
NOP Pascal

~
~···~.

'

\'--

! 1 ·i. '· (]) .. ···" .

I ·,

NOP Pascal-386/486 v. 4.00 for UNIX V.3
Release Notes

1.0 Overview
The NDP compilers. available in four languages (C. CIC++. Fortran. and Pascal) allow you to
compile, link. and execute 80486 and 80386 32-bit protected mode code.

1.1 Bug Fixes
Weitek libraries ancl libraries for use with the standard UNIX profiler have been updated.
Additionally, the -g switch (debugger information) and the -n2 switch have been updated.

Problems with the cabs function have been corrected.

1.2 Changes, in Previous Releases

Before versi©H 4.0~ •. loop unrolling was either on or off. The -l:.t:r switch was added in version
4.0b which aH0wstheuser to.controlhow aloop iS unrolled. The syntax of the switch is:

-ur= {number}

where {number} is 2, 4, 8,.16, 32 or 64. Which switch to use for the best performance depends
on the code bemg optimized.

2.0 Technical Support
If you encounter difficulty irtthe tri.stallation or operation of7 the NDP compilers, please notif)r
Microway Technical Support. You should have tl1e language, platform. operating system.
peripherals. ancl yoHF user number available.

Microway. Inc.
Box 79 Research Park'
Kingston .. MA. 02364
UNITED STATES

Phcme:
Fax:

March 8~ 1993

+508/746-7341
+508/7 46-4678

Release Notes 4~0d

-i
\

([
-

)

NOP 3861486

UNIX

USER'S MANUAL

Microway@
Researeh: Park

B0x79
Kim~storn, • Massaettuusetits 02364 • USA

NDP CIC++-386. NDP c tC~+-486. NDPFoman-386. NDPFortran-486. NDPPascal-386. NDP
Pascal-486. and MicFoway are trademarks ofi Microway. Inc.

UNIX is a registered tradema.Fk of A11'&'f.

CyriX and EMC87 are trademarks ofi Cytioc Corp0uati0n.

Intel. SX. 287. 386. 387. 486. i486. am:l i860 are trademarks of Intel Corporation.

Micros0ft. Micrns0fit Fortran. and 1 MS,.. DQS, are registered trademarks of Micros0ft Corp0Fation.
OS/2 is a registered trademark of; Internati011al Business Machines. Inc~

OS/386 is a trademark of Ergo, Computing. Inc.

Phar Lap. 386 IDOS ... Extender. 386ASM. 386UNK. and 3861,VMM are trademarks of Phar Lap
S0fitware. Inc.

Weitek is a traclemark of Weitek Corp0rati011.

Copyright© 199@. 19912 Microway. Inc~ March 3. 1993

/ __ .,,,,-- "\

__)

Set Up

1.1 System Requirements
1.2 Disk Contents
1.3 InstaUati©n

1.3. l Environment Variables
1. 4 Testing the Compiler
1.5 Troublesho0ting1

Using The Compiler

2. l' The CompileF Driver
2.2 C0mpiler Driver Syntax

2.2.l Example
2 .3 CCi>mpileF Opti©ns aml Switches

Optimizations

3.0 Overview
3. 1 Memory Ali0cati0m
3.2 RegisteIT All0cati011 by Col@Fing
3.3 Static Adcd:ress EliminatioN,
3. 4 Register Coalescing

Contents

3. 5 PIT0l0g ancd Epil©g Cocde Optimizati©n
3.6 Peeph0le Optimizations
3. 7 Spee<d Optimizations
3.8 Loop Rotation.
3. 9 Loop Invariant Analysis
3.10 StITength Reduction
3.11 Dea<d Co<de Elimihation
3.12 Inline Multiplication and Division
3.13 Con.stant Proi}Dagation.
3.14 Constant Expuessi©n Folcling
3 .15 C<Imnmon Subex]>J:ression.1 Eliminaticrn (CSE)i
3. l 6 ~ive/Dead Analysis
3.17 Cross Jumping (j.e., Tail; MeFging l Cocde :Waisting}'
3.18 Loo:w l!Jm0Uing1

3. 19; InlineF
3.119:. IJ Size vs. FFeq~emey 0£ Use
3. H9.2 Recursi©N
3.19.3 Defliniti0n.1 ofl Functi©N1 is Exported/1Imp0Ftecl/Static
3.119:.4 AdelFess ofl F1mcticm1, Taken
3.19.5 Nested Functioas

Runtime Organization and Numerics

4.1 L0wer Level Characteristics
4. 2 Integer lData Type
4. 3 Single Pl:iecisioH Real:

1

l
l
l
2
2
2

5

5
5
6
6

11

11
l2
1J2
13
l4
15
15
l5
16
16
17
19
19:
20'
20
21
21
2l
22
23
23
23
24
24
24

25

25
25
25

iv

4.4 Double Precision Real
4. 5 Single amt D0Mble Real Encodings
4.6 Language Data'Fypes
4. 7 Internal Registers

4. 7.1 General Purpose Registers
4. 7 .2 Segment Registers
4. 7 .3 The 80386 /80486 Flags Register
4. 7.4 Systems Coatrol: Registers

4.8 The 80387 Register Set
4.8.1 80387 Data Registers
4.8.2 The Status Word RegisteF
4.8.3 The CoBtF0l1 Word Register

4.9 Weitek AFchitectMre
4.9.1 Weitek Data Registers
4.9'.2 TheWeitek Process Coatext Register

4.10 Numeric Exceptioas
4.10. l NDP Compilers' H:ancdling of: Numeric Excepti0ns

4.11 An I:ntroduction to, the IEEE Number System
4.111 .1 IEEE RepFesentati0n of: Real: Nwmbe:rs
4.11.2 Ptecisioa and DenoliIIlals
4.11.3 Imimttes and NaNs

Mixing Languages

5 .1 GeneFal Rules
5. 1. 1 Linkiag Restrictli0as
5.1.2 !Data Type !Differences
5.1.3 Naming Conventi0ns
5 .1. 4 Parameter Passing
5.1.5 OutpMt Eh1ffe:rrs

5.2 Calling Between NDP FortFan and: NDP C l,C++
5.3 Calling between NDP Fort.Fan aml NDP Pascal
5.4 Calling betwee:n NDP CJC++ and NDP Pascal
5. 5 Interfacing Assembly 1.anguage

5.5.1 Reasons for Wrttin.g Assembly
5.5.2 Usrng, tfi,e Intelligent Assem.bleF to: OptifiliZe C0de
5.5.3 GeneFal Rl:lles

Porting Programs

6.1 Compatibility with other Compilers
6.2 W0rd-Size Pr0blems
6.3 Byte-OFdei: Problems
6.4 Alignme:at Requireme:ats
6~ 5 Fl<1>ating;... Foint Range a:ad Accuracy
6.6 Assernfuly Language h1terrfaces
6. 7 Expression: Evaluati<l>n O:rder
6$!Uegal Assumptioros Ab0Mt Optimizatioms

6.8. l Implied Register Usage
6.8. 2 Mem0ey AUC1>cati0ro1 Assumpti011s
6'$.3 -OM ancd -OL..M Ccn:~sideFatio:ms

6.9; Problems with S0N:i:ce-fueve1: Debuggers
6.110 Problems with CompileF Memany Size

NDP User's Manua/1

Contents

26
27
28]' 29
29 ~

30
31
32
33
33
33
36
38
38:
38
39
41
42
42
45
46

49

49
49:
50
51),

I

52 \.._/
53
53
55
56
57
57
58
61

63

63
63
63
64
64
64
64
65
66
66
66
66 \

66 '~

3861486 UNIX

Contents v

ASCII Character Set 69

Index 71

3861486 UNIX N/JJP User'$ Manual

. T
\.,_.,/

~. I . · ... ·. \J..Jl

(1 ·;

~

1 Set Up

The NDP-386/486 compiler family is completely hosted oa UNIX System V.4. The NDP
compiler family uses all features of the native to0l 1 chain as supplied by AT&T.
Each compiler is shipped with a compiler drtver and necessacy runtime libraries. All native
UNIX system calls are supported. The NDP compiler supports GUI packages only in UNIX
System V Release 4. not Release 3.x.

The compilation process is a matter of compiling, assembling. linking. and loading/running a
program.

Should you encmmter any problems. please contact Technical Support:
Microway. Inc~
Box 79
Ki:ngstoa. MA 02364
f508) 746-7341 Voice
(508) 746-4678 FAX

1.1 System Requirements
The NDP 386/486 compileFs require the following harc;lware and software:

• A386 or486

• High density 5.25" c;liskette drive (3.5" disks available on request)]

• A hard disk with at least 3 MB ofl free space~

• Devel0pment versicm of UNIX System V Release 3 or Release 4. specified at vurchase time.
(NDP Pascal is available for UNIX V.3 only at pFesent.):

1.2 Disk Contents
This release comes on two) or three diskettes, depeacling oa language. The following files
shoulcl be available on the diskettes:

l. All compilers: libc .a. libcp.a. libc1167 .a, libc1167p.a. libm.a. libmp.a.
libml167p. a

2. Fo:r:t.ran,oruy: mf486, ndpf486, libf.a, libfp.a, libf1167 .a, lif1167p.a, hi.f

3. C ancl;C:+f+: assert.h, ctype.h, errno.h, exterr.h, float.h, limits.h, locale.h,
math.h, setjmp.h, signal.h. stdarg.h, stddef.h, stdio.h, stdlib.h, string.h,
strings.h, time.h,varargs.h, stat.h, times.h, types.h,vm.h

4. C oBJ.y: mc486, ndpc486, hi. c

5. Pascaloflly: mp486, ndpp486, libp.a, libpp.a, libp1167 .a, libp1167p.a, hi .p

1.3 Installation
To install the NDP c0mpile:rr. foll0w these steps:

1. Log in as root OF make sure you. have write pe:rmissi011s to /usr.

2. If the directozy /usr /microway daesn't exist. create it:

2 1 Set Up

mkdir /usr/microway

3. Chang~ to that drrectoliJ:

cd /usr/microway

4. Insert the compiler diskette #.1 into the fil0ppy drive, the:n type:
cp.io. -icBduvrn</dev/rdsk/f { drive}q {size}dt

where {drive J is the diskette chive you are using (O OF 1); aml {size J is the capacity ofi the
diskette (15 for 5.25 inch disks and 18 for 3.5 inch disks). If the message End of Medium. on
Input appears, insert the next diskette and type:

/dev/rdsk/f {dr i ve}q{size}dt

5. This step is needed foF the 5.25 inch versions only. Move the software to the appropriate
directories using the foll0wing co:mmand(s):: ·
Fortran:
CIC++:
Pascal:

mv mf486 /usr/bin/mf486
mv mx486 /usr/bin/mx486
mv mp.486 /usr/bin/mp486
mv hi.p src

1.3.1 Environment Variables
BefoFe running the compiler, you shoulcl make sure that /usr /bin is in your path. This is
where the compiler driver lives.

If you prefer to break out the components ofi the NDP compiler, tools, and libraries, the
following enviromment variables are valid.

setenv inc path
setenv lib path
setenv src path
setenv tools path
setenv npd path

1.4 Testing the Compiler
Change to, the /usr /microway I src directory and test the compiler using ome of the following
cormnands:

mf486 hi. f (Fortran)
mx486 hi.c (C)

mx486 hi. cxx (C++)

mp486 hi.p (Pascal}

This produces an execti table file name cl' a . out. 'Fo run this :t:Ue unde:u UNIX, type:
./a.out

The message 11 Hi ! 11 shoulcl be displayed.

1.5 Troubleshooting
If you cann0t get the compiler to,prnduce the executable a. out, the trouble is prooably in the
ce>nfiguration 0:t: the system. 'Fhat is, the driveu cannot £incl the files it is 100king for.
Pro0lems of this type may be pinpointed using the switches -v and; -rt2. Switch -v causes
the driver to display the cormnancls 0£ each subprocess. It is a go0cl way to uncover proli>lems
which relate to the search path used by the compiler an.d driveIT. Switch -rt2 displays the
:aame ofT each file owened by the compiler.

NDP User's Manual 3861486 UNIX

¥
(j

\..._/

1 Set Up 3

See Appendix A 0£ the Language Reference Manual for a list 0£ errors with their solutions.

3861486 UNIX NOP User's Manual.

2 Using The Compiler

This chapter explains how to compile a progFam using the compiler driver and its switches.
The switches allow yoN to select compiler optimizati©ns, vary code generation to suit the
environment, aml specify alternative locations of the library and include files, among other
options.

2.1 The Compiler Driver
Microway's compiler d!river simplifies program develoJ)ment by automatically compiling,
optional assembling, linking an<il loading/running an NDP program with a single commancl.
The campier dnveF executes the NDP-386/486 compiler, assembler, and linker to pi;oduce an
executable binary file. The driver runs the compiler;, which creates an assembly language file
from the source file. Next, the driver runs the assembler, which creates an object file from the
assembly file. The driver then invokes the linker, passing the appropriate object files, default
libraries, linker switches. and any additional information supplied on the compiler driver
command line by the user. The linker creates the executable binary file from these m0dules.
Finally, the compiler driver deletes the assembly and object files created; they may be retained
using the -keep switch. (See Secti<Dm 2.3 foF related toggles -c, -keepobj, ~keeps, and -s).

2.2 Compiler Driver Syntax
Syntax: driver_name [switches] file(s}

dr i ver_name is olile ofi the following:

mf486
mx486
mp486

switch es is a list of optioiilal switches separated by spaces. Each switch begihs with a minus
sign (-). The following sections discuss the switches.
f i 1 e (s) is a list of one or; m@re file names. File names must be separated by spaces: the
wildcard characters, questiolil mark(?) and asterisk(*);, may be used.
The compiler driveF will accept FoFtran, C. C++, Pascal and assembly source come files. oli>j~ct
m@dule files., an@ library files as inp11t.. The file extensioN designates the input file type using
the foH@wing ccmventi@as:

• Filenames witfu the extensiC!>Iil . f o:u . for are assumed to be Fortran source programs.
Files with the extension . r are assumed to be FortFan source files that require the Ratfor
prewrocessor. Files with the extension . c, . cpp or . cxx are assumed to be CIC-+++ source
programs. Files witlh the extension . p or . pas are assumed to be Pascal programs. The
driver compiles them mto assembly files using tfue appropriate compiler and leaves them
as . s files fa, the cur:uent directo:vy.

• Filelilames with the extension . s are assumed to be assembly source pm grams. I bin I as
assembles them into, obj~ct files with the extension . o.

• Filenames witlh lli.e exteasi@n . o are assumed to be obj~ct programs or olDject program
libraries compatil:l>le with the NDP compilers. These filenames are passed to the linker.

6
2 Using The Compiler

• File names with the exten~ion . a are assumed to be libraiy files compatible with the NDF>
compilers. I bin I ar creates aml manip1dates them. These file names are passed to the linker.

• Filenames With no extensicm, or with an exte:asiGm other than mentionecl above are passecl to the linker untouchecl.

By default, the compiler driver will convert the inpat file into an executable lDinaiy program. The -s sWitch stops the pFocess after the assembly file is created, while the -c sWitch halts the pFocess after the object file is created. For example, the foll©wing commands all produce the executable file a . out:

mf 486 testl. f
mx486 testl. cxx
mp486 test 1. p
mf486 testl.s
mx486 testl.o

2.2.1 Example
As an example, assume we have two mes, main. p (contaihing the main program): ancl subl. p (rcontaihing1 s@me subrot:Itines):. We want to compile these programs and prnduce the
executable file test . out. The command is:

mp486 main .. p subl.p -o test.out

The cmmpiler compiles the two, source files into assembly files, which are assembled into obJect files. The driver inv@kes the linker, passing it the names of the two obj~ct files just created, the
-o switch and its argument, and the names of the default olDject files and libraries. The linkeF produces an oNtput file Narnecl test. out. 'Fhe output file can be run by typing in;

./test.out

2.3 Compiler Options and Switches
'Fhe foH©wing table clescribes the switches used by the compiler drtveF:

Switch Description
-2 .1 RecognizeAT&'F 2.1' rules.
-ans i Assume input program confom:ns to ANSI1 stanclard. (G and Pascal, not

C++))

-ans icon form C:Feate ANSI1 code °bNt reflrai!l, from inlining math functicms (C only);.
- c Cause the compiler dtiver to compile each source file to the o"bJ~ct file

level oruy. 'Fhe dtiver d0es nmt call the linker and prroduces no
executable code~

-cgl Turn on, runtime checking of subzranges and array b@Nnds. The code Will
be much sl©wer under this option.

-cg2 Allocate all variables to,mem©:uy.
-cg3 AH.©cate code temp0raries to, rnem0:uy.
- cg 4 F>repemJl; all variables with an, unclerscoFe~
-cgS Output an assemlDly file with tfue exteasi0n . asm. The default is . s.
-cg6 Do, not pu.t an underscore i:a frol1lt 0£ gl01Dal variables and procedures.
-cg7 Avoid! j 1umps with inline code.

NiiJP User's Manual: 3861486 UNIX

U
/,--

;)

' 0

2 Using The Compiler 7

-c 1 ink Link libraries appropFiate for C source code; used when the context is
ambiguous such asrnx486 hi .o.

-cpplink

-Dname

-Dname=text

-fl

-f2

-f3

-f 4

-f 5

-f 6

-f7

-fdiv

-fl ink

-g

-ga

-hasm

-i2

-i4

-identl

-ident2

-Idir

-lname

-list

-LIST

-min it

-no
-nl

-n2

-n3

3861486 UNIX

Link libraries appropFiate for C+-¥ source code; see -clink above.

Define the symb@l1 name (C I C++ on.lyl

Define name to 1 have the value ofi text (CIC+-++ only)

Accept characters as unsigned. (Fortran only);

Turn off the compile-time checking ofi FORMAT statements. Use this
opti<i>n if your runtime supp@rts FORMAT statement features that NDP
Fortran d@es not recognize. (FoFtran only)1

Pad Hollerith constants on right with blanks. The default is that only the
first byte of the HoHerith constant is significant and the constant is zero
padded on the left. ('Fo:rtran only)

Compile lines starting with x. x. a. or D. The default is to treat them as
comments. (Fortran on.ly)'

D0 n0t accept dollar signs [$)in names. The default allows dollar signs
for VMS compatibility. (Fortran only):

Enable backslash editing, e.g .. \n represen.ts new line. (Fortran on.ly)

Local variables are automatic (on stack)' by default. (Fortran only)'

Reduces the am011nt of time required to divide~ at the expense of two bits
ofi precisicm. It pi7ecision. is critical. do not use this switch.

Link lit>rartes appropriate for Fortran so11rce cocle; see -clink above.

Generate executable code compatible with source level clebugger.

Generate frame p@inter for stack traces.

lnte:urnix assembly and scnLirce code in the assembly file. You should use
-s or -keeps with this switch to retain the assembly file.

Make clefault integeIT size 2-byte; this results in code that runs m@re
sl©wly (Fo:rtran only):.

Make default integer size 4-byte; this is the default (Fortran only):.

Accept but do not cmtput #identifier (Cl C++);.

Accept ancl outpu.t #identifier (Cl'C++):.

Search foz; inclucle file names in the directory di r t>efore searching the
standard directo:rries.

Causes the compiler driver to direct the linker to search the library
named 1 ibname. a. Fo:rr example. -lf ft will add 1 ibf ft . a to the search
path.

Ol1tput a . LST file sh0wing al1 scmrce co.cle including include files with
line numbers.

Il..fke -1 is t but om.it path names and line numbers.

AH0w multiple ihitializati@ms (Fortran oruy)J.

P:rroduce 80287 cocle with library calls. n0t inline transcenclentals.

Procduce 80287 code with inline transcendentals, not library calls.

ProGluce 80387 code with inline transcendentals, not library calls.

Advanced Intel c0process0r stack utilizati<Diil.'.

NOP User's Manua/!

8

-n4

-n5

-n6

-n7

-n8

-nof77

-0

-o name

-off

-of fa

-off cse

-of fh

-of fn

-of fp

-off r

-offs

-OL

-OLM

-OM

-on

-on2cse

-onetrip

-onlr

-onrc

NDP User's Manual,

2 Using The Compiler

Generate c0Cile for the Weitek col1>rncess0r family.

Generate Microway style Weitek macro instructi0ns in the assembly file.
This will not proC!luce executable c0Cile. C.J
Promote n0 fl0at.

Use Weitek 3167 multiply accumulate instructi0n. Requires -n4.

Use Weitek 3167 square ro0t ihstructio:n. Requites -n4.

Use Fortran 66 conventi0ns. Also turns on -onetrip (Fortran only)!.

D0 all operations.

(Lower-case oS Cause the compiler driver to place the executable output
file into the file name. name must be preceded by a space and can
include an extensio:n.. By default, the 0utput file will have the name
a.out.

Same as -o.ffp, -off a, -offh, -offs, ancl -offn.

ID0 n©t move freque:atly used proceclure and data adclresses into
registers.

D0 n0t do c0mm0n sNbexpression eliminati©n (10cal/gl0mal CSE):.

THrn off cr0ssjumpm.g optiffiizati©N'.

Keep: invariant floating pmint exp:ressi0ns in hi>0ps.

:Disable peeph0le 0pttimizer.

Force variables to be storred in memoliY.

Turn off dead cocle elirninaticm.

0!1>timize the ll>rogram to be as fast as possible even if it is necessary to
make the pFogram biggeF. In particalar, m0st 0£ the available res0urces
are all©Cated to optimizati011s ofl the innerm0st 10011>8. The -OL compile
tftne Ol1>ti0n will perform Ol1>tirn1zatimns that may make the program faster
btlt larger. It is counterproductive to specify -OL on code that contains
n0 l0011>s or that is rarely executed as it will make the whole program
larger but n0, faster. You can experiment with a program to discover
which m0dules benefit frnm -OL an@: which ones do n0t. The -x482
owti0n may be Hsed with -OL to, enable vari0us loow optimizations
with0tlt turning 011 loow unrolling. In adcliti0n, -OL inlines all scalar
multiplies, ancl, replaces larger bl0ck rn0ves with seqµential moves
insteacl1 of an inline lbop.

rhis option is eqµivale:at to -OL ana: -OM.

Ad<!t mem<i>IY optlimizati©11s to, -o.
Sanie as-on2cse, -onlr, -onrc, -onrepeep, -OLM.

ID0 c0mm0n subexpFessi0n eilminati011, (CSE} twice.

Execute at least one iterati0n of every DO 100p. 'Fhe -onetFip switch
may be required f01; sNccessful executi0n of certain old Fortran
programs. (The use of the -on et rip 0pti0n makes the compiler
incmmii)atible with the .ANSI Fortran 77 stanclard clefault 0f executing n0
iterations ofi the DO lmop when the 10wer b0tmd is greater than the upper
b01J1Ildi.)'

lD0 l@0p unrnlling.

Dm) register caching.

3861486 UNIX

0

(r'·\
\J)

i · 1 ·"

UJ

2 Using The Compiler 9

-onrepeep Repeat peephole optimizations until no further improvement is achieved.

-onw

._:P, I
-plink

-rtl

-rt2

-rt3

-rt4

-s

-u

-u

-uname

-Ur=#

-v

-vrns

-vrnsi

-w
-w

-Wa, toggle

-Wl,toggle

3861486 UNIX

Emit a warning when deacl cocle is eliminated.

Generate cocle for prot:ilin~. . . .· . A •. ,,., ,

~Eit11£ f4s.:.1L f.!rXff:R.IV~ C7_'1.c Jtvi((l,/E_
Link libraries appropriate for Pascal source code; see -clink above.

Output file names are created by appending the appropriate extensioa to
the source file name; requires - s.

Display the names of files as they are opened.

Coatinue to compile after a cocle generator abort or Internal Compiler
Error (lCE)J.

Recognize all 80386 library calls instead of inlining routines (e.g.,
memcmp).

Do not procluce object files or executable files, produce only assembly
language files. For each source language file specified, compile the
s0urce language file into assembly language output. Put the assembly
language output into a file with the extension . s.

Make "undefined" the default data type for umleclared variables, as if
"implicit undefined (A-Z)"were placed at the top of each routine
(Fortran only):.

Do not convert upper case user-supplied names in Fortran to lower case~
By default, Fortran is not case sensitive and all Fortran names that are
externally visible are in the object file in lower case. If one wishes to gaih
access to names defined in C as upper case, this optioa can be used.
However, use 0f this opti0n makes the compiler incompatible with the
ANSI Fortran 77 standard.

Undefine the definiti0n of the symb0l name (C l,C++ only)'.

where # is 2, 4, 8, 16, 3 2, or 6 4. Unrolls a loop # times. This switch
MUST be used with -OLM. For example: mp4 8 6 -OLM -ur=32 1 iver. p
-o liver

Causes the compiler driver to display the program name aml command
line arguments of each subprocess it invokes.

Accept VAX VMS Fortran compatibility over Fortran 77 interpretation.
(FortFan only)

Enable VAX extensioas for intrinsic functi0as ortly (Fortran only)'.

Make all warnings fatal.

Su]>press warning messages.

'Pass the specified toggle('s): t© the assembler.

Pass the specified toggle((s)1 to1 the linkeu.

NDP User's Manual

-f -u

rj'·.
\)

3 Optimizations

3.0 Overview
The NDP compilers d0 many optimization.s, several of which are not available in other
compilers. These optimizations can reduce the size of a program by 30 percent and increase its
speed by a factor of up to four. The compiler does typical optimizations such as constant
folc!ling, strength reduction in simple operations and loops, code hoisting between bk>cks,
movement of invariant expressions out of loops, and conversion ofmultiplications and divicles
into shifts and addition.s when advantageous. The compiler also eliminates: redundant jumps,
unreachable code, ancl never-referencecl variables and expressions. The key to the
effectiveness of the optimizations is a gl<i>bal data-flow analysis that maximizes the use of CPU
registers anc.d, numeric coprocessoF registers for the storag~ of variables. The compiler does the
following optimizati0n.s:

• Mem0ry AH<i>cati0n.
• Register Allocati0n
• Static Address Eliminati<I>n
• Register Coalescing
• Prol©g and; Epil©g Code Optimizati0n.s
• Passing Parameters in Registers
• Vari<I>us Peephole Optimizati0n.s
• Speed Optimizatioas
• Lo©}D R0tati0m
• Loo}D' Invariant Analysis
• Stren.gth: Reduction.
• E>ead: C0c.de Eliminati©n
• In-lme Multiplicati0n ancl lDivisi0n.
• Con.stant Propa.gati0n
• Con.stant Expressi<I>n. Folclmg
• Local and Gl0lt>al C0mmon SubexpFession Elimination (CSE):
• Live /Dead Analysis
• Cross Jumping
• Looi:) Unrolling)
• Inlineu

The NDP compilati©Ni process is made Hp1 ofi three phases: the front ead, the intermediate
owtimizeF. ancl1 the back eac.d'.

'Fhe froat encl1 phase translates each p:crocec.dure into an ic.dealized internal Fepresentati0a,
including a c.di:uected fl0w gFaph (;J)FG):. foF each of the semantic operaticms all0wed by the
language. 'Fllis first pfuase, which includes lexical analysis anc.d parsing into DFG's, also; does
seveual optimizati0ms sucfa as strength reducti0n'.

The IDFG is the:n wassecl to the intermediate optimizer where optimizations are done on each
DFG before c0de is ge:m.er:ated. Each noc.de ofi the DFG represents a bl0ck ofi cocle that has oae
entu:y and oae exit p@int.

The code generator (back encl phase)i takes optimized DFG as ihp11t and maps it onto the
opeFations of an, iedeal: 32 liJit processoF that has an infinite number of virtual registers. The
register all0cation is d©me by a registeF col©ring alg0rithm that coalesces ancl maps the virtual
registers into the 8(!)386 or 80486 anc.d Intel OF Weitek coprocessor registers. Optimizati0ns
such as instructi0n scfuedhl:li.ng, an~l peeph0le optimizatioas occur during the code generation
phase.

12 3 Optimizations

Most optimizati0ns can be turned on by supplying the compiler with the -on opti0n.

mf486 -on dwhet.f

The rest of the chapter provides a brtef description of each optimization during the compilatimn
pFocess.

3.1 Memory Allocation
The NDP compilers allocate variables based on their size, frequency of use, and other
attributes. Variables that are never used usually are not allocated. Variables normally are
sorted to allG>Cate the smaller and more often used variables first, and the larger and less often
used variables later.

3.2 Register Allocation by Coloring
Register allocati0n is used to keep the m0st commonly used values always in registers. The
entire functi@n OF subroNtine is examihed to determine which local variables and parameters
are used most often. The m0st comrn0nly used variables and parameters are allocated to
machine registers. No mem0i:y is all©catecl for them. This optimization provides the most
significant savings in executicm speed and the largest reduction in program size. Referencing a
variable in a register takes about one third of the space and time required for referencing a
variable in memory.

AH l0cal variables of the maih program, or any functioN, are candidates fo17 allocation to a
register unless they are passed to a functiCi>n. The register allocator uses the global data-flow
analysis to find' the lifetime of each variable. This infonnati0n makes it possible to increase the
numlDer of: variables that can, be stored in registers by using the same register for variables that
d0 not overlap in the same procedure. Tw0 variables may be allocated to the same register if
therre is no place in the prngram in which b0th variables hofol a value that will be used later.
UsNally, all local variables stay in registers if p0ssible. When register space iS exceeded, the
compiler creates procedures which set up aml use the stack for local storage.

Programmer Hint: :Procedures that are c0ded so that they d© not require storage on the stack
have reduced calling overhead, and run faster. Als0, variables that are passed as parameters to
pFocedures have to stay in memory. If y0u have to, pass a "hot" variable to a procedure, then
CH assign it to a dummy and pass the dummy or (2), use a dummy in the innennost loop of the
calculation aml' assign it outside 0£ the 10oi:>. 1/0 statements behave like procedures; it is
netter to print duplicates ofi imp0rtant variables than the variables themselves. See the
example in Sectwm 3.18, Loop UnroliLiRg. page 22.

RegisteF allocati0n may be turned off with the -cg2 compiler switch. This may be necessary for
specialized prrograms that d01 n0t want varial!>les stored in registers, bHt rather require that
variables reference physical mem0ry .

.AH variables that are candied.ates for register stoFage wiU be al10cated to the available registers
to, give either the fastest or demsest c0de :w0ssible fas ccmtroUed by the -OL compile time
opti0B):. Most compilers all0cate all local variables in memory. 'Fhe NDP compilers will all0cate
as many l©cal variables to registers as it can. The quality of the code generated with this
all0cati0a scheme is exceptioBal.

In the foll©wing1 example, The NDP compiler allocates l and J to the same register because their
lifetimes do 1 n0t overlap~ The translatiolil is one-to-on.e from soarce code into assembly
language.

NDP User's Manus/; 3861486 UNIX

(J)

3 Optimizations

NOP Fortran Code

SUBROUTINE PROC
INTEGER I, J
I = 1

1 CALL F
I = I + 1
IF (I.LT.10) GOTO 1
J = 1

2 CALL G
J = J + 1
IF (J.LT.10) GOTO 2
END

NOP CIC++ Code

proc () {
int i,j;

i = l;
do {

f () i

++i;
while (i < 10);

j = 1;
do {

g () i

++j i

while (j < 10);

386 Assembly Language

roov ebx, 1
align 4

17:
call _f_
inc ebx
crop ebx, 10
jge 16 short
jrop 17 short
align 4

16:
roov ebx, 1
align 4

15:
call _g_
inc ebx
crop ebx, 10
jge 14 short
jrop 15 short
align 4

;i=l, uses ebx

; i=i +1
;i.lt.10

;j=l, also uses ebx

;j =j +1
;j=lt.10

3.3 Static Address Elimination

NOP Pascal Code

procedure f;. external;
procedure g; external;
procedure proc;
var
i, j: integer;
begin

i := 1;
repeat

f i

i := i+l;
until (i>=lO);

repeat

end;

g;
j := j + 1;
until (j>=10)

13

A valuable optimization the NDP compilers d0 is to store frequently used static addresses in
registers. Since the static adcdresses are 4 bytes long, if a static acdcdress is used just twice in a
function, it is faste:rr aml smaller to, 10ad, the adclress into a register at the beginning 0£ the
procecdure o:rr functio:n aml always use register incdirect adclressing to access it. In this way,
m0st static references shrink to one third of the space and use less executi0n time~ For
example:

NOP Fortran NOP CIC++ NOP Pascal

SUBROUTINE P
COMMON /XIX
INTEGER X

DO 10 I=l,9
10 X = X + I

RETURN
END

3861486 UNIX

p(} {

static int x;
int i;
for (i=l;i<lO;i++)

X=X+i i

procedure p;
var
i, j: integer;
begin

for i := 1 to 10 do
x := x+l

end;

NDP User's Manual

14 3 Optimizations

386 Assembly Language

mov eax, 9 ; i=l, 9
lea ecx, dword ptr ds :_X_ ;.static address elimination,
align 4 ;address of common lxl to register

123:
inc dword ptr [ecx]
dee eax
jne 123 short
.ef:

;X=X+l

;decrement number of loops left

The improvements by the NDP optimizer can be summarized as:

• Static Adclress Eliminati©n:

• No· frame p0inte:r:-:

2 instructi©ns per iteration

3 instructicms

• Instructi0n Scheduling: 2 instructi0ns aml 1 gap per iteration
Static address elimination also plays an important role in loop unrolling of array subscripts
(see Secti<JJTil 3.18~ Loop UrwoLling, page 22). In this case, the addresses of sequential elements
in an unrolled loop are computed by using irn;lexed addressing along with a statically stored
base address that changes once per lo0p.

3.4 Register Coalescing
Register coalescing o:r:-ganizes the c0mputati0n of expressi0:as to ensure that values end up in
the registers where they will be needed. This eliminates shuffling the values in registers to set
them up as needed. Most microprocessor compilers will copy the arguments of a computati0n
into scratch registers, d0 the computati0n. in the scratch registers, and then copy the result to
the destinati0D. The NDP compilers use the destinati0n register in the computati0n to save
unnecessary copies ofi the source registers into scratch registers.

Foir example:

NOP Fortran

SUBROUTINE p
INTEGER i I j I k
i = 1
j = 1
DO k = 1,10

i = i*4+j
END DO
END

386 Assembly Language:

mov eax, 1

mov ebx, 1

mov ecx, 1 O

align 4
121:

NOP CIC++

p () {

int i,j,k;
i=l;
j=l;

i i=l
;j=l

for (k=l;k<= lO;k++)
i=i*4+j;

;number of loops=10

lea eax,. [ebx] [eax*4]; i=i*4+j
dee ;decrement number of loops

NOP Pascal

procedure p;
var
i,j,k: integer;
begin

i : = 1;
j : = 1 i
for k := 1 to 10 do

i := i * 4 + j
end;

The instructi0n. 1 ea eax ,, [ebx J [eax * 4 J does the computati0:a and' stores its :uesult directly in
the c0n:-ect register, represe:ating i, irather than in a scratch register, demonstrating register
coalescing. The m0st interresting optimization in the code is the way i = i * 4 + j is coded. eax
repFese:mts i: ebx repFese:r:its j. There is an instructi<I>H that multiplies two m1mbers ancd adds

NDP User's Manual 3861486 UNIX

' ~l
__.,/

\
\.._)

3 Optimizations

a third, but this can be d(:me with adclresses, cornmoaly when arrays are involved. In the
instructi©n

1 ea eax, [ebx] [eax* 4]

15

eax ancl.1 ebx are treated as if they were addresses but those "addresses"' are Just the values of i
and j is i * 4, [ebx] [eax* 4] is j + i * 4. The result is stoFed in eax, which is i.

3.5 Prolog and Epilog Code Optimization
Most compilers use a frame pointer register in each function. The frame pointer is used to
access hl>cal variables. to J:>0int up the call stack to allow stack traces to be printed during
debugging, anctl to unwind the stack foF an exce11>ti0n mechanism. The frame pointer is
valuable but it is usually not necessary. The NDP compilers generate a frame pointer only if
adcling the :frame pointe:u will not expancl the code. Otherwise, they do not set up a frame
pointer in each function. Instead of creating a frame p0inter, the NDP compiler accesses all
local variables by using the stack pointer.

If it is necessary to have a frame pointer in every functio:a, the -ga compile time optioa can be
specified ON the compiler driver command line. This compile time option guarantees that theFe
wiU always be a frame pointer, but it increases the size of the pmgram.

If a functtl.0:a is very short, the entcy and exit code rnay take a large fraction of the space ancl
executio:a time of the proceclure or function. If. as a result of global OJ:>timization, the
parameters and l<i>cal variables of a functi011 are alhl>cated in registers (usually true for a
procedure or fu.nct.ion ofi 20 lines or less)!, the c0mpileF can o£ten eliminate the procedure e:atry
and exit c0cle entirely. The b0ttorn line here is that the code is even better than hanclwritten
code because it is o:ften not practical foF an assembly language prngrammer to keep track of all
register coate:ats.

Default Code

P proc near
push dword ptr ds:L8
call _f_
pop ecx
ret

With -ga option

P proc near
push ebp ;extra code
push dword ptr offset ds:L8
call _f_
pop ecx

leave ;extra code
ret

align 4

3.6 Peephole Optimizations
Peephole optimizaticms are 10cal improvements to· the code that are certain to be correct
with0ut furthe:rr analysis 0fi the surrounding; code. An example would be a move from one
register to another, foU©wed by a m0ve in the reverse direction. In this case~ one of the m0ve
instructicoms is unnecessary ancl may be rem0ved. AH the peephole optimizati0ns that have
been irnplernented are safe for the target envirornnents. If there is any reason to suppress
these optimizations, use the -off p compile time opti0n. In some situati0:as, cocle can be
improved by re:weating the peephole optimizati©H phase. The -onrepeep switch repeats
peephole O].])td.mizati<Dn until1 nco furtfuer impFOveme:ats can be made~ It is n©t on by default
beca:w.se it causes the flcow grapll to, be traversed a second time, which is expensive in tenns of
c0rnpilati0n speed.

3.7 Speed Optimizations
The -OL compile time 0pti0ro. selects the speed optimizatio11s. This improves the speed of the
prog:rnm, but usually at the cost 0£ making the p:r:-ogram larger.

3861486 UNIX NDP User's Manus/:

16 3 Optimizations

To increase the speed of a program, it is necessary to identify which instructions are executed
most often and concentrate the QJ>timizations in these areas. Computer languages have two
main constructs for repeating the execution of instructions: 100ps ami procedures. By making
specific optimizations for each of these constructs, it is possible to improve the performance of
most programs significantly.

The -OL compile•tilile option should be used only on modules in which most processing occurs
in loops. If -o is specified, the compiler does everything it can to reduce program size. The -OL
compile-time option will: sacli1fice program size to increase the performance of 10ops. It will
allocate nearly all the registers to the variables and temp0raries used in the innermost loop of a
procedure or functioa. This will prohibit them from being used for variables that are used
elsewhere. If -OL is specified on a main program, the compiler cot:Ild do much work to optimize
many loops that are rarely execHtecl. This woHld result in a program getting larger, but not
very much faster. The -OL switch also invokes loop unrolling (see Sectili>Til 3. 18, page 22l.

