the machine upon which the 
CFDX generated FORTRAN is to be executed has the facility to 
use asynchronous I/O the necessary FORTRAN statement should be 
inserted in the CFO to make use of this facility. 

Finally, with regard to CFD I/O, it is the user's respon­
sibility to see that all the FORTRAN COMMON's (or their logical 
equivalent) which are associated with the CFO DISK AREA's are 
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properly initiated. This may be achieved by supplying the proper 
FORTRAN and job control commands all of which is dependent upon 
the machine which will execute the FORTRAN. Similarly FORTRAN 
or job control type I/0 must be used when the task has been 
completed. 

RWA - A Required FUNCTION subprogram 

The FORTRAN generated by the CFDX translator makes frequent 
calls to a FUNCTION subprogram called RWA. RWA has one argument 
and is defined in the following equation 

RWA(N) = (N-1) (mod 64) + 1 

where O < M(mod 64) ~ 63, so 1 < RWA(N) < 64 

The following is RWA written in 360 assembly language for 
an IBM 360/67. 

RWA@C CSECT 
ENTRY RWA 
USING RWA, 15 

RWA L 1,0(1) ADDRESS OF ARG. IN Rl 
L 1,0(1) ARG. IN Rl 
BCTR 1,0 DECREMENT Rl 
N l,=X'0000003F' 'AND' WITH MASK X'0000003F' 
LA 1,1(,1) ADD 1 TO Rl 
LR 0,1 MSWER IN RO 
BR 14 RETURN TO CALLING PROGRAM 
END 

This particular program is in the systems library of the 
NASA-AMES 360/67. An equivalent program should be made available 
on any machine upon which CFDX generated FORTRAN is to be run. 
(It is frequently used and should be coded efficiently.) 
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R¢WMAX, R¢WMIN, and R¢WSUM 

CFDX does not support the intrinsic functions ROWMAX, 
ROWMIN, and ROWSUM. Therefore, the alternative is to insert 
equivalent FORTRAN statements for these unsupported functions. 

Run-time Clock 

CFDX does not support CLOCKSET and CLOCKREAD because there 
is no universal FORTRAN equivalent. The alternative is to in­
sert the equivalent FORTRAN for your system. 
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TECHNICAL NOTE: TRANSLATOR CONVENSIONS 

CFD has fixed conventions which allow communication of 
information between separately compiled modules. The four 
classes of modules are SUBROUTINE, subprograms, FUNCTION sub­
programs, BLOCK DATA subprograms (COMMON blocks), and the 
run-time CFD package. 

In general, the user has control over the first 48 ADB 
locations ($DO through $D47) and the E,El,G and H bits of 
the $D register (E and EI=MODE, G=MBITl, H=MBIT2). Therefore 
all CFD modules modify these registers and bits only at pro­
gram direction. 

SUBROUTINE Subprogram Convensions 

When a SUBROUTINE is calle~ the calling program does the 
following: addresses of arguments (which must number less 
than or equal to seven) are stored in $D49 through $D55 in 
the same order as treyappear in the argument list. These 
addresses are 24-bit addresses, therefore, the high-order 
40-bits of the ADB locations may contain garbage. If the 
argument is a subprogram name the address is a word address. 
Otherwise, the address is a row address (as required for ACAR 
indexing of FINST instructions). The return address is passed 
in $C3 (by an EXCHL (3) $ICR instruction at the branch). 

In the called subprogram $D48 may be used to store the 
return address. If this called subprogram calls another sub­
program, it must save its arguments and return address. The 
save area of 8 PE words is aligned on an 8 word boundary to 
allow a BIN reload to the ADB on return from the called routine. 

The last 8 ADB locations are used by CFD and should be 
restored if they are changed. $D56 is a scratch register, $D57 
is a pointer used by SCRATCH statement, $D58 is an I/O completion 
mask, and $D59 through $D63 contain masks used in CFD generated 
code. None of the other hardware registers, e.g. $CO-$C3, $A, 
$B, $R, $S, $X and the not aformentioned parts of $D, need be 
restored by a SUBROUTINE subprogram. In addition, $D48-·$D55 
are free for SUBROUTINE (assuming addresses the originals con­
tained are no longer needed) use and need not be restored. 

FUNCTION Subprogram Convensions 

With the following three exceptions, the linkage of a 
FUNCTION is the same as to a SUBROUTINE. One, on return from 
a FUNCTION, the FUNCTION values are passed back to the calling 
program in $A. Two, in a SUBROUTINE the E, El bits (mode) may 
be changed. On the other hand, a FUNCTION subprogram insures 
the E, El bits of $Dare returned unchanged to the calling pro­
gram. These bits may be changed within the FUNCTION as required 
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but must be reset to the values they were at entry prior to 
returning to the calling program. Three, FUNCTION's must, at 
call, be referenced with at least one argument. 

Dynamic Allocation Stack Pointer 

The CFD SCRATCH statement as well as CFD's need for working 
storage, requires that CFD maintain a run-time stack pointer to 
a scratch area. This area is located at the bottom of PE memory. 
(SCRATCH is equivalenced to D and is used as the base address in 
CFD object listings.) The row address of the first available 
row of scratch resides in $D57. The calling program sets the 
pointer ($D57) to cover active rows when moving down the call 
chain (by calling a subprogram). The pointer must have the 
same value at RETURN from the called subprogram as when it was 
entered. Moreover, it is the responsibility of the called sub­
program to check (at entry) if sufficient scratch storage is 
available. If insufficient storage is available the CFD sub­
program will HALT. 

COMMON Blocks 

All CFD COMMON blocks must appear in a BLOCK DATA subprogram. 
This is because the BLOCK DATA subprogram declares the COMMON 
block name an (ENTRY) and allocates the storage. This also 
necessitates that the longest version of all COMMON blocks be in 
the BLOCK DATA. In non-BLOCK DATA programs COMMON block names 
are declared EXTERNAL and the members of the COMMON block are 
equivalenced to the COMMON block name plus the appropriate off­
set. (To make use of the symbol table of the BLOCK DATA program 
it is suggested that the BLOCK DATA be the second program 
INCLUDED in the LINKED. This will insure that the symbol table 
address of COMMON variables is the same as their actual address.) 

Required CFD Run-time modules 

CFD programs must have three relocatable files INCLUDED at 
the LINKED stage along with all the user supplied relocatable 
files. (AMES) OBJ.FIRST must be the first file in any CFD ISV 
file. That is, (AMES)OBJ.FIRST must be the first file INCLUDED 
in a CFD LINKED. (AMES)OBJ.LAST must be the last file INCLUDED 
in any CFD LINKED. If 64-bit processing is to be used (AMES) 
OBJ.INTR (which contains the intrinsic functions) must be INCLUDED 
with the other CFD reloactable files. If 32-bit processing is to 
be used (AMES)OBJ.INTR32 must be INCLUDED with the other CFD re­
locatable files. The latest version of these files will always 
be in the (AMES) directory on I4TENEX. 
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