3.8 Loop Rotation
Many compilers generate a terminatioa test at the top, of the 100p and an unconditional branch
from the bottom of the 100p to, the top of the 10op. The loop will execute two branch
ihstructi©ns on each iterati©n 0£ the loop.

A betteF way to, generate coC!le for l@<l>:@s is to place the test at the bottom 0£ the loop. This is
called "l0op rotation." If it can be detennined at compile time that the 100p will always execute
at least once, then the lmop is enteFed fliom the top. If it cannot oe determined that the loop
will be execHteC!l: at least 0nce, thea an uncoaC!litional branch to the termination test is placed
bef©ITe the loop, entry. With the test at the l:>@ttom, only oae bFanch is executed o:n each
iteration o:f the l(])op.

For example:

NOP Fortran NOP CIC++ NOP Pascal

SUBROUTINE P
INTEGER X, I
DO 10 I=l,9

p () {

int x,i;
for (i=l;i<lO;i++)

x = x+l;

procedure p;
var
x,i: integer;
begin x = x + 1

10 CONTINUE
RETURN

for i := 1. to 9 do

END

386 Assembly language

mov eax, 1
mov ecx, 9
align 4

L23:
add eax,eax

;x=l
;number of loops=9

;.X=X+X

dee ecx ;decremen~ number of loops

end;

jne L23 short ;test and branch moved to bottom of loop

3.9 Loop Invariant Analysis

x := x + 1

Loop invariant analysis is used to 1 speed up 10c1>:(1>S. Each loop is examined for expressions and
address calculati<i>HS that do not change in the loo:@• These computations are moved oHt ofi the
lG><i>p anC!l the value is sto:uecl: in a register. This optimizatioa is particularly valuable foIT
ITemoving army subscripts from a l©@p when the subscripts are variables or expressi0ns that
are n0t modified in the l©O(i)1. In a small l0op, all invariant expressions will be accessed with
registerr mode and all invariant adcdresses will be accesseC!l with register indirect moC!les. This
optirnizatioa usually eliminates all computatioas of invariant expressions and aC!lC!lresses iil
k>OJ1>S.

NDP User's Manua/1 3861486 UNIX

\
i)

'~

U·"· ·•
,/')

3 Optimizations

NOP Fortran

SUBROUTINE LOOP
INTEGER i,j,k
i=l
j=7
k=l
DO WHILE (I.LT.j-2)

i=i+l
k=k+k
END DO

END

386 Assembly Language

mov eax, 1 ;.i=l
mov ecx, 1 ;k=l

NOP CIC++

loop () {
int i,j,k;
i = 1;
j = 7;
k = 1;
while (i<j -2)

i=i+l;
k=k+k;

mov ebx,. 5 ; The invariant j-2 --> constant 5
cmp eax,ebx

jge L19 short

NOP Pascal

procedure loop;
var i,j,k: integer;
begin

i : = 1;
j : = 7 i
k := 1;
while (i<j-2) do begin

i ·- i+l;
k : = k+k

end
end;

17

In the soMrce example, j is not changed in the loop, but j-2 woulcl need to be recomputed for
each 100p iteration.'. This 100p invariant is optimized by doing the computation once outside the
laop. ancl using the result in the loop at each iteration..

3.1 O Strength Reduction
A reduction in streagth 0ccurs when. a less expensive operation (in terms of execution size oF
speecl) replaces a m0Fe expensi:ve on.e, as happens when a multiplication replaces an
expmnentiation (e.g., becmmes x*x). or an aclcliti0n replaces a multiplicati0n (e.g., becomes
x+x).

Most compilers d0 simple strength reducti0ns such as the con.version of multiplies ancl divides
into shifts. H0wever. only the m©st advanced compilers dm strength reductions on l00p indices.
The NDP compilers do a stren.gth recilucti©n on 1(])0ps that have an ihclex variable that is
incremented by a constant on each iteration of: the 10e>p (such as a FOR lomp). When a loop
incl.ex variable is used as the subscript for an array, most compilers wilt multiply the loop incl.ex
by the size of the array elements ancl aclcl this offset to the base of the array. Each such
reference r;equires at least three instructions. In the NDP compilers. a register outside of the
Ioow is 10aded with the acilclress of the array element to be accessed on the first iteration of the
loop. The arFay access is then done using the incilirect register aclcil:ressing mocile~ On each
iteration., the element size is acilded to the register s0 that it contains the acldress of the element
to be accessed on. the next iteration 0£ the loop. The recluction. in strength involves substituting
an acildition ofi a constant to a register for a multiplication of the 100p inGlex by a loop invariant
value. This optimizatimn results in a fo1u to ten folcil increase in speed.

Strength reducti©n ancil< l©©p invariant analysis involving array subscripts are particularly
impmFtant to.1 Fortran programmers. for whom repetitive array indexing in DO loops is cormn0n.
NDP Fortran cil0es the strero.gth reducti0as and loop invariant analyses that many mainframe
programmeFs have come to expect.

NOP Fortran

SUBROUTINE MATMUL (A, B,.C}
REAL A(l00,100), 8(100,100), C(l00,100)
DO 1 0 I = l, 1 0 0

DO 10 J = l, 100

A(I,J} = 0

DO 10 K = 1, 100

10 A(I,J} = A(I,.J} + B(I,K} * C(K,J}

38614.86 UNl:X NOP User's Manual

18

RETURN
END

NOP CIC++

matmul(float a[lOOJ [100], float b[lOOJ [100], float c[lOO] [100] {
int i ,lj ,.k;.

for (i=O; i<lOO;. i++) {
for (j=O; j<lOO; j++)

a[i] [j] = O;

for (k=O i1 k<lOO; k++)
a[i] [j]=a[i] [j]+b[i] [k]*c[j] [j];

NOP Pascal

type

matrix.=array[l.100, 1.100] of float;
procedure matmul (a,b,,c:matrix);
var
i,j,k: integer;
begin

for i := 1 to 100 do

end;

for j := 1 to 100 do begin
a [i /I j] :. = 0 i
for k := 1 to 100 do

a[i,j] := a[i,.j]+b[i,k]*c[k,j]
end

Matrix Multiply inneF 100~ comparison in 386 Assembly Language:

L68:
mov esi, [ecx] + (-4) ;Load C(K,.J)
imul esi, [eax] + (-400) ;B (I ,K) *C (K, J)
add [ebx] ,esi ;.A(I+J)=A(I+J)+B(I+K)+C(K+J)
mov esi, [ecx]
imul esi,[eax]
add [ebx],esi
mov esi,. [ecx] +4
imul esi, [eax] +4 00
add [ebx],esi
mov esi,[ecx]+8
imul esi, [eax] +800
add [ebxJ ,,esi
add eax,1600
add ecx,16

dee edi

jne L68 short

;Repeat for K+ 1

;Repeat for K+2

;Repeat for K+3

~Increment B to next address
;Increment C to next address

The stFength reductio:nshows Np in the assembly cocle, in the instructions:

add eax, 1600
add ecx, 16

3 Optimizations

Insteacl o:t: multiplying, an inclex by the size 0£ the ar.uay at each step, an adclition to the current
10cati@n is made.

NOP User's Manual 3861486 UNIX

u

/···l~.
~)

(I".'
~

3 Optimizations 19

Also note the loop unrolling OJ!>tilnization (See Sectif;Jn 3.18 Loop Unrolling. page 22). With a
loop unrolling factor ofl 4. 25 iternticms of 4 merged loops takes the place ofi 100 iterations,
increasing perloFinance ~y eliminating the number of times the loop co:atrol code is executeciL

3.11 Dead Code Elimination
The NDP compilers will eliminate any block ofl code that has no predecessor block in the DFG
(l.e .. there exists no path to the bl(l)ck)J or any seqµence of code that is not reachable (i.e., code
following a return statement);.

Other optimizations may expose potential Dead.Code Eliminations that would otherwise be
inane~ Consider that constant propagation may convert a conditional jump into an
unconditi0:aa1 jµmp. This would eliminate a path out of the associated block creating dead
code. Consicler the following example:

NOP Fortran NOP CIC++ NOP Pascal

SUBROUTINE P
INTEGER X,Y
x = 1
y = 1
IF (0) THEN

x = x + 1
y = y + 1

ENDIF
y = y + 1
RETURN
x = x + 1
END

p () {

int x.,y;

x = y = 1;
if (0) {

X=X+l;
Y=Y+l;

Y=Y+l;
return ();
X=X+l;

procedure p;
var
x, y: integer;
begin

x := 1;
y := 1;

if (0=1) then begin
x := x+l;
y : = y+l
end;

y := y+l
end;

There are two; opp0rtunities here for dea<il code elimination. The first is the IF statement ancil
its enclosed bocily; the seconcil is the code (>c=x + 1)1 following the RETURN statement. These pieces
ofl come will never be executed, and disappear from the generated cocile.

3.12 lnline Multiplication and Division
Since the instructi0ns to C!lo; an integer multiplication potentially take nine cycles to execute, it
is often faster to do coastant multiplies by a series of shifts ancil adds (or subtracts).. For
instance, a multiply by four is a shift left by two, multiplying by five is a shift left by two
followed by an add, and multiplying by seven is a shift left by three followed by a subtract. For
an example ofi this, see the code uncler SectitJJn 3.4, Register Coalescing, page 14.

Integer divisi0n is much woFse: it takes about 60 cycles to do a divide. When dividing a
constant the compiler can calculate a (fl0ating-p0int) reciprocal at compile time ancil convert the _
divicle into, a fl©ating~point multiply which 0Bly takes ab0ut 15 cycles. In certain rare cases
when using 16-bit integers. the compiler can do a divicle using an integer multiply and a shift.

Fl0atin~p0int divisioa can ofle11 be accelerated by calculating a reciprocal either in the
compiler (rif divisiom is by a ccmstant). or at the head of a 10@p if the divisoF is a loop invariant.

CoBsideF the foll0wing example:

NOP Fortran NOP CIC++ NOP Pascal
SUBROUTINE SHIFTS
INTEGER i, j
i=i*4
j=j*8
END

3861486 UNIX

shifts() {
int i,j;
i=i*4;
j=j*8;

procedure shifts;
var i,j: integer;
begin

i := i*4;
j := j*8
end;

NDP User's Manual

20 3 Optimizations

The compiler coded the two, multiplications in the source file, i*4 and j *8 •. as shifts in the
assembly file:

sal dword ptr [eax], byte ptr 2
sal dword ptr [ecx], byte ptr 4

3.13 Constant Propagation
The NDP compilers will back-substitute any variable v with the coastant c, if c was the last
value assigned to v. More simply. the compiler analyzes variable assignments aml determines
if they can be propagated to c0nstant assignments.

Consider the foll0wing cock in which 1 is back-substituted in the IF statement:

NOP Fortran NOP CIC++ NOP Pascal
INTEGER DEBUG

DEBUG = 1

IF (DEBUG.EQ.1) THEN

END IF

AlsG» consider:

NOP Fortran

FLAG = 1
SAVE_FLAG = FLAG

int debug;

debug = 1;

if (debug==l) then {

NOP CIC++

flag = 1;
save_flag = flag;

debug: integer;

debug := 1;

if (debug 1) then begin

end;

NOP Pascal

flag := 1;
save_flag := flag;

Il1steacd: of assigning FLAG as SAVE_FLAG, the constant 1 can be assigned to SAVE_FLAG.

3.14 Constant Expression Folding
NOP Fortran

SUBROUTINE CONSTANTS (A)
REAL* 4 A, PI I RADIUS
PARAMETER (PI=3. 14 I RADIUS=4. 2)

A = PI * RADIUS**2
END

[NOP CIC++ doesn't have 11constants 111 per se]

NOP Pascal

procedure constants (a: float);
con st
pi = 3.14;
radius= 4.2;
var
a: float;
begin

a := pi*radius*radius;
end;

386 Assembly Language
.bf:
mov eax, [esp] +4
mov dword ptr [eax], 1113427699 ;pi*radius**2 computed at compile time
.ef:
ret

NDP User's Manua/1 3861486 UNIX

'
<) -

3 Optimizations 21

3.15 Common Subexpression Elimination (CSE)
NDP compilers will eliminate common subexpressions across the DFG. In adclition, Gl0bal
CSE als0 keeps track 0£ copy propagati0n such that, in the fol10wing example, expression.s A+ B
and c+ D wot!lld be recogniZed as redumlant:

NOP Fortran NOP CIC++ NOP Pascal

INTEGER A,B,C,D,E,F,G,H

E = A+B+G
D = A

C = B
B = G
F = C+D+H

int a,b,c,d,e,f,g,h

e = a+b+g;
d = a;
c = b;
b = g;
f = c+d+h;

a,b,c,d,e,.f,g,h: integer;

e := a+b+g;
d := a;
e := b;
b ·- g;
f := c+d+h;

Since A+B+G aml C+D+H are redundant, C+D+H woulcl not have to be calculated. Only the value
0£ E w0Hlcil1 have to be assigned to' F.

3.16 Live/Dead Analysis
Computation.s whose results are never used are eliinin.ated. The NDP compilers also eliminate
dead stores. This is an extension 0£ common subexpressicm elimination. Consi<iler:

NOP Fortran NOP CIC++ NOP Pascal

INTEGER x, y int x,y; y,y: integer;

x = 1 X=l; x . - 1;
y = b Y=2; y . - 2 i
x = y + z X=Y+Z; x . - y+z;

Since x is never re£erero.ced between the two assignments. the first assignment of x may be
elimillatech

3.17 Cross Jumping (i.e., Tail Merging I Code Hoisting)
Two OF mmre nmcles in the DFG that en@, in the same sequence of code that have a common.
successor nocle are FeoFganized to eliminate the Fedunclant cocle.

Cross jumping is alSe>: ccn:nm@nly called tail' merging because tails 0f n@Ciles are merged. Less
cormn0nly, it is called co<ile h0isting, for co<ile is hoisted from. one node to an0ther.

ConsicleF:

NOP Fortran

IF (AB .EQ. l) THEN
A = A+l
B = B+l
CALL FOO

ELSE
B = B+l
CALL FOO

ENDIF

is re0rganize<il1 to:

NOP Fortran

IF (AB.EQ.1) THEN
a=a+l
end if

B = B+l
CALL FOO

3861486 UNIX

NOP CIC++

if (ab==l)
a = a+l;
b = b+l;
foo ();
else {
b = b+l;
foo();

NOP CIC++

if (ab == 1) a=a+ 1;
b = b+l;
foo ();

NOP Pascal

if (ab = 1) then begin
a := a+l;
b := b+l;
foo;

end else begin
b := b+l;
foo

end;

NOP Pascal

if (ab=l) then a:=a+l;
b := b+l;
foo;

NDP User's Manual

22

In some instances. entire nocdes may be eliminated. Con.sicleF:

NOP Fortran

IF (AB .EQ. 1) THEN
A = A+l
B = B+l
CALL FOO

ELSE
A = A+l
B = B+l
CALL FOO

END IF

is re0rganized to:

NOP Fortran

A = A+l
B = B+l
CALL FOO

3.18 Loop Unrolling

NOP CIC++

if (ab==l)
a = a+l;
b = b+l;
foo ();
else {
a = a+l;
b = b+l;
foo ();

NOP CIC++

a = a+l;
b = b+l;
foo ();

3 Optimizations

NOP Pascal

if (ab=l) then begin
a := a+l;
b := b+l;
foo;

end else begin
a := a+l;
b := b+l;
foo

end;

NOP Pascal

a := a+l;
b := b+l;
foo;

If 10.op invariants (1ncdices): can be determined at compile time. it may be advantage0us to
<duplicate (:urumll); the bocdy ofi a loop N times rather than making N iterations throNgh the loop.
Executicm speed increases because the looping mechanism overhead is eliminated, but at the
cost ofi increased: cocle size. NDP compilers can unroU k>ops up to 8 tfines. However. unrolling
large !@ops may acl.versely affect register col0ring because moFe c0ntention is adcled to the DFG.
Also., l©©P· unrol!ling can geneFate diffiicult cocle to deblllg1

•

IU>©p unrnlling is effective because it eliminates the need to execute certain pieces ofi cocle with
each iteFati©n. A loop. corntains two kincls of code, the body· that clG>es the work and the 100i:> . 1

c0Btrol code that dete:nnines whether:- another iteFaticm of the 100p is needed. By determining \......,,,)
the number ofi iterati0ns at the beginning and by unrolling the k>op, it is n0t necessary to
execute the 10©p c0atrol code with each iteration.

Loop unrolling is clone by meFging· several l©op boclies into a new body that does the work of the
merged bodies. Tllis new largeF lG>©p reqµites a single piece of looIJ> control: cocle. The number
ofi loop boclies that are combined1 insicle the merged b0cly of the unrolled l@op is the unrolling
factoF. lihe NDP compilers use an unrolling factoF ofi four. When a loop is unrolled by a factoF
ofi 4, four bodies and fTo:tir Ji>ieces of loop c0:atrol code merge into four boclies with a single piece
ofi loo:w control1 code.

If a loop contains more than 4 iteFati0ns, a new 100:w. is createcl that iterates once for each
merged loop. If a 1©0JD coBtains 100 iterations. a new loo:w 0f 25 iteFations will process the
merged loop that has unrolled 4 l©ops. If a lomp com.ta.ins 103 iterations. tile first 100 will be
]>FOcessed as above, anCJJ., the last 3 iterations will be processed sewarately. This last group ofi 3
iteratiom.s is often callecl: the cleanup cocle.

'Fhere are several: eX]>ero.ses Felated to 100p Nnrolling. 'Fhe size ofi the code can increase oy as
mNch as a factoF ofi five in si~e fem unrolled lmops. An0ther expense is the data depencdency
analysis the compiler must clo to avoid aliasing ofi cachecl variables. This is particularly costly
for: nested lG>ows. and may slow compilation time by as much as a factoF of ten.

E3ecause of the costs associated with l©op l.mrolling1, the compiler invokes heuristics, which only
unroll' l©ops for which tile payoff is significant. If we assume that the body takes as lo:ag· to
execNte as the encd:, fo>.OJl>' Nnrolling can give yoH an, improvement 0£:

2 Tend* U / (Tend (U + 1)) = 2 TJ / (U + 1)

NDP User's Manual: 3861486 UNIX

\ u

/
l i \....__.,;

3 Optimizations 23

where Tena is the time to: execute the end c0de, OF 10op control code, and u is the unrolling
factor. The maximum improvement available approaches 2 as u increases. With u set to 4, as
in the NDP compilers, the finprovem.ent is 1.6, or 80%: of the maximum.

As the size of the 100J!> b0cly increases in relation to the size of the 100p control code, the
improvement available by loop unrolling decreases. The NDP compilers use a heuristic that
prevents 100p unrolling when the size of the 100p body is more than three times the size ofi the
loG>J) control, c0de.

Unrolling is less effective when the body takes significantly longer than the 100p control code to 1

execute. It is also less effective when the b©cly contains floating p0int instructiCms, particularly
if they are towards the end. The Intel coprocessors may take up to 5 times as long to execute a
floating point instructioa as the CPU does to execute an integer instruction. The floating p0int
instruction executi©n can overlap the executi0n of integer instructions. If the floating point
instructioa is the last instruction in a 100p b0dy, the loop control end code can execute while
the fl0ating p0int instruction is still executing. Here, eliminating the end code will not result in
a performance improvement. With a Weitek coprocessor, this overlap does not occur, and 10op
unrolling can leacl to significant improvements. See Sectiom 3.10, page 17 for an example of
100p unrolling.

3.19 lnliner
Microway's Inliner is a general purpose utility that replaces a call to a function with the logic
contained inside that functi0n. This avoicls the overhead of prolog and epilog code insicle the
functi0n, register saving ancl restoring, with the p0tential cost of increased code size. Inlining
of functi0ns can increase the potential for other optimization$ also, such as loop optimizaticms
(if the call is in a l©opL copy propagati0:n, constant folding, ancl instructi0n scheduling,
Inlining is cmnsiclerecd, an optimizatimn because generally its correct use increases execution,
speed of the resultant mmclule.

Microway's Inlinei:r is available foF all NDP languages. Syntactically, the inliner works
differently fo:rr each ofi the NDP languages. In C++, the type qualifier inl ine designates that a
functi0n is to be inlined. In C ancd Pascal, the type qualtfie:r: - Inl ine designates that a functi0n
is to be inllhed. In Fo:rtran', conunancl line opm<ms are used. Command line options also may
be used as well as the resJ!>ective type qualifiers for C, C++, and Pascal. (See Sectiom. 2.3, page 6
for switches for using the inliner.)

There are varioNs issues that must be acldressed when consiclering the inlinability of: a
function:

• Size vs. Freqµ ency ofi Use
• Recursiveness
• Defaniticm ofi Function is Expmrtedlimp0Iitled[Static
• Address 0£ Funct1i0n Taken
• Is it a Nested: Ftmctionf? (in Pascal):

3.19.1 Size vs. Frequency of Use
Small fa:-eqµently used functi0ns are the best candiclates for inlining. The cost of register savihg'
and restoring, and pml0g1 ancl epilmg cocde execution, must be weighed against the time spent in
the b0dy of the function. It is the programmer's responsibility to, choose wisely which functi0ns
are to be ifllined. A g<Docl i;>:rofiiler may aid in this decision process.

3.19.2 Recursion

Functiorns 1lfu1at am recursive are n0t inlin.edi.

3861486 UNIX N{)P User's Manual

24 3 Optimizations

3.19.3 Definition of Function is Exported/Imported/Static
Functions that have their definiti011 exp0Fted may be inlined. but must still be defined.
Functions that have their definiti0n imp0rted may be inlined. Functions that are static may be ; !
inlined and the definiti0n may be discardecil. \J
A general problem with inlining is that a functi0n definiti0n is n0t available at compile time.
Cor:isicler this problem in Cl!C,.+++:

#include <string.h>

foo () {

memcpy(s1,s2,size);

memcpy () is declare@; as external1 in string. h ancl its definiti0n is nG>t seen until link time.
Any library routine or routine whose defiinition is imp0rted cannot be traditi0nally inlined.
Seeing this limitati0r:i, Microway has prnviciled a general s0luti<im.

A library archive file is created; when, inlimng is activated with -inl ine. Roatines whose
definit.i.0as are imp0rted can be inlined because the inlining database stores each routine in a
lifuraiy (. inl)i file ancil retrieves it as required as c0mpilati0n progresses.

3.19.4 Address of Function Taken
Functions whose addresses are taken may be inlined. The definitiG>n may n0t be discarded, so
an adcilress is still available.

3.19.5 Nested Functions
Only Pascal may contain nested procedures. As a rule~ nested procedures that are contained . -,)
within procedures that are inlined, are inlined as well. In the instance that the nested roNtihe V
must be defined, it is cl0aed, and multiple copies ofi the cl0ned procedure may exist.

NOP User's Manual 3861486 UNIX

[
~)

(_;

4 Runtime Organization and
..____ _ ___,''Numerics
This chapter details runtime organization and numerics as they relate to the NDP 386/486
compilers.

4.1 Lower Level Characteristics
The Intel 80386/80486 memory is byte addressed with 32-bit addresses. Bytes are ordered
with the least sigruficant byte o:C a multiple byte value stored at the lowest address (little
em:lian}1, the opp0site o:C the IBM 370. Bits are numbered with bit zero as the least significant
bit.

Fl0ating p0iht values are stored ih IEEE 854 format (32- and 64-bits). with the least significant
byte at the !@west address. Character encodings are ASCII. The use o:C IEEE 854 an@. IEEE
754 are interchangeable in this discussion.

4.2 Integer Data Type
An 80x86 integeF is a 32-bit signed value in two's complement form. Figure 4-1 lists two
character and: six integer types anGi their values.

Type

signecl: characterr
unsigned character
sh0Ft integer
unsigneGfi sh0Ft integer

' integer
' unsigned integer

1

long integer
: unsigned long integer

Range

-l.!28 to 127
Oto,255

-32,768 to 32,767
Oto 65,535

-2. 1:47,483.648 to 2.147.438.647
0 to 4,294,9671,296

-2, 147,483.648 to 2.147,428,647
Oto, 4,294,967 .296

Figure 4-1. Character and Integer Types

4.3 Single Precision Real
A single precisio:n real data type is a 32-bit binary fl0ating-p0iht number. Bit 31 is the sign bit
('s in the example)1; bits 30 .. 23 are the expcme111t (el; ancd bits 22 .. 0 are the fracti0nal part (f) ..
The values foF single precisi0n real' are IEEE-854-Std confonnant; they obey the following
rules:

l. If e = o ancl f <> o. ore = 255, then a fl0atiflg;..point source;..exception is generated..

2. If o < e < 255, th:ea the value is -ls * 1. f * 2e-127. (The exp0nent acl.Justment 127 is
called the bias.)

3. If e = o an@: f = o. then the value is signem: zero.

See Figwe 4-2 fioF the SJi>ecial values o:fi NaN's, INF's, and other anomalies.

26

31 22

s = Sign of Fracti<m fl bit))
e = Biased Exponent (8. bits):
f = FractiGm (23 bits))

4.4 Double Precision Real

4 Runtime Organization and Numerics

0
f

Single Frecisio11 Real

A double pFecisio:n real data type is a 64-bit binary fl<Dating-p0iht number. Bit 63 is the sign
bit; bits 62 .. 52 are the expo11ent; ami bits 51 .. 0 are the fractio11. A double precision value
occupies an eve11/odcl pair ofi floating-p0int registers. Bits 31 .. 0 are stored in the even-
11umbered floating-point register: bits 63 .. 32 are stored in the next higher ocl.d-numbered
floating-p0int register. The values for dG>uble precisi0n real are IEEE-854-Std conformant:

1. If e = o and f <> o ore = 204 7, then a flIDating-point s0urce-excepti0n is generated.

2. If o < e < 2 o 4 7 , then the value is -1 s * 1 . f * 2 e-1O2 3. (The exp0aent adjustment
1023 is called the bias.)

3. If e = o ancl.' f = o, the:n the value is signed zero~
63 51
I s e I t

s = Sign ofi FFacti@rn (JJ bit)J
e = Biased Exponent (.l l bits)1
f = Fraction (52 bits)',

NOP User's Manus/,

DoNble Frecisio11 Real:

0

3861486 UNIX

\._)

[

\._)

(
u

.u

4 Runtime Organization and Numerics

4.5 Single and Double Real Encodings
Figure 4-2 shows b©t:h single ancl d<:n1ble real encoclings.

Biased Signif icand
Class Sign Exponent ff-ff*

N Quiet
0 11. .11 11. .11

p
:

0 11: : 11 11: .11
0

a
0 11. .11 01 .. 11

s 11
N Signalling

0 11:: 11 00: : 01 !

'
I Infinity 0 11. .11 00 .. 00
T 0 11. .10 11. .11 I: I

Normals ,,
i

0 00:: 01 oo: :oo I
: v 11 0 00 .. 00 11. .11

E R
;Denormals

0 00:: 00 0 0: : 01
!

I E I Zero 0 00 .. 00 00 .. 00
i

A I Zero 1 00 .. 00 00 .. 00
" N L 1 00 .. 00 00 .. 01

E
Denormals

1 oo: :oo 11: :11
11 G 1 00 .. 01 00 .. 00 Normals

A 1 11: :lo 11: : 11
! T Infinity 1 11. .11 00 .. 00
:

I
I! Signalling

1 11. .11 00 .. 01 N
1 11:: 11 01:: 11 v I'

E !

a
1 11. .11 10 .. 00 N Quiet
1 11:: 11 11:: 11

27

I

•• :

,,

1·,

The integer bit 0£ the signifiicancl is implied ancl not stored. For single precisi0n. the biased
exp@:aent is 8' oits aml th.e significancl is 23 oits; for double p:uecisi0n. the biasecl exp0nent is 11
bits and the signifkancl is 52 bits.

Figure 4-2. Real Encoclings

3861486 UNIX NOP User's Manual

28 4 Runtime Organization and Numerics

4.6 Language Data Types
Figwe 4-3a shows the encoclings for Fortran's data types.

Data Type Size (Bits) Alignment

BYTE 8 8
CHARACTER*l 8 8
CHARACTER*n 8*n 8*n
LOGICAL 32 32

• LOGICAL*l 8 8
LOGICAL*2 16 16
LOGICAL*4 32 32
INTEGER {default) 32 32

, INTEGER {switch -i2) 16 16
INTEGER*l 8 8
INTEGER*2 16 16

I INTEGER*4 32 32
REAL 32 32
REAL*4 32 32
REAL*8 64 64
DOUBLE PRECISION 64 64
COMPLEX 64 32
COMPLEX*8 64 32
COMPLEX*16 128 64

1 DOUBLE COMPLEX 128 64

Figure 4-3a. Fc>Iitran E>ata 'Fypes
Figure 4-3b shows the encoclings fo>r C I Ci++ 's data types.

Data Type

char
char[n]
short

:
, long
i int
float
double

Size (Bits)

8
8*n

16
32
32
32
64

Alignment

8
8*n

16
32
32
32
64

Figure 4-311>. Cl'C++ E>ata Types

Figure 4-3c shows the encodings fo:u Pascal''s data types.

11 Data Type Size (Bits) Alignment

char 8 8
boolean 8 8
integer 32 32

' float 32 32
·real {switch -P3) 32 32
real {default) 64 64
double 64 64

Figu.re 4-3c. Pascal Data Types

NDP User's Manus/.' 3861486 UNIX

;0

' \ v

,_

L)

c

4 Runtime Organization and Numerics 29

4.7 Internal Registers
The registers desc:ci.bed bel0w are those of the 80386 SX, 80386 DX, 80486 SX, aml 80486,
wh0se register set also, includes the registers of the 80487SX.

The register set of! the 80386 /80486 appears in Figure 4-4.

General Purpose Registers
31 15 7 0

EiX AX i

AH I: AL 11

E~X DX
DH I DL '

E1X CH
ex

CL 1:

E~X BX I

' BH Ii BL '

!

E'P BP !

E1I i

SI I

I

E?I
Ii

DI ,,

E~P SP
'
I

Segment Registers
15 7 0

I

cs (Code Segment) I

:

SS (Stack Segment)

I
DS (Data Segment)

ES (Data Segment)
!!

1', FS (Data Segment)

GS (Data Segment)
!

Status and Instruction Registers

31 23 15 7 0

EFlags

EIP (Instruction Pointer)

Figure 4-4. Ap:wlicatimns Register Set

4. 7 .1 General Purpose Registers
As Figure 4-4 sh0ws, there are eight genera1-pu.rp0se registers. Each of! these includes another.
smaller register located kl its l©wer word. In the cases of EAX, EBX, ECX and' EDX, the lower
word registeu is fu:Fthei: divided into tw0 registers. ofl a single byte each.

3861486 UNIX NDP User's Manual

30 4 Runtime Organization and Numerics

All eight general-ptJirp0se registeFs can be used with lmgical:, m0st integer math, ana most 32-
bit aaclressing instructions. Many al'so have special J:>urp0ses assigaed to them:

EAX

AX

AL

EB.X/BX

ECX/CX

EDX/DX

Extenaed (:dword):Accumulator registeF. Certain instructions, such as MUL ana
DIV reqµire the use of EAX as a source or destination register. Other
instructi0as, incluaing MOV, treat EAX oF AX specially, having a special.
shoFtened, opcode when it is a desttinati0n or source~

(wordJ) Acc1mmlator register. Usage 0£ AX is similar to that of EAX, but applies in
16-bit code. Adclitionally, it is used for ASCH aclj,ust instructions.

(the Accumulato11's LoweF byte)i. Along with AX ana EAX, AL is used as
destinati0n and s0urce for IN ancl OUT instructions for reading from and writing
to p0rts. AL is used for decimal adjjust instructi0ns.

Externded Base register and base register. BX is used as a base in 16-bit
addressing (n0t supported by the NDP compilers. which do all their work with
32-bit addressing);.

Extendecl Counter register ancl Counter registers. ECX ancl ex are used with
LOOP instructi0as and string instructions for that purp0se.

Extencled IData Register and Data Register. EDX is used for the high dword of the
DX cliviclend: for DIV instructi0as. DX is the l©wer woFd of EDX. It is used as fo:u
the high w0Fd 0fl the dividencl; foF woFd~sized DIV instructions.

ESP /EBP Extenclecl Stack Pointer and Extended: Base Pointer. ESP and' EBP are used to
p0int at the stack.. ESP points to the last value placed 011 the stack. EBP is often
used to i:>0filt at a stack frame. The stack grows d0wnward. On entry into a
r<:>utine~ ESP p0ints at the return acd<ilress and parameter:'S are ab0ve ESP. If
the:r:e are n0 focal automatic variables, parameters may be accessed through ESP
where there are local variables OF a stack frame may be created by setting EBP to
a value relative to ES P's on entty ('.ES P's entry value is usually 8) and subtracting
the size 0£ the frame from ESP. All references to local automatic variables ancd
parameters can then be macle th:uo11gh EBP.

SP /BP ('w0rcl)i Stack Pointer and Base PointeF. SP ancl BP are natural to 16-bit code.
which requires a 1:6-bit stack. They must :aot be used in 32-bit code. which
requites a 32-bit stack.

ESI /EDI Extencded S@urce I:ncdex register ancl: Extencded Destination Index register. ESI
ancd: ED I a.Fe used to' p0int at the s0urces ancd destinati0ns of a variety o:C
inst:uucti0ns, such as REP MOVSD.

s I I DI S@urce Incdex (:w0:r:-cl~: register and Data Incdex register. s I and DI use 16-bit
aacl:ressiflg, an.cl: are H0t particularly useful in most 32-bit code.

EIP Extenclecd1 Instructi0a P©inter. Instructions execute oae by one as the EIP points
t0) them. EIP is n0t accessed directly but is upclatecl as instructi0ns execute
depen<Iling on their nature aml size.

4. 7 .2 Segment Registers
cs, DS, ES, FS, GS and ss holcl segmeat selectors fo17 pFotected mode segmem.ts. In real m0de
programs. they holed, segment addresses, which are distinctly diff ere at i11 character frorn
segment selectoFs. A segmeat selectou is n0t an adcdress; it is a hancdk, or, perhaps m0Fe
accurately. it incl.exes into a 1©0kup' table~ In aclcliti0:m.:, protectecd m<Dde segments are n©t
contigu0us in physical RAM. blllt are page©.. Address decoding can. foF practical: purp0ses. be
regarded as instantianeoNs.

cs Holds the descITiptoF ofi the C©de Segment .. Mem.@ry accessecl throhlgh cs cann@t
1De written to', l:i>hlt can be executecl1 as instructi0ns.

NDP User's Manual, 3861486 UNIX

I ' \--._}

/

('
'\,_,/

4 Runtime Organization and Numerics 31

DS

ES

FS.GS

SS

Data Segment. Most addresses held in general purp0se registers act through it.
unless there is an address segment override associated with the instruction.

Extra Segment. It is used with EDI or DI for string MOV instructi0ns.

New segments in the 80386. They are used by placing address segment override
bytes on the instructicms that access memory through them.

Stack Segment

NDPcompilers expect called subroutines to respect the values in EBX. ESI. EDI. EBP. ESP ancl
all segment registers. This means that a subrcmtine must restore all values it finds in the
segment registers it uses.

4. 7 .3 The 80386/80486 Flags Register

Figure 4-5 shows the 12-bit 80386/80486 flags register, called EFLAGS.

!
0 I

Ii 0 ,,

0 '
0
0 I

',

0 i!

0
,, 0
I 0 !, !

I 0
0
0
0

I, 0
!VM
1,RF

0
1 NT

IO
PL
OF
DF
IF
TF
SF
ZF

0
AF

0
PF

1
CF

!

'

I

'

i

'

31

23

15

7

S = Status Flag,
X = System Flag

C = Control' Flag

Note : 0 or 1 indicates Intel Reserved.

16-

bit
flags
reg­
ister

D0 not define.

X Virtual' 8086 Moede
X Resume Flag

X Nested Task Flag
X I/0

Privilege Level
S Ove:rfll©w
C Directicm, Flag
X Intel1TI1pt Enable
S 'Frap Flag
S SignFlag
S Ze:uoFlag

S Auxiliary Carry

S Parity Fl'ag

0 S Carry Fl'ag

U Figure 4-5. EFI:AGS, Register

VM Virtual Mode flag. VM is not usefully accessed in protectecl-mode cocle.

3861486 UNIX NDP User's Manual

32

RF

NT

IOPL

4 Runtime Organization and Numerics

Resume Flag. RF temp0rarily disables debl:lg exceptions so an instruction can
be restarted Sl!lccess:fully. It is l:lseful to, pFogrammers building debuggers.

Nested Task flag. NT is useful foF controlling interrupt returns in nested tasks.
This flag is n<I>t n<I>ilifilally useful to, applicati0ns programmers.

1/0 Prtvilege Level. An applicati0n that fincls it useful to adj
1
ust this 2-bit field

. probablywiU n©t be able to d0 s0~ IOPL defines the application's rights to do
1/0 through IN, INS. OUT and OUTS instructions ancl to change the IF flag with
CLI and STI instructi0ns.

IF · InteITUpt-enable Flag, The operating system or DOS extender detennihes
whether the application has access to IF. I F's purpose is to disallow OF allow
interrupts.

DF Direction Flag'. DF is the only flag oa the process of the control flag type. Its
value determines whether the index registers. DI and SI, auto-increment OF
auto'"decremcmt with stwing instructioas.

TF Trap Flag1
• Variously inch1ded by Intel as a status flag or not, TF is used to set

single steppingfor del!>uggers.

CF Cany Flag'. CF is set on high-oFder bit cany or bmrrow. Otherwise arithmetic
operations clear it.

PF Parity Flag. PF is set OF clearecl depencling on whether the 10w-0rdeF eight bits of'.
a result c0atain an even OF odcl number of set bits.

AF

ZF

SF

Aclj1ust Flag. AF is set OF cleared on a bit carry or borrow involvihg the high­
oFdeF rubble in the AL registerr.

Zern, Flag, ZF is set 0F cleared depending upon whetherr the result of an
0we:mtim:n is o.
Sign Flag. SF is set 0r clearecl deJj>encling1

_ cm the sign of the Fesult of an
opemti0n.

OF Overflow Flag, OF is cleared, OF set depencling on whether the result of an
o:peFati0a is within b0uncls of Fepreseatatio:n.

4.7.4 Systems Control Registers
Applications pFogrrams d(!} n©t aormally refe:uence the systems c0atrol registers, CR o. CRl. CR2
ancl: CR3. Whethe!i they are accessible depencls on the opeFating system OF DOS extencler.

CR o contains six oNe-fuyte £iefols called system coatrol' flags. These are as f0ll0ws:

PE Ptotectioa Enable flag. Setting this flag puts the system into protected m0de~

MP Math Pteseat flag, MP c0atFols the functio:a 0f the WAIT mstructio:n.

EM EMulati(!}J.il flag. EM indicates whether math coprocesso:r; functi(i)ns are to be
emulated.

TS 'Fask Switched filag. The system sets TS as tasks are switched. It is used in
connectli0a1 with copFocesso:rr functi(i)as.

ET Extensi0u Type, is used to inclicate the type of math cop:rrocessoF (80287 or
80387)J.

PG PaGing: filag', is tJJ.sed: to, incdicate whether the pFocess0F uses page tables to
translate linear adclresses into, physical: acldresses.

The rernaihde!i of CR o is Fese:rrved:.

CR 1 is reseFVed.

NDP User's Manual' 3861486 UNIX

')
~

u

4 Runtime Organization and Numerics

CR2 holds the page fault linear address. It is used for handling page faults.

CR3 is om.ly used when PG is set. It holds the page directoiy base register. and is used for
locating the page table foF the current task.

4.8 The 80387 Register Set

33

The 80387 register set, shown in FigUFe 4-6. includes eight 80-bit data registers; three 16-bit
registers: the com.trol register. the status register. and the tag word register. The Intel 80486
has a built-in 80387~compatible FPU.

RO
Rl
R2
R3
R4

RS
R6
R7

79
SIGN

I

78 64 63
!EXPONENT I

I

i

I

i
:

I:

I:

1:

15
I'

4.8.1 80387 Data Registers

80387 DATA REGISTERS
0

SIGNIFICAND 1:

I:

I!

0

CONTROL REGISTER
:

STATUS REGISTER
::

I

TAG WORD

Figure 4-6~ 80387 Register Set

The 80-bit data registers are referred to in two different ways. As actual hardware they are Ro
throl1gh R7 Cor. historically, STO through ST7 -- note lack ofl parentheses)). Software sees them
as a stack throl1gh which data ffi(i>Ves as it is pushed on or pGrpped off ST { o) through ST (7) .
The most commoNly used forms of instructicms operate on ST { o) • which is the top of stack.

The first datum loacled n0rmally goes into ST (o) . When a second datum is loaded. the first is
normally "pushed" into, ST (1) and the second in ST (o) • A third will "push"' the first into STr2),
and the seconcd into ST (1) . What is happening is that a pointer to ilie top ofl the stack is
decrementing'.

NDP compilers make special! use 0£ registers in the floating p0int unit. Specifically, functio:ns
returning rea11 val1ues, when they are compiled to, run on the Intel floating p0int unit. always
leave their return values in ST (o) . Special optimizati0ns als0 can cause special use ofi
registerrs. See Ch&pver: 5 foF furtherr discu.ssi0n. C>fi 0Ji)timizati0n.

4.8.2 The Status Word Register

The Status Word Register, shown in Figure 4-7, ccmtains several flags indicating the status ofi
the coprocessor chip'. Also, four bits of the Status Word form a fielcd called the Condition Code,
and three foliln the Top of Stack Pointer. The Top, of Stack Pointerr p0ints at one of the 80-bit
data registe:rrs, Ro through R 7. which is associated with ST (o) . The Conditioa Code •. in
ccmnection. with the FXAM instructi0n, can be used to discover what kincd of number is in
ST (0).

3861486 UNIX NOP User's Manual

34

B:

C3
T
0
p

1C2
Cl
co
ES
iSF
PE
UE
OE ,,

i'ZE
DE I

I

IE

15 Busy
Ccmdition Code

Top of Stack Potnter

Conditi(J)n Code
Conditi(J)B Code
Ccmdition Code

7 Error Summary Status
Stack Fault

0

Precision
Excep- Uncderllow
ti on

Overflow
flags

Zero Divicde
Denormalized Operand
Invalld Operaticm

4 Runtime Organization and Numerics

Figure 4-7. 80387 Status Word Register

Use the Conditi(J):n Code, shG>wn in FlgWTie 4-8, to learn abG>Ht the results of an operatioH.

NDP User's Manual: 3861486 UNIX

4 Runtime Organization and Numerics 35

'I C3 C2 C1 co Value at TOP
I

I

0 0 0 0 I +Unsupported

0 0 0 1 +NaN

0 0 1 0 -Unsupported

"
!: 0 0 1 1 -NaN
::

I:
.: 0 1 0 0 +Normal !

0 1 0 1 +Infinity

0 1 1 0 -Normal

0 1 1 1 -Infinity

1 0 0 0 +O
I

:

1 0 0 1 +Empty !

:

1 0 1 0 -0
:

I

!

1 0 1 1 -Empty

1 1 0 0 +Denormal

1 1 0 1 +Unsupported
:

1 1 1 0 -Denormal !.

1 1 1 1 -Unsupported

Figure 4-8. Corullti011 Code Defining Operand Class

When used in con.nectiorn with the F.XAM instruction., the Concditicm Code helps to reveal what
kind of number is in ST (o) . CoNsicleli Figure 4-9.

3861486 UNIX NDP User's Manual

36 4 Runtime Organization and Numerics

Instruction CO(S) C3(Z) Cl (A) C2(C)

'Three least significant bits of quotient 1

.: Reduction
FPREM, FPREMl

FCOM, FCOMP, FCOMPP,

FTST, FUCOM, FUCOMP,

FUCOMPP, FICOM

FICOMP; FXAM

FCHS, FAE, FXCH,

FINCTOP, FDECTOP,

Constant loads

FSTRACT, FLO, FILO,

FBLD, FSTP

': (ext real)

FIST, FBSTP, FST

FRNDINT, FSTP, FADD,

FMUL, FDIV, FDIVR,

FSUB, FSUBR, FSCALE,

FSQRT, FPATAN

F2XM1, FYL2X,

FYL2XP1

FPTAN, FSIN, FCOS,

FSINCOS

FLDENV, FRSTOR

FLDCW, FSTENV,

' FSTCW I FSTSW, FCLEX I '

FINIT, FSAVE I

Ii QO I Ql Q2

or O/U#

Result of Comparison

Zero

or O/U#

Operand Class

UNDEFINED

UNDEFINED

UNDEFINED

Sign or O/U#

Zero or O/U#

Roundup

or O/U#

i Roundup

or O/U#

undefined

if C2 = 1

Each bit loaded from memory

UNDEFINED

0 = complete

1 = incomplete

Operand is not

comparable.

Operand Class

UNDEFINED

Reduction

0 = complete

1 = incomplete

Figure 4-9.. Ccmcliti0n C0cde Interpretati0n.

4.8.3 The Control Word Register
The Control Worrd Fegister, illustrate©. fi1 Figur:e 4'" U)~ is used to regulate the acti0n.s ofl the
COJI>rocessor. There are six bits in the c0Btrol1 word called excepti<:m masks. When an excepti0n.
is masked, the c0zrresp0n.<ling· sticky 1Mt iH the statas w0rd is set; nm, other acti0n. is d0ne~ Each
mask bit conresJD©Bcd.s t© 1 an excepti©n flag in the statNs word, descrtoecd. above.

NDP User's Manual 3861486 UNIX

'

:

u

u

4 Runtime Organization and Numerics 37

I

I

x' :
x I

I

! x
'1

x
I RC
i

PC

x
x

PM

15 Reservecl:
Reservecl
Reseived
(Infinity Control),*
Rot;mcling

C0Btrol1
Precision

Coiitrol,
7 Reseived

Reserved

'UM
Precisi©n Excep-
Unclerfl0w tion OM Overflow

ZM
DM
IM 0

Masks
Zero Divicle
Denonnalized Operancl
Invalid OpeFation

Precision Control
00 - 24 bits (single precisi011):
0 l - (reservecl},
10 - 53 bits (:d0Nble precisio11);
l l - 64 bits fextenclecl, precisioar

Rouncling Control
00 - Round to nearest or even
0 l - Rouncl down (toward -oo)

10 - RoNncl up (toward +oo)

11 - Chop (truncate toward Ol

*This "infinity controlr' bit is not meaningful to the 80387. To maintain ccnnpatibility with
the 80287. this bit can be programmed; howeveF. regardless 0£ itsvalue. the 80387 treats
infinity in the affine sense (i-oo. +oo)\

Figure 4-10. 80387 Cont.Fol Word Format

PM Ptrecisi0n Mask.

UN l:.Jncle:rflbw Mask.

OM Overflow Mask.

ZM Zero <divide Mask.

DM Den0nnalized opeFan<il Mask.

IM I:nvalid owerati0n Mask.

Applicati0Ns p:rocliUced lDy NDP c0mpihffs run, by default. with all exceptic;ms masked except
invalid., OJ!><.mati0ro.s.

Tw©, bits 0£ the c0ntF0l1 word regulate pFecisi0n co11trol. These are present to satisfy IEEE
definiti©:ns ofi c0mpliance. They are set to highest precision by default. There is n0 benefit to
setting them to, recluced precision; the ol!lly result ofl setting them to reduced precision is a fo>ss
ofi precisi0:n'.

Two, bits o~ the coro.tFol1 word contFol rou.ncling., If both bits aFe set to 0, rotmd.ing is toward
nearest ou, ft1, the event therre is no, nearest, toward even. If they are Ol, rouncling is toward
-infinity; il they are 110:, ro11ncling is toward: infinity; if they are 11, rounC!ling is toward 0.
Default is Fou.mcl! nearest.

The iminity c©ro.trol: bit is oli>s0lete ancl' ignored.

The 'Fag Word describes the types ofl values fi1 the 80:..bit data registers. It splits into eight 2-ou
fielcds, starting at the l~ast significant, numbered TAG (o) thrnugh TAG (7) . These refer to the
registers as add.ressedi as hardware. i.e., TAG (o) refers to RO, TAG (1) to Rl, etc. If a tag field.
value is 00', then the value in its register is called.; a 'valid.," that is, it is a ncmnal' or den0mlal,

3861486 UNIX NDP User's Manuaf

38 4 Runtime Organization and Numerics

but not zero. If the value isOl, then the number in the register is zero. If the value is 10, then
the number in the register is a NaN or an infinity.

4.9 Weitek Architecture
The Weitek copFocessoFs (1167, 3167, 4167) have a register set coasisting of thirty-two 32-bit
registeFs, which can be treated in pairs as 64-bit registeFs. and a 32-bit Process Context
Register. Figure 4- l 1 illustrates these below.

WDO --> I wso (Restricted) WSl i

i

:

WD2 --> I WS2 WS3 I

WD4 --> ! WS4 wss !

I

• • • • • • • • •
WD30 -->

Ii
WS30 WS31

Figure 4-11. WFIL Register File

4.9.1 Weitek Data Registers
The thirty-two single precisicm registers are named ws o through WS3 l. Sixteen double
precision registers are all' even-numbered, ancl are aarned woo through WD3 o. Each doable
precision register is actually an even/oded numbered pair of single precision registers. ws o an~t
heace, woo are Festricted use registers, having special pu.rposes for some instructions.

The NDP compile:rs use ws2 and wo2 for the return values 0f single precision and double
J.Drecision functuoas Fespectively. Special usage of other registers depends upcm optimizations.

4.9.2 The Weitek Process Context Register
The Pr©Cess Context Register c0111sists of five fields, MOSEL, MD, AE, EM ancd cc.

MOSEL
MOSEL, the MoDe SELect £ielcd, (bits. 28-31 of the Prc:>cess Context RegisterL determines which
fiel©.s in the Process Coatext Register are to be changed on Feinitialization. On Feinitialization,
the EM, cc and AE fielcds are always upcdated'. If MDSEL is set to 0000, the MD fielcd is also
up<dated, but ii MOSEL is set to' 1100, it is not. Weitek d0es not define 0ther values.

MD
MD, the MoDe fielcd, bits 25-27 0fi the Process Coatext Register, determines what methocd of
rouncding; to ase~ lit has two fields, RND, bits 26 .. 27, amt IRND, bit 25. If RND is 00, rouncding,is
toward nearest: if 01, rotJmcdingis toward zero; if 10, rouncding is toward infinity; if 11, roNnding
is toward -infinity. If IRND is 0, integei:s are roNncded in the same direction as reals; if IRND is
1, intege:us are :u0uncled toward ze:uo.

AE
AE, the Accumulated Excepti0:n fielcd, coasists of eight 1-bit flags incdicating exceptions that
have occurre<il' while executing cocde. Many ofl these are practically icdentical to, 80387
exceptioas than are similarly :aamed; refer to Seeti<I>m 4.8.2, page 33 for descFiptions of: these
exceptdons.

They ccmsist ofi the f0Uowing:

DE Data chain Excepti©11 flagi. 'Fhis is oosolete ancd unused.

Nf!JP User's Man1:1alr 3861486 UNIX

\~

\)
\~

u

(J

4 Runtime Organization and Numerics 39

EM

cc

UOE

PE

UE

OE

ZE

EE

IE

EM

OM

UOM

PM

UE

OE

ZE

IE

Undefined Opcode Exception flag. Indicates an undefined operauon was·
attempted. This is always a problem. indication something wrong with the code
in the executing pFOgrmn at the time of the excepticm. Causes could range from
bacl code generaticm by a compiler or assembler to runaway pointers in the
applicatiClrn.

Precision Exception flag, Similar to that of the 80387.

Uncilerf10w Exceptlion flag. Similar to that of the 80387.

Overflow Exception flag. Similar to that o:f the 80387.

Zero cilivicle Excell'tion flag. Similar to that of the 80387.

Exception Enable Flag, Used to enable or disable exception handling.

Invalid Operatioa Exception flag'. Similar to that of the 80387.

Exception Mask field.. Consists ofi seven I-bit flags indicating masking o:f related
exceptions. These inclucle the following1

:

I>ata chain Flag. This is omsolete and unused.

Unclefined Opcocile Flag. Masks UOE's, describecil above.

Precisi©a Flag. Masks precisimn exceptiClms, described above.

Uncile:d10w Flag, Masks unclerllow exceptions, described above.

Overfl0w Flag. Masks <werfl0w excepticms, described above.

Zero dlvicde Flag, Masks zero divide exceptions, described above.

Invalicl Operation Flag. Masks invalid operation exceptions, described above.

cc Cc:mcdltion · Cocile field. Consists of three bits, numbered 8 (.called co J. IO (called
ell aml 14 (called z). ofi the Process Context registe.r. It is used for comparing or
testing numbers. Its meaning is as foU@ws:

If CO=O, C2=0, and Z=O the result is"Greater than."

If CO=O, C2=0, anc:l Z=l the result is "Equal."

If CO=l, C2=0, and Z=O the result is "li.ess than."

If CO=l, C2=1, and Z=l the result is "Unordered."

4.10 Numeric Exceptions
For our purposes, a numeric exception is a numeric erroIT occurring during operations that
take place in the lD0dy ofi the program (i.e., inline), rather than within a library routine. In this
limited sense, mnnertc excepti0ns apply oruy to operations a single coprocessor instructi0Il'
does and; the coprocessor's direct ancl immediate Fesponse to an error condition. Algebraic
operations (addition, su0tracti0n. multiplication, division ancl square roots) are done inline
whereas trtg0mometrtc or transcenclental operati0:as are n©t. Our definition includes division
by zero and taking the sqµare root ofi a negative numoer but excludes taking the log of a non­
positive number.

For errors that happen in a lit>rary rou.tine, software in the library hanclles errors during
trigonometries ancil transcendentals and the coprocessor handles errors during algebraic
operatio:as. Most oft the lilDi:rary routines have built-in safeguards that prevent out-0f-range
arguments frorn being passecl to the coprocessor. In the NDP compilers, these move an erro:rr
value into an internal compile:u variable whose value can be obtained by calling the functfom
geterrno ((in Fortran)1

, OF checking the variat>le errno in GI C++. The return values pertinent

3861486 UNIX NDP User's Manual

40 4 Runtime Organization and Numerics

to1 math fiunctions are 3 3 ferror in d0main)1 aml 3 4 (:erro:u in range):. YoM will have to monitor the
value returned at key p©ints by geterrno to discover whether your program has suffered any
errors. You should be aware. however, that these rules are not absolute. For more information
ON the NDP compilers' :uesponse to exceptions within a library routine, look under the routine's \,,._,/ name in the app:uoprtate NDPLibrrary Rejer:enee Manual

The Intel, and Weitek numeric coprocessors resp0nd in very similar ways -- for the most part
identically -- to numertc exceptio:as. Botlh types have a default response that takes place
entirely within the chip and a customizable response that takes place in software, outside the
chip. The programmer can choose which response the chip will take by masking exceptions or
unmasking them. Fm:- convenience, we call the foliIIler passive error handling and the latter
active error handling. If exceptions are unmasked, an error condition will cause the
copFOcessor to generate an interrupt request. The exact route the request takes varies among
machines. and usually need :a0t co:acem the applicati©ns programmer.
Bel©w is the list o:C excepti©ns recognized by the Intel 80387 and 80860:

1. Invalid Operati©n
2. Den0rmal Operand:
3. ZernDivide
4. Overflow
5. Underflow
6. Precisi0n (inexact result)'

The secti0:as o:ai c0p:u0cessor architecture CSectiiJ>TilS 4.8~ 4.9)! expand, on the nahire and, meaning
0£ eacfa 0fi these e:urors.

Computati0nal owerati©as in the mathematics realm diffeF fundamentally from computational
OJi>eFaticms in the cybernetic realm (i.e., within computing machines)1. FoF example, numbers
are continu0us and unllmited but the operands of computing machines are discrete and
bounded. What co:astitutes a numertc error and h0w to handle it properly turns out to be an
vecy complex questicm for the NDP e:avironment. A division by zero, is unquestionably a
mathematical erroF but in the cybernetic woFlcl can be important -- see the example in Secti<JJm
4.11, page 42. of a parallel :aetwoFk ofi resistoirs that takes advantage ofi both zero and infinity
in duplicating the Feal worM behavi0r of the netw0rk. Perhaps that is why computer jarg0n
uses the term "excepti0ns" instead ofi "errors." The many "provinces" of the cybernetic reahn
can differ greatly amcimg themselves, as many ofi our customers discover while p0:rrting
applicati0ns from. mainframes to the NDP environme:at. Because the IEEE number system is
unlike any other they have encountered 011 a c0mputer before~ an error in an NDP environment
is :Car from an erroJ.T 0111 an ofol~fashicmed mainframe. FoF example. operati©ns like division, lDy
zeJ.To and division oy infiaiity at'e well defined. The results generated by each can even be
signed, making it p@ssifuk to c@mpare infinities.

Not olilly d©es the user have a lairge say in detennrning what an error is, but virtually evecyone
disagrees o:n what should anCit sltm11ld _110t be treated as an erro:u. To accomm@date differiag
views of what c0nstitutes an, eFroF, we made it p0ssible foJ.T the user either to change the
Fesw0nse characteFistics ofl the default hancdler, or to write his/heF own. The default exception
hancdler that is part ofl the NDP runtime envirorunent emplroys a combinati0n, of active and
passive res:w0nses. It unmasks the exceptioNs ccmsidered m0st severe, allowing the
coprocessor's default resp0nse for the 0thers. We ch0se this because the passive resp0nse of
the cmprocess0u is the m0st reasonable fo:rr m0st excepti0:as. Many excepti0:as even procduce
results that are "se:W-healing" when used with the Feciprocal operati0ns. If a masked error
0ecurs at any time during the progr:-am, a Miernway NDP language routine will pFint out an
eFJ.T<DF message when the pr0gram ends.

Y0t1 may want t<D m0cdify the c©mpi1eF's default exceptd0n-hancdling resp0:ase without goihg so
far as to write a cust0m exception handler. C0nsider the invallcd operati©n exception such as
trying to: take the sq_µare ro0t of a negative nurnt>er, which has n0 mathematical or cybernetic
meanirlg in the w0:uld ©fi real numbers. The compileu n0:rmally unmasks this exceptio:a; if such
an error 0ccu:rs, the p:rogram prints an error message ancd halts. In your particular applicati0:a,
yolll may want the wrogram to pl:'oceed to the encl ot a certain series 0£ calculatio:as -- perhaps

Nf!JP User's Manual: 3861486 UNIX

r ,

u

u

4 Runtime Organization and Numerics 41

in a cmve-fitti:ng pFOgram -- even if such an excepticm occurs. You can mask the invalicl
operation bit. thus enabling the ND P's default response to an invalid operation. which is to
return a number known as an inclefinite real. one of the "quiet NaNs." and continue (for more
on these. see 8ecti@m: 4.1' l. on IEEE numbers. page 42). If an indefinite real enters a
calculation stream. it propagates to the end. allowihg you to test the final result. If it is an
indefinite real, you can acljust ancl repeat.

4.10.1 NOP Compilers' Handling of Numeric Exceptions

The coprocessor's default response to an exception is to emit a result that is appropriate for the
euor that has just occurred. to set the appropriate bit in the status register, and to co:atinue
processing. FoF example, division by zero will produce infinities while invalid operations such
as the square root of a :aegative number will produce a NaN (Not-a-Number). Both infinities
and NaNs have special' binary representations in the IEEE format (see Section 4.11, page 42);.
Any bihacy numeric opeFati@:a that has a NaN as an argument procluces a NaN as a result, Le~.
once a NaN enteus a calculation stream it propagates to the e:ad. For the most part, the chip's
default responses result in acceptable -- even innocuous -- consequences for all operaticms
except invali<!l operati@ns aml clencmnals.

To find ecrors. the NDP compilers have a filter in place at all locations, including the PRINT and
WRITE routines, at which binacy reals are converted to strings. When the filter finds a NaN OF
infinity, it outputs "NaN" or "Infinity" rather than a string of digits that might be mistaken for a
legitimate value. At the encl of the program. the exiting routine checks to see if any errors
occurred. If so, a brief message to that effect is sent to the standard output device before the
program returns to, the operating system. However, fou invalid operatio:as (and, with a Weitek,
undefined opcocde ancd, data chain exceptions);, the NDP compilers' response is active exception
handling, Le., an interrupt is generated ihlrnediately. Infonnatio:a about the state of the
coprocessor goes to1 the stanclard output device, ancl the program returns to the operating
system. The programmer can change the default behavior by leaving the default han<iller in
place and masking or unmasking exception respcmse bits or by substituting his or her own
exception hancller (See Sectwrn: 2.6.1, Exceptwn Handlimg)J.

The default active exception hanclling respo:ase of an NDP program is roughly the same as that
found in many runtime enviro:aments -- dump some information about the state of the
machine where the exception occurred and exit the program. This minimal respoase to
exceptioas may be perfectly adequate for any given program. On the other hand, it may be to0
harsh, as even invalid operations d@ n@t necessarily inclicate a serious program flaw. In many
real world prolDlems. that involve iterative solutio:as, especially in simulations of physical
systems, the systems being simulated tencl to wander into regioas that generate invalid
numerical OJ)erations. In these situations, it is often possible to come up with a reas0nable
resp@nse to, the excepti@n that will deflect the simulation back into a "stable" regi@n. For
example~ oIDe Microway devel@pe:r recalls a case in which he was taking the square ro@t of the
differe:ace ofl tw0 1 large numbers that were ahnost identical. The simulatio:a in question woulcd
conveuge only when the absolute value divided by 2 replaced negative differences. For th@se
users who require mare than the minimum, we have proviclled high-level functions with which
the users can write th:eir own exception hancdlers.

Before field eFrors occur, the useu can, place checkpoints in the program. FoF example, m1e can
test a diviscm against zero before dividing ancl pay a time penalty for d<i>ing s0 if this makes
sense in a particular program. As a practical matter, this may often be perfectly adeqµate. On
the otheu hand, an advantage ofi active excepti@n hanclling is that it is never invoked unless an
error occurs. A furtheF advantage is that the user can craft his own exception handler from
high-level routines p:uoviC!lecl in this product l:>y Microway.

The programmer is in the best p0sitio11, to deciC!le whetheu to! use active handling, passive
hancdling, OF placing checkpoints. The many issues that might be encountered in a custorn­
written exception handler are beyo:acd the scope of: this manual. We touch upon them only
ins0far as they may help in the understancling o:C the eirror hancdlihg functions provided with

3861486 UNIX NDP User'$ Manual

42 4 Runtime Organization and Numerics

the compiler. Successful use 0£ these functioas presupposes some knowledge of the
coprocessors' underlying architecture~ Using the functi0Rs does not necessarily require a full
understanding of the often esoteric issues involved in exception handling. However, those who
want a fuller understanding should read the :aext section.

4.11 An Introduction to the IEEE Number System
This section is for users who want to write their own exception handlers. Users planning to
use the Microway default exception handler also may find the following discussion useful for
understanding and responding to, error messages such as "invalid operation. 11 Invalid
operati<lm. undeF IEEE specificati@:as. d0es not include overfl0w. underflt>w~ divide by zero. or
divide by infinity.

Understanding NDP excepti0ns is inseparable from unclerstanding IEEE .. 754 floating'.'"point
numbers, in particular, the set of special values that the IEEE system recognizes, handles ancl
procluces. These values simplify and irnpFOve the hanclling of errors but complicate the iclea of
what an error is. For example, the followingfo:mmla algebraically determines the resistance of
a netw0Fk of parallel: resistors:

Rt= 1/(1/Rl + 1/R2 + 1/R3)

It is well determined where any 0£ the resistances in the network are zero (i.e .. the total
Fesistance ofi the network is.zero, when any 0£ its comp0nents is zerol'· Normal fl0ating ... point
number systems, however. dGl' n0t hanclle this case because it requires that divisiIDn by zern
generate an infinity and, that divisi@n by infinity generate a 0. In a no:nnal numeric system
there are zeros but n0 infinity. an@: dividing by zeF01 is always an invalicl operation. The
numbers plus and minus zero are special (f.e .. they have their own special representatioa}
al<mg with the numbers plus and minus infinity. The existence of special numbers at b©th
extremes 0£ the number system (instead of at zero only) are what set the IEEE number system
apart from the ofoler systems Hsed by micros and mainframes. Besides signed zeros ancll
in£inities, the swecial numbers include a group ofi numbers called den0rmals that have reduced
precision, a groHp of numbers called NaNs that are n@t numbers at all (i.e., they are
combinations 0£ bits that fall outside the d0m.ain 0£ the valid numbers and are intended for
special purposes)J. ancl: a special NaN called an incleflinite real.

4.11.1 IEEE Representation of Real Numbers

IEEE fl0ating ... p@int numbers are binary: they include a binary fracti0n that is multiplied by 2
raised to a binary p0wer ancl, the numbeu -1' raisecl to the p0wer 0 or 1 (Which controls the
sign):. A binary fraeti@n is easy to, inteFpret: the digits to the lefit of the binruy point are an
oFdinary unsigned integer while the digits to the right show which of the negative p0wers 0£ 2,
('1/2, 1/4, 1/8:. ..)! are to be included. Consider the binary fl0ating•p0int number, 101.101.

power = 4 2 1 1/2 1/4 1/8
1 0 1 1 0 1

101.101 4 + 0 + 1 + 1/2 + 0 + 1/8 = 5 .. 625

'Fhe binary f10ating•p0int :m.umbe:Fs used by the IEEE c0nventi0n cannIDt be used to represent
any arbitrary nNmoe:r (:i'.e., they do n0t have infinite precision): ancl they have an associated
11gran1l1lality. 11 Numbers near ze:rn are us Nally capable of being m@Fe precisely expressed than
very large numbers. In other words, if: we examine the spectrum 0£ IEEE real numbers, we find.
that the numlDer of expressible real numbers between 0 and. l is alm0st eqµal to the number of
expressible real' numbers between l! and infinity (m@re on this bel©w);.

The a umber system used to, irepresent IEEE reals combines three binary numt>ers: a sign bit, a
binary exp0nent consisting 0£ S', 11 or 15 bits and a binary significancl (mantissa); consisting of
24, 53 or 64 bits. For example~ the decimal floating ... p(i)int number +4.0 can be expressed as
the prncluct 0£ ... 1 raised to.' the power of the sign bit times a significand (mantissa): of 1.000000

NDP User's Manus/ 3861486 UNIX

' l
\~

\ u

~:

I \
\ ' ..._)

4 Runtime Organization and Numerics

times 2 raised to the 2 p0wer. To represent any IEEE floating-p0int number we use the
following formula:

real_number = (-l} 5 *(significand}*(2}e~

Foli the decimal rmmber +4.0 the three comp0nents have the foll0wing values:

s = O (i.e., the number is positive}

significand = 1.00~0000000000000000000 (i.e., 1.0)
exp= 00000010 (i.e., 2)

43

Befolie g©ing on, please note that the significancl is in the fo:rm 1.00 .. 0. This format was not an
acciclent -- IEEE significancls are always expressed in n©rmalized format, which means having
a single 1 to the left of the binary point. The process of getting reals into this format is called
normalization, aml involves shifting the binary point to the left or right, as appropriate, until a 1
appears ahead of the 1Dinary p0int (properly acljusting the exp0nent while this is being done, of
courset. This saves one t>it when the numt>er is stored in memo:ry.

We will n©w examine how a binary real number is encocled in a computing machine ancl how
the number system is extendecl to introcluce the special numbers that play a ve:ry important
role in IEEE excevti0n handling. We will treat all numbers as if they were non-negative,
because the negative values areJust the mirror image of the p0sitive values.

If we count the bits used ab0ve to represent the three parts of the number 4.0, we find that we
used 33 bit:s, 1 m0re than the 32 bits we n©rmally associate with single real numbers. The
"extra" bit is the leading l in the significand. Since the standard states that valid reals always
have a single l: to the left 0£ the binary p0int, this bit never changes and therefore d©es not
have to be explicitly stor:ed in the computer representation of the number. This reduces the
numt>eF of bits to, 32, and effectively increases the precisi0n 0:£ 32-bit numbers by a single bit.

Since both f>OSitive ancl negative exponents are ref)resented in the computer, the binary value
used to represent them must be some form of signed integer. The exact scheme chosen plays
an important role in determining how the special numbers with which this section deals are
encoded. The goal is to; take by eminent domain from the binary floating:-point number space,
a representation foli the extra numbers we need to make the number system well-behaved
around zero ancd between the largest numbers ancd infinity. We d(]) this by expropriating a
binary value at the boutom and toi:> of the exp0nent's range, ancl using these two values to
encode the special fl.umbers near zer0 ancd iminity.

As an example, let's examine what happens with the exponent of the single real. Single real
(32-bitl,1 floating-point rmmbers have an 8,..bit ex:p0nent that can take om 256 values. The m0st
obvious tactic is to map one of these 256 values to an exp0nent of zero, leaving 255 foli p0sitive
and; negative exp0nents, out this leaves nothing fou special~ptirpose numbers. Therefore we
reseFVe the exponent values 0 ancl 255 for the extremes of the range, leaving the integers
lt..254 to, represent all "ordinary" exponents: :aegative, zero, ancl p0sitive. We use one oHhis
254 member set to represent an exponent of zero, leaving only 253 members foli the positive
ancl negative expo:nents, which creates an asymmetry in the e.xp0nent set. The IEEE
committee ch0se to1 have 126 negative exp0nents ancl 127 p0sitive exponents. We represent
the exp0nent ze:r:-o using the value 127 (7FH) ancl the values between 1: ancl 126 will map; to
negative exponents while the numbers between 128, ancl 254 map to positive expo:mmts. The
value 127 is known as the bias, ancl is aclcdecl to the true expcment to obtain the binary
represemtati0H in the computer. A bina:ry exp0nent representation consisting of all zeros is, as
we said above, a special case~ If the significancl is also all zeros, then the value is a true zero:
otherwise, it is a aenormal. A bina:ry representatio:rn of 255 represents infinity or a NaN,
depencling oa the value of the significan~f!. The :r:elati0nship between the true exponent ancl; its
representation. in the computer -- the biased exponent -- including a descripti0n of what each
'biased exponent foll0ws:

Biased exponent True exponent Comment
O n©t clefrnea zero. denormals
1 -1126 smallest exponent

3861486 UNIX NOP User's Manual

44 4 Runtime Organization and Numerics

2
125
126
53
254
255

-125
-2
-1
126
127
not defined

l'argest exp(]ment
infinity, NaN s

Consider what happeas to the number 4.0 abcwe. IEEE represents 4.0 as 1 times 2 raised to
the p0wer of 2, which means the number 4.0 will have a true exponent of 2. Looking in our
table we see that a true exp0nent of 2 combines with the bias 127 to form a biased exp0neat ofi
129.

The three binary components 0f an IEEE floating-point number real are arrang~d in the order:
sign bit, biased exponent aml n0rmalized significand. This is not necessarily the way the
numbers are stored in memory, which is machine dependent. Intel processors, for example.
store values "backwards," i.e., l©w byte to high byte. When the processor moves them into a
register, it reverses their "backwards" orientation s0 they are placed high byte to low byte. That
is, the highest byte is the most significant byte, the next highest is the next most significant,
and so on. This is the way numbers in any numbeF system (binary, decimal, octal, or what
have you) are ordinarily arranged. The IEEE floating-point specification is designed for
generality, and leaves details of implementati0n to the manufacturer. The NDP compilers
assume a nonnal arrangement, but the actual arrangement of a particular value in an Intel
machine depends on whether it is in mem@:rry 0r a register.
n.et's now examine what happeas to the binary componeats of -++4.0 as we build the IEEE
representation. As menti0aed', for the case of single reals, the expoaent is biased with 127,
which when aclded to an exp0nent of 2 yields an exponent of 129. The official IEEE binary
representation of the number 4.0becomes:

sign bit
exponent

o (:i.e., it's posi:tive)
= 10000001 (i.e .. biased expoaent = 129)!

significand = 0000000000000000000000-0
(fraction = lJ. 0 ancl: the leacling l is n0w implied);

Taking these bits ancli lining them up ih' a row we get the 32-bit IEEE single :r:eal number in
binary (With its hexaclecimal' :rrepresentation bel0w)':

binary 0100 0000 1000 0000 0000 0000 0000 0000
hexadecimal 4 O 8 O O O O O

We print the ab0ve n©tati0n stretched out to sh0w h0w each 4-bit nibble maps to a
hexadecimal digit. For ease ofi readability, the hexaclecimal number is:

40 80 00 00

'fhis is its n0rmaI: byte se(]}µence, ancl the way a debugger wo11ld display the value in a 32:-bit
lntel1 processor registe:u. If the debHgger displays the same numbe:r: in mem0ry, howevet', it will
show t:he following,:

00 00 80 40

Let's n©w exa.mme tfue rules used to biW.iM the IEEE floating-point number types: singl'e real
(32 bits), ancl dbuble real (64 bits)!. The rules are funclamentally the same as those used to
build the single real numbers above~ except that the sizes of: the exp0Nents, biases and
significands are a functicm 0£ the type being used. The parameters all three types use are
summarized ih ilie table bel©w, alcmg witn the maximum and minimum size ofi the exp0nent foF
each.

RepreseNtati0H ofl Expoaents

Real Type
Total binary bits
Significancl wiclth

NOP User:'s Manus/

Single Double
32 64
23 52

3861486 UNIX

cl

) \.._;•

\)
~

4 Runtime Organization and Numerics

Expcment wiclth
Exp0nent l!>ias
Maximum exp0nent
Minimum exp0nent

45

8 11
12 7(:7FH): 1023(:3FFH):
127 1023
-126 -1022

To see these rules in acti0n, we will now builcl the number 4.0 in the double real format:

Double Real format of 4.0

sign = O
exponent = 2 + 3FFH = 1000 0000 001
significand = 0 .. 0 (52 bits wide}
binary 0100 0000 0001 0000 0000 0000 0000 0000
hexadecimal 4 O 1 O O O O o

The IEEE representati0n:

40 10 00 00 00 00 00 00

is stored m mem0ey by the Intel, CPU as:

00 00 00 00 00 00 10 40

4.11.2 Precision and Denormals
To umlerstancl what hapJl>ens to, fl0ating-point p:rrecisi0n as we scan over the real numbers, let
us examine the case ofi single reals. We shall focus on the non-negative values, remembertng
the Negative sicle of the IEEE number line is the mirroF finage of the p0sitive. The mantissa
here is 24 bits, an implicit leading bit that is always 1 ancl 23 explicit bits that can be either 0
or 1. Therefore the inter:val between any two p0wers of 2 contains just 223 unique
significancls, e~g., the Number space between l and 2 can be divicled into 8,388,608 uniCJiue real
numbers am.I so can the interval between l /2 and 1. The number of reals stays constant in
any inter:val, s0 that there are approximately 8.38 million real numbers between 1 and 2,
between 2 ancl 4, betweea 4 and, 8, etc. Likewise, there are approximately 8.38: milli<m real
numbers betweea 1ancl.i1[2, between l'/2 an<il 1/4, between 1/4 and 1/8, etc~

Thus, the density J)er interval grows between successively smaller negative p0wers ofi 2, and
diminishes between cardinals in each interval between successively greater powers of 2. Thus
we have ar©Hn<il: 8.38 milli0a, values between 1 and 2, but only around 4.18 million reals
between 2 and 3, becau.se the same number ofi significancls must be stretched oNt over a
greater :rrange. In the interval from 4 to 8 there are arouncl 2.09 milli0n reals betweeN
cardinals. and from 8 to 16, arouncl 1 .04 million. By the same logic, we see that in the interval
between 8,388,608 ancl JJ6, 777,216, we will have just 0De f10ating ... p0int number per cardinal,
which is the same granularity as an ordinary integer representation. Above 16, 777 ,216, 32-bit
integers d0} a m@re exact j@b ofi representing numbers: they suffer from having a limited range
and do a much w0rse job with numbers smaller than 8.,388,608. On the average, however,
fl0ating;-p0int numbers are a better choice than integers, if you need precision near zero or a
large dynamic range~

To understand the deacmnal, we must 100k at what hapl)tms as the numbers get smaller,
which is eqµivalent to· asking what happens as the IEEE representatiG>B approaches zero. We
begin, by taking the smallest valicl single real (1 1.0*2-126);, ancl start divicling it by 2. This
smallest numbeF has a biased exp0Nent ofi 1, which drops to 0 when it is divicled by 2. An
expoaent 0f an ze:rros is used as a flag to indicate that the expoNent has n©w passed its smallest
value (-126)1 ancl that the system is nG>w reclucing the significand1 by factors of 2. The process
begins by m0ving the first (lrnplicit)J significant binary digit to the right of the binary p0int. The
special numbers betweea the smallest number and zern n© l0nger have an implied 1 at the
head of: their significand. As the values are progFessively halved, the significand bits coatinue

(
1

being shifted right, until the number system runs out ofi room. When the process finally shifts
~ the last significant digit <:mt o:f the fraction, it arrives at the IEEE represeatation ot zero, which

is a zero biased exp0ne11t and a zem significand. In effect, the number system trades precisi0n

3861486 UNIX NDP User's Manual

46 4 Runtime Organization and Numerics

for range by turning 0ff n©rmal!izati011 f0r the sequence of numbers between the smallest
number and zero~

number biased exp implied bit significand
2-126 1 1 00000000000000000000000
2-127 0 0 10000000000000000000000
2-128 0 0 01oorrooo-000060000000000
2-129 0 0 00100000000000000000000
2-130 0 0 00010000000000000000000

2-149 0 0 00000000000000000000001
zero 0 0 00000000000000000000000

'Fhere are 8.388.607 (223-1) of these p0sitive single real den0rmals. providing a "cushion"
between the smallest valicl number and zero~ SinceyoN can't halve your value and keep it too.
the system must give uv something with the introducti0n of denormals. and that something is
precisi0n. Den0rmals extem1l the 10w encl range of single reals, from 2-126 to 2-149, but for every
p0wer of two that they droi:>. they lose a bit of precisi0a, till at the low end the precision of the
significand is recluced to a single bit. while d©uble precisi0n is 15 digits. If you could
determine the distance ofi the moon with this much precision. you could determine the distance
within two miles. With double precisi0n, y0ur range woMlcl be within .0012 inches. Weitek
c0J>rocessors db not supp0:rrt den0rmals. Any rmmber that woulcl bec0me den0rmal becomes 0.

4.11.3 Infinities and NaNs
'Fhe encodings for an the types ofi numbers that can be used in the IEEE representation appear
in Figwe 4-2. page 27. The largest p0ssible biased exp0nent is always reserved for special
numbers, (infinities ancl NaNs)1just as the smallest biased exp0nent is reserved for zero and
clen0rmals. N0rrnals refer to numoers that can be n0rrnalized, Le~. valid numbers.

As Figure 4-2 sh0ws. the biased exp0aents of infinities and NaNs have all bits set to oae~ They
can be signed positive or negative but as we dicl with denormals. we shall focus on the noa­
negative values, remembering the negative sicle of the IEEE number line is the mirror image of
the p0sitive. Infinities ancl NaNs are distinguished by the bit pattern of their mantissas. There
is only one pattern. for the significand of an infinity: the leading bit is one. all the Fest are
zeros. Infinities are the masked resp011se to an, overfl<Dw OF a divisi0n by zero. (The rouncling
rn0cle in effect determines whether these errors produce infinity or the largest representable
number:-.) The use oil infinities as operands has weH~cleflined results. S<Dme of these are legal
ancl produce sensible results, fo:u example. division of a finite number by infinity, which
procluces zero' as a resllllt. L..egal arithmetical operati0ns on infinities are always exact. Illegal
0perati0:ns on infinities r:-esult in the invalid operatf0n exceJ)ti0n. Because the NDP default
exception handler is set lilp to, detect invalid operati011s (i.e., they are unmasked). the handler
will get invoked any time infinities are used illegally and generate an errorr message saying
"invalicd 1 0perati0H."

Fi@l!l:re 4-12 summar:IBes h0w infinities are used. It shaulcl be n0ted that the exceptioas
(oveITflmw or diVisi©!l.Tl by zero), can be unmasked so· that, Father than return an infinity, they will
instead trigger the excepti0n hancller. The NDP languages' default, h<Dwever, is that they be
maskect

NOP User's Manual 3861486 UNIX

<)

u

4 Runtime Organization and Numerics 47

Infinity Operands and Results

1
1

1 1'1

i
Operation Operands Result

Addition I +oo plus +oo I +oo
!

i: -oo plus -oo I -oo
+oo plus -oo Invalid operation

I

:: -oo plus +oo Invalid operation I
11

i ±oo plus ±x *oo

±x plus ±oo *oo
I

Subtraction +oo minus +oo +oo
minus

.
-oo -oo -oo

minus -oo : Invalid operation +oo
-oo minus +oo Invalid operat:lon
±oo minus ±x

. *oo

±x minus ±oo
I

-*oo
11

'

Multiplication ! ±oo * ±oo Ii **oo
I

:
!

±oo * ±Y, ±Y * ±oo **oo
ii

±0 * ±oo, ±oo * ±0
'I

Invalid operation

Division
.

±oo I ±oo Invalid operation
I

±oo I ±X **oo i

±x I ±oo ** 0
±oo I ±0 **oo

I!

Compare +oo : +oo +oo = +oo
-oo : -oo -oo = -oo ii

i

+oo : -oo +oo > -oo
: -oo : -oo -oo < -00
I I•

I: +oo : ±X +oo > ±x
±x

11

±x -oo : -oo <
±x : +oo ±x < +oo

±x : -oo ±x > -oo

I

Key: x Zero or nonzero positive operand
1: y nonzero positive operand.
I• * Sign of original 00 operand.

- * Complement of sign of original oo operand.
** Exclusive OR of signs of operands. .

I

I

Figure 4-12. Infinity Operancds ancd Results

u
3861486 UNIX NDP User'$ Manuaf

\
l

'J

I \
I I

_!)

()

/ i

_)

5 Mixing Languages

The NDP compilers (NDP CIC.++-++, NDP Fortran, and NDP Pascal): provide great power and
flexibility by making it p0ssible to write programs that use m©dules written with any Microway
language or with assembly language. The ability to mix m0dules written in different languages
all0ws the programmer to, code each task in the m0st appropriate and natural' language for the
task.

Although the NDP compilers have many extension.s that should make it unnecessary to use
assembly, the ability to write assembly roMtines and link them with code generated by the NDP
compilers gives the programmer greater control. Generally, programmers use assembly
routines tofine--tune pFog:rnms by optimizing, for speed or size, and to access the PC hardware
or system services in ways not n©nnally available through high ... level languages.

5.1 General Rules
The NDP compile:rs have a high degree of compatibility. Regardless of the high-level language,
each compiler translates source code into the same intermediate language that is eventually
outpMt as olDject code and is linked with common runtime routines. All the compilers use the
same mem0ry m©del, a flat m0del. Moreover, the NDP compilers all push parameters onto the
stack in rtght:-to-le£t order. That is, the last named is pushed first, then the next to the last,
and so on. Thus the arguments end up on the stack in the order in which they are naim~d in
the parameter list. (The exception to this rule is the lengths 0£ strings passed by Fortran, see
bel0w.)' The runtime system for all three compilers is an NDP GI C++ applicati0n and includes
the complete NDP C runtime libimiy, SQ that an NDP Cl'C+-n m0dule called by an NDP Fortran
OF NDP Pascal program will have all the runtime supp0rt it expects.

There are several unavoidable differences am0n.g the NDP compilers that arise directly from the
definiti0ns ofl the languages themselves. There are also differences that occur to maintain
compliance with inclustry standards. The following sections explain these differences.

5.1.1 Linking Restrictions
Modules written in NDPC l:C++, NflP Fo:rtran, NDP Pascal, and, assembly can be linked freely
among themselves, with the following restrictions:

l. If a program has any NDP Fortran modules that use Fortran 1/0, fa) the main moclule must
be written in Fortran and it must be linked with the library UBF, or (bl the main program
must initialize Fortran, 1/0 properly. For instance, let us assume the following Fortran
Stibroutme is to be linked into a CIC++ pmgram:.

subroutine fortran_subroutine (i)
integer i,j
character*64 string
if (iargc(} .gt .. 0} then

do j = l , i a rgc ()
call getarg (j,string)
w.rite (6,210) j,': ',string

210 format(i5,a,a)
enddo

else

write(6,*) 'No command line arguments were given'
endif

write (6, 220) 'Input argument: ', 1

50

220 format(lx, a,. i5}
return
end

5 Mixing Languages

Because this Fortran routine does 1/0. the Fortran 1/0 system must be initialized. If the
main progi:-am is a Fortran program. the initializati0n occurs automatically. If the main
program is a CIC++ prngram, the initializatl<i>n must be d0ne explicitly:

#include <stdio.h>
int xargc; IARGC */ /* used if Fortran calls
char **xargv; GETARG*/ /* used if Fortran calls
int zero = O; */ /* used by parts of LIBF
int one = 1; */ /* used by parts of LIBF
vo.id rec_ini t (.};
void (* initrec} (} = rec_init; *I /* used by parts of LIBF
void = rec_uninit(};
void (*unini tree} (} = rec_unini t ;./* used by parts of LIBF *I
char *tempfiles[lOOJ ~ {NULL, };/*used by parts of LIBF */
main(int argc, char *argv[]} {

int i ;.
xargc = argc;
xargv = argv;.
fmt_ini t (} ;
rec_init(};
/*program body */
i = 5;
fortran_subroutine_ (&i};
rec_uninit(};
}

/*initialize Fortran formatting*/
/*initialize Fortran units *!

/*close flush Fortran units */

The data declarations fioF zei:-o, om.e. initrec, uninitFec, are needed to avoicl: symbol conflicts
during the link stage. Omitting any of these declaratiom.s causes the standard veFsion 0f
main () to· be linked, and: duplicate symb0ls result. The link file must include a reference to
the Fortran library. If, fm:r instance, the executable program is b11ilt using the CIC++
driver. e.g., rnx386, then the Fortran library must be included on the command line:
mx386 main.cxx forsub.o -lf3

The -1f4 switch will cause 1ibf4 . a to be linked in.

2. Programs that contain any m0dules written in NDP Pascal and that perform Pascal 1/0
must have the NDP'Pascal libra.iy, lp4. a, linked in.

5.1.2 Data Type Differences
Usually. the NDP compileFs share the same maj;OF data types, all having the same range of
vall:tes ancl the same rules foF operations. There are, however, s0me imp0rtant differences ('.ancl
ways arouncl them)i.

Integers

NDP'Pascal has n0 pFede£ined 16-bit integers, as are fotmcd in NDPCI C++ (short int)' and
NDP Fortran, ((INTEGER* 2). This cliffieulty can be overc0me by creating two new types:

type short -32768 .. 32767 { 16-bit integer }
type ushort 0 .. 65535 { 16-bit unsigned }

'Fhis al10ws y0:u to pass these items bet:weeH NDP Pascal' ancl the other NDP languages.

NDP User's Manual 3861486 UNIX

(i
\..,..-''

5 Mixing Languages 51

Char

NDP Pascal's predefined 8-bit data type, char, is restricted to values between 0 .. 127, unlike
NDP Cl C+-+t (char, unsigned char) and NDP Fortran (CHARACTER*l, INTEGER*l). This
difficulty can be overcome by creating two new types: -

type schar -128 .. 127 { signed char
type uchar 0 .. 255 { unsigned char }

This allows you to pass these items between NDP Pascal and the other NDP languages.
Remember that in Fortran all integers are signed.

Floating Point

NDP CIC++ aml NDPPascal by default promote all floats to double, but NDP Fortran does
not. This problem affects only those functions that return floating point values ancl use the
Weitek coprocessor, or that pass between Fortran and CIC++ or NDP Pascal, using NDP
Fortran's %VAL operatoF. Passing by reference is not affected. There are three ways around
this prolDlem:

1. Declare all flG>ating point parameters as doubles.

2. Include in your Cl C++ programs function. prototyping to coerce floats to remain floats; or
use the -p3 switch to compile NDP Pascal programs, causing REAL values to be interpreted
as 4-byte values.

3. Pass by reference.

5.1.3 Naming Conventions

The differences in naming, conventions amomg the compilers are related to case sensitivity and
the use of leading/trailing underscores.

NDP CIC~+ compiler is case sensitive; it outputs identifier aames exactly as they are entered.
It appends an underscore to, the beginning of: all identifiers but n@t to the end.

NDPFortran is not case sensitive. It transfoflils all identifier names ihto lower case and
outputs them in that form. It als@ appends an underscore to the beginning and end ot all
identifiers. Fortran can be made case sensitive by using the -u (upper-case Ul compiler switch.
Identifiers will then be output exactly as they are entered, with a leading and a trailing
underscore.

NDP Pascal is by default n@t case sensitive; it normally outputs identifier names in lower case,
like NDP Fortran'. Like Cl C++, it appends an umlersc@re to the beginning of all identifiers but
not to, the end'. NDP Pascal can be made case sensitive by using the -pl compiler switch.
Identifiers will then be output exactly as they are entered, with a leading llnderscore.

Com.sicler the following identifiers:

Language Identifier Output to assembly file
NDP C l!C++ Flag _Flag
NDP Fortran Flag _flag_
NDP Fortran (-U) Flag _Flag_
NDP Pascal Flag _flag
NDP Pascal C-pl) Flag _Flag

To make an iclentifier glC!>fual between NDP Cl,C++, NDP Fo:rtran, and NDP Pascal, use all lower
case hi~tters and p0stpend an underscoue to the CI C++ and Pascal names, as in the following
example:

Language
NDP crc-+i+
NDPFortrnn
NDPPascal

3861486 UNIX

Identifier
flag_
flag
flag_

Output to assembly file
flag
flag
flag

NDP User's Manual'

52 5 Mixing Languages

5.1.4 Parameter Passing

All the NDP compilers exteml character and integer values to four-byte size when passing them
011, the stack.

Passing Values

Except for strm.gs (see belG>w), NDP Fortran passes only by reference. i.e., it passes the address
of the data item. 'Fhe default in C 1:c++ is to pass by value. The default ih Pascal is to pass by
value, unless the var keyword is used; in the formal parameter list.

When being called from NlDP' Fo:rtran, the C IC-+++ functi@n must declare its formal parameters
as p@inters. When calling NDP Fortran, an NDP CI Cit+ functiG>n must pass each actual
argument as a p@inter.

When passing parameters to or from NDP FoFtran, the NDP Pascal routine must declare its
formal parameters with the var keyword. Alternatively, the Fortran program can pass by value
using the keyword %VAL in the actual argument list. It is also possible to chang~ a pass-by­
reference of a variable to an effective pass-by-value l:>y assigning that variable to a local variable
ancd using only the lC!>Cal variable.

Note that by default, NDP Fo:rt:rran variables are REAL*4, but NDP Pascal' variables declared as
"real" default to DOUBLE (REAL* 8) , unless the Pascal m@dule is compiled with the -p3 switch.

Passing Strings

When NDP Fo:rrtran passes a st:rring, it passes b@th the acldress of the string and its length, but
the length is passed by value, n©t by reference. Further, Fortran pushes the lengths of every
stFing in the pararn.eteF list onto, the stack, ancl then the other data items, including the string
adclresses. FoF example:

INTEGER i
CHARACTER*lO Sl
CHARACTER*20 S2
CALL F (Sl ,.i ,S2)

The stack will l(l)ok like th,is:

20 (length1 of S2)' Bottom
1 o (length of S lJ),
(adclress of S2)i
(adclress of I)
(adclress of S.l)t Top

When passing sttings frnm NDP C l'C:fi-+ to, NDP Fortran, the actual argument list in the NDP
C liC++ program must declare a char p@inter ancl an int for each string passed so, that the
interface between the two) roNtines will be set up the way the NDP Fortran compiler expects.
Assuming the example ab@ve, the C l'C++ versiG>B of the code would lm@k like this:

char *psl;

int *pi;

char *ps2;

int 11,12;

f (psl,pi,ps2,ll,12);

When passing, sttings from. NDF Fortran to NDP' Cl:C++, there are two p@ssible appFoaches.
First. the formal parametei: list in the NDP' CIC++ program may declare a char p0inter and an
int for each sttihg passecl.1 :ll it is necessary fo:u the NDP C. 1:c++ functicm to know the length 0£
the string. For example:

void f (char *psl, int *pi,. char *ps2, int 11, int 12)
{

NOP User's Manus/,: 3861486 UNIX

\
, I
~I

5 Mixing Languages 53

Second, in C l.C++, a string has no intrinsic length associated with it. Its end is marked with a
null byte (value 0, not character 'O')'. In Fortran, every string has a fixed length and characters
within it d0 not necessarily have special meaning. If the NDP Fortran calling program (or the
NDP C I C++ functi<m) places a null byte following the last significant character in the string,
the NDP C l:C+ string hanclling functions will be able to handle it in the normal way.

When passing strings from NDP Pascal to NDP Fortran, the formal parameter list in Pascal
must declare strings with the var keyword an<Il an integer for each string passed so that the
interface between the two rm1tines will be set up the way the NDP Fortran compiler expects.
Assuming the example ab0ve. the Pascal code would look like this:

type
a10 packed array [1. .10] of char;
a20 packed array [1 .. 20] of char;

var
sl : a10;
s2 : a20;
i, 11,12 : integer;

procedure p_(var s1:a10; var s2:a20; var i:integer;
11,.l2:integer); external;

begin
p_ (s 1 , i,. S 2 J 11, 12) i

end.

When passing strings from NDP Fortran to NDP Pascal, there are two possible approaches.
First, the formal parameter list in the Pascal program may declare strings with the var keyword
and an integer f0F each string passed, as in the ab0ve example.

Second, a Pascal procedure can ignoFe length parameters completely, since the length of a
Pascal datum is part of its type. This causes n<I> c0nflict, since the lengths are passed highest
on the stack.. A cautioNs program, however, might access the lengths o:f the strings passed and
check them against the declared lengths, to ensure there is no discrepancy.

5.1.5 Output Buffers
One area of difficulty exists in interfacing NDP GI C++ and NDP Fortran. If bCI>th the G IC++
functions and Fortran rm1tines do screen 1/0, it may be necessary to flush the CIC++ output
buffer after using a function such as print f () ; otherwise, the output may print to the screen
out of order. With NDP Fortran, the runtime ·environment flushes the buffer every time an end
of line occurs, while NDP Gl'C++ d©es not .. The CIC++ output buffer can be flushed with the
fflush () functioa, or by outputting a 11ewline ('\n')' character.

5.2 Calling Between NOP Fortran and NOP CIC++
The foll0wing example dem0flstrates passing parameters, b0th string and numeric, between
NDP Fortr:an and NDP CIC++. For passing strings, it uses the first of the two methods
mentioned above. Note in the code bel©w that a trailing underscoFe has been added to the
lower case fMnctioH names, to match the underscore adcled by the Fortran compiler. The
compileJ.:'s also add an unclerscore to the beginning of the name.

Listing 5-1: Fortran Main Program

c This program calls the external routines SCALAR, STRING,
c and STRUC. Compile this program and link it with the object
c file created by Listing 5-2 or Listing 5-3.
c

CHARACTER*50 STRING
STRUCTURE /STRUC/

INTEGER I

3861486 UNIX NDP User's Manual

54 5 Mixing Languages

INTEGER CH
REAL*8 R

ENDSTRUCTURE
RECORD /STRUC/ REC
!SCALAR= ISCALl(l}
PRINT 100,. 'Value returned I SCALAR

100 FORMAT (lX,.A,.B)
PRINT *
STRJNG = 'This string was passed to an external module.'
CALL STRl (STRING)

c If you are linking this program with CIC++ routines, you
c should null terminate string here, or in the CIC++ module. A null
c replaces the first non-significant character.
c As in CIC++, the length of the string has to be at least one
c character longer than the number of significant
c characters, so that there is a character that can be
c overwritten with a null. If you are linking with Pascal,. it
c serves no purpose to null terminate the string. If the
c last character in the string is a significant character,
c i.e.,. not a space, it still has to be overwritten with a
c null.

i = len (string)
IF (STRING (i:i

STRING (i: i)
ELSE

.ne. char(32)) THEN
char(O)

c find the last significant character in string
DO WHILE (STRING (i:i) .eq. char(32))

i = i-1
END DO

c overwrite fir::-.:. non-significant character
STRING (i+l:i+l) = char(O)

END IF
c The CIC++ function strl changed the value in string. It wrote
c a new string and null character. Yet, Fortran will still
c write SU characters~ including any characters after the
c null that strl inserted.

PRINT*, STRING
CALL STRUC1 (REC,%VAL(3))
PRINT *, 'Structure: REC. I ' REC. I
PRINT *
PRINT *
END

REC. CH I I REC. CH
REC.R I REC.R

Listing 5-2: CIC++ Routines Called by Fortran and Pascal

/* These functions are called by a main program. Compile
this program using the -c switch, then link

*/

with the main program. Note that the function names have
an underscore appended, to match the one Fortran
appends to its names.

#include <stdio .. h>
/* receive scalar from Fortran and return another */
int iscall_ (int *i)

printf {"\nValue passed= %d\n", *i};
return(*i*lO);

/* receive string from Fortran and modify it */

NOP User's Manual 3861486 UNIX

_)

5 Mixing Languages

void strl (char *str, int len)
printf("%s",. str);
sprintf{str,"This string was modified by NDP CIC++.");

/* receive structure from Fortran and modify it */
struct struc

int i;
char *ch;
double dbl;

} i

void strucl_ (struct struc*struc2, inti)
struc2->i = i;
struc2->ch = (char *) malloc (i);
struc2->dbl = i * 1.1;
return;}

5.3 Calling between NOP Fortran and NOP Pascal

55

The foll0wing example dem0nstrates passing. parameters between NDP Fortran and NDP
Pascal. It uses the Fortran code in Listing 5-1. When passing strings, it uses the first of the
two methoc!ls mentioned. Note that a trailing underscore has been added to the lower case
functi0n names, to, match the underscore adc!led by the Fortran compiler. The compilers also
add an HnCilerscore to the beginning of the name~

Listing 5-3: Pascal Routines Called by Fortran Main Program

These functions are called by a main program. Compile
this program using the -c switch, then link with the
main program and Pascal library.}
Receive scalar from Fortran and return another

function iscall_ (var i : integer) : integer;
begin

writeln;
writeln('Value passed i 2};

iscall_ := i*lO;
end; {iscall_}
{ Receive string from Fortran and modify it }
type CHARSTR = packed array [1 .. 81) of char;
procedure strl_ (var str: CHARSTR; len: integer);
begin

write (s tr: 1 en) ;
str := 'This string was modified by NDP Pascal.'

end; {strl_}
{ Receive a structure from Fortran and modify it }
type struct

record
i : integer;
ch :. "CHARSTR;
dbl : double;

end; {struct}
function malloc (i: integer): "CHARSTR; external;
function strucl (var str: struct; i: integer): integer;
begin

s tr. i : = i;
str.ch := malloc (i);
s tr. dbl : = i * 1. 1;

3861486 UNIX NOP User's Manual

56 5 Mixing Languages

strucl . - i;
end; { s truc_l }
char string[Bl] fi *str;

5.4 Calling between NOP CIC++ and NOP Pascal
Because o1 the similarities betweea C t:C++ and Pascal. it is a simple matter to mtx these
languages. The key p0int is case seasiti.Vity. You should keep identifiers in 10wer case or use
the -pl switch to tum 0n case setisitivity when compiling your Pascal modules. Note that in
these examples. the functiotis were defined with a trailing underscore to support Fortran. If
Fortran supJi>©rt is not neecled. the trailing underscore can be dropped from the definition.

Listing 5-4: Pascal Main Program

This program calls the CIC++ functions in Listing 5-2.
Compile this program and link it with the object file
created by Listing 5-2. }

(input, output); program main
type CHARSTR
type struct

packed array [1 .. 81 J of char;

record
i : integer;
ch : "CHARSTR;
dbl : double;

end;. {struct}
var i : integer;
var string : CHARSTR;
var len : integer;
var struc2 : struct;
type f oo = record

{ This trick convinces Pascal to accept the equality
of pointers and integers by using a variant record.

case boolean of
true: (ptr: "CHARSTR) ;
false: (int: integer) ;

end;
var bar: foo; static;
{ CIC++ functions must be declared external.}
function iscall_ (var i : integer) : integer; external;
procedure strl_ (var str: CHARSTR; len: integer); external;
function strucl_ (var struc: struct; i: integer): integer; external;
begin

end.

i : = 1;

i := iscall_(i);
wri teln ('Value returned: ' , i);
writeln;
string := 'This string was passed to an external module.'
strl_(string, 50);
writeln(string:50);
i : = 3 i
strucl_(struc2, i);
bar.ptr := struc2 .. ch;
writeln('Structure: struc2.i
writeln(' struc2.ch
wri teln (' struc2 .. dbl

struc2.i);
bar. int) ;
struc2 .. dbl) ;

NDP User's Manual. 3861486 UNIX

\

0

()

5 Mixing Languages

Listing 5-5 CIC++ Main Program

!*This program calls the Pascal functions in Listing 5-3.

*/

Compile this program and it link with the Pascal Library
and the object file created by Listing 5-3.

#include <stdio.h>
main {)
{

int i,, len;
char string[81], *str;
struct struc

int i;
char *ch;
double dbl;

struc2;
i = 1;

i = iscall_{&i); /* pass the address of i */
printf{"Value returned: %d\n"~ i);
str = string;
strcpy(str, "This string was passed to an external module.");
strl_(str, strlen(str));
printf ("\n%s", str);
i = 3;

strucl_ (&struc2, i) ;
printf("Structure:\tstruc2.i=%d \n\t\tstruc2.ch=%1d\n\t\tstruc2 .. dbl=%f",

struc2 .. i, struc2.ch, struc2.dbl);

5.5 Interfacing Assembly Language

57

NDP C l!C++, FortFan, aml Pascal each translates source code into the same well-defined
intermediate language that ultimately becomes olDject code. The resulti:ng object module is
linked with otheF olDj:ect m0dules and the runtime libraries. The core of these libraries is the
same for all three compilers.

5.5.1 Reasons for Writing Assembly

Four common reasons for writing assemlDly language FON tines are:

1. To O{)tirnize f©r execNtable speed or size~

2. To access system services, Le~, DOS anal ROM BIOS.

3. For direct access to the PC's hardware.

4. To bNild an interface between otheFWise incompatible cocde.

Optimizing

Optimizing foF executable speed or size sometimes requires handcrafting the cocde in assembly
language~ It is theoretically possible to cFeate a compiler that produces "human grade'' cocde,
but it is fin.practical because the ccnnpilati@n process would be too time ... consuming.

One technique used to start writing an assembly language m0cdule is to let the compiler
generate a "bare 00nes" pirogram skeletoro. (i.e., write a pFocedure in the target language that
uses each ofl the variables in the m0dule in a tnvial manner, such as an assignment. This
takes care ofi properly passing variables ancd all0cating lcl>cal storage):. Then, flesh out this
skeleton by hancd: in assembly language.

3861486 UNIX NDP User's Manual

58 5 Mixing Languages

A second approach is to write the p:r:-ocedure or program in a high-level language. let the
compiler turn it ihto assembly languag~ and then clean up the code using optimizations that
for time or safety reasons are not available to the compiler.

A third alternative is to use Microway's Intelligent Assembler. The Intelligent Assembler. an
assembly language parser built in to the compiler, can be used to build and maintain assembly
language modules under certain situations. See SeetwTil 5.5.2. page 58.

Accessing System Services

Accessing system se!Vices. both DOS and ROM BIOS, is done using software interrupts.
Calling, these services usecl to mean using assembly language~ But these days interface
routines are often providecl by languages for interlacing interrupts, and the NDP family is no
exception. The ease of writing in a high-level language is offset by the drawback that
inefficiencies inevitably creep in. Again, the prngrammer may optimize for speed or size by
turning to assembly language~

Accessing PC Hardware

Using assembly language to, access directly a PC's hardware, involves is one of the most
p©werful tools available to the programmer. For example, it is not uncommon to find a 100-to ...
l speed difference betwee11 routines that write direct:ly into video RAM and those that write to
the screen through the ROM BIOS. making direct access very attractive~ Even writes directly to
the screen, thereby vi0lating a basic principle of operating systems: device drivers should be
the only routines allowed to, manipulate the hardware directly. We have provided roHtines
callable from high-level scmrce code for block moving characters to the screen; they are blk_bm
an(}}: blk_mb. We also, sh<1mlcd p0mt out that two facilities n0w available in our languages, the
mapdev functi(i)N (which maps a device into the address space ofi your program). or, if writing in
NDP CIC++, using register aliased variables. may be a better alternative in many situations.

An0ther methocd ofi directly accessing the PC's hardware is by reading from ancd writing to p0rts.
Ag'ain, we have provicded high-level: routines to do this but we have also provicded assembly
language examples to, d<D' the same thing. The examples are provicded to help the pFogrammer
uncderstand key ideas ancd issues involved in directly controlliflg' the PC's hardware l:lsing
assembly language code.

5.5.2 Using the Intelligent Assembler to Optimize Code

MicFoway's Intelligent Assembler is an assembly l'anguage parser that is bl:lilt into the compiler.
It allows assembly cocle to be included' in m0dules writte:n in high-level languages. At parse
time~ the compiler ign0res the assembly sect10N except to determine whether the line is a
pragma, a label, or a c0rmnernt. At c0cde geneITaticm, the compiler parses the lines ancd
compares the c0nternts to a list ofi Feseived woFds ancd variable rnames.

llJsing the NDP Intelligernt Assembler has several advantages. The compiler handles the details
ofi wrtting NDP:..c0mpatible c0cle. such as gene:mting header ancd segment info:rrmati0n. The
compiler als0, keeps track 0fi variables, which can be referenced symbolically. Waiting until the
c0de generatie>lil phase makes it p©ssible to, expancd variable names and labels into memci>Iy
lbcati0rns because, at that p0int, the l©catiolils are alreacdy known. The Intelligent Assembler
also l:lnderstancds Weitek c0de and e~ands Weitek macros in the same way as the compiler.

The assembler c0de included in a m0cdule with the Intelligent Assembler is sHbject to the
optimizati0ns the compiler makes. This is beneficial for 336 code, but is especially useful for
486 code, wheFe the prrocessoli makes intelligent decisi0Ns ab0ut the 80486 code alignments
necessary foli optiNilal' performance. The Intelligent Assembler derives its name from this
ability.

'The Intelligernt Assembleli has limitlati0rns. lt d<Des n©t flag illegal syntax or adclressing and is
best used on code that is known to, be correct. It d0es N©t duplicate the functicms 0£ a
c0mplete assembler. It is o£ten q:uite instructive to use a complete assembler on c0cde intended
for the Intelligent AssemlDler. to, fe:uFet out errors. 'The Intelligent Assembler is best used to

NDP User's Manua/r 3861486 UNIX

u

u

5 Mixing Languages 59

simplify the inclusion 0£ assembly code -- by letting the compiler generate header and segment
informatiom. -- and to include assembly code that will undergo optimizations. particularly
regarding 80486 code alignments.

Pragmas to Activate Assembly Language Parsing

Two pragmas activate and deactivate assembly language parsing:

#pragma asm on

and

#pragma asm off

Code between the two pragmas. is parsecl as assembly language by the code generator. The
following example illustFates how these work:

char str[lOO] ="Oh Annie please be kind, $";

main()
{

char newstr[lOOJ;
s trcpy (news tr, "and kiss me once or tw.ice ! \n \r$") ;
#pragma asm on;
lea edx, _str
mov ah, 9
int Ox21
lea edx, _newstr
mov ah, 9
int Ox21
#pragma asm off;

This program uses DOS functi©B calls to print out tw0 strings. It illustrates the use ofi the
pragmas. It also, brings up, a p0int ab0Nt aclclressing).

Derefere:acing usually requires more than one line 0£ assembly language. s0 it d©es not make
sense to suppo:rt it with an assembler.

Unfortunately, many references that l©ok straightforward are not. Foi: example. the lea
instructi0ns ab0ve are quite simple, but if they were m0v instructions, such as the following:

mov edx, dword ptr offset _str

an cl

mov edx, dword ptr offset _newstr

the sec0ncl: one w0Nld n.ot woFk. 'Fhe first will work t>ecause _st r is stored in a known memocy
address; uncle:r a cleb:Mg) program, the cocle procluced might 100k like this:

mov edx, 47 80

_news tr. h0wever. is cm the stack, and the assembly language expansi©n of its reference woNlcl
have to l<l>ok like this:

mov edx, ebp-64

This instructi0n. is B0t legal. ancl the IBtelligeBt Assembler does the best it can. and procluces
the foH0wing line

mov edx, [ebp-64]

which is legal, but n0t what is desired.

Only simple referenees are all0wed; where yoH want t© l@ad an address, consider whether the
1 ea instructi©B' Oli the rnov instructi©lil' is apprnprtate.

3861486 UNIX NDP User'$ Manual

60 5 Mixing Languages

Assembler Directives

At present the assembler will accept three directives. "$radix." "'$$frame" and "'$$noret."' The
radix ilirective is output to a generated assembly file as . radix x where xis either 16 or 1 o. t.)

Since the value given remains for the rest of the assemfuly file. and NOP Fortran outputs >...__/
decimal values, the pFOgrammer must remember to leave the radix in decimal for the C I C+-++
c0mpiler to co:atinue output after the assembly language area is completed. Numbers may be
given in hexadecimal by beginning them with a digit in the range of o -9 ancil ending with an "h"
or. alternately. may be given in stancilard C l'C-+:+ format, as in "Ox21." which goes to the
assembly language output file as "021h."

The second directive. "'$$frame," tells the compiler to g~nerate a stack frame for lG>cal variables
even if it sees that it is unnecessary to d0 so for the purposes of the C I c~+ language. The
directive is like the -ga command line switch except that it only applies to the function in
which it appears rather than gl0bally to a module~ It is important to use $$frame wherever
parameters are referenced ancil the stlack is being manipulated. Without the "$$frame"
directive. references to parameters are made through esp. In an assembly language output file.
the directive beccnnes ;/#frame ancil, is a c0rmnent to the Assembler.

The $$frame directive is used in the following code to prevent problems involving use of esp:

dosprint (str) ;
char *str;

#pragma asm on
$$frame
$radix 16
push edx
push eax
mov edx, str
mov ah, 9

int 21
pop eax
pop edx
$radix 10
#pragma asm off

Because the $$frame directive has been used. the compiler provides dosprint with a prol0gue
that builds a stack frame ancil points ebp at it. The reference to._str is made through ebp in
the output code. aDd the functio:a dC>es as eXJ)>ected. Wit.hC>ut the $$frame directive. the
cC>mpiler has n© way to know that the stack is manipHlated and n<I>, stack frame is built. Its
code then refeFences._str as" [esp+4] ."which would be correct if esp is never changed. but
here is wrong. because the:rre are push instructi<I>BS;

The third directive. "$$noret." tells the compiler to omit any "leave" and "ret" instructions
that otherwise w0ulcd be inserted automatically at the end ofi the functio:a. The purp<I>se of this
is to all0w processing to, fall through from olile functio:n to the next. a means for providing
alternative entry points 0r. perhaps more finpe>rtantly. alternative names for the same
procedure.

A single library m0dule can usually be used transparently by both NDP C IC++ and NDP
Pascal'. NDP Fortran. however, has different enough code that it 0ften needs alternative entcy
points, and it accesses these by having p0stpended u.nderscores on its symbolic names. In the
f@llowmg code, the first functi©n has n© b@cily and it d0es not even have a reh1rn fnstructi@n.
This means that in the . o file, it has the same adcdress as the secoml functi©n and occupies the
same space. Calls to 1 eitfu.er functio11 will go to the same place. In the following print_it_ is
the FoFtran ent:cy- p@int; print_i t an entry p0int foli CIC++ o:rr Pascal:. u

void print_it ();
print_it_ (str)

NDP User's Manual" 3861486 UNIX

u

u

5 Mixing Languages

char *str;

#pragma asm on;
$$noret
#pragma asm off;

print_it(str)
char *str;

5.5.3 General Rules

61

While it is t>eyo:acl the scope 0£ this manual to teach the reader assembly languag~. we intenCil
to show the interface between programs written in each of the three NDP languag~s and
assembly language routines.

In writing 386/486 assembly code, keep the folfowing conventions in mincl:

1. The code segment is:

codeseg segment dword er use32 public 'code'

2. The data segment is:

dataseg segment dword rw use32 public 'data'

3. Parameters are pushed o:ato the stack in right-to-left order, i.e., the last named is pushed
first, the:n the next to the last. and so on. Thus the arguments end up on the stack in the
order in which they are named in the parameter list. (The excepti©n to this rule is the
leagths of strungs passed by Fortran; see bel0w.J.

4. Functi©n values are returned in:

Data type Regi'.ster
integer oF character EAX, AX, or AL
p0inters EAX
single precisi0a ST (o) (80x87):
sihgle precisi©n FP2 (mWl 167)
double precisi©n ST (o) (80x87J:
d0uble precisicim FP2, FP3 (mWl 167)

It is p0ssible to1 wrtte assembly language cocle SG> that the same routine could be called from
any G>fi the NDP languages. 'Fm. de» this, all iclentifier names should be in lower case, having an
underscore at the beginning, ancl end. Parameters, except lengths 0£ strings passed in Fortran,
will be passed by reference ancl the assembly cocle must be written accordingly. Strings passed
from NDP Fc:)litran anCil: Nr>P Pascal sh0llllcl· deliberately have a nuU byte inserted to ternlinate
the sequence 0fi characters 0r, alternately, NDP CIC++ prngrams cotdd explicitly pass the
lengths ofi strings as well as their acldresses. Coasic:ler the fol10wing example:

Listing 5-6: 386 Assembly

This code, when called, returns an integer value equal to
the number of CPU clock ticks since midnight. The routine
can be called from NDP CIC++, NDP FORTRAN /I and NDP Pascal.
Its function is completely redundant,. since it
operates by calling another function, sec_lOO, which is
identical in function, but it does illustrate calling
conventions.
The return value will be placed in eax by sec_lOO ,. and need
not be referenced here. FORTRAN requires that this routine
be declared integer, or it will look for the return value in

3861486 UNIX NDP User's Manual

62

st(O) or ws(2) depending on coprocessor option.
name
assume
assume

codeseg
ticks_
call
ret
align

ticks_
extrn
public

codeseg
end

tick.s
cs:codeseg
ds:nothing
segment para er use32 public 'code'
proc near
_sec_lOO

16
endp

sec_lOO:near
ticks_

ends

5 Mixing Languages

The foll0wing statements will call the ab0ve routine from the appropriate language.

NOP Fortran NOP CIC++ NOP Pascal
integer itime, ticks
real*4 seconds
seconds=

& ticks(itime)/100.

NOP User's Manual,

int itime = O;
float seconds;
seconds=

ticks_(itime)/100;

var itime :integer;
var seconds :float;
seconds :=

ticks_(itime)/100;

3861486 UNIX

u

u

6 Porting Programs

Prngrams that compile ancl operate correctly when compiled with one compiler may not operate
correctly when po:rted to another venclor's compiler, such as the NDP line, because of the
leeway allowecl by the language specificati0ns in implementing certain features ofi the language.
The prolDlem is that many programmers. when p0rting a program from an IBM mainframe or
VAX minicomputer to, the PC, make illegal assumptions about the underlying machine
architect11:r:-e and h@w the compiler interacts with it. The following discussion on porting
programs to, the NDP compilers describes requirements and tells how to avoid common
prolDlems.

6.1 Compatibility with other Compilers
The NDP c0mpilers use the same calling conventions for all subroutines, routines. procedures,
and: functi0ns. TherefoFe, code from all NDP languages can freely call each otheF (see Ch.apterr
5):.

ImplementatioH ofi the NDP compilers is virtually identical for both DOS ancl UNIX System V.
As a result o:f this and 0£ the fact that the NDP compilers were adapted from UNIX compilers,
programs writteH with the NDP compilers shcmlcl run witho11t prolDlem orn a VAX or under UNIX
System V on a PC.

6.2 Word-Size Problems
Some machines are byte acl<d.ressable~ That is, they have addresses that refer to s,..fuit bytes.
They have operations that operate on 8, 16, 32, 64 and 128-bit quantities. Other machines are
word addressable. having addresses that refer to wo:r:-ds of a standard size varying from 16 to
64 bits. They have operatioHs that operate on multiples 0£ the word size. The Intel 386 is byte
acldressable~ ,

If two different machines have different word sizes. or if one is woFd adclressable and the other
is byte adcltessable, a program that operates on oae machine may not operate on the other
machine for several reasoas.. The w0rd size affects the range 0:£ numbers implemented by the
INTEGER data type. 'Fhe word size also affects the precision and range of the REAL and DOUBLE
PRECISION data types.

The most commo:n wo:rd~size problems are (o:Cten undetected) integer overflows and floating
p0int underfil0ws, and. lmss of precisioa. The layo11t of bit-aligned data structures will vary with
the wo:rd size, s0· overlaying structures in memcmy makes a program difficult to port to an0ther
compiler. AnotheIT :Cacet of this pz;ol:Dlern occurs when using integer variables to d0 address
calculati0ns: these cakulati0n.s are often.· n<Dt p0:rtable~

6.3 Byte-Order Problems
Since the success ofi the IBM 360, byte machines have been. m0re pOJi>Nlar than w0Fd machines.
The advantage of a byte machine is its efficient pz;ocessing ofi character data. The general
acceptance ofi byte machines has led: to easier program p0rtability between machines.

There is, however, o:m.e major prolDlem in p0rting between byte machines. The first successful
byte machine, the IBM 360, placed the m©st significant byte of a multiple .. byte integer value at
the lowest address. 'Fhis is known as the lDig endian methocd 0£ data representati0n.. Many byte
machines, sNch as those 1Dasecd1 oa 1 the MC68000 ancl Z8000, have foll@wecl the IBM convention.

The seccmcl stJ.ccessful1 byte machine, the Digital Equipment PDP-11, placed the least
significant byte 0£ a multiple'-byte integer value at the lowest adclress. This is k.n0wn as the

64 6 Porting Programs

little encilian method of data representation. Descenclants of the PDP;..11 such as the VAX, Intel
8Qx86-based PC's, ClippeF, and, NS32000, have foll0wed the DEC conventi0n1

• These two
gr011ps seern to be s0 weU entrenched that no agreement on l)yte ordering is possible. Since
the NDP 386/486 compilers operate on Intel 80386/80486-based machmes, it is little endian.

Po:rttng applicati0ns betwee:rn machines with different byte ordering is often unreliable if the
applicaticms being ported oveFlay characters aml integers in mem0ry OF use character p0inters
to, integeF variables.

6.4 Alignment Requirements
the NDP compileFs always align multiple-byte data items o:n appropriate address multiples SQ

that all accesses will be legal and efficient. The maximum opt:irnal alignment is the larg~st
alignment required by any data type foF optimal access. It is typically the word size of the
external system bus, which is 32 bits foF both the 80386 aml the 80486. Chapter 4 defines the
exact alignment coaventicms foF the NDP compilers. By foU@wing simple rules. the programmer
can prevent illegal ancl inefficient references.

The compiler always aligns parameters and lcl>cal variables within the stack at an optimal off set
from the beginning of the fFame. The compiler also rouncls up the size of the frame to the
maximum optimal alignmeat of the process0rr. If the initial stack pointer is aligned to the
maximum OJ)tdmal alignmeat of the processor. and if the program involves n© explicit (or only
correct): manipulati0n of the stack p0inter. then all stack references will be optimal.

AH vaFiables with.in the glnbal frame are all0cated at an optimal offset from the base of the
glrolI>al frame. If the assemolerr o:r linker all0cates the gl0bal frame with the maximum optimal
alignment of the processoF, aU g101.Dal data rrefiereaces will be optimal.

Variables within a frame are optimally packed together in mem01:y. When a data type has an
alignment requirement, the least p0ssible unused space is left between the encd of the previous
item ancl the next item so that the next item can be optimally aligned. In satisfying diffeFent

1
U. \

alignment reqµirements, complex data types may be all0cated differenhly on different machines.
This will' lead to the usual prolDlems with programs that rely on memory overlays. It also will
leacl to proolems with programs that make implicit assumptio:rns ab0ut the size ancl offset of
oll>j1ects.

6.5 Floating-Point Rang;e and Accuracy
The representati0n of fl0atin~point numbers varies between machines. The range, precisi0n,
accuracy, and base vary widely and can leacl to p0rtability prnl!>lems that can be acldressed oruy
through the adcdition o:C hardware~ if at all. For example, single-precisioa numbers for the
80386/80486 have a 23-l!>it significand and an 8-bit exp0nent. In base 10, this insures a
range 0fl 10-37 to 1038 with a precisi0n ofl at least 6 significant digits. Dcmble'-precisi0n
fl0ating-p0int numberrs have a 52-bit significancd ancl an 11-bit exp011ent, with a guaranteecl
range from 10-307 to 10308 wit1h 15 significant cligits.

6.6 Assembly Language Interfaces
Programs that use embed<ilecl assembly c0cle~ or; interface to1 external assembly c0de, will
require all the assembly c0cle to be recl0!il.e when the program is transp0rted to a new
processor. It is a goocl id.ea to \\-Tite as much ofi the lower-level systems s<Dfitware in a language
like C and then optimize, by hancd if necessary, the m0st critical code.

6.7 Expression Evaluation Order
The ANSI stanclard all0ws a pFocess<D!i to change the order of evaluatioa 0£ operands in an ;· \
expression. with certain restFieti©ns. For example, if x ancl z are operancls of real' or double- ~
precisi0n data type, the pF0cessorr may evaluate X*B/Z as X* {B/Z). The specific values ofthe

N{f)P User's Manual, 3861486 UNIX

u

6 Porting Programs 65

operands may cause the value of the eXJ)ressicm to· vary in precision depending on the order of:
evaluation. The standard does pFevent a reordering of an expression when, for example,
grouping two integers and divicling woulcd. cause inappropriate integer divisicm truncation. In
the above expression, if B and z were integers then x *BI z could not be evaluated as x * {BI z) .
If X=5. 2, B=2, am:l Z=3. 5. 2*2/3 will be evaluated as (5 .. 2*2) /3:;:10. 4/3, not as
5.2*{2/3)=5.2*0.

A mG>re seriG>us pG>rting pFolDlem occurs when the operands of an expressi0n are functions that
modify otheF operands in the expressi0n, Oli share parameters that they modify. The ANSI
standard allows x+ y to be evaluated as y + x. Assume the following program format:

i = double(a) + constant13 (a)

Frocedure double {a) sets a = a*2 and returns the new value of: a. If a was 5, a is set to. 10,
and 10 is returned. Procedure constantl3 (a) sets a to 13. If the compiler evaluates the
expression as x+y, the evaluatiG>n will be:

i double(a) + constant13(a)

double(5) + constant13(10)

10 + 13

23

Note that double {a) reset a to· 10 befoITe constant13 {a) was called.

If, however, the compiler, completely following the ANSI standard, evaluated the expression as
y + x, the result would be:

i = constant13(a) + double(a)
constant13(5) + double(13)

13 + 26

39

Note that constant13 (a) set a to 13 befolie double (a) was called. When an expressiG>n can
be evaluated in different o:r;ders. the NDP compiler will evaluate it in left-to-right order.

A similar situation occurs when arguments to a procedure are themselves functi0ns that
m0dify other arguments to the procedure, or arguments to other functions that are arguments
to the procedure. For example,

a = 5
call subl (double(a), constant13 (a))

If doub 1 e (a) is evaluated :first, a is reset to 1 o, and 1 o is bcmncd. to. the first parameteF of: sub 1.
constant13 is evaluated', a is set to 13, ancd. 13 is bound to the second parameter of subl. The
ANSI standwd all0ws the arguments to be evaluated in the reverse G>rder, as well, ih which
case constant13 (a) is evaluated, a is set to 13, and: 13 is b0Hncd.. to the second parameteF ofi
subl. double is then evaluated, fuut a is now 13, so it is reset to 26, and 26 is bound to the
first parameter. A pzrogram that depends on the orde:r: in which: arguments with side effects are
evaluated is non-p0:rtable.

The NDP compilers usually evaluate arguments to a procedure in le:ft-to~right oFder. If a
pFogram depencd.s on Olider of: evaluaticm, that program becomes unportable. Porting it from
one compiler to another may geneFate different results.

6.8 Illegal Assumptions About Optimizations
SG>me pFograms depend on the exact code that a particlilar compiler generates. Such programs
are particularly clifficlilt to, p0rt to advanced optimizing compilers such as the NDP line because
optimizers make majpIT changes in the code in oITder to make the program smaller or faster.

The foH©wing are some of the mG>st common illegal assumptioas abG>tlt code generati0n upG>n
which some programs rely. C11Wl:ptJer: 3 describes in detail· the optimizati0ns discussed here~

3861486 UNIX NDP User's Manual'

66 6 Porting Programs

6.8.1 Implied Register Usage
S0me programs Fely ON the exact register all0cati0n scheme used by the c0mpiler. Such
programs will not p0rt without modification.

6.8.2 Memory Allocation Assumptions
NDP, AT&T, and other vendmrs have different ways 0£ allocating memcny. Because of these
differences, prolDlems can arise in porting prrograms that depend on the memory-all0cation
peculiarities 0£ other compilers.

S0me programs depend up011 be c0mpiler allocating variables in memo:ty in the order that
they are declared. The NDP compilers will n©t necessarily allocate variables in the order of
declaration.

S0me programs depeml up0a kn0wing that the compiler will allocate all variables even if they
are a0t used. 'Fhe NOP compilerrs may n0t all©Cate unused variables.
S0me i:>rograms depend up01i1 kn0wing that certain variables will be allocated in memory. The
NDP compilers will all©Cate certain variables to registers that UNIX and other compilers would
always all©cate to memoxy. Programs compiled with the NDP compilers must not make
assumpti0ns regarding the orrder of all©Cation of variables in memo:r:y. except where the
language stan<ilard specifies it.

6.8.3 -OM and -OLM Considerations
The -OM an<il -OLM c0mpik-time switches (bpti0ns): shouJ<il be used olilly in programs in which
mem0z;y cann0t change except under control, of the c0mpiler. Either switch tells the compilerr
that mem0xy 10cati0ns cannot change asynchroB0usly with respect to the running program.
For example, if the compiler reads or writes some memoiy locaticm .. three instructi0ns later it
must be able to assume that the same value is still in that mernoxy location. This would n©t
have to be the case if the rnerrnn:y 10Cati0n werre a memoli.Y-rnapped peripheral.
This bFings up a go0<il, use of assembly language -- writing device drivers -- and p0ints to an
area where the optimizer must be Hsed with caution, i.e .. systems software, including many
parts of operating systems: device drivers, memo:ty mapped I/0 10cations, shared memoiy
environments, multiple process eflvironments, interrupt driven routines, and UNIX-style
signals. Anyofle who has worked on an operating system or developed a device driver will of
coN:rse be aware 0£ the cFitical nature of specifying optimization levels.

6.9 Problems with Source-Level Debuggers
Oflce a variable is allocate<il to c. register it will always stay in that register; however, since otherr
variables may share the register. the register may not always contain the value of the variable.
This may cause a s0Nrce:...level: debugger to give incorrect results. If you ask for the value of a
variable at a p(])int at which the variable is ab0l1lt to lDe assigned into a register. the compiler
may have tempoFarily assigned that registeF to an(])ther variable~ Always check results after
they are assigned OF when the current vall1e is going to, be used later. Near the efld: of a
slllbroutine or function.! rmDst of :he hi>cali variableswili no fomger be usecl. Thus, the chance
that the register has been reallcrieated is much lligheF. lLJse ofi the -of fr switch will alleviate
this pFoli>lem; this will force the c0mpiler to, keep variables stored in memoz;y.

6.10 Problems with Compiler Memory Size
The NDP c0mpil'ers are advanced OJ1>t1imizir:ig compilers. They are much better than the curreflt
generbailt~ty0nt· hof "opti~ing" micrcprocessTohr cN0mpilers. illn accordance with their grbeate~ \ "j
capa. ·: l • : · ey require m©re mem©ey. • · e DP c0mp·. ers require over one mega yte Just to ~

NOP User's Manua/1 3861486 UNIX

\J

u

0

6 Porting Programs 67

load. Compiling requires at least tw0 megabytes of memoJ:iY; larger programs require more
mem0cy.

The c0mpiler's pFimary uses ofmemo:ry are foF the program. static data structures. gl0bal
declarations. parse trees. and g~nerated machine code. Global declarations consist of the
gl@bal constant. type. variable, and subroutine or functio11 declarations. This is a major use of
memocy when large numbers of declarations are included in a compilation. Even unused
gloli>al declarations must be stored throHghout the compilation. If memory size proli>lems exist,
t:ry to reduce the size of the include files by includingjust the declarations that are needed.
The NDP compileFs are one-pass compilers in that they read the source program only once.
Each subroutine or functi0n is converted into a parse tree as it is react When the end of the
subroutine or functioa is reached. the optimizer is called with the parse tree as input. The
optimizer modifies the parse tree and then passes it on to the code generator.
'Fhe cocl.e generator produces an internal representati0n of the machine code to be output foF
the subroutine OF function. Another phase is then called to modify this machine code. Finally,
the optimized machine cocl.e for the subroutine or function is output. After the machine code is
output, the memoi:y being used for the parse tree and machine code is reclaimed for use in
compiling the next subroutine or function.

The size ofi the largest subroHtine or function in the pFogram determines the mem0:ry usage foF
parse trees ancl. machine c0cle. If mem0i:y size problems exist. tum off the optimizer and
reduce the size of the largest subroutine or functi0n. Simple subroutines or functions of fewer
than 100 lines shoufol. nmt cause mem©JiY size prnblems. Procedures of m©re than 1,000 lines
may require more than a megabyte of memoJ:iY to compile.

3861486 UNIX NDP User's Manual

u

/ I

U·

u

i I· (_y

A
1

ASCII Character Set

The foll0wing is the ASCII character set, given in ascending order o-£ precedence, with the
decimal and hexadecimal equivalent values.

Char Dec Hex

NUL 0 00

SOH 1 01

STX 2 02

ETX 3 03

EOT 4 04

ENQ 5 05

ACK
BEL

BS
HT

LF

VT

FF

CR

so
SI

DLE

DCl

DC2

DC3

DC4

NAK
SYN
ETB

CAN

EM
SUB
ESC

FS

GS
RS

us
SP

$

%

&

*
+

6 06

7 07

8 08

9 09

10 OA

11 OB

12 oc
13 OD

14 OE

15 OF

16 10

17 11

18 12

19 13

20 14

21 15

22 16

23 17

24 18

25 19

26 lA

27 1B
28 lC

29 1D

30 lE

31 lF

32 20

33 21

34 22

35 23

36 24

37 25

38 26

39 27

40 28

41 2 9

42 2A

43 28

44 2C

45 2D

I
0

1

2

3

4

5

6

7

8

9

<

>

?
@

A

B

c
D

E

F

G

H

I

J

K

L

M

N

0

p

Q

R

s
T

u
v
w
x
y

z
[

\

J

46 2E

47 2F

48 30

49 31

50 32

51 33

52 34

53 35

54 36

55 37

56 38

57 39

58 3A

59 38

60 3C

61 3D

62 3E

63 3F

64 40

65 41

66 42

67 43

68 44

69 45

70 46

71 47

72 48

73 49

74 4A

75 48
76 4C

77 4D

78 4E

79 4F

80 50

81 51

82 52

83 53

84 54

85 55

86 56

87 57

88 58

89 59

90 5A

91 58

92 5C

93 5D

a

b

c
d

e
f
g

h
i
j

k

1
m

n

0

p

q

r

s
t

u

v

w

x
y

z

94 SE

95 5F

96 60

97 61

98 62

99 63

100 64

101 65

102 66
103 67

104 68

105 69

106 6A

107 6B

108 6C

109 6D

110 6E

111 6F

112 70

113 71

114 72

115 73

116 7 4

117 75

118 76

119 77

120 78

121 7 9

122 7A

123 78

124 7C

125 7D

126 7E

DEL 127 7 F

. \ ·-v

\
i l
\._/

(I: v I Index

80387
register set 33

Active error handling 40
Alignment requirements 64
ASCII character set 69
Assembler

directives 60
$$frame (stack frame) 60
$$noret (emit return instructi0ns)1 60
$raclix (raclix directive)'. 60

routines 49, 5 7
Assembly

c0de
conventions fo:rr writing 61

language
comm0n FONtines 61
interlaces 64
parser 58', 59
rati0nale for 5 7'

Biased e.xpone:nt 43
Big enclian 63
Binary

fracti0n 42
real number 43

Byte order 63
p0rting pro"blems 64

Byte-addressable machines 63
Calling

between Fortran ancl C 53
betwee:n FolitFan ancl Pascal 55, 56
't>etween NDP G liC++ aml NDP Pasca11 56

Case sensitivity g;, 51, 56
Cleanup c0de 22
Code

generatoF 67
Common Subexpressi0n Elimination (CSE)i 8
Commcm SlilbexpFessiroas

elimrnaticm 2 l
Compatibility

arnoag NDP ccn:npHei:-s 63
Com.pileF

memory size 66
NDP 49

compatibility am0ng 49
differences amrong 49
runtime systems 49

one-pass 67
switches 6

Compiler driver 5
extensi0ns 5

syntax 5
Compilers

optimizations 5
Ccm<Jlition come 34

defining operand class 35
Constant expression folding 20
CoBstant propagation 20
Crossjumping 8, 21
Cybernetic realm 40
Data registers

80387/80487 33
Weitek 38

Data types 27, 50
char 51
double'-precision i:eal 26
integer 50
smgle'"precisi<lm real 25

Dead c0cle
eliminati0n 19

DeaCJl code eliminatiolil 8
De:noliIIlal 45
Division

by infinity 40
"by zero 40, 41

DO 10op 8'
D<lmble real encoclings 26
Double'"precision real 26
Endian data representation 63
E:nviro:ament variables 2
Epilog optimizatio:n 15
EITQliS 40

hanclling
active 40, 41
passive 40

Excepti©B 40
flag 36
hancller

creating 42
default 40

hanclling
active 41
passive 41
placing checkp@ints 41

invalicd, operatiC>:n 40
masking 40
masks 36
NDP 42
unmasking 40

Exp0nents 44
Expression evaluati<Dn order 64
Extension

72

.s 6
File

input type 5
Flags register 31
Fl0ating point 25, 51

accuracy ancl range 64
invariant expressi<i>ns 8
numbeF 25

32-bit binary 25
64-bit binary 26
bihary 42
IEEE real 44

number systems 42
parameters 51
precisi<i>fl 45
underflows 63

Frame
glohal 64

Functi<i>B
mapclev 58

General purpose registers 29'
Geterrn<i> 39
Gl<i>lDal frame 64
Hardware access 58
Identifier names 51

by language 5 lJ
CIC-+H+ 51·
Fortran 51'
gl©bal 51,
Pascal 51'

IEEE
754 25
854 25
number system 40, 42
reals 42

l'llegal assumpti<i>BS ab0ut code geneFati0r:i.. 65
and use 0fi -OM and -OLM 66
rnem0:ry all0cati011. 66
reliance on exact Fegister all0cati0B 661

Implied :register usage 66
Include files 5
Infinities 46
Infinity 46
Inline multipl!icati@B ancl divisi@N 19
Inliner 23
Inlining 39
Intege:u

1:6-hit 50
data type 25
overflows 63

Integer types, 80x86
integeF 25
fomg integeF 25
sh0rt! integeF 25
signed char 25
u.nsigned char 2 5
unsigned integer 25

NOP User:'s Manua/1

unsigned long integer 25
unsigned short integer 25

Intel
numeric coprocessors 40

Intelligent Assembler 58
Interfacing

NDP languages 49
with assembly language 57

routines 58
with assembly language 61

Internal
registers 28

Interrupt
s0fitware 58

Invaiid operation 41, 42
exceptioa 40

Library routine 39
Linking

restricticms 49
NDP Fortran m©dules 49
NOP Pascal modules 50

Little enclian 25, 63
Live/dead' analysis 21
Long integer 25
Loop,

index variable 17
invariant analysis 16
0ptimiZati0ns 8
rotati0:a 16, 17
stuength reducti0n 1 7
unrolling' 8, 19,, 22

aclvantages 22
costs 22
disaclvantages 22

Lower level characteristics 25
Machine cocde

optimized 67
Mapdev f'.uncti0n 58
Mathematics real:rn 40
Memmry

all<i>cati0n
assumpti0ns 66

optimizati0ns 8
usage 67
used by NDP F©rtran compiler 67

Memmry allocati0n :t2
Mixing' languages 49

ou.tput buffers 53
Multiple'-b>yte Cilata items

alignment 64
Naming conventi©lilS 5 :t
NaN 41,42,43,46

indefinite real numb>er 42
NDP

cornpileFs 49
compatibility 49:
d:ata type differences 50

Index

3861486 UNIX

\._ ..)

\~

I

I ' v

u

Index

differences 49
linking 49
namihg conventions 51
output buffers 53

Nested functions 24
Normalization 43
Normals 46
Nullbyte 53
Numeric error 40
Numeric excepti©n 40

den0rmal operan<il 40
hanclling 41
invalicl operation. 40
NOP Fortran 41
overflow 40
precisi0n 40
unclerflow 40
within library roHtine 39
zero divide 40

Numeric exceptions 39
Numerics 25
ObJ:ect

m0clule 57
Optimizati0ns 11
Optimized machine code 67
Optimizing 57

using assembly language 5 7
Outplilt

buffers 53
Parameter passing 52, 53, 55

by reference 52
byvalue 52

Parse tree 67
Parser

assembly language 58
Pascal 51J
Passing parameters 52, 53, 55

by reference 52
by value 52

Passing strings 52. 53
byvalue 52

Passing values 52
Passive e:rror hamlling 40
PC hardware

accessing 58
Peephole optimizati0m. 15
Peephole optimizati0Bs

-0Brepeep' 9
Porting programs 63

aligning multiple-lDyte data items 63
memory allocati0a 65
to NOP Fortran from. IBM mainframe 63
to the PC from VAX minicomputer 63
-OM ancl' -OLM switches 66

Ports
reading) from aml writing to 58

Pragmas 59

3861486 UNIX

Precisi0n
and denormals 45

Print_it_ 60
Program

checkp0ints 41
devel0pment 5
speed 17

Prolog optimization 15
Protected-m0de

segments 30
Push 49
Range and accuracy

floating point 64
Recursion 23
Register

80387 data registers 33
80387 register set 33
allocation by coloring 12
caching 8
control word 36
flags 31
general purp0se 29
internal 29
segment 30
status word 36
systems control 32
Weitek 38

Register coalescing 14
Runtime

organizatioB and numerics 25
system 49

Segment
adclresses 30
registers 30
selectors 30

Shmrt integer 25
Signed char 25
Single ancl double real encodings 26
Single real encoclings 26
Single reals 45
Single-precision real 25

rules 25
Software interrupts 58
S0lllrce-level debuggers 66
Speed OJ!>timizatioBs 15
S'F(O)J 33
Stack

o:uder 49, 611

Static address elimination 13
Status Word Register 33
Strength reducti0a 17
String handling 53
Strings

passing
between Fortran aml C 52
Fortran, to Pascal 53
Pascal to Fortran 53

73

NOP User's Manual

74

System
services

accessing :DOS 58
accessing ROM BIOS 58

System requirements l
True exponent 43
Underscores 60

leading 51
trailing 51

UNIXV 63
Unsigned

char 25
integer 25
kmg integer 25
short integer 25

Unused variables 66
Variables

unused 66
VAX VMS

Fortran c0rnpatibility 9;
Warning messages. suppress 9
Weitek

architecture 38
coprocess0rs 38'
data registers 38
numeric coprocess0Fs 40
pFocess context register 38

Word-adaressable machines 63
Word-size problems 63

fl<:>ating-point unclerfl<Dws 63
integer overfl<Dws 66
loss of precisi0:n 63

WFL Register File 38
Zero

divisicm by 40
-2.1 6
-ansf 6, 51
-ansiconfonn 6
-c 6
-cgl 6
-cg12 6
-cg3 6
-cg4 6
-cgfi 6
-cg6 6
-eg7 6
-clink 7
-cpplink 7
-Dname 7
-Dname=text 7
-flJ 7
-f2 7
-f3 7
-f4 7
-f5 7
-f6 7
-f7 7

NDP User's Manua/1

Index

-fcliv 7
-flink 7
-g 7
-ga 7
-hasm 7

I

<J
-i2 7
-i4 7
-iaentl 7
-iclent2 7
-Idir 7
-1£3 50
-1£3w 50
-list 7'
-lname 7
-minit 7
-no 7
-nl 7
-n2 7
-n3 7
-n4 8
-H5 8
-n6 8
-n7 8
-fl8, 8
-n0£77 8)
-0 8
-o,name 8
-off 8
-offa 8'
-ofifcse 8'
-offh 8
-ofifn 8
-offp 8
-offr 8'
-offs 8
-01. 8
-011M 8:. 66
-OM 8. 66
-OH 8
-on2cse 8
-o:aetrtp, 8
-onlr 8
-oarc 8
-cmrepeep 9
-0nw 9'
-p 9
-pl 51, 56
-p3 52
-plink 9
-rtl 9
-rt2 9
-rt3 9
-:rt4 9
-S g:
-u 9
-uname 9
-ur=# 9

3861486 UNIX

I

_;I

(!

'-..../

l)
'...._/

Index 75

-v 9
-vms 9
-vmsi1 g,
-W 9
-Wa, toggle 9
-WI, toggle 9

3861486 UNIX NDP User's Manual

\._)

\'-;

NOP Pascal

Reference Manual

Microway@
Research Park

Box79
Kingston • Massachusetts 02364 • USA

NDP Foman. NDP Pascal, N:DP;.. VMEM. NDP' Link, NDP Run •. and Mic:roway are trademarks ofi
Microway. Inc.

UNIX is a registered trademairk ofi UNIX Systems Lab<J)liatoliies, Ine.

lntelt, SX, 287. 386. 387. 486, i486~ ancl! i86© are traclemarks ofi Intel Coi;poration.

Microsoft. MS,.. DOS, and WindG>ws are registered traclemarks of Microsoft Corporation.

OS/2 is a trademark ofi IBM coFpcimation.

Phar Lap, 386 IDQS,..Extencler. and 38611VMM are trademarks of Phar Lap S0ftware. Inc.

Weitek is a traclemark ofi Weitek Corp0Fati0n.

CG>pyright © 1987 - 1993 Mie:roway. Inc. February 3, 1993

; j

\-.._/

i '
\._../

/
(

\ j_.../

PREFACE

Manual Ofujectives
Pascal Syntax :Diagrams
A Final Request

Base Vocabulary

1.1 Identifiers
1.2 Reserved WoFdS
1.3 Keywcmds
1.4 Sptl!cial Symb<Dls
1.5 Comments
1.6 Predefinecl Constants
1. 7 P:uedefinecl 'Fypes
1.8 Pred:efined V artables
1.9 Predefined Fu.ncticms
1. lJO Predefined Procedures
1.11 PFeproeesso:r:- Commands

Contents

1.12 Con.stants (unsigned integer:-, unsigned number, unsigned eon.stant)

Program Structure

2. lJ T:fue Structure of Programs
2.2 The Lexical: Scope ofi Identifiers
2.3 Declarati0n Order
2.4 Pirogram. Modules torr Separate Compilatic>n

Pascal Declarations

3.1 ProgFam Heading (PROGRAM~;
3.2 L.abel Declaratri0n (LABEL)1
3.3 C0nstant IDefTinition1 (CONST}
3.4 'fy]le Definiti0n (TIFEJ'
3,_5 Variable Declarati0n (:VAR)
3 .. 6 External Directive (EXFERN.Al1)1
3. 7 Static Di:rectdve (STA'FIC)

Type Definitions

4.1 'Fype Defin.iti©lilS
4.2 'fype CompatifuiHty and Conversi0ns

4.2. l! Identical Types
4.2'.2 Cornpati1Dle 1Y!Des
4.2.3 .Assignment Compatibility
4.2.4 Implicit Type <;onversio:a

4.3 Eroumerated Types
4.4 The SlilbFange Type

1

l
1
2

3

3
4
4·
4
5
6
6
6
6
6
7
7

11

11
1J2
13
14

15

15
15
lJ6
16
17
19
21

23

23
24
24
24
24
25
26
27

iv 1 Base Vocabulary

4.5 The SET Type 27
4.6 Predefined Scalar 'Jiy]>es: BOOLEAN. CHAR, INTEGER. DOUBLE, REAL, FLOAT 28

4.6.1 Operati0ns and. Funeti(])ms for the BOOLEAN Scalar 'Fype 29
4.6.2 OI>erati0n.s and. Functi0F.1.s on the CHAR Scalar Type 30
4.6.3 Ope:r:ati0ns and Functioas o:a the INTEGER Se!alar 'Fype 30
4.6.4 OJ>eFati0ns and F111neti0as 0£ the REAL, FLOAT, and DOUBLE Scalar Types. 32

4. 7 Array Type 33
4.8 Recox:d 'Fywes 34

4.8. lJ Accessing a Fielcl 34
4.8.2 The Fixecd> Pam 35
4.8.3 The Variant Part 35
4.8.4 Packed IR.ecoFcds 35

4.9 Pointe:u Type 36
4.9.1 OI>erati0ns on' !Pointers 37

4.10 File Type 37
4. 10. l !Predefined File Type TEXT 38

4.11 Packed and Unpacked 'Fyi:;les 39

Variables 41

5.1 Entire variables
5.2 C0mI>©flent Variables

5.2.1 Itnclexed Variables
5.2.2 Field IDesigna.tors
5.2.3 File Referefleing

5.3 Pointer Reflerencing

Expressions

6'. l Operatorrs
6.2 B00lean Exp:uessi(])flS
6.3 Functi0B Cal[
6.4 Set Con.structoll'

Statements

7. l Statement S:urmnary
7.2 TheASSIGNMEN'F Statement
7 .3 The CASE Statement
7A The COMPOUND Staternemt
7 .5 The EMPTY Stlatemenn
7.6 The FOR Statement
7. 7 The GOTO; Statememt
7 .8 'F:he l'F Stlaternent
7.9The PROCEDURE Statement
7 .10 The REPEAT Statement
7.11 The WHILE Statement
7 .12 The WITH: State:memt

Procedures and Functions

8. l Procedure al!ld FB.netion IDeclaratioas
8.2 Parameter Ttransmissiom

41
41
41
42
43
43

45

46
47
48
48

51

5.]J

51
52
53
54
55
56
5~

5S
59
60
60

63

i u

/

1 Base Voeabulary

8.2. l Value Parameters
8.2.2 Variable Parameters
8.2.3 Formal Rolitine Parameters

8.3 Function Results
BA The FORW .ARD Directive

Input and Output

9.l! Overview
9.2 FHe Declaration ancd Initializati0n
9.3 Inpl!lt ancd Outp11t Processing using GE'F and. FU'F
9~4 IalilffeF Variable IR.esm~tions
9.5 Input and Out:wut Processing with READ and WRITE

Predefined Functions and Procedures

Preprocessor Commands

Selected Bibliography

Interface to C and Math Libraries

OveIView
The Stancdarcl: Pascal Library
The Math and C Libma.Ties
Contents of tlfue Math ancl C libFa.Fies
Miscellaneous Mathematieal Functions

NOP Pascal Error Messages

OveIView
C. l. Compile Tune E:urorr Messages

Index

v

65
65
65
66
6(5

71

71
71
73
74
76

79

95

99

101

lQ:]J.
]JQ1]J

l!Ol
l!Ol
1!02

185

185
1185

197

I

i
\..._./

p PREFACE

Manual Objectives

'Fhe purp0se of this manual is to, prresent a complete descripti0n of Microway's implementati0n
of the Pascal 1 language~ This manual describes the syntax and semantics of NDP Pascal. This
manual is a refielience d0<mment and is intenciled for peoJDle familiar with the Pascal language~
NDP· Pascal implemem.ts the ANSI/IEEE stancfard 770X3. 97 -1983, a superset of Niklaus
Wirtb.'s Pascal. It inclucles several extension.s from Berkeley 4.2 :BSD Pascal and the British
Standards Institute (BSI~ 1 Level 0, a pFeprocessoli, separate compilati0n of modules, aml
interfaces to our C lib!iary.

Pascal Syntax Diagrams
This manual' describes the syntax and semantics of NDP Pascal using explanations
accompanied by sytitax diagrams aml programming examples. The syntax is described by
using a meta-language c0nsisting 0fi circles, ovals, and rectlangl~s that are connected by
arrows. This pictoliial' representaticm of Pascal's syntax rules is called a syntax diagram. The
pHrp0se ofT the syn.tax <diagram is to give a simple, coIDcise, ancl., unambiguous descrtpt1i0a of the
language. An explanatioH follows each syntax diagram describmg the meaning of any symb0ls
used, anal FestFicti0as n©tl sh0wn in the diagram.

Each syntax diagram reJDresemts on.e 0r moi:e syntax rules in NDP Pascal. The title of the
diagram is the name of the syntax rule being defined. Arrows are tlsed to show the e:atry and
exit points ofi the diagram. as well as the legal paths.

A circle or oval is usecl to SMrround a symbol, that is part of the Pascal language. This may be a
special character. a punct:lllati011 mark, a keywo:rrd orr a reserved woFd. A rectangle is used to
encl<Dse the name of an011her syntax rule that is described somewhere else in this manual.
Fiflall)7, arnows are Msed to comiect the circles and Fectangles and estabH.sh the order in which
tllese symb0ls must £oll0w on.e an0ther.

The title of the diagram., is tne name of the syntax rule being defaned. A Pascal constn:1ct is
formed by following the anrows aroNncl the diagram, from the beginning to, the end, ancl
ccmcatenating the symb0ls eneounteFed a10ng this traveFsat

EXAMPLE
The foH0wrng syntax diagram surrnnaliizes the definition of a Pascal program.

program

identifier block

The items m the circles and 0val represent tokems of the PascaT language, and must l:De entered
exactly as shown. The rectangular b0xes elil.clGse the name of syntax rules that are described in
anotheF IDart 0fT this manual. The arrows show that a Pascal: program consists of the keyword
PROGRAM, foll©wed by an icle:r:itifier, OJ!>11ionally foll©wed by a :warenthesized list of one OF more
identifiers, separatecl by commas. This is followed by a semicohm, a bk>ck, ancl finally, a peiiiod.
The]>U:rp0se and meaning of the diff eren11 icdentiflie:rs that are possible are described in, the text
following the syntax diagram. In this instance, the first iclentifier is the pF0grarn name, while
the list of irlentifiers witfu.in the parentheses represent names used by the pFogrammer to

2 Preface

indicate the program's interactiCDE' with its envi:rnn.ment. These are traGiitioaally the names ofi
files accessed by the pFogram. but NDP Pascal places no> restricti0:n om. the meaning of these
identifiers. '

•,)

A Final Request
This reference manual uses as many examples as possill>le so that each language element may
be quickly aml easily underst00cl. The examples consist of programs, prncedures. ancl
functions that use a variety of Pascal constructs to solV'e standard prnblerns in a :aatural way.
We try to avoicl c0:atrived examples, so ir yoH have a clean, cFisp progFam that illustrates an
important feature of Pascal, then we wcmlal appreciate hearing from y011.

Additi0Bal copies of this reference manual may be ol:Dtained by contacting Microway as follows:
Microway. Inc~
Research Park
P.O. B0x 79
Kingston, MA 02364
United States

PHONE:
FAX:

+508/746-7341
+508 /7 46-4678

NDP Pascal Reference Manua/1

'--"'

/

\_,,,.'

1 Base Vocabulary

1.1 Identifiers
letter

letter
dollar sign

digit

underscore

: dollar sign

underscore ---01--->

dollar sign---..Q---

Figure 1-1 Syntax Diagrams fem Il.etter, Digit aml Hex Digit<
letter ---.-------...--------.------.

~ ct) 9 ¢.

Figure 1-2 Syntax Diagram, 0£ an Identifier

An identifier is the name used fo:rr program constants, data types, variables •. procedures, and
functions. Identifiers may begin with a letter, a d0J!ar sign($), or an undeFscoFe LJ. and no
distinctiom. is macle bet!.ween upper and loweF case letters. (Identifiers may be made case
sensitive through the use of a compiler switch. See the NDF User's ManWJ.tl for details.)
Iclentifiers may not begin with a digit o:u inclucle eitheIT a question mark (i?) or peri0d (r.). 'Fhe
maximum length ofl an ident:ifier is 132 characters and all are significant. An identifier cannot
have the same spelling as a reserved woFd (Sectwn l.2):.

The use 0f lmng identifiers ofi up to 132 characters may conflict with the requirements ofi the
assembler. RefeF to yol!lr assemlDler refierence manual1 f01r details. Also, iclentifiers that are to be
made external must c0nfolim to the requirements 0f the host operating system.

4

The following crre valid iclentifi.ers:

SSN
frequency
input_buf
$dollar
_u238

The foll0wing aFe invalid ident:i£ie:rs:

2 k f cannot start with a digit}:
ice cream { ernlDedded spaces are not alfowed}
which_way? f qu.,es11i0111 mark is n0t all<Dwed}'
repeat {reserved worrds may not be used~:

1.2 Reserved Words

1 Base Vocabulary

The foll<Dwing is a list ofi reseFVed words used to define the syntax ofi NIDP Pascal. These words
may not be defined as identifiers in a pFogram. The reserved woFds must be separated from
other language constructs by a special symbol1 (SectfrDR lA). a comrneNt, or orrie oi: moFe spaees.

and end nil repeat
array file not set
begin for of then
case function or to
const go.to otherwise type
div if packed until
do in procedure var
down to label program while
else mod record w.ith

Table 1- l! NDP Pascal -- Reserved Words

1.3 Keywords
The following is a list ofi keywoFds Hsed to defiine the syntax ofi NDP Pascal. The dt[feren.ce
between a reserved wcmd and a Jceywez>rd is ilu!Lt a reserned word mC!ly not be usedas an
identifier:, while a keyw@rid TTI.l!ly be used as an icd.entifi.er. Keyw<J>Iids rnust be separated from
other languag~ co:astructs by a special symbol1, a comment. or o:ae or more spaces.

NDP Pascal's keywoFds are as follows:

forward external static

1.4 Special Symbols
The table bel0w summarizes the mathematical and notational symbols used by NDP Pascal.

Symbol
+

*
I

&

=
>

Meaning
ad<d!i.tio:a', set Nnicm.
subtraction. set differe:aee
multiplication. set intersection
real divisicm

1Boo1ean not .. set complement. one's com]!>lement on type INTEGER
Boolean or. l<Dgical Oli OJJl type INTEGER
Boolean anm. l©giea11 and on type INTEGER. admress off

eqµality
greater than

NDP Pascal Reference Manual!

' I : j
\._,I

\v

u

1 Base Vocabulary

<
<:::
>:::

<>
<<
>>

.-
+:::

-
*:::

/:::
I:::

&:::

<<:::
>>:::

A

[

J
{

)

{

}

(*
*}

less than
less than or eqNal
greater than OF eq:ual
not equal. E3©0lean exclusi1Ve OF
l@gieal left shift
l©gieal right shift

assignme:at operator
"x += y" is equivalent to "x . - x + y"
"x - y" is equivalent to, "x . - x - y"
"x *= y" is equivalent to "x . - x * y"
"x I= y" is equivalent to "x . - x I y"
"x I = y" is equivalent to "x . - x I y"
"x &= y" is equivalent to "x . - x & y"
"x <<= y" is equivalent to "x . - x << y
"x >>= y" is equivalent to "x : = x >> y"

imlicates a subrange
peri<Dcd, incdicates the end 0£ a pFogram or fie!Gi specifieatiora. within a record
comma, used to separate items in a list
colon, used as a separator in declarati0ns, labels, ancd case statement
semieol0ra., used to separate statements and routine parameters
single quote, Msed to defme character constants
caret, p(])inter symb0l1

left square bracket, arFay incdexing operator
right squa.Fe bfacket
open parenthesis, function and procedure declaration ancd call
cl©se pare:ro.thesis (same as "oi:>en :ware:ro.thesis")i
left curly bracket, opei:i comment
right curly t>racket, close C(])rmnent
o:wen comment
cl©se coliJJ.Nle:at

Table 1-2 NDP Pascal -- Sweeial Mathematical ancd Notati0nal' Symbols

1.5 Comments

5

Comments are set ofi£ f:rnm tfue pFogram text by using either the curly braces oIT the open and
cl0se comment symbols. A comment may be placed anywhere irl the p17ogram text where a
blank coufol be use cl. Comme:ro.ts may not be nested. However, a sihgle cl0se comment symbol
will terminate one OI.T m0re (])]>en c0rmnent sym.1Dols.

EXAMPLES

{ This is a perfectly good comment. }

{* as is this *)

{ Comment symbols may be mixed, *}
(* and matched ..

Further,, comments may appear on
any number of lines.

this is an {illegal} nesting of comment symbols }

this is also (* illegal *) }

however,, this { is OK }

NDPPascal Reference Manual

6

function integrate{using trapezoids}(a,
b:real;.
N:integer;

) :real;

1.6 Predefined Constants
FALSE comstlant ofi type BOOLEAN

{lower bound}
{upper bound}
{# intervals}
{result}

MAX INT maximum C<DilStant 0£ type INTEGER: 2147483647.
'JJRUE comstant <Dfi type BOOLEAN

1e7 Predefined Types
BOOLEAN logical data type
CHAR character data type
INTEGER integer clata type
FLOAT flbating point clata type :uepresentecl1 ini M bits
REAL filoating IDOint clata type :ueprese:m.ted in 32 or 64 bits
DONBLE floating p0i!lltl clata type represen.ted in 64 bits
TEXT file ofi type CHAR

1.8 Predefined Variables
INPUT
ONT PUT

<default input file
default outplilt file

1.9 Predefined Functions

1 Base Voeabulary

The foH©wing is a list ofi the prede£ined ftlnctioLls in NDP Pascal'. A detailecl: descripti0111 ofi these U
functions is in C:hapter 10:

ABS {x}

ARCTAN (x}
ARGC
CHR (n}

COS (x)

EOF (f)
EOLN (.f}

EXP {x}

LN {x}

ODD {n}

ORD (x}

PRED {x}

ROUND (x}

SIN (x}

SQRT (x}

SQ.R (x)

SUCC (x}

TAN (x}

TRUNC (x}

returns the absolute value of x
Feturns the a1~ctangent ofi x
returas the number ofi commancd line arguments
returns the ASCH character whose orcdtinal' value is n
returns the cosine of x
returns TRUE if file f is at encl ofi file
returns TRUE if file f is at encl 0fi line
returns the base ofi the natural' log (e): raised to the p0wer x
:rett:iras the natural l<Dgartthm ofl x
returns TRUE if the integer n is od<ff
c0Iilver11s a scalar value x to an integer
returrns the p1!<tdecess01:r 0£ the scalar x
com:ver11s a fl0ati11g poi11t x to an integer by rouncling
Feturns the sine of x
Fettirns the sqµare root 0f x
returns the square ofi x
returns the successoli ofi the scalw x
:returns the tangent 0£ x
c0mverts a fle>ating,]><Dint x to an intleger by tnmcating

1.10 Predefined Procedures
'Fhe following is a list o:fi tfue predefined procedures in NDP Pascal. A detailed description 0£
these pFoceclures is in Chapter:]:(!);

ARGV {Ls} C0'.(llies the i ch command line argument: into the variable s

NDP Pascal Reference Manua/1

__/

1 Base Vo1;abulary, 7

DISPOSE (p,tl, ...)

GET {f)

deaU0cates a dynamic variable

advances file pcointer and assigns file compommt to buffer variable

allcocates a dynamic variable NEW (p,. tl, ...)

PACK {a,i,z)

PAGE {f)

PUT {f)

READ { f, v)

READLN { f ,. v)

RESET { f ,, s)

REWRITE {f,s}

UNPACK {z,a,i)

WRITE {f, e)

WRITELN (f, e)

packs array a, begihID.ing at index i, into array z

writes an ASC!il fo11m feed to file f

coJ.Dies buffer; variable to the encl ofl file f

reacls data from file f into variable v

reads data from file f into vari,able v, then advances to end o:tT line
onfnef

o:pens a fiile for input

OJ.Dens a file for otitput

COJDies packed an:ay z. to array a. beginning at index i

writes the value of e to file f

writes the value ofi e, and then an end of line to file f

1.11 Preprocessor Commands
The fol10wing is a list of commancls interprreted by the preprocessoF. A detailed desciipti0n of
these commancls is in CIMtptJer 11 1.

#DEFINE n s

#UNDEF n

#INCLUDE f

#IF e

#IFDEF n

#IFNDEF n

#ELSE

#ENDIF

#LINE c f

Feplaces a name n with, a string of characters s

camcels the previoms #DEFINE. 0ID.1 the name n

Fedirect:s compihw inpmt to a supplementary file f

evaluates the text following this statement if eX]>ressi011l. e is nonzero or
TRUE

evaluates the text foUbwing this staterneID.t if the name n is defined

evaluates the text following• this statement if the name n is n0t defined

evah1ates the text folk>wing this statement: if the result of the pirevi0ms
#IF, #IFDEF, OF #IFNDEFwas zero. or FALSE

te:rrrninates an# IF, # IFDEF, 0i: #IFNDEF statement

re~oFts an erro:u message occlirnng on folhl>wim.g line as appearing in. file
f on line number c

1.12 Constants (unsigned integer, unsigned number, unsigned
constant)

unsigned integer

Figure 1-3 Syntlax !Diagram for unsigned integer

NfJP·Pas1;a/'Reference Manual

8 1 Base Vocabulary

unsigned number

unsigned integer digit unsigned integer

Figure JJ-4 Syntax !Diagram fom unsignecl; numbeF

hex constant------ hex digit

Figure l-5 Syntax Diag:ram foF hex co:astant
unsigned constant

constant identifier

unsigned number

hex constant

character

Figure l-6 Syntax Diagram fo:u u:asignecl: constant

Explanatory note on "charactter"·:

character col1Tesp0ncls to, the characteF eql!livalent of the decimal ASCII codes from. 32 to JJ26
inAppemdix B of the NDPUserr's Ma.nu.c11L

constant identifier
constant

unsigned number

character

Figure 1-7 S:Yntax Diagram for coro.stantl

An unsigned integer is a se(l)_uemce 0£ digits. An unsigned numfuet' is an unsigned integ~r with
either a decimal point or a scale factoF. or bo1J.h. An unsigned number may end with a decimal
p0int. but if a numfuer less than one is to be represented, it ml!lst begin with a digit. (Standard
Pascal re(l)_uires a digit bef0Fe and after a decimal point ir1 real numlDers, a rest:uicti<Dn that is
relaxed in NDP Pascal'.)

NOP Pascal Reference Manua/1

1 Base Vocabulary 9

A striI.lg is a sequence of characters enclosed by qu0tati0n marks. The value of a string
constant is the seque:mce of characters enclosed within the quotes. FoF the purposes of type
compatibility, strings are cl.!ivicled into two groups: strings of length one, ancd strings of length
greater than one. A string eonsisting ofi a single character is a string of length one and is
iclentical to the type char. A strri.Rg consisting ofi n characters is identical to the type definitio:m:

packed array [1 . . n] of char;

When an ap©strophe is to t>e used in a character string, it must be written twice. String
constants are case sensitive so that upper and lmwer case letters must be carefully
distinguished by the user. An encl of line character may not appear in a character constant.

The constant NIL is a reseliVed w0rd and represents a p0inteF constant that does not point to
anything. NIL is compatil:t>le with any type defanit!iG>:n.

'Fhe constants TRUE and FALSE are IDFedefaned l300lean scalar constants.

EXAMPLES

The foUowing are valicl constants:

1024

3.14159
0.57721
1.2345e4
1.2345e-8

NIL
'four score''
SSN
input_buf

-frequency
+2.71828

Ox80000000
OxOOOOFFFC

an unsigned integer

unsigned numbers

{ unsigned constants

constants

{ hex constants

The foU0wi1J1g' are invalicd constants:

.12345

-NIL
+'sorry'

leading digit is missing

a plus or minus must be followed
by a digit or identifier

NOP Pascal Reference Manual

(
'_)

I
l I

\~

2 Program Structure

2.1 The Structure of Programs
program

PROGRAM identifier identifier block

Figure 2 .. lJ Syntax Diagram floli F:trogram
block

label declaration

i----- constant definition

type definition

variable declaration

i------ procedure and function declaration

compound statement

Figure 2-2 Syntax Diagram forr Bl©ck

Pascal' is a block structured' language. 'Fhis means that a Pascal program coasists of a set o:f
nested blocks. The nesting 0£ blocks all0ws the definiti0m· o:f one ll>le>ck to be eatirely co:mtained
within ane>ther bl0ck. At the outerm0st level:. a program co:m.sists of a program heading, followed
by a single bl0ck that detines the main prog:r:-am. As the syntax diagram above shows •. a bl©ck is
comp0sed of the foll0wing six sections. all optional: except the cornpcmncl1 statement that
constitutes the bocly of the bl(J)ck:

1. label: declaration part.
2. coastant deflimitio:ro. part.
3. type definiti0n part.
4. variable declaratio:m. part,
5. {:)rocecl.ure ancl functi0n declarati0n part,
6. comp0umd statement.

12 2' P rognam Struc:tw~e

The nature aml exact contents of each ofi these components of a bl0ck are descrilDed in the
following chapters.

Each block introduces a new l©cal refiereneing enviromment. For example. a variable declared in
a black B. say. is accessible throughoNt that l:Dlock unless the same variable name is redefiined
within a sub-block ofi B. The redefinitiom ofi a variable lasts throNgho:'Elt the scope ofi the sub ...
bl0ck. Details regardiiilg the lexical, oIT static. scope rules foir iclemtiifie:us are givet1 in the
following secti0n1.

Variables are allocated when a p:rocedure or function is entered, and are deallmcated when tile
col.irespomding return, is made. Each invocatio:a ofi a recursive roNtine has i~s own set 0£ local
variables. This is accomplished by all0cating space for; !<Deal variables in the same stack-like
manner in which the recl!lrsive calls are nested. Thus, when a return statement is executed.
the variable space coliresponding t.:> the approp:rriate inv0cation ofi the routme is deall0cated.

2.2 The Lexical Scope of Identifiers
An ide:m.tifieu may refeF to 1 a comstant, variable, lat>el, procedure oi:- functiom, name. or type
definition. The lexical scoIDe of an ide:atifier is the regi0n ofi a progi:am where the iclentilier may
be referenced. The block structure ofi Pascal' is used to, define the lexical sc0pe rules for
identifiers. The foU<Dwing is a stunEJ.ary of th.e lexical scope rules for Pascal.

l. Every identifier must be defined before it is used. The two excepti0ns to this iuvolve pointer
variables, and procedu:r:-e an.cl f-.mction calls when there is a :forward reference.

2. The scope of an icleNtifier depends upon how the iclentifier was declared.

a)1 For labels, constants. types~ variables. procedures and functi0Iils, the scowe is the bl©ck
in which the declaFati©n. 0ccui:s;

b)1 foli constants de:m.oting the values 0£ an enumerated type, it is the most embedded block ,
containing the type definition, for the constant; <.J

c) for fuiilctiom. and procedure parameters, it is the formal parameter list and the
correspom.ding block;

d) for fiield! icdentlifiers, it is the recorrd definiti0n in which they occuF;

el for predefined id.entlifiers, it is an imaginary t>lCDck enelosing the pr:-ograrn.

3. An idemtifierr may only be Bsed within its scope of definition, and an idemtifier's ass0ciati0n
is uni<rJ_ue within its scope. 'Fhis means that an identifier cannon be defined twice within the
same scope, eitheF witb.' the same or with' different mearungs.

4. The declaratioiils at the beginning ofi each olock define the lt'.>cal' referencing environment foF
the block. Any refierrence to an, :i:de:atifie:u witllin the body 0£ a block (not including any
n.ested sublDlocks} is c0msiclered, a refierence to the local declaration for the identifiier, if one
exists.

5. !By c0nveNti0n, when blocks are nestecl', the nesting levels are called level, Q:, level JJ, etc ..
beginning with the main program., Identifiers in level i are in the scope 0£ bl0eks declared at
levels i+l:, i+2, and so oN.

If an iclentifie:u is refTeremced witfui111, the bocdy ofi a block B and, No l<Dcal declaraticm exists,
then the :ueferemce is considered to be a reference to a declaratiom within ome ofi the
eiilcl0sing bl0cks. 'Fb.e encl0sin-gi bl0cks are searched for this declaratiom beginning with the
bl©ck irnm.ediately surr0Nncling blmck B BntH the declaration is f01md, oF the outmost block
is reached. When the oBteFmoEt bl0ck is reached. the predefined environment is searched
for the iclentifier ancl, ifT not found, an erroF is reported.

6. If a block B c0Iiltains a subt>le>c:::t: s, then any local deelarati0ns within the sub1Dl0ck (or \ . '.)
bl0cks that s may c0ntaiR) are not availa1Dle to the outer bl10ck B. Deelarations within a '-"
sub block are invisilDle to the bbcks sNrrotmding it.

NOP Pascal Reference Manua/1

2 Program Stiructure 13

7. A declarat:icm for the same identifier may occur in many di.ff erent bl0cks, bu.t a declaration
in an ornter bl0ck is hiclclen frnm the inner block if the inner block gives a Hew declarati0:a
fo:u the same icilentifier. 'Fhis gap in the scope of the idemtifier withiN the oHter bl0ck is calied
a "hole in, scope".

EXAMPLE

'Fhe following example illustrates the lexical' scope of identifiers in a Pascal p1:;ogranil. The
variable x declared on line 2 is gl<:>bal throlllgholilt most of the p;uogram. There is a hole in its
scope ia proceclure c ancil function a, since x is redeclared in line 6. This means that any
reference to x in procedure c and functi0N· d refers to the integer x declared on line 6, while
reference to x in the rest of the program refers to the real x declared 011 line 2.

'Fhe chart foll<Dwing 11he program outline summarizes the availability of ifileHti£iers in cliff erent
rnutmes.

1 Program main;

2 var x:real
3 procedure a

4 function b

5 procedure c
6 var x:integer

7 j function d

8

9

procedure e

function f

Variables declared in
main

a
b
c
d
e
f

2.3 Declaration Order

may be referenced in
main,a,b,c,d,e, f
a,b,c,d, e, f
b,c,d
c,d
d

e. f
f

Standard Fascal imposes a strict ofdertng ofi declaratio:as that is relaxed ih NDP Pascal to make
it easier to, use. Standard Fascal reciµires that all labels be declared. before any constants. all
constants be declared befor:-e any types, all types be declared before any variables. and all
vartables be declared befofe an;y procedw.res OF functions. NDP Pascal allows the declarati0n.s to
be in any order. and to appear more th.an once. p:rrovi<ded that eve:rry symbol is defined before
any reference to it (exce]>t as allowed by standard Pascall.

Example

program orderl;

function pow.er (a ,,n: integer): integer;
{ Return a raised to the positive power n. }

var ans, i : integer;
begin

ans := l;

NDP Pasca/1 Reference Manual

14

end;

for i .- 1 to n do ans .- ans * a;
pow.er .- ans

type tl = array [1 .. 10] of integer;
var yy : tl;

const x = 123;

type t2 = integer;
var zz : t2;

label 99

var a tl ;.
b t2;
i real;.

begin

end.

2.4 Program Modules for Separate Compilation

2 Program Strueture

NDP:-Pascal has l:Deen extencled to allCl>w multiple module program devel0prmmt. In NOP-Pascal,
a program consists o:tr o:ae or mo!ie m0dules, which are incdependently compilable units ofi cocde.
There are tw0 types ofi m0dules in NDP~Pascal': the program module ancl the declarati0:as
moclule.

The program m0dule is tlle module that gaihs initial control when the program is executed. It
contains the program declaration, the main begin-end bl©ck, an<d the final period. The program
moclule may be tlile entire IDrograr.n O!i only part of the program. If it is o:nly part of the program
then s0me o:f tile p:roce<dure, £uncticm, and variables referenced in the main program must be
declared extemal 1 using the EXTERNAL directive~ These external routines ancl vaFiables must be
linked with the main :Program, ancl· tlile run time lib:uacy, to olDtain a complete program.

A declarations m0<dule may be compiled as a unit indepe:acl.ent of the program m0dule. It
coi:isists of routines and vaJ.Tiables that are to be linked with the p!iogram module, and possibly
otheF declaration m0cdules, in 0:rder to create a complete program. The declaratio:as rn0dule
must not coRtaifl a program. statemeRtl, a main begin-eRd block, or a final JPeri0d.

Declarati0ns m0<dules are useful m bFeaking up large pF0grams into smaller comp0:aents. Data
is passed to i:ou.tines through paramete:us and external variables. By de:fiault, tlile procedures,
functi0ns, ancl variables declrured at the top 11evel of a declarations m0dule an<d at the outennost
level of the program rn0dule are declwed external to the linker. The STATIC directive can be
used to prevent iclentitliers from 11>eing exported to other modhlles.

NDP-l?ascal' permits cdeclaraticms to be given, in any order. This extensi0n all©ws p!iogram ancl
declarati0n rnoclules to be incde:wencdent of: the o:rrdering of declarati0ns within LNCLUDE files.

Examples illustrating seIDarate compilation are uncler the EXTERNAL directive. in Secti<JJn 3.6,
an<d undeIT the STATIC directive. in Sectil!:rfil 3..7.

NDP Pascal Referenee Manual:

\
' ·.__)

('

__)

3 Pascal Declarations

3.1 Program Heading (PROGRAM)

PROGRAM identifier identifier

Figure 3-1 Syntax Diagram for Program Hea<iling

The program hea<iling is usecl to assign a name to a p:fogram and serves to document the file
names through whieh the pFogram wiU ccmnmunicate with its enviroBment. This is a required
statement in each NDP Pascal pFogram. The list ofl file names is optional, seIVing only for
purp0ses of <il<Dcumentati0:a and c0rnpatibility with the Pascal Standard.

The Pascal: stanclard requires that the predefined file identifier, INPUT. be specified in the
program heading if the p:z;ogram reads data from the file INPUT. Similarly, the predefined file
identifier. OUTPNT. must be specified if the program writes to the file OUTPUT. Failure to comply
causes the compiler to generate an error when. the -ANS I compatibility switch is used. See the
NDP User's Manua1 for details.

EXAMPLES

The foll0wing are vali<il p:z;ogram statements:

pro.gram matrix;
program simulator (input, output);
program regression (factors, datal_inp, data2_inp,. results);

'Fhe following are invalic;f; IDFogram. statements:

program fft {data.raw, data.fft);

program abc (x,17);
program (input) ;

3.2 Label Declaration (LABEL)

Periods are not allowed in
identifier names.
Constants are not allowed.
The program name is missing. }

----•(;;)1-. --6-: -s-' -.,~--~~-·..il_un-s-ig_n_e_d_i_n-te_g_e_r:_ ---~--91·01--· ---•

Figure 3 .. 2 Syntax IDiagram for Label! Dedaraticm

The label declaratiom is used to declare a label1 that will be used to idemmfy a statemeBt. Labels
pennit a statement to be referenced by a GOTO statement. A label' is an unsigned num1Der in
the range O to, 9999. Leading, zeros in a label: are not significant. Labels are separated from the
statememts they refeFemce by a colon.

The scope of a label is the Foutine in which it is defined. Therefb:rre, all labels accessed in a
routine must be declared within that routine.

16 3 Pasc:a/ Declarations

Assigning a label to a statememt d0es m011 guarantee tfuat the statement may be referenced by a
GOTO statement. See the rules associated with bFanching uHder the GOTO statement in Section
7.7.

EXAMPLES

label 10;,

100 : getpat := (makepat (arg, L ENDSTR, pat) > O;

301 : if (lin[i] =COMMA} or (lin[i] SEMICOL} then begin

3.3 Constant Definition {coNsT)

CONST identifier constant

expression

Figure 3-3 Syntax Diagram forr Co:ro.stant Defiaitimn

A constant de:Ciniti©n is a name that is to be used as a syno!ilyrn fo:rr a c0Bstant value. The type
ofi a constant iclentifier is determined by the type in the constant expressiom.

NDP Pascal allows the value o:tT a constant to be the i:esult ofi an expression. The expressiom
may co!iltain operators, predefined functio!ils, and the value ofi prrevi0usly defmed ccmstants.
The definition. of: an expressiom is given in Clil.lilpter 6.

NDP Pascal accepts the syntax Ox <hex digits> orr OX <hex digits> for hexaclecimal
constants.

EXAMPLES

const
ONE_K 1024
ZERO -273.15;
NA 6.023e23;
U 1.66e-27;
PI 3.141592653589793;
COEF 1.0 I sqrt(2.0 *pi};
PTR nil;
VALID true;
ALL_ONES Oxffff;

MININT = OXBOOOOOOO;
ANSWER = [1 Y1

,
1y 1

,
1 N1

,
1'n 1

'];

A_PALINDROME = 'Madam, I• 'm Adam';

3.4 Type Definition (TYPE)

An integer constant
A real constant
A real constant
A real constant
A real constant
A real constant
A pointer constant
A boolean constant
A hexadecimal constant
A hexadecimal constant
A set constant
A character string constant

-G) t ~.-, -i-de-n-ti-. f-ie_r_l-G4 type

Figure 3-4 Syntax Diagram foF Type Definiti0m

A type is a set ofi values that a variable may assume. A type definition is used to b0tlh define a
data type ancl assign a name to that type. There are two kinds of data types: predefined ancl.

NDP Pascal Referenc:e Manua/1

\ u

/ u

3 Pasca/1 lJeclanati@ns 17

user defined. The predefined data types are part of the Fascal language and are described in
Chaptier 4. ll.Jsel'-defined data types we establish.ed w.sing the type definition.

A type definitioD, coDsists of an identifier foll0wed by an eqµal sign and a type clause~ Type
identifiers in the type clause must lDe already defined by a pFevi0us type defhlitio1J1. Recursive
type definitioDs require pointer types.

EXAMPLE 1

Type

direction (north, south, east, west);
row 1 .. 66;
column 1 .. 132~
cell = record

barrier boolean;
visited boolean

end;

maze array [row, column] of cell;

EXAMPLE 2

Tb.e foll<Dwimg is a Fecurrsive type definiti0H fon:- a linked list of integeFs:

type
listType = record

contents
list Type

end;

EXAMPLE3

integer;
"listType;

'Fhe followihg1 is an illegal type definition. since the type clause is recursive and d©es not refer to
a pointer type:

type
matrix= array [l .. n] of matrix;

3.5 Variable Declaration (vAR)

--G• } ·I id~ type

Figure 3-5 Syntax Diagram forr Variable Declaration

A variable deelaratiom. is used to define the type ofl a variable. Tb.is establishes the set of values
that can be assigned to the variamle.

Ide:m.tifiers of the same type may be declared together by separating them with commas.

Variables aJl'e all©cated when a procecd:Nre or functioa is enterred, and are deall0cated when the
corresp<Jmding rreturn is made. When a Fecurrsive call is made to a ro11tine, space is again
allocated for the variables declared in the routine. This space is ali0cated in a stack-like
manner so that when a return statement is executed, the variable space con;esp0n.cling to the
approir>riate invocati0n of the routine is deallocated.

EXAMPLE 1

var travel : direction;
var i, j, k integer;

x, y, z : real;

NDP Pasca/1 Reference Manua/1

18

var board maze;

EXAMPLE 2

type

var

nameType
chars
charlO
char25

phoneBook

EXAMPLE3

type

var

degrees
percent

weather

array [l ... 20] of char;
array [1 .. 5) of char;
array [1 .. 10] of char;
array [1 .. 25] of char;

record
lastName
f.irstName
address
cityState
zip
phoneno

end;

0 .. 360;
0 .. 100 i

nameType;
·nameType;
char25
char25
chars;
charlO;

record
station
date
time
temp

array [1 .. 20] of char;
integer;

end;

humidity
precip

wind

pressure

integer;
record

lo real;
hi real;

end;
percent;
record

rain
snow.

end;
record

real;
real;

speed
direction

end;
record

real;
degrees;

height : real;
direction : {up, down};.

end;

NOP Paseal Reference Manua/1

3· Paseal Declarati@ns

u

u

3 Pascal DeclaratiQns 19

3.6 External Directive (EXTERNAL)

TYPE EXTERNAL

PROCEDURE identifier parameter list

FUNCTION identifier parameter list type identifie block

Figure 3-6 Syntax Diagram foF EXTERNAL :Directive

The external directive N0tifies the compiler that a p:uoeeclure, functi011, OF variable exists in a
separately compiled m0dule.

A procedure ©F functi©lil may be declared external, and then later in the same module. the
procedure or function b0dy may be given~ If this is done, tile pFocedure or foncti0n declaratio:m.
must not comtain a parameter list or a return type. This is to simplify use ofi the #INCLUDE
directive, yet prrevenu multiple definiti0n, of symlDols in the parameter list.

Declaring a variable EXTERNAL permits th.e sharirlg ofi data among separately compiled
modules. This is d©ne lDy placing the icdentifier EXTERNAL followed by a semicolon directly after
the variable declarati0n.

EXAMPLE 1

The following example illustlrates the use of the external directive with a utility functio11. It
com.sists of two, files: one containing the main progFam and ome ccmtaining the function called
by the main pi:;ogram. These files mhlstl be sewarately compiled anal linked together before being
run.

{====================== Contents of exOOla.~ =============================}
program exOOla;
{ Example to illustrate the EXTERNAL directive.
const size = 9;
type list = array [1 .. size] of reali
function binarySearch (a:listi x:real): integeri external;
var a:list;

begin
a [1] . - 0. i a [2] ·- 1. i a[3] . - 2;
a [4] ,,- 3. i a [5] ·- 5. i a[6] ·- 8. i

a[7] . - 13. i a[8] .- 21. i a[9] ·- 34. i
wri teln ('Index of -1 I binarySearch (a, -1)) ;
writeln('Index of 0 binarySearch(a,0));
writeln{' Index of 7 binarySearch(a,7));
wri teln {'Index of 34 I binarySearch(a,34));
end. { end of exOOla

{======================= Contents of exOOlb.p ===========================}

NDP Pasc;af, Reference Manual

20

const size = 9;
type list = array [1 .. size] of real;
function binarySearch (a: list;)c: real) :.integer;
var i, lo, hi : integer;

begin
10 : = 1 i

hi := size;
repeat

i := (lo + hi) div 2;

if x < a[i] then
else lo .- i + 1~

hi := i - 1

until (x = a[i]) or (lo> hi);
if x = a [i J then

binarySearch .- i
else

binarySearch .- O;
end;

3; Pascal Decla~atl!!ms

The p:rrogram sewches a p:uedefined list fo>r a series o:f numberrs, anal generates the following
Ol:ltpu.t:

Index of -1 0

Index of 0 1

Index of 7 0

·Index of 34 9

EXAMPLE2

The foH0wing example illustrates the use of the EXTERNAL and INCLUDE directives. It consists of
three files: a headeF file containing the declarati0ns used by the otheF two files. a file com.taming
the main program. amt a file coirrtaining a: function called 'J:i.>y the main p1mgFam. These files
must be separately c@mpilecl ancl1 linked togetfu.er to Tue run.

{==================== Contents of ex002.ph ==========================}
·type

point = record
x real;
y : real;

end;

function slope (a, b: point} : real; external;

{==================== Contents of ex002a.p ==========================}
program ex002a;
#include 'ex002 . .ph'
var a,b: point;

begin
a.x := 1.0;
b.x := 3.0;

a.y .- 2.0;
b.y .- 4.0;

writeln('slope = ' slop.e(a,.b)};
end. { end of ex002a }

{==================== Contents of ex002b.p =========================}
#include 'ex002.ph'
function slope; { (a,b:point) real;. }
const epsilon = 1.0e-7;

begin
if (b.x - a.x} > epsilon then

NOP Pascal Reference Manua/1

u

u

3 Pascal Dec/aratic:ms

slope := {b.y - a.y) I {b.x - a.x)
else

slope : = maxint;
end; { end of ex002b.p

21

The program. evalit:Iates a functi011 computing the sl0pe of7 a line and prints the following result:
slope= 1.00000000000000000e+OO

3. 7 Static Directive {sTATrc)

~ id~ type ~STATIC~

Figure 3-7 Syntax Diagram of a STATIC IDirective
The static directive is used to declare statie variables. Static variables are not exported to
routines that are inelruded when the #INCLUDE directive is used. Static variables can be
thought ofi as being prtvate to the m.0dule in which they are declared. Only those variables in
the oute:rr sc0{i>e o:C a declaration OF p1mgramm0C!hlllernay be declared STATIC.

EXAMPLE

This example illustrates the use o:C the STATIC and EXTERNAL directives and co11sists ofi two
files, one containing the main pirograrn and one co11taining the routines used by the main
program. 'Fhese files must fue separately compiled and linked together bef0re being run.
FILE. A contains the main program and FILE. B ccmtains three routines.
This program makes use o:C tllree variables: x. y. and z. Each module has its own copy ofi x,
while y is sharecd amamg them. This program can be und.erstood by considering the variable
space forr each file in the foll0wing manaerr:

FILE.A FILE.B
x ~ differer:it ~ x
y ~ same ~ y
z

Afterr SETUP is executed. we have the assignments:

FILE.A
x=?
y=20
z

FILE.B
x=l!O
y=20

PFi01~ to, ADDUP. we have the assignments:

FILE.A
x=l
y=2
z=lOO

FILE.B
x=lO
y=2

.Afiterr execution 0£ ADDUP. we have the assignmenns:

FILE.A
x=l
y=2
z=lJl2

FllLE.B
x=l0
y=2

(__} Hence~ the progTarn will' print the result: z = 112.

{==================== Contents of ex~03~.p ====================}

NDP Pas<;a/ Reference Manual

22

program staticl (output);
procedure setup.;/ external;
procedure addup (var q:integer); external;
var

x integer; static;
y integer; external;
z integer;

begin
setup;.
x ·- 1;
y := 2;
z := 100;
addup. (z);

writeln(' z z);
end.

3: Pas<:a/1 Dec/araticms

{==================== Contents of ex003b .. p ====================}
procedure setup; external;
procedure addup (var q: integer); external;
var

x integer; static;
y integer;

procedure setup;.
begin

x := 10;
y := 20;
end;

procedure addup;
begin

q := q + x + y;
end;

NDP Pascaf Reference Manua/1

<J

u

u

/

(l
\._,)

u

4 Type Definitions

4.1 Type Definitions

type identifier

subrange type

type simple type

pointer type

PACKED __ __,

set type

array type

record type

file type

Figure 4-11 Syntax Diagliams for Simple Type and Type

The syntax diagrams above summarize the data eypes available in NDP Pascal. Each of these
types is described in detail in a secti0n of this cfuapteF.

'Fhe data type determines the set of values that a variable may assume. Data types are
classllied as scalar. p0inter, OF stnictLired. The types BOOLEAN, CHAR, INTEGER, DOUBLE. FLOAT.
REAL, enumerated ancl subrange types are scalar data types. This means that the values may
be placed o:n a linear scale ancl., comparisons (less than, equal, greater tllan) made between
them. PointeIT data types are used: foli variables that are to co:mtain the acldress of other
variables, or the address of variables that wiU be created during program ex:ecuti©R (dynamic
variables).. Structurecl data types con.sist of aggregates of 0ther data types. The Set, Array,
Record, aml File type are structured data types.

A type declaratio:n is used to assign a type identifiier to a type definiti0n'. The type identifier may
then l:t>e used wheFever a type definitioB is required. for example, in a variable deelaratio:m, in a
parameter list. orr in anotfuer type declarat:i0n.

24 4, Type Def:initians

The data type of a variable may be declared using a type identifier, or by specifying1 the type
definiti0a when the variable is declared. Identifiers used as procedure OF foneti0a parameters
must be declared with a predefined data type OF with a type ide:mmfiei:.

4.2 Type Compatibility and Conversions
The data type detennines the set ofi values that a variat>le may assume. NDP Pascal Slllpp0rts
stroag typing, whicfu means that the type of all vartat>les must be explicitly declared. 'Fltlis
allows the compiler to vel!ify that each operntion penormed on a variable is appiropriate for the
type associated with the variable. Stroag typing reqtlires that FU.les exist in orrder to determine
when two types are to 1 be C<Dlilsidered 1): identical, 2) compatible, or 3) assignment compatible.
The following three secti<Dns descFi.be these rules.

4.2.1 Identical Types

Two types are identical if o:me ofi the following is true:

a. The variables FefeIT to the same 1lype identifieF;

b~ The variables referr to two separate type identifiers that have themselves been declared
ecp.1 1al by the foHbwmg type definitricm:

type tl = t2;

Type identity in Pascal: is based upon the name of the type. not on the physical storage ot the
data in questio:m. For example, the :fiol[owi:ag are not identical typ>es:

type
r = array [1 .. 10) of integer;
s = array [1 ... 10) of integer;

Identical types are required in the foUowing cirrcNmstances:

1. fuetwee:m the actual ami foF.m.al va.Iiable (VAR) parameters in a functiolil 0r p:rncedure
2. assignment l:t>etween array types
3. assignnnent betweem recoFd types

4.2.2 Compatible Types

Tw0 types are c<Dmpatible if one of: the fol!l.owing is tme:

a. they are of the same type;
b. oHe is a subFange o:f tfue other or they are l:t>oth subranges of the same type;
c. oHe type is a string- liteFal of one charaetelT and the other is ofi type CHAR;
d. they are l:t>oth set types aml their base types are compatible.

The empty set is compati'ble with any set type and the value NIL is compatible with any :wointer
type.

Compatible types are rrequired in the foll0wmg ci:rcurnstances:

1. two values must be compatible when combined with an operator in an expressi0m;

2. the index expFessioB in a CASE statement must be compatible with all case coBstant values.

4.2.3 Assignment Compatibility
Assignment com:p:>atibility indicates wheiil assigmnent between a vcwiable and an ex:p:r:-essicm is

u

u

pen.nitted 11sing the assignment operator. A varialDle and a expFession are assignment ()
cornpatibk if o:me of the following is true: ~

a. the types are identical and meither is a fil:e OF a structured record type;

NOP Pascal Reference Manua/1

L1

()
~

4 Type Definitions 25

h. the variable is 0£ type FLOAT. REAL or DOUBLE and the expression is compatible with type
INTEGER;

c. the type ofT the variable may be a su.brange of the expressien if the value to be assigned is
within the allowable subFange of the variable;

d. the variable ancd1 the expressi©r1' have compatible set types and all rneml!>ers of the
expressioro. 1 are pennissible memfuers 0fi the variable.

Assignme:mt compatible types are req_:Liirecd when an actual value warameter must be
assignment cmmpatible witfu, tlile type of the coITesponding formal parameter.

EXAMPLE

type
months (jan, feb, mar,/ apr, may,. jun, jul, aug, sep,. oct,. nov, dee);

var

winter jan .. mar;
spring apr .. jun;
summer jul .. sep;

column array [1 .. 10] of real;
row column;

season set of months;.
vaction set of surrnner;
cold winter;
warm spring;
vectorl column;
vector2 row;
vector3 array (1 .. 10] of real;
meeting, event : RECORD

date integer;
time real

END;·

This example ilh1strates tfue three gradatiol!ls ofi type compatibility. Several type defTinitio:as and
variable declaratiom.s we givem, fol[owed by a table surnmari~ing the compatibility ofi each
variable witlfu each other. Some entries are omitted to improve readability. For example, each
variable is olDviously type icdentical' with itself, so the entry "season is identical to
season" has not been included. Similarly, the reflexive entries for compatible and assignment
compatible types have beea omitted.

variable identical to compatible with assignment compatible with

season
vacation
cold
warm
vectorl
vector2
vector3
meeting
event

vector2
vectorl

event
meeting

4.2.4 Implicit Type Conversion

vacation
season
warm
cold
vector2
vectorl

event
meeting

vacation
season
warm
cold
vector2
vectorl

NDP Paseal1 does type eonversiom.s Oiil data in the following special circumstances:

a. in a binary operation involving an integer ancd a float, real. or dolJlble~ the integer will' be
comverted to a float, real or double;

NOP Pasea/1 Reference Manual

26 4· Type l!Jefinitiens

b. whea an integeJJ is being assignecl to· a float. real or double variable, the integer will be
converted to a float •. real or dolllble;

c. an integer will be converted to a float. real or dcmble if passed by value to a parameteF
re~uiring a fl0at. JJeal' OJJ d©iHble value.

The motivati0n t>ehincl type ccmveusi0as is ease ofi use. Tfue above restricti0ns prevent
infonnatio:n from being l©st since a data type may be convened to a data type with greater
precisi0n. btlt n0t t0 a type with less pFecisiom.

4.3 Enumerated Types
Enumerated type

identifier

Figure 4-2 Syntax Diagram for Enumerated 'fype
An enumerated type is a list ofi nar.nes tfuat are treated as scalar values. An enumerated type is
defined by listing the values that are permitlted for a variable ofi this type. Each value is an
identifier that is created as a ccmstant in its own right. E:rmmerated types provide a mechanism
that allows an ideatifier to be Bsed as a coBstlant symb0l.
The names defined in the list are treated as c0nstant values ofi the type beiirag defaned. The
lexical scol)e rules, described in Secti<I>m 2.2, swecify that these nam.es are 10eal to the block in
which the type denoter occurs. The lexical scope rules fou enumerated types amolllat to the 0
following;

1. A constant identifier for a type iH an inner block cann0t be redefined in the same bl<Dck;
2. Tw0 diffeFeBt enume:rrated types cannot have an element with the same name in the same

lexical level'1

;

3. A constant idencifiieF may not be accessed oBtside the bl0ck in which it is deflined. Hence it
is n<Dt possible to read oir write llie values ofi constant identifieirs. AU em1m.e:r:ated constants
0fi a single type are orrdeFed. The first item i:a the list is assigned the ordi:nal value O. the
second item in the list is assigned the value 1, and so on. Tfue ordinal1 value of an
enurneFated constant may be obtlained using the pFedefined function ORD.

The predefinecl fa1 1mctioas PRED and succ may be used to operate oro expressioro.s containing
ermmerated types. lBy conventi0n theFe is n0 value less than the first enumerated, constant
defined in the list, and E.O value gFeatet" than the last constant defiBecl in the list.
The predefined type BOOLEAN is an eaumerated scalar with tfue definition:

type BOOLEAN= {FALSE, TRUE};

EXAMPLE

type

var

w.arnings = {advisory,, gale, storm, hurricane);
occupation = {tinker,. tailor, soldier, spy);
numeral (I, II, III, IV, v, VI, VII, VIII, IX, X);

message warning;
roman : numeral;
applicant : record

NDP Pasca/i Reference Manual!

u

4 Type Definitions

piece

name : array [1 .. 30] of char;
field : occupation;

end;
(pawn, knight, bishop, rook, queen, king);

4.4 The Subrange Type
subrange type

~~~·-[ CONSTANT 1------... -01------11>1 CONSTANT 

Figlilre 4-3 Syntax Diagram forr SUBRANGE Type 

27 

A subFange type is a name given to a subset of the values of an enumet"ated type. The values 
chosen from, the e:mumeratecrl type must be consecuti1ve, a.Bed the enumerated type must already 
be defined. 

A subFang~ type is defined by specifying the range 0£ values it may assume. This is dome by 
swecifying the miBooum. and maxirr.nim values, whieh may l:!>e the same, from. the enumerated 
type that may be assig:mec;li to it Any operati0:m allowed on a scalar type is also all0wed on any 
stibrange o:tr it. 

EXAMPLE 

const 
size = 1024; 

type 
vitamins = (A, D, E, C, thiamin, riboflavin, niacin, B6, Bl2, 

calcium, phosphorus, magnesium, iron~ zinc, iodine); 
fat_soluble =A . . Ei 

var 

water_soluble = thiamin .. Bl2; 
minerals = calcium .. iodine; 
index= o .. size-1; 

day : 1 .. 31; 
month : 1 .. 12; 
buffer : array [index) of integer; 

4.5 The SET Type 
Set type 

simple type 

PACKED 

Figure 4-4 SYfltax Diagram foF Set 'fype 
The SET type is any c0Uecti0n 0£ values taken from a scalar type. 
The following table describes the operations and functi0ns that may be used with variables 0£ 
type SET. In the following table. l:!>oth x and y are type SET. 

Symbol Usage Result Type Description 
- x SET complement 0£ set x 

+ x + y SET set ufli0n.: of x ancd y 

NDP Pascal Reference Manual 



28 

* 
= 
<> 
<= 
>= 
in 

x - y 
x * y 
x = y 
x <> y 
x <= y 
x >= y 
x in y 
x := y 

SET 
SET 
BOOLEAN 
BOOLEAN 
BOOLEAN 
BOOLEAN 
BOOLEAN 
SET 

set cliffeFence 0£ x and y 
set intersecti0n of x and y 
compares for x eq;ual to y 
c0m11><rres fo:u x not equal to/ y 
tests if x is a Shl bset of y 
tests if x is a SNperset of y 
tests for x in set y 
assigns tfue value of y to1 x 

4: Type Definiticms 

Sets of CHAR, BOOLEAN, ancl enumerated types are implerne:ated as sets of tl1e lDase type. 
Sets of integeFs are handled specially because of the possible large memory requill'em.e:ats ofi a 
set of integers. TheFefore, two, diffeFent sets sizes are all0wed for sets 0f integers. The sizes are 
32 ancl 256. By default, sets of imtegers are implemented as "set of o .. 31 ". The compiler 
switch, -P4, causes sets of integers to be implerne:nted as "set of o .. 255". (See the NDP 
User's Manut!ll'forr c.:1.etails.)J Sets of size 32 are more efficient than sets of: size 256. 
The following table summarizes the storage reqhlirernents for the SET type. 

type implemented as Compiler option 
CHAR 
BOOfuEAN 
enumeration 
set of integer set of 0 .. 31 
set of integer set of 0 .. 255 

EXAMPLE 1 

The following are valic.:1.: set declarations: 

type 

By default 
- P 4 cornpHation switcfa 

palette = (black, blue, green, red, white); 
color set of palette; 
sl = set of char; 

EXAMPLE2 

The foU0wing type declarati©ro 1 defines a set 0fi 256 integeFs and reCJ.uires the - P4 ru:atime 
option: 

typ.e 
s2 set of o .. 255; 

EXAMPLE 3 

The fol[owing cocle fragment :ueq:uires INTEGER sets of size 256 to woFk correctly, hence the -P4 
compilaticm OJDti©n mil.ilst be used. This is lt>ecause the base tyf>e ofi the set is INTEGER, ancf the 
ordinal value of! 'A' is 65, which req'lJ).i:ues a set ofi 256 elerneats: 

var prefix : integer~ 

begin 
if prefix in [ord('K'Y, ord('L' )] then 

4.6 Predefined Scalar Types: BOOLEAN, CHAR, INTEGER, DOUBLE, 
REAL, FLOAT 

NDP Pascal implements the foll0wing predefined scalar data types: BOOLEAN, CHAR, INTEGER, 
DOUBLE, REAL, a:m.d FLOAT. INTEGER, CHAR, and BOOLEAN have the type definitiams given bel©w, 
while DOUBLE, REAL and FLOAT implement lEEE 32 and 64 bit fl©ating point format, least 
significant byte at the lowest acldress. Type FLOAT provi<des 6 to 7 decimal significant digits ancl 
type DOUBLE pFovide 15 to 16 decimal: significant digits. 

NDP Pascal Referem:e Manual 

I ) 

~ 



4 Type DefinitlC!Jns 

A brief s11rn.mary ofi tfu.ese types is given below, while the next five sectioBs describe the 
operations allowed with each data type in detail. 

con st 
MAXINT = 2147483647; 

type 
INTEGER = -2147 483648 .. MAXINT; 
CHAR = chr(O) .. chr(127); 
BOOLEAN= (FALSE, TRUE); 

(2**31)-1 

29 

The table belbw smnmarizes the predefined data types in NDP Pascal. Space :is always allocated 
on a 4 byte bcnmclary. Range refers to the largest positive ancl negative numbeF supported by a 
data type, while precisicm Fefie:us to the smallest positive and negative number that can be 
suppoirtecl, by a data type. 

Type Space allocated 

BOOLEAN 4 byte (8 bits)1 
CHAR 4 oyte (8 bitsf: 

Range Precision Compiler 
Option 

INTEGER 4 bytes (32 bits); 
FLOAT 4 bytes (32 ©its): 

-2.147,483,648 to 2,147,483,647 
+3.39e38 +L 18e-38 

REAL 4 bytes (32 bits): +3.39e38 +l.18e-38 -P3 
REAL 8 bytes (64 bits)1 +l.80e3Q8 +2.23e'-308 by default 
DOUBLE 8 bytes ((64 bits): +l.8Qe3Q8 +2.23e,..308 

4.6.1 Operations and Functions for the BOOLEAN Scalar Type 
The fol10wing table descmbes the operations ancl functions that may be used with variables ofi 
type BOOLEAN. In the foUowing table. x ancl y are b0th type BOOLEAN. 

Symbol Usage Result Type Description · 
- x BOOLEAN Feturns complement ofi x 

= x = y 
< X<Y 
<= x <= y 
> X>Y 
>= x >= y 
<> x <> y 

x I y 
& x & y 

.- x . - y 
ORD ORD (x) 

Function values for negation: 

result 
FALSE 
TRUE 

TRUE 
FALSE 

Function values for 0RD: 

ORD 
FALSE 
TRUE 

result 
0 
1 

BOOLEAN 
BOOLEAN 
BOOLEAN 
BOOLEAN 
BOOLEAN 
BOOLEAN 
BOOLEAN 
BOOLEAN 
BOOLEAN 
INTEGER 

compares for x equal to y 
compares for x less than y 
compares for x less than or equal to y 
compares for x greater than y 
compares for x greater than or equal to y 
compares for x not equal to y 
retliirns TRUE if either x or y are true 
returns TRUE if both x and y are true 
assigns the value ofi y to x 
returns 0 if x is false. an<il 1 if x is true. 

Function values for binary, BOOLEAN operators: 

FALSE FALSE TRUE TRUE 
op op op op Logical 

op FALSE TRUE FALSE TRUE Name 
= TRUE FALSE FALSE TRUE equ!ivalen~e 

NDP Pascal.' Reference Manual· 



30 4 Type Definitii@ns 

< FALSE TRUE FALSE FALSE 
<= TRUE TRUE FALSE TRUE impliicati0n 
> FALSE FALSE TRUE FALSE 
>= TRUE FALSE TRUE TRUE 
<> FALSE TRUE TRUE FALSE exclusive OF 

FALSE TRUE TRUE TRUE inclusive 0r 
& FALSE FALSE FALSE TRUE an cl 

The type BOOLEAN is definecl as an enume:mtecl scalar whose values are TRUE and FALSE. This 
is equivalent to the definim0n 

type 

BOOLEAN = {FALSE I TRUE) i 

B0olean variables wiU 0ccupy four ll>ytes of: mem0ry ancl will be aligned oa a four byte 
b0lJJ.n<ilary. 

The result of the opeFators <. <=, >and>= may be obtained by Msing the fact that ORD (FALSE} 
= 0 an<il ORD (TRUE) = 1. 

4.6.2 Operations and Functions on the eHAR Scalar Type 
T'he foU0wing table describes the 0peraticms and functi0m.s that may be used witll variables 0fi 
type CHAR. Ill the following table, b©tfu' x anal y are ofi type CHAR. 

Symbol Usage Result Type Description 
= x = y BOOLEAN compares for x equal to,y 

< x < y 

<= x <= y 

> x > y 

>= x >= y 

<> x <> y 

x .- y 

ORD ORD (x) 

PRED PRED (x) 

BOOLEAN 

BOOLEAN 

BOOLEAN 

BOOLEAN 

BOOLEAN 

CHAR 

INTEGER 

CHAR 

c0rnpares for x less th.an y 

c0mpares for x less than or equal t0 y 

compares fToF x greater than y 

compares foF x greaterr than OF equal to y 

compares for x n0t equal to y 

assigns the vall1e ofi y to x 

returns the ASCH coGJ.e for the symbol x 

returns the character preceding x in the ASCI:I 
coUating sequence 

succ succ ( x) CHAR reh1rns the character foUowing x in the ASCII 
collating sequence 

The type CHAR is a scalar type correspcmding to the values in the .ASCII character set. 

Variables of type CHAR occupy cme byte ofi memory and are allocated in folll.r byte incrernemts on 
a four byte bcnmdary. 

4.6.3 Operations and Functions on the IN'DEGER Scalar Type 
The folloWing table descril!>es the operaticms and functiorns that may be used with variables of 
type INTEGER. In the following table. both x and y are of type INTEGER. 

Symbol Usage Result Type Description 
+ + x INTEGER :returns the opeFanGJ. 
+ x + y INTEGER rreturns the sum of tile operancl.s 

\ 
I 

\_) 

:r:-etums the megated operand t '.) 

rretums the difference of: the operan<ils '...__/ 
- x INTEGER 
x - y INTEGER 

* x * y INTEGER retw.rns the p:uoduct of the operarn:ds 
I x I y INTEGER converts operands to REAL, returns real quotient. 

NDP Pascal Referenee Manual; 



/ 
( u 

4' Type Def:init/(r)ns 

DIV 
MOD 

= 
< 
<= 

> 
>= 
<> 

& 
& 

<< 

>> 

+= 
-

*= 
I= 
I= 
&= 
<<= 
>>= 

ODD 

x DI\T y 
x MOD y 

X=Y 
X<Y 
x <= y 
x > y 
x >= y 
x <> y 

x . - y 

& x 
x & y 

- x 
x I y 
x << y 
x >> y 
x += y 
x - y 
x *= y 
x I= y 
x I= y 
x &= y 
x <<= y 
x >>= y 

ODD (x) 

INTEGER 
INTEGER 

BOOLEAN 
BOOLEAN 
BOOLEAN 
BOOLEAN 
BOOLEAN 
BOOLEAN 

INTEGER 

INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 

BOOLEAN 

returns the integer quotient of the operancils 
returns the integer modulus of the operands 

compares for x equal to, y 
com.pa.r:-es foF x less than y 
compares for; x less than or equal to, y 
compares foF x greater than y 
com.pares for x greater than OF eqt:Ial to y 
compares for x not equal to y 

assigns the value of y to x 

:rreh1rns the address of the operrand 
returns the bitwise logical sum 
reh1rns the ofle's complement of x 
returns the bitwise logical or 
x is shifted left by y bits 
x is shifted Fight by y lr>its 
equivalent to "x . - x + y" 
eq'Llivalent to, "x . - x - y" 
equivalent to "x . - x * y" 
equivalenn to "x . - x I y" 
eqµivalent to "x . - x I y" 
equivalent to, .. x . - x & y" 
equivalent to "x . - x << y" 
equivalent to .. x . - x >> y" 

tests for odd x 

31 

CHR CHR 
ABS ABS 

(x) 

(x) 
CHAR 
INTEGER 

returns the ASCn character whose ASCII value is x 
returns the absolute value of x 

SQR SQR (x) INTEGER retllrns the square ofl x 
PRED PRED (x) INTEGER returns tfue integer x-1 
succ succ (x) INTEGER returns the integer x+ 1 

The type INTEGER is a subset of the whole numbers that may be represented in 32 bits. The 
INTEGER type equivalent to the definition: 

const 
MAX INT 2147483647; {2**31)-1 

type 
integer = -2147483648 .. MAXINT; 

Integeli variables Will occupy 4 bytes ofl memory. and will be aligned on a 4 byte boundary. 

EXAMPLE (ex004.p) 

'Fhis example illustrates bit operations that are possible with NDP Pascal extensi0:ro.s. The 
fiunction getbi ts iI1 the program bel©w is from. Kernighan and Ritcfuie's book on C. 

program getbi t1 (output}; 

function getbits(x, P~· n: integer}: integer; 

begin 
getbits := ex>> (p+l-n}) & -(-0 << n) 
end; 

var i~x: integer; 

begin 
x := OxfOfO; 
for i := Q to 15 do 

NDP Pascal Reference Manual 



32 4: Type Definiti@ns 

writeln('getbits ( OxfOf, ' , i: 3, ' , 4) =I I getbits(x,i,4) :3) 
end. 

'Fhis program generates the foli<Dwing oNtput: 

getbits {OxfOfO, 0, 4) 0 
getbits ( OxfOfO ,, 1,, 4) 0 
getbits (OxfOfO,, 2' 4) 0 
getbits {OxfOfO ,, 3' 4) 0 
getbits ( OxfOfO., 4, 4} 8 
getbits (OxfOfO, 5, 4) 12 
getb.i ts (OxfOfO, 6, 4) 14 
getbits (OxfOfO., 7' 4) 15 
getbits (OxfOfO, 8,, 4} 7 

getbits (Oxf Of 0, 9 ,, 4} 3 
getbits (OxfOfO, 10, 4} 1 
getbits ( OxfOfO fl 11, 4} 0 
getbits (OxfOfO, 12, 4) 8 
getbits (OxfO.fO., 13, 4) 12 
getbits (Oxf O.f O.,, 14 fl 4} 14 
getbits (OxfO.fO, 15, 4} 15 

4.6.4 Operations and Functions of the REAL, FLOAT, and DOUBLE Scalar Types. 
The foHowiBg table clescFil:!>es the operatioms and funetio:as tfuat may be used with variables of 
type REA~. FLOAT and DOUBLE. In the fioll©wmg table, both x ancl y are of tl!ie same type that 
may be Olile ofi REAL, FLOAT. Oli DOUBLE. We UISe the ab1Dreviation R foIT REAL, F fol! FLOAT, aml E) 

for DOUBLE. 

Symbol Usage 
+ + x 
+ x + y 

- y 
x - y 

* x * y 
I x I y 
= x = y 
< x < y 
<= x <= y 
> X>Y 
>= x >= y 
<> x <> y 

·- x ·- y 
+= x += y 

- x - y 

*= x *= y 
I= x I= y 
ABS ABS (x) 

SQR SQR (X) 

SQRT SQRT (X) 

LN LN (x) 

EXP EXP (X) 

SIN SIN (X) 

cos cos (X) 

ARCTAN ARCTAN (x) 

TRUNC TRUNC {X} 

ROUNID ROUND {X} 

NDP Pasca/1 Reference Manual 

Result Type 
R, F, D 
R, F,. D 
R, F,. D 
R, F,, D 
R,. F, D 
R, F, D 
BOOLEAN 
BOOLEAN 
BOOLEAN 
BOOLEAN 
BOOLEAN 
BOOLEAN 
R, F,. D 
R, F,. D 
R, F, D 
R, F, D 
R, F, D 
R, F, D 
R, F, D 
R, F, D 
R, F, D 
R, F, D 
R, F, D 
R, F, D 
R, F, D 
INTEGER 
INTEGER 

Description 
ITetlurns the ope!iancl 
retmrns the sum ofi the operancls 
returns the operancl negated 
returns 1lhe difference of the operanC!ls 
:ueturns the procluct 0£ the ope:t"ancis 
:r:eturns the quotient of the operands 
compares fou x eqhlal to, y 
compares fTorr x less than y 
compares f:oF x less than Oli equal to y 
compares forr x greateF than y 
compares forr x greateF than OF equal to y 
compares forr x not equal to y 
assigns the value ofT y to, x 
equivalent to- "x . - x + y" 
eq:lilivalent to "x . - x - y" 
equivalent to "x . - x * y" 
eqnivalent to "x . - x I y 
returns the absolute value o:C x 
returns the square of x 
retw.rns the square mot of x 
returns the natm:al' logarithm of x 
retw.rns the natural log base raised to the x poweF 
returns the sine of x (in rradians): 
Fetums the cosine ofi (x in radians)1 
retUir:as (in radians)the inve:rrse tangent of x 
returns the ope:rancl truncated to an integer 
returns tfue operancl rounded to, an 1 integerr 

\ 
l 

\..-) 



/ 

( . 

\..J' 

4 Type DefinitiQns 33 

The type DOUBLE. REAL, and FLOAT are used to, represent IEEE 32 and 64 bit floating point 
data. 

4. 7 Array Type 

Array type 

ARRAY Simple type type 

PACKED 

Figure 4-5 Syntax Diagrram foF Array Type 

The array type is used to define a collecticm ofi hom0gene0us elements. This collection takes the 
form ofT a subscl1ipted list where each subscript in the list correspc;mrls to oil.e element or the 
array. The inrlex type is restricted to· integer, chara<I!ter subranges, or enumerated types. The 
comp0nent type may be any s:i.mpl'e orr structured type. 

The size of: an array corres:p>oncl.s to the number ofT distinct values that the index may assume. 
This value is fixed in the type definitiot1 ancl. cann0t vruy during program executicm. Note that 
since the size ofi an array is part ofi its definition, two array types are identical only if their 
coliresponcliing incl.ex types have the same cardinality. 

The reserved woFd PACKED inclicates that the compiler is to compress data storage to min:imiie 
the numlDer of unusecl. 1Dytes betwee111 array elements. NDP Fascal' always aligns each element 
or an array oa the banmdary appFopriate to the componeat type, so the word PACKED has no 
effect. However, elements of packed arnays may nc~t be passed as VAR parameterrs to 
procedures or functions. 

Arrays defined with rn©Fe than one incl.ex are called multi-dirnensioJJ.1.al arrays. A multi .. 
dimensional array is equivalent to an array 0£ arrays. For example, the array definition 

array [r, s, t] of someType; 

is a syn0JJ.1.ym foF 

array [r] of array (s] of array [t] of someType; 

Array indexing is acc0m.plished by the use ofi subscripts. A subscript is any expression ofi a 
type that is assignment compatible with the iID.dex type of the array, and that evaluates to 0ne 
of the values of the index. 'Fhe inrlex may be any scalar except REAL, FLOAT, or DOUBt..E. Note 
that wfiile Pascal syntax allows the use ofi INTEGER as an index type, this would resNlt in any 
arFay too large to be implemented, so this tlsage is flagged as a compile time erroir. 

Arrays rnay be assignecl to an array variable 0:6 the same type. The :i;>redefined procedures PACK 
anrl1 UNPACK assign elernerots of one array to an0therr, while converting between packed and 
unpacked anray types. These rotltines are described in Chapter 10, 

EXAMPLE 1 

const 

type 

n = 10; m = 10; 

decision = (yes, no, maybe}; 
occurrence = O .. rnaxint; 
tl array (-127 .. 128] of real; 
t2 array [decision] of boolean; 
t3 array [char] of occurrence; 

NDP Pascal Reference Manual· 



34 4: Type Definitic!Jns 

type 

t4 array [O .. 1023, boo.lean] of integer; 
t5 array [integer] of char; 

complex = record re,.irn: real end; 
vector array [1 ... n] of complex; 
matrix= array [1 .. rn] of vector; 

EXAMPLE2 

type 
prefix (deka, hecto, kilo,. rnegas, giga, tera,. peta,. exa}; 

var 
multiple array [prefix] of real; 
subscript prefix; 

begin 
multiple [deka] ·- 10; 
multiple [hecto] . - 10.0; 
multiple [kilo] ·- 1000; 
for subscript := rnegas to exa do 

multiple [subscrip] :=multiple [predtsubscript)] * 1000; 

4.8 Record Types 
record type 

L(-PA_C_K_E_D-}J ~c_• _R_Ec_o_R_o __ H .... _f_i_e_ld_l_i_st___,H_E_ND __ )--. 

field list 

identifier type 

CASE identifier type identifier 

Figure 4-6 Syntax Diagram. fioii RECORD Type 

case list 

The RECORD type is Nsed to· define a: c0Mecti0n ofi heterogene0Ns compcme:rnts. 'Fhe compo:aents, 
which are callecl recoFcls, c0asist ofi elemeBts that may be ofi diftfez;ent types. The elements 
within a rec0Fd are called f!ielcls. 

4.8.1 Accessing a Field 
The scope of icdentifiers used in a rec0rrcd' is the RECORD type. Hence, the field names must be 
unique throNghout the Iiecolid, including the variant part if oae is present. This all0ws any field 
in a Iiecord to be accessecl. by using the name of the fielt\t 

NOP Pascal Reference Manua/1 



u 

I . v 

4 Type Definitifc;ms 35 

4.8.2 The Fixed Part 

A RECORD type is a template for a data structure consisting of two parts: the fixed part and the 
variant part. The fixed part is comp0sed ofi :fielcls that will occur in every variabl!e ofi the RECORD 
type. The variant part is composed of fieleds which may 0r may not oe present in every variable 
of the RECORD type~ The fixed part ofi a RECORD type, if present, must always pFecede the variant 
part. 

4.8.3 The Variant Part 

Tfue variant pan ofi a RECORD type allows the structure to depencl, upon the type of data stoFed 
in a particular variable ofl the recoITd. An instance ofi a variant recolid may oaly assume one 
variant at a time. 'Fhe diffeITemt recoFd variants are discriminated by using a tag fiekl. 

The tag fielcl1 is a scalar value that indicates the structure of a RECORD type, i:.e .• it shows which 
variant is active. The tagfieled may be defined in oroe ofJ tnree ways: 

l. The tag fielcl: is an identifier within the fixed part of the RECORD type. Refierences to the tag 
fielcl have the form: 

x : integer; 

case x: of; 

2. The tag, fielcl 1 is an identifier defined within a case statemeat marking the beginniag of the 
variant pan ofl tfue RECORD type. 

case x : integer of 

3. 'Fhe tag :t:ield is n©t pFesent "but is implied by the preser:ice of a type ider:itifler witlhin the case 
statememt :marking, the beginning, of the variant part. 0£ the Fecord. FoF example: 

case tl of 

4.8.4 Packed Records 

The fTiel<ds in a record are assigned ofifsets secp1e:m.tially by padcding wherre r:iecessary to achieve 
the required bounfilaiy alignment. NDP Pascal allows a packed FecoFd to be passed to a 
procefilure oF :Cunctioa. altho1JJ.gh this is prrohibined by stanclard Pascal'. 

EXAMPLE 1 

This example illustFates £ixed RECORD types: 

const 
teaml 
namel 

type 
grass 

'Boston Red Sox 
'Fenway Park 

{artificial, natural); 

Ii 

home_run record 

stadium 

left real; 
center real; 
right real;, 

end; 

record 
team 
name 
surf ace 
capacity 

array [ 1 .. 3 0.) of char; 
array [ 1 .. 30) of char; 
grass; 
integer; 

NDP Pascal: Referenee Manual 



36 4 7Type Definitfons 

var 

distance home_run; 
end; 

park : stadium; 

begin 
park.team 
park.name 
park.surface 

.- teaml; 

.- namel; 

.- natural; 
park.capacity 
park.distance.If 

. - 33583 

·- 315; 
park.distance.center .- 420; 
park.distance.rf .- 302 

EXAMPLE 2 

This example illustrates a variant recoFdi. 'Fhe tag fiel~l is the type i<llentifier, TIME: 

type 
time = (daytime, evening) 
rating record 

case time of 
daytime (drama integer; 

quiz integer; 
other integer ) ; 

evening (informational integer;, 
general_drama integer; 
susp_myster integer; 
sitcom_comedy integer; 
feature_film integer ) i 

end; 

4.9 Pointer Type 
Pointer type 

type identifier 

Figui,re 4-7 Syntax ]j)iagram., fc>F Pointer 'type 

The p0interr type is de110ted by the caret symb0I: (A} 0:r:- by the "c0Nl.Nlercial at" symb0l' (1@l. Either 
syml:i>0l1 may be used depending 11p0H availability om.· the keyboarrd and programmer's 
p:referemce. 

A p0inter is a vru:iable iliat ccmtains a memc;>ry address. Pointers are used in Pascal to· referenee 
variables that are created dtlring :p>rogFam exeeuti0in. Variables createcd in sNch a manfler are 
called dynamic variables. ID)7Bamic variables are all0cated and deall0cated by the pFedefined 
procedures NEW anal DISPOSE, whicfu are descrifued in Ch@..pter 1©. 

The p0inter type is design.ed no point to a variable that will be cFeated by the functio:n NEW. The 
funetli©n NEW all0cates space fbr a variable of a specified type, and returns a p0int:er to its 
mem©i;y locati0m. 

NDP Pascal Reference Manua/1 

u 

: ) 
'\..._,,) 



u 

4' Type Definitions 37 

Pointers are mot interchangeable aml are constrained to p0int to the type foF whieh they were 
declar;ed. 'Fhe p0interr decla.rati0:n indicates the type to which the pointer variable may refer. 
'Fhe dynamie variable createcd1 by NEW wiU p0int to the same type as its argument. 
JDascal pli<Dvicdes the named coastant NIL to re£er to tne ernptiy p0inter. NIL is the value ofi a 
p0inter that has n©t been assigned a value, and is compatible with every p0inter type. 

4.9.1 Operations on Pointers 
Pointer- ty]>es may be testecl for equality o:u inequality as the table bel©w shows. Listed are the 
operators aliowed 0n p©inteF variables. 

Symbol Usage Result type Description 

= x = y 

<> x <> y 

BOOLEAN 

BOOLEAN 

Compares for x equal' to y. Tests if x and y point to 
the same data item. 

Compares foF x non equal to y. Tests if x aml y 
}D0int to diffeFent datia itlems. 

Fainters cann0t be used to access incdividual elements ofi an array. string, or as an array 
subscript. 

EXAMPLE 

This example illustrates recu:rsive data types using p0inteFs: 

typ.e 

var 

cell record 

end; 

element real; 
next_cell : Acell; 

node record 
element : real; 
leftchild~ rightchild Anode; 

end; 

dictionary array [O .. 1023] of Acell; 

tree "node; 

4.1 O File Type 
file type 

FILE 

PACKED 

A linked list 

A 2-3 tree 

type 

Figure 4-8 Syntax :Diagram for; FHe 1rype 

The file type is usecl to\ prnvide :flor data persistenee after a program has ended. The file type 
defines a c0llecti0n ofi recor:-ds wfuere each record is of the same type. All inptlt and outpl!lt in 
Pascal requires use of the file type. 

Variables of the file type refeFenee recoirds from the file with p0inters called buffer variables or 
file pointers. The declaration of a file variable t with type T includes the implicit declarati0n ofl 

N[J)P Pascal' Reference Manual 



38 4, Type /JJefinitions 

a buffer varialDle ofi type T. The buff er variable is dem0ted f" and references the host operating 
system's inp'l!lt and Ollltput lDutrfers. 

Files are accessed tb.Fo'l!lgh the foll(l)wing predefaned functiom.s and procedures. See Chaptier 10 U 
for details ofi these roHtines. 

Function 
EOF { f) 

Description 
returns TRUE if file f is at end crf file 

Procedure 
GET { f} 

PWT {f} 

READ { f, v) 

RESET { f, s} 

REWRITE { f 11 s} 

WRITE (f, e} 

Description 
advances buffer variable f" to the next component of input file f 
advances buffe:u variable f A to the uext component ofi output file f 
reads data from file f into varialMe v end of line oa file f. 
O:LDens a file foF input 
opens a file foIT oNtpNt 
write the value ofi e to) file f 

The fol1mwing FesUI:ictue>ns apwly to the :Cile type: 

1. the file type must be passed by VAR to a p:rocedure e>F fumctiom:; 
2. a file may not be ce>ntained within ane>tfuer file. 

Note that while it is legal: to: pack a file ty]>e. this has no effect oa the file's storage 
requirements. 

4.10.1 Predefined File Type TEXT 

Pascal' ]>rc>vicles the predefiined file type TEXT. A fale of type TEXF is called a textfile and is used 
to stoire data in characte:r: format. 'Fextfiles contain marke:us u.sed to delimit the character data 
into lines, whicfu improves readability :W the :file is viewed in p:uinteal f0Fm. 'Fextfiles imply that 
the internal repFesentatie>n ofi the data wiH be camvened to and fr0m cfuaracter foFmat when the 
file is accessed. For example~ whe11 a pFOgrram writes a real n:w.m.be:u to a textfile. the WRITE \...) 
procedure first conveFts th,e number to its charactei; equivale:at, which is then transflewed to1 

the file. Similarly. a READ 0peratiam coID.verts the cfuaracter data into the form.1 appropriate to the 
receiving variable's type. 

The:ue are two, ]>Fedefiined textfiles. INPUT aml OUTPUT, which have the following definitio:a: 

VAR INPUT, OUTPUT : TEXT; 

The INPUT and OUTPUT fTiles a.r:-e u.sed as defia"Lilts by the predefined I/0' fa1m.cti0ns and 
pi:ocedtlres. Whe11 the f!ih~ name is 0mitted from. c;me 0£ the predefined input ©F Ol!ltput roatines. 
then the file INPUT OF OUT PUT iis. assurned. 

A textfile is a special case ©fT a file. The piredefined procedures and functi0ns that owerate 0a 
files OJDerate 011l.1 text£iles in the same way with the foll0wing single exception. The GET procedure 
returns a space (!OF blank): character wh 1en tfue encl ofT line marker is enc0untered in a textfTile. 
Additional roNtines are defiined in Pascal to owerate 0n textfiles and deal specifieaHy with the 
end e>fi line marker. See Cliwtpver JG):fou details om these Fo1.11tines. 

Function 
EOLN {f) 

Procedure 
PAGE (f) 

READLN (f} 

WRITELN {Ce} 

EXAMPLE 

type 

Description 
i::eturns TRUE if textfile f is at the end of line 

Descr:iption 
writes an ASCII form feecl t© textfile f 
Fead data from textfile f into variable v, then advances to end of line on f 
w:Iites the value ofi e followed by an encl ofT llhe marke:rr to textfile f 

long_name = array [ 1 ... 1024] of char; 
short_name = array (1 .. 32) of char; 

NDP · Pasc;a/1 Reference Man ua/1 

u 



u 

4 Type DeNnit:iC!Jns 

books file of record 
title long_name; 
author short _name; 
publish short _name; 
date integer; 
inPrint boolean; 
ISBN array [1 .. 13] of 
price real; 

end; 

production = file of record 
oats, peas,. beans, barley 

end; 

4.11 Packed and Unpacked Types 

39 

char; 

float; 

The purp0se 0f the packed data type is to cause the compile:u to sto:ue data in as compact a 
form as ]>©ssible. Th 1e kdea ofi packed and l:mpaeked data types stems from the two ways in 
whicn data, particlil.farly chara<I!ter data. can be starred on computers. 

For example, an anray ofi characters can lDe sto:ued in consecutive w0rds in memo:uy. In 
unpackedi forrmat ofle character is stoFed at eaeh mem©ry address while in packed forrmat as 
many characters as possible are sto:rred at each address. This dichotomy is an issue in 
computers lacking oyte ad<dressing wheire accessing a character in a packed array requires a 
sequence 0f sb.:Wting and masking inst:uueti©ns. The CDC 6600, upom. whieh Niklaus Wirth 
implemented an early versi0l1l ofi Pascal, was ofi this type. 

'Fhe existence ofi tltese tw0 fonnats had a smaH influe:mce il1l the design ofT the Pascal language. 
flotably in rules rega:uding the ]>assing ofi ]>acked types as parameters to procedures or 
functicms. As merotioned in the appropriate secti0Ns, these rules have remained in NDP Pascal 
in order to confOlTlil· with the standard. Packing is a property of data in Pascal' that is reflected 
in the data declaratioB o:u type definition. Every data or type definition. may be p:uefixed with the 
keyword PACKED. As such, packing, is co:m.si<lle:ued in th.e rules fo;r; type compatibility. A packed 
type is n.0t the same as its Nnpacked cot:mterpart. Hence a packed type may ncot be assigned to 
an unpacked type, either i!fil an assignme:m.t statement, Oii throNgh para:meteF transr.nissio:m.'. 

'Fhe predefined pFocedur;es PACK and UNPACK are used to converil lmpacked; data to packed 
form, ancl vice verrsa. Data cann0tJ be packed by using a type definition of the fiorm: 

type 
T = someType; 
packedT = PACKED T; 

Wh.ile packing, is a charactenstic of a type definition, knowledge of the internal details ofi a 
paeked struch1re is co:m.side:ued a vie>lation ofi data abstraetion. For example. it should De>t be 
aecessacy for a pITe>grarn to kl10w the internal represeDtJatie>R of a packecl. an-ay ofi reals in order 
to w0rk cowectly. 'Fhis als0 woNld have a severe impact on the p0rtability of pirograms. 'Fhis 
situation ru:ises when a prrocedure OF function has a variable parameter. 

The 0Be situati0n where knowledge ofi the re]>reseatatio:n ofi a packed structure wcmlrl be 
required in a p:uog:mm has been explicitly ruled out in Paseal to prevent any vi0latiom. ofi data 
abstraction or incle:wem.dence. 'Fhe rule is that a comp0nent of a packed structure cannot be 
passed as a variable ]>arametet" to a p:uocedure or functi0B. 11'he foll©wing is an example ofi this: 

pro.gram simple {output); 
{ This program. illustrates passing a packed actual parameter 
{ to a variable formal parameter, ... which is illegal. 

NDP Pases/Reference Manua/r 



40 

procedure add (var i: integer}; 
begin 

end; 

var 

i := i + l; 

a: packed record 
i,j: integer; 

end; 

begin 
a,i .- 5; 
add (a,.i); 

end. 

4' Type Definitions 

Notice, howeve:rr, that a cornpoDent 0f a paeked structure can be passed to a VALUE paramete:u. 
This is because data in the call!ing rolllt!ine cioes not get upciated, so knowledge o:f the internal: 
repr;esentati0H of a packed structlilre is n0t necessary. Since the ]>redefined p:uocedures and, 
functions in NDP Pascal are all VALUE parameteus, the actual l)ararneters to these rol;ltihes may 
be co:rnp0m.ent.s of ]>0.cked: structures. 

NDP Pascal Referenr;e Manua/1 

! \ v 



u 5 I Variables 
I 

Identifiers den0ting1 variables may refleF to: 

H the entire variable, 
2} a comp0nent o:fi the variable, or 
3) a variable referenced by a p0inter. 

In each case~ the variable's type shows how it may Tue referemced. 

5.1 Entire variables 
When a variabl'e's name is used, it refers to the enttlre variable~ Array, record and set variables 
may be treatecd as units in this manner. 

EXAMPLE 

type 

var 

palette 
color 
nametyp 

(black, blue, green, red, white); 
set of palette; 
array [ 1 .. 3 O.] of char; 

occupation = (tinker, tailor, soldier, spy); 
applicant = record 

surname : nametyp ;. 
field occupation; 
available : boolean; 

end; 

namel, name2 : nametyp; 
huel, hue2 :. color; 
apprenticel, apprentice2 applicant; 

begin 

name2 . - name 1 ;I 

hue2 .- huel 

apprentice2 .- apprenticel; 

5.2 Component Variables 
A compe>nent variable is used to aecess an element of an array, reeo:ud, o:rr file. The variable's 
type incdicates the syntax to be used to, specify the comp0nent. An ar:rray element is accessed by 
an inclexed variable, a i:ecord component is accessed by a fielal designator, and a record in a file 
is accessed by the file's b11ffer variable oi: file pointei:. 

5.2.1 Indexed Variables 

A c0mpcment ofl an array is selected by specnying an index for the c0mp0nent. The index must 
appear enclosed in square braekets after the array name. The index is any expFession that is 
assignment compatible witfu the index type specified in the array decla:uati0n. 



42 
5 Variables 

Multi-dimensia>mal arrays may be rrefier:emced in 0ne 0£ trw0 ways: 
1. By separating eaeh index with, a ccmnma, aml plMing tfuis llist withi:n one set of squar:-e b:Fackets. OF 

2. listing each index 0ne after another, each index enclosed in its own set o:C brackets. 
Fo:rr example. a [ i, j ,. kl may be writte:n in the fiolil11 a [ i] [ j ] [ k] . 

EXAMPLE 1 

type 
prefix (deka,. hecto, kilo, megas, giga, tera, peta, exz); 

var 
multiple 
subscript 

begin 
multiple 
multiple 
multiple 

array [pref ix] of real; 
pref ix; 

[dekaJ .- 10; 
[hecto.] .- 100; 
[kilo] .- 1000; 

for subscript := megas to exa do 
multiple [subscript] :=multiple [pred9subscript)J * 1000; 

EXAMPLE2 

var 
a array [1 .. n] of real; 
d real; 

begin 
d . - a [ 1,.1] * a [ 2, 2] - a [ 1, 2] * a [ 2, 1) ; 

5.2.2 Field Designators 
A field of a recoFd is den0ted by the rrecord variable foll0wed Tuy the fiekl name separated by a pe:ri0cl.:. 

EXAMPLE 

const 
teamY 
nameY 

type 

'New York Yankees 
'Yankee Stadium 

grass = {artificial, naturalO; 
home_run record 

left real; 
center real; 
right real; 

end;/ 

s30 =packed array [1 .. 30] of char; 
stadium = record 

team s30; 
name 
surf ace 
capacity 
distance 

end; 

NDP Pascal Reference Manual' 

s30; 
grass; 
integer; 
home_run; 

I j 

I• 
I 

' \ 



( 
l I 

\..._/ 

( 1 v 

5 Variables 

procedure copy3 0 (var d: s3 O; s: s3 0.) ; 
{ Utility routine to copy source s to destination d. } 
var i: integer; 

begin for i:= 1 to 30 do d[i] :=s[i] end; 

var 
park : stadium;, 

begin 

copy30 (park. team, teamY) ; 
copy30 (park.name, nameY); 
park.surface := natural; 
park.capacity := 57545; 
park.distance.left :=312.0; 
park. distance. center: =410. O.; 
park.distance.right :=310.0; 

5.2.3 File Refere_ncing 

43 

There are two ways to, access data within a file. One way is to use the file's buffeF variable ancl 
the predefined GET and PUT p:uocedures to access the host OIDerating system's file buffer. The 
other way is to· use the prede:fiined procedures, READ, READLN, WRITE, and WRITELN. This seetio:a 
briefly describes how to access a file with the p:rredefined GET ancd· PUT proceclures. 

Variables 0£ the file type referemce records from the file with p0inters called buffer variables OF 
file f>ointeFs. The dedarati0n 

var f file of T 

declares the file variable f witll type T ancd includes the implicit declaration of a buffer variable 
of type T. 'Fhe l~rwJfeF variable is denoted f". 

The buffer variable points to, the current reeoFd in the file~ ancl is accessed using the notatio:a 
r·. The buffer variable may be used as an ordinary Pascal variable in an assignment statement 
or passed as a pararneteu to a procedure or function. FoF example, if itemT is a variable of type 
T, th.en the cmrrent Fecrnrd of fil:e f is accessed with the assignment statement: 

i temT : = f"'; 

The prede£ined pFocedu.res GET anc:r. PUT Nse the 1Duff er variable to ITead and write to ftles. The 
PUT procedure takes data pointed to by the b'lrlieir variable and appends it to the file. The GET 
procedure advances the CNrrent file positicrm to the next component ancl copies the value of the 
component to the buffer variable. 

5.3 Pointer Referencing 
The NEW procedure returns a pointer to a newly created variable. This pointer must be stored in 
a pointe:u variable. Either the p0intler vartable. o:u the dynamic variable to which it poi:ats. may 
he referenced. Tl1le pomter variable is accessed using its name. and the dynamic variable is 
accessed by appencding an up arrow ( "l to the p0iuter variable. For example. with the following 
declarations: 

type 
t {some type definition} 

var 
p, q: At; 

the:a execLitio:a, of the statement 

NEW (p); 

NDP Pasca/1 Reference Manual 



5 Variables 

all0cates a dynamic vartabl~ of type t, and assig:as its address top. The pointe:rr variable pt is 
b0uncl to a dynamic variable ofl type t, and pt" den0tes the dynamic variable. 
EXAMPLE 1 

The foH0wing tw© uses o:f :r;>0inte:u varial:Dles are HlegaJ: ancl, woNld result in a type mismatch 
compilati0n ewo:r. 

typ.e tl = integer; 
var p, q :. "'t 1 ; 

begin 
new (q}; 

q" := 123; 
p := q; 

p" .- 456; 
p"' := q"'; 

EXAMPLE 2 

type tl = integer i1 

var p ,. q : "t 1 ; 

begin 

q po.ints to the integer 123 } 
p now points to what q points to, 
p and q both point to the same item 

q points to the integer 456 } 
what p points to is replaced by what q points to, 
so 456 is replaced by 123. 

new (q}; 
p .- q"'; 
p"' := q; 

type mismatch, p is a pointer type and q" is an integer 
type mismatch, q is a pointer type and p" is an integer 

NDP Pascal Reference Manua/1 

. \ v 

\_) 



u 6 Expressions 

simple expression 

term 

term 

expression 

simple expression 
{ ) 

\_.) 
Figure 5,... l! Syntax !Diagrams fior FactoF and 'Ferm 

u 



46 
6 Expressiens 

factor 

unsigned constant t-------------r_. 

1----- function identifier expression 

factor 1-----------

expression expression 

term~----. 

factor 

factor 

Fig11re 6-2 Syntax Diagrams fo:rr Simple JExpressi0n and Expressi0n 

6.1 Operators 
Expressions pemnitJ. the evaluati©a o:ff rnatfuernatical fo:rrmulas using c0nstants, variables, and operators. The operato:us in Fascal are divided into, four groups according to their evaluaticm precedemce: 

1) the not OJ)eratoF, 
2) the multiplying operatoFs, 
3), the adcling operators, 
4) the relatiCmal opeFators. 

where (1) has the highest pri0Fity or ]>recedence aml (14} the fo>west. An expressi0:a is evaluated by performing the operato:rrs with the highest precedence first. then those with the next highest precedence, and so on. When operatoFs 0£ equal precedence occur togetheF, they are evaluated from the left to the right. Parentheses may be used to alter the evaltiation c>Irder since 
exp:ressions within parentheses are evaluated first. 
The Pascal standard states that no assumptions may be made regarding the order in which operands are evaluated within an eX]>ressi0n., other than the ab0ve precedence rules. Hence programs that rely on a left to right, OF right to left. evah:iation o:rrder ofT the O!Derancls in an 
expFession. are ili'egal. 

Note that some 10gical o'{DeITato:rrs are at the same level o:D precedence as arithmetic operators. For example, boolean "ancl" has the same prrecedence as arithmetic multiIJ>lications. anal boolean "or" has the same f>Fecedence With arithmetic addition. This is distinctly unlike the precedence levels defined in other programming languages. 
The foH0wing tables list the four groups ofi opeITators. in decreasing order of precedence. 

NOP Pascal Reference Manua/1 

l v 



\ ' 

~ 

6 Expressi(J)ns 

The Not Operator 
b00lean n0t 
one's cCDmplerneiil.t 
set complemeritl 

Multiplying Operators 
* multiplication 
* set inteFsecti0n 
I real division 
div integer divisi0m 
mod integer rernaimd.er 
& boolean ancrl' 
& 10gica1 aml 
< < l©gical left shift 
>> l©gical right shift 

Adding operator:s 
+ ad.cliticm OF unary i:>lus 
+ set limi0n 

subtlracti0n or u 1mary negation 
set crliffeFence 
b0olean OF 
logieal' or 

The Relational operators 
= compares equal 
<> compares not equal 
< compares less than 
<= 
<= 
> 

compares < OF = 
set subset 
compares greateF 

>= compares > o:u = 
>= set su 1peFset 
in set membership 

6.2 Boolean Expressions 

47 

This secti0n :(:>resents two p0intls of cauti0n. regarding the evaluati0n ofi Bo0lean expressions. The first is that the Bo0lean OIDerators have a higher pFecedenee than the relati0nal operators. 
and secomd:, that op1limiZatio11s IDerformed during the evaluati0m. of B©olean expressions may preclude some parts of the expressi011 from being evah1ated. 
The order of evaluati0n of expressi0ns mvolving BOOLEAN and RELATIONAL terms may n0t be intuitive. Since "or" has a higher p:uecedence than"=", the fol10wing exp:ressiom.: 

x = y or u = v 

will be evaluated as 

( x = (y or u) ) = v 

andn0t as 

( x = y) or ( u = v) 

'Fhe evaluati©n 0f B00lean eXJDITessi0ns is optimized to avoicl' evaluating an o]>eFand if the result can be dete:umined with0ut d©ing so:. For example. in the expressiOiil.' 
x := y or z 

N{J)P Pascaf Reference Manual 



48 6 Expressions 

if y is true, theFe is m0. meed t01 evaluate z. When an expFessi0m involves funcr:ti0ns, that functicm 
may n0t be evaluatecii. F0F instance, in the exprressi0m 

x := y or f(z) 

if y is true, theFe is :a0 :aeed to evaluate f ( z) . It is dangex0us to rely on side effects from 
functi0ns in expressi0ns stn.ce these foncti0ns :may n©t be evaluated. 

6.3 Function Call 
A functi0n Feturns a vah1e at that p0int in an expressiom where it was invoked. The parameteFs 
in the functi0n call mu.st match the number and type 0f the parameters in the functi0n 
declarati0n. 11'he actual parameteFs must be assignment compatible with the fo:urnal 
parameters. 

A field ofi a packed recoFd 0F an element of a packed anray cann0t be i;>assed as a VAR 
parameters to a functicim. 

EXAMPLES 

y := A*sin { w.*t +phase* sin (f*t) ); 
t : = sqrt { {sqrt Cr) · - 1) I (sqrt ( r) + 1) ) ; 

6.4 Set Constructor 
Set constructor 

expression expression 

Figure 5 .. 3 Syntax Diagram for Set Ccmstructor 
A set constJJ1Jlct0r is oae or m<DFe elements 0f a set enclbsed in square b:rnckets. 
Each elememt in. a set constnicto:r: is eiu:her an expJ:essiom, 0F a pair of expressi0ns separated by 
two dots. All' expression.s must be of the same type and in ilie base type of the set. The pair ofi 
expression.s rep:resent the l©wer and upi;>er bounds ofi a Fange of elements in the base type. An 
element of a set cann0t be a set. 

If the value of the fil:st expFessio:n is greaterr than the value of the sec0ncl expressi0H, then 
[expression .. express.ion] den0tes the empty set. 

If the base type is INTEGER, theiil the laFgest set: c0Iiltains 32 elements by default, OF 256 
elements if tfue appzropnate compiler switch is used. Foli m01re informati©lil· cm NDP Pascal's 
compiler switches, refer to the NDPUser: Manual. 

EXAMPLES 

const 

type 

var 

etc= 'et cetera'; 

months = set of ( jan, f eb, mar, apr, may, jun, 
jul, aug, sep, oct, nov, dee); 

vacation months; 

NDP Pas<:a/1 Referenee Manua/1 

;'~ 



I u 

6 Expressions 

p, q 

a, b, C,1 S 

boolean; 
real; 

+- - - - - - -+ 
factors 

+- - - - - - -+ 
365 

a 
etc 
[jun .. aug, jan] 
(b*b - 4.0 * a * c) 
sqrt ( s * (s-a) * (s-b) * (s-c) ) 
not q 
not (p and q) 

+- - - + 

terms 
+- - - - - + 
a + b mod c 
{not p) and (not q) 
a*a 
sqrt((b*b - 4.0*a*c)) I (a+a) 
[jan .. aug] * [jun .. dee] 

+- - - - - - - - - - - - + 
simple expressions 

+- - - - - - - - - - - - + 
{p and q) or (not p and not q) 
a*a + b*b· 
-b + sqrt ( {b*b - 4.0*a*c)) I 

+- - - - - - - - -+ 
expressions 

+- - - - -+ 
b*b => 4.~ * a * c 
p. = q 

vacation in [jun .. aug, jan] 

{a+a) 

49 

NDP Pascal Reference Manual 





u 

u 

u 

7 Statements 

7.1 Statement Summary 
statement label 

assignment statement 

case statement 

compound statement 

empty statement 

for statement 

goto statement 

if statement 

procedure call 

repeat statement 

while statement 

with. statement 

Figure 1- l SyntJax IDiagram fo:rr Statement 
The above syntax diagram summarizes the statem<mts available in NDP Pascal. Each statement 
is described in detail 1 in a secti©n. ofT this ehapteF. 

7.2 The ASSIGNMENT Statement 
Assignment statement 

variable expression 

function identifier 

FigtJ.re T-2 Syntax Diagram for Assignment Statement 
The assignment statement assigas the value ofi an expressi©n to a variable or to a functi0n 
identifier. The variable OF iclentifier. and the exp:rressicm, must be assignment compatible.1."ype 
c0m.patibi!lH.y is desc:uibed in Sec:ti<I>rv 4.2'. 

The assignment statement I>eliinits emtire arrays o:rr :recoi;ds to be assigried. 



52 
7 Statements 

EXAMPLES 

centigrade .- {fahrenheit - 32.0) I 1.8; 
E . - m * c*c; 

done .- abs {X-y) < epsilon; 

7 .. 3 The CASE Statement 
case list 

constant statement 

case statement 

expression case list statement 

Figure 7 -3 Syntax IDiagrams for CASE List and CASE Statememt 
stateme:ro.tThe case statement prrovides a mw.ltiple brranch capability based up0m. the result of an exp:rressi0n. The case stateme:ro.t consists of an expFessio:n foH©wed t>y a list o:tr statements. The 
expressicm is called the selector. and must evaluate to any scalar type except REAL. The list ofi 
statements is prefixed by one Oli more values of the selector type. se]>aratecl 1Dy commas. These 
values are call.eel the case labels. 

NDP Pascal: evaluates the ·selector and then transfiers coBtrol to the stateme:nt witlw the 
correspomding case label, or to the OTHERWISE clause if it is present anm; no case labels match 
the value ofi the selector. 

The case labels may appear in1 any order, bHt they may only be listed once in a single case 
statement. 1£ Ho case labeI1 equals the vah1e ofi the expFessi0n. and the otherwise clause is not 
present, then the statement following the case statement is executed. 
EXAMPLE 1 

type 
solid {cylinder, sphere, prism, cone); 

var 
shape : solid 

case shape of 
cylinder 
sphere 
prism 
cone 

end; 

EXAMPLE 2 

var 

I . - mass * ( r* r} I 2. 0; 
I ·- 2 .. 0 *mass * {r*r} I 5.0; 
I .- ( a*a + b*b) I 12.0; 
I • - 3 . O * mass * { r* r) I 1 O • O ; 

age : integer 

case age of 

NDP Pascaf ReferP-naP- M,;m11::;i/1 



u 

7 Statementis 

1 

2 

3,4,5 

6 .. 11 
12,,13,14 

15 .. 18 

otherwise 

end; 

infant; 
toddler; 
preschool; 
elementary; 
juniorHigh; 
highSchool; 

begin getUp; work; sleep end 

7.4 The COMPOUND Statement 
COMPOUND Statement 

BEGIN .___st_a_t_em_e_n_t _ _:-....--8-

Figure 7-4 Syntax Diagram. fo:u COMPOUND Statement 

53 

The COMPOUND statem.eat groHps several statements into a single statement. The resewed 
woirds "begin" aml .. end" are used to b11acket a series of statements that are to be executed 
sequentially. The statemelilts within the compound statement are separated by semic0lons. 
The body of a Pascal Ji>Togram, procedure, or functicm consists o:ff a single compoancl statement. 
EXAMPLE 1 

begin t:=a[i]; a[i] :=b[j]; b[j] :=tend; 

EXAMPLE2 

const 
m {some integer constant} 
n {some integer constant} 

var 
a array [1 .. m+l] of integer; 
b array [1 .. n+l] of integer 
c array [1 .. m+n] of integer; 
i I j I k : integer; 

begin 
{ this fragment merges the two sorted arrays a and b into c } 
i : = 1 i. j : = 1 j 
a[m+l] := maxint; b[n+l] .- maxint; 
for k := 1 to m+n do 
if a[i] < a[j] 

then begin c[k] :=a[i]; i:=i+l end 
else begin c[k] :=b[j]; j:=j+l end; 

NDP Pas<:al Reference Manual 



7 Statements 

7.5 The EMPTY Statement 
EMPTY statement 

Figure 7-5 Syntax :Diagram for EMPTY Statemel'lt 
The EMPTY statement is a statement that does not do anything. It consists of n0 symb0ls and 
has n0 effect Oiil the executi(J)fl. ofi a program. Tfue EMPTY stateme:at seives mainly as a 
c0nve!llence in many pFogramm!ing situations. The foll0wing are typical uses o:f the EMPTY 
statement: 

1) as a place holcler for a labeli, 
2) to· a110w the existence ofi extra sennc0lcms in a program, 
3)~ to simplify the coding of certain IF co:mstructs. 

The blank spaces in the following examples are the statement separators. The EMPTY statement 
has zei:-olength. 

EXAMPLE 1 

The EMPTY statement allows ccmtrol; to be transfenred to the end of a compcnmd statement. 

begin 

goto 99; 

99: {empty statement} 
end; 

EXAMPLE 2 

The EMPTY statement foll©wing· the assignmem.t "c: =3" allows tile semicolon to be used where 
ncit necessacy. This :wrovicles cocding symmetry ancd eases modiflication. 

begin 
a ·- 1 i 
b . - 2; 
c ··- 3; 

end; 

EXAMPLE3 

'Fhe following IF statement can be rewritten in a foli!n that avoids negative logic 11sing the 
EMPTY statement. 'Fhe statement: 

if not el then sl 
else 

if e2 then s2; 

may be :rewritten as the foll@win.g1
: 

if el then 
if e2 then s2 

else 
{ empty statement 

else 
sl; 

NOP' Pasc;af Reference Manua/1 

u 



u 

( 
"'-"' 

7 Statements 55 

7.6 The FOR Statement 
FOR statement 

DOWNTO 

variable expression expression 

statement 

Figure 7-6 S)Tfiltax IDiagFam of FOR Stlatement 
The FOR stlatlernent repeatedly executes a statement while a progressi0H of values is assigned: to 
a variable, called the cont.rol1 variable ofi the FOR statemen.t. 

The initial a.Bd final values of the comt:rol variable are determined omce, when the FOR statement 
begins executfom. 

The FOR statement fuas tw0 forms: one where the c0ntrol variable increases in value and one 
where it decreases in valae. These fom:ns are distinguished by the reserved words TO aml 
DOWNTO. Fe>ir example~ the comtml: variable named cv increases in the foFIIl.: 

for cv := init to final do strnt; 

and decreases il111 the f0:rrrn: 

for cv := init downto final do strnt; 

Here are the na1es gove11ning coro.trnl variables iiil. FOR statememts: 
11. The c0Btr0l1 variable m11st be a scaler type. ancl: be assigmnemt compatible with the iaitial 

ancl. final expFessioms. 

2. The co:rot1rol1 variable must be the entire variable, not an element of a struct11re, subscripted, 
:t:ield qualifiecl or :ueferenced th.rnta.gh a pointer. The cont:rrol variable can lDe a value 
parameter in a functi0n or SlllbFoLitine, lDtit cam.not 1De a variable (i\!AR) parameter. 

3. The c0Rtr0l1 varialDle must be within the scope ofi tlhe FOR stateme11t. 
4. The contr0l: val1i.abl'e may n0t be alterred in the body ofi the FOR statement. 
5. The vah1e ofi the co11tro1: variable is consiclered Lindefined after th:e FOR statement. 

Programs shollllcl: me>t depend uwom the final value of any FOR statement control variable. 
The cont:rroli varialDle serves as a councer, and: is incre:rnented with true succ functi0n or 
decrem.ero.ted with the PRED funetion at the encl ofi ea<1!h FOR iterati<Dn. The pF0gression ofi values 
assigped to, the control: variable begins witlti the value ofi the first ex]>ression. and ends with the 
value of7 the sec0Nm: expFessiom. 

Executi0:n ofi the FOR statement proceeds by evah1ating the two1 component expressions ancl 
then initializing' the control1

, vartable. The value of the cont.Fol variable is tested befone the 
execut.i0:ro of the comp0Iilent statement. If the coiiltroli variable is increasing in value. then the 
comp0nent statemem.t is executed if the ccmtro11 variable is less th.an 0rr equal to its final value. 
If the com.trol1 variable is decITeasing in valu,e, then tfie compcment statement is executed if the 
control: variabl'e is greater than or equal' to its fanal value. 

control variable FOR terminates when 
inc:rreasing' ('To), 
decreasing (DOWNTO) 

control variable > final value 
c0mtr0l variabl'e < final value 

Tfue compo!I.ilent statememt wiH n0t be execNted at all i£ the initial value is greate:rr than the final 
value in the ascenclting case, or ifi the initial value is less than the final value in the descencling 
case. 

NDPPasca/cReference Manua/1 



56 7 Statements 

EXAMPLE 1 

This example evaluates an lil""th degree IDOlynomial coliltainecl in the anray poly usil'.1g Homer's 
methoGK Tfue collstant te:urn is in element 0 1

, and the coefficient 0£ the n--th tenn is m element n. 
var 

poly array [a .. n] of real~ 
i integer;, 

begin 
y . - po.ly [ n J ; 
for i := n-1 downto o do y .- x*y +poly [i]l 

EXAMPLE 2 

This cocle fragmelilt folil:ns the ])roduct of two n-th degree polynomial's. 

var 
pl, p2, product : array [0 .. n] of real; 
i, j : integer; 

begin 
for i:=O to 2*(n-l) do product [i] .- O; 
for i:=O to n-1 do 

for j:=O to n-1 do 
product [ i+j] : = product [i+j] + pl [i J *p2 [j J; 

EXAMPLE 3 

The following use ofl a variable IDararneter as a control; variable in a FOR statement is illegal. 
procedure setup (var i:integerl ch:char); 
var list : array [1 . .-10] of char; 
begin 

for i := 1 to 10 do list[i] := ch; 
end; 

7.7 The GOTO Statement 
GOTO statement 

----1 ... -( GOTO ]1-~ ---1 ... -1 unsigned integer+-! ---

Figure 7-7 Syntax Diagram foli GOTO Statement 

The GOTO stateme11t trransfet"s control: to the target labeE The label mHst be declared: within the 
routine that ccmtains the GOTO. Since the scoJi>e 0£ a label is tfue row.tine in which it is declared, 
it is n0t p0ssible tojump, into orr 011t ofl a procedure OF function. 

TheFe are several1 technical restLFicti0ris Oil the use of the GOTO staternerit that are ro11ghly 
equivalent to saying that jumping1 into a structu.red statement is :m.ot all0wed. Specifically, the 
following use ofi t:hle GOTO is illegal': 

1. Jumping into, a comp©l!lnd statement from Ol!ltsicle of the staternelilt. 

2. Jumping into, a FOR, REPEAT. 01.i WHILE loo:w from Ohltside of one of these l©OJ'.DS. 
3. Jumping into, a WITH statement. 

4. Jumping into: an IF statemelilt, or Jumping betweelil the THEN and ELSE portioas ofl the IF 
statement. 

NDP Pascal Referenc:e Mamual 

; ) 
\,.._,·~ 

u 

\ 
·~ 



7 Statements 
57 

5. Jumping iintc» a CASE statement, o:r between the alternatives of a CASE statement. 
EXAMPLE 

T'his example illt;tsti:ates the use 0£ tfue GOTO statemc:nt arnll may be rewritten with0ut the GOTO statement by using' an©11her variable as a flag~ 
con st 

n = 10; 

type 
tl =array [1 .. n] of integer; 

function common (a,/ b: tl) : boolean; 
{ Returns true if the arrays a and b have an element in common. }. 
label 99; 

var i, j : integer; 
result boolean; 

begin 
result := false; 
for i := 1 ton do 

for j := 1 to n do 
if a[i] = b[j] then begin 

result : = true; 
goto 99 
end; 

9 9: common . - result;, 
end; 

7.8 The IF Statement 
IF statement 

expre·ss ions statement statement 

Figuue. 7-8 Syntax Diaguam for IF Statement 
11'he IF statement all©ws 0ne of twm p0ssible statemer:its to be executed clepencling up0ia the 
ITesult 0fi a 1B0olean exprression. 1i'fue IF statement consists ofi a THEN clause, opti0nally folk>wed 
l:!>y an ELSE clause. Note that the:rre is ECD semicokm l:!>etweeE the first statement aml the 
keywoFd ELSE. 

If the Boolean- expFession evaluates to TRUE, then the staterneEt in the THEN clause is executed, 
anc!l the ELSE clause is skipIDed :if H.1 is present. 

If the Boolean expFessi0:u.t: evaluates to FALSE, theE the statement in the ELSE clause is 
executed and th 1e THEN clause is skipped. 

When two 1 IF statements are nested and theFe is only 0Ne ELSE clause, then the ELSE clause 
goes to th.e most Fecent tmrnatched IF (scanning textually backwards from the ELSE). 

For example, the statement: 

if el then sl if e2 then s2 else s3; 

is evaluated as 

if el then 
begin 

if e2 then s2 
else 

N{J)P' Pascal1 Reference Manual 



58 

s3 
end ; 

and n0t as 

if el then begin if e2 then s2 end 
else 

s3; 

EXAMPLE 

d := b*b - 4.0*a*c; 

if abs(d) < epsilon then begin 
xl.r .- -b I 2.0*a; 
x2.r := xl.r 
end 

else if d > O then begin 
xl.r .- (-b + sqrt(d)) I 2.0*a; 
x2.r := (-b. - sqrt(d)) I 2.0*a 
end 

else begin 
xl.r .- -b I 2.0*a 
xl. i .- sqrt {-d); 

x2.r .- xl.r; 
x2.i .- -xl.i 
end; 

7.9 The PROCEDURE Statement 
Procedure call 

procedure identifier expression 

procedure identifier 

Figure 7-9 Syntax Diagram for Procedure Call Statement 

7 Statements 

'Fhe PROCEDURE stateme:at catlses the lilamed :uoutine to1 be executed ancl, colilt:rrol rretumecl to the 
statement folfowing the call. 'Fhe arguments supIDlied by the calling rroHtine are called the 
actual parameters, while the parameters in the procedure declaration are called the fo:nnal 
parameters. 'Fhe numfuer o:f actual: parameters must eql:lal the number 0£ foliIIl.al parameters. If 
present. actual parameters are substituted for the fo:umal parameters in tne order in whicn 
they occur. The first actual' parameter is matched with the firrst fo:urnal parametel.i, and s0 om.. 
The ach1al' parameters must be assignment compatible with the colirespcmcling fo:nnal 
parameters. 

The m"der in which the actual parameters are evaluated ancl associated with its corresponding 
formal parameter is not defined. 

FoFIIlal parameteFs that have Qeen declared as VAR require a variable identifier to appear in the 
c0Fresp0nding actual. Hence, expressions or constants cannot be passed to VAR parameters. 
Fields of! a packed recoFd cann0t be passed to a VAR parameter. 

An expressi0m. CDF constant can be usecd whenever the formal parameter is passed by value~ 

NOP Pascal, Reference Manual: 

. \ 

u 

u 



u 

/ 
\ i 
~ 

l) 

7 St8tements 

EXAMPLE 

procedure quicksort {l, r: integer}; 

var i: integer;, 
begin 

end; 

if r > 1 then begin 
i := partition (1, r}; 
quicksort (1, i-1}; 
quicksort {i+l, r}; 
end; 

7.10 The REPEAT Statement 
REPEAT statement 

REPEAT statement UNTIL expression 

Figure 7-10: Syatax IDiag:ram for REPEAT Statement 

59 

'Fhe REPEAT sta:nement Fepeatecli¥ executes a series of statements mntH a Boolean co:atrol: 
expression becomes TRUE. The statements that constitute the 100p are braeketed by the reseive 
words REPEAT and UNTIL. The Boolean corntroli expressicm is evaluated at hlle end of the l00p, 
ancl so lli.e loop executes at least ornce. 

Notice that the REPEAT statemerot eroeloses a list of statements ih a manner similar to, the 
COMPOUND statement. 

EXAMPLE 

const 
n 10; 

var 
a : array [ 1 .. n] of integer; 

procedure selectk Ck: integer} ; 
{ Select the k-th smallest item out of an array of N items. } 
{The global array a is rearranged so that a[l], ... ,.a[k) are less than 

or equal to a [k] and a [k+l], . . . , a (n] are greater than or equal to a [k] . } 

var 
left, right, i,, j, s, t integer; 

begin 
left := li right := n; 
while right > left do begin 

s:=a[right]; i:=left-1; j :=right; 
repeat 

repeat i:=i+l until a[i) >= s; 
repeat j:.=j-1 until a[j] <= s; 
t: =a [ i J ; a [ i J : =a [ j J ; a [ j] : = t; 

until j<=i; 
a[j] :=a[i]; a[i] :=a[right]; a[right] :=t; 
if i>=k then right:=i-1; 
if i<=k then left :=i+l; 

NDP P8scal Reference Manual 



60 7 Statements 

end; 
end; {selectk} 

7.11 The WHILE Statement 
WHILE statement 

WHILE variable 1----1~ stat em en t 

Figure 7- lJ lJ Syntlax E>iagram for WHILE Statement 

The WHILE statement repeated~y exectltles a statement Nntil a Bo<Dlean expressiom becomes 
false. Since the lB0olean expFessiom is evaluatecl: at tfte beginning, ofi each loop, the statement 
will be exeetlted zero or m0re times. 

EXAMPLE 

const 

var 

n = { some integer constant 
sentinel = Ox80000000; 

a : array [ O •• n] of integer i1 

procedure insertionSort; 
{ Sort the elements of array a } 
var i, j, s : integer; 

begin 

end; 

a[O] := sentinel; 
for i .- 2 to n do begin 

s := a [i]; 

end; 

J : = l. ;, 

while a[j-1]. > s do begin 
a[j] := a[j-1]; 
j : = j-1 

end;, 
a [j] := s; 

7.12 The WITH Statement 
WITH statement 

WITH variable statement 

FigNn:e 7 -12 Syntax E>iagram foli WITH Statement 

NOP Pascal Referenee Manua/1 

u 



u 

u 

7 Statements 
61 

'Fhe WITH statement is used to, simplify references to indiviclual fields of a record variable. The 
WITH statement increases the sc0IDe o:tT a statement so that the :Cield names o:C a reco:rd variable may be Nsed clirectly. 

Nested WITH statements are abl:Dreviatecl1 by separating the record variables lDy corrunas folfowing' a s:Ungle WITH. 

EXAMPLE 1 

'Fhis is tfue example f:uom Section 4.8:4 red<Jme using the WITH statement. 
with park do begin 

team := teamY 
name := nameYi 
surface := naturali 
capacity := 57545; 
with distance do begin 

EXAMPLE 2 

left :=312; 
center:=410; 
right :=310; 
end; 

The following code "fragment mustrates neste<?l! WITH stateme:ats. 
with park, distance do 

begin 

end; 

left :=312; 
center:=410; 
right :=310; 

NDP Pascal Reference Manual 



u 

,' \ 

i ) 

\...,_) 



( 

' i ~ 

( i v 

8 Procedures and Functions 

8.1 Procedure and Function Declarations 
PROCEDURE 

PROCEDURE identifier parameter_list block 

FORWARD 

EXTERNAL 

FUNCTION 

FUNCTION identifier type identifier 

EXTERNAL 

Parameter List 

type identifier 

PROCEDURE identifier 

Figure 8:..1 Syntax !Diagrams: Froceclure, Functicm and Parameteli List 
Procedures ancl :famcti0ns are subprng:rams that are ccmtained within a program aml may be nested withifl one an0ther. Frocedures can be thoHght 0£ as addling statements to a language. while functi0:as increase the ability to manipulate data in expressions. A procedure is begun or invoked by using a procedure statement. A functio.n is invoked by refiere111eing it in an 
expression' Within a statement. Frocedures am:I: funeti0:as return data to the calling rnutine, eitheli by variabl'e (:VAR): parameters, C>li thFOugh data common to b0th the caller ancl callee. 
FHnctiolils also Feturn a vah1e to, the calle:rr. 

The fo:nnat ofi a proeedu!Iie or funetic>n eoasists of a heading, declaratio:m.s, and a bocly. This format is idemtical to, that of a program except foli the heading, The heading specifies a uni<[ue identifier used to name the routine and contains a list ofi 01Dj1ects called the formal parameteli list. The declaration section is oi;>tional aml consists ofi definiti©ns that are to be local to this routine. The bo<ily consists ofi a single compcmnd stateme:mt: lDegiH .. end. It is the b0dy ofi the prn<I!edure or fiuneticm that gets executed when the L"outline is i111voked. 



64 8ProeeduresandFunetictms 

Explicit type names rmast l:t>e used when declaring icdentifiers in a procedure or function 
heacling. This includes value, variable, and: functiom. parameters. Either a predefinecl type or a 
used defined type may be used foli this pu.rpose. For example, the foll©wing procedure 
cieclaration is megal: 

procedure sum (x: array[l .. .5] of real); 

and must be replaced wit:h the foll0wing,: 

type 
a5 = array [1 .. 5] of real; 

procedure sum (x: a5) ; 

A function., <declaration has the same form as a p1:rocedure declaration, except that the heading 
gives the type of value rret'ill.med by the function. A function may return any scalar value OF 
p0inter type. There must be at least olile assignment statement that assigns a value to the 
fuaction ideiltifieF within tfue l:D0dy 0f the fhmcti0n. 

Procedure ancl: function.. names must be declared befome their lllse. The 11fli.q11e name in the 
pFocedure or futilctiomr heacling, is usecl 1 to invoke the Slllbprogram. The scoJ?e ofi a procedure or 
function iclenti:t:ier is the block in which the routine is declared. The syntax ofi a bl0ck is given 
in SectitJ>m 2.1. 'Fhe use ofi th:e EXTERNAL clirective is described in Secttion: 3.6~ and the FORWARD 
directive is descITiil:!>ed ir1 SectJi©m. 8.4. 

In this reference manual!, the word routine will ll>e used to rreferr to, either a procedure OF a 
function. 

8.2 Parameter Transmission 
The formal! parameterr list contains a fixed number of data objiects co:ataining the name and 
clata type ofT each parameter. When a procedure or function is invoked, the arguments in the 
procedure or functi<Dn call are s11bstituted fo:r:- the f©nnal' parameters. The a.Fguments in the 
procedure or functiom, call are called the actual parameters, and are substituted in the orrcler in 
which they occmr fToii the fomnaJ parameteFs, 0r formals. The rmrnbe!i ofT actuals must equal the 
number ofi formals, and1 he assignment compatible with them. 

The fionnal parrameteF llist may comtlain three types o:tT pa.rameterrs: 

11
• value parameter, 

2. variable or rrefenmce parameter, and 
3. pr:-ocedure o:r fTunctio:n. 

Tu'ansrnission: by value is assumed by detrault, while transmission by variable is inclicatecl by 
prefrong each designatecl parameterr with the keyw0rd VAR. Procedures or fu:r:ictiolils passed as 
parameters are called flolimal prrGcedures orr formal functio:as. Notice that fun<?!ti0ns may return 
results throtlgh vmable paFameterrs. 

'Fhe unclesir-abl~ side efifeet.s clue to aliasing, ean occur in two :forms during parameter 
transmissi©H. The first 0ecurs when the name of an identifier is usecl mo:r:-e than once as an 
actual variable parameter. Fo:u example~ in the fol[0wing cocle fragment, x becomes an alias for 
b0th, s and t: 

procedure p (VAR s, t: real) ; 
begin 

{ body of p. } 
end; 
begin 

p (X, X) i 

NDP Pasea/1 Referenee Manua/1 

\ 
! i 
\_,/ 



u 

8 Proeedl!lres and FunetiofiJs 65 

'Ffue secoBcdi imstance of aliasing, occurring in parameter transmission is a gl©bal icdentifier bei:ag 
us<ed1 as an actual' variable pwameter. For example. in the folfowing cocde fragment. the glti>lDal 
vanaole y l:tlecannes an alias f:o:u the parameter v: 

VAR 
y: real;, 

procedure q (VAR v: real}; 
begin 

{ body of q } 

end; 

begin 

q (y} i 

8.2.1 Value Parameters 
A value parameter is a fbm:nal parameter that is a !©cal variable in the pFocedure Oli £uncti0n 
and is used to' 11Fansmit aata to the called routine. 'Fhe correS.ID<DNciing actual parameter 
detem:niID.es the iRitial' value ofi a vah1e parameter wheN th.e ]>rocedure o:u :Cuncti©B1 is inv0ked. A 
pass .. oy-value pararneter may be manipulated as an oroinary variable in the proccedure or 
fiunctifm,. l:tltJJ.t any m.odificatioN to it is not Feflectecl, back t:.o the calling routine. 
A valae wararnete:u may be a constant, a variable, OF an expFessio:a of any type except the file 
type~ The actua11 value parameterr must be assignment compatiful:e with its coliresponding.formal 
value pararnete:u. 

8.2.2 Variable Parameters 
U A variable parameter is a forrmal: parameter that is piiefixed by the reserve w0rd VAR in the 

rocttine !leading, and is used to· transmit and receive <.data from the callecl routine. A variable 
parameter may lDe initJializecl in the call!i.ng routine, amd; may be manipulated as an ordinary 
variable within th·e p:i:ocedure or ftmction. Any change mac.de to a variable warameter is reflected 
in the actual parameter in the calling routine. H:eNce. variable pwameteFs permit results to be 
passed back to the call:i.n.g Ii©l!l'ti:ne~ 

O:mly variables may l:De passed as variable param.eteFs. Constants, expressi0ros. elemerotls 0fi a 
packed an:ay. ana fields 0£ a packed record may n.ot be ]>asse~l as vartali:>le parameters. A 
variable warameter must be tfue same ty]>e as its coITesp0111ding formal parameter. 

8.2.3 Formal Routine Parameters 
A fonnal 1 routiBie parameter is a prn<I!edlJ.re or fu11cti0111 that is passed as a parameter to1 another 
p1:rocedure or function. Within the cal1ed routine. the fom:nal· warameter may be used as any 
other wrocedure or: function. A formal roBtine parameter must include tfue complete p;roceclure 
orr fiuncti0n heading, inch1cling, the number and type of pararneteus req:w.ired by the routine~ 
Tfuis is reqµired so that tilie compiler can verey that any ca11 ofi the rocttihe using the formal 
parameteli name is correct. The actuali parametei: expressioiil consists ofi the p:roceclure or 
functi0n heading. 

Nom.-lmcal' varia:lDles used "by a formal routine param.eter are those in effect at the time the 
formal proeedlire or function is passecl as a parameter. not those in effect when it is activated. 
Predefined functions ancl procedures rnay n.ot be passed as actual parameters. 

NDP Pascal; Reference· Manua/1 



66 8Procedt:1r:es amdFt.meticms 

8.3 Function Results 
results.A function Feturn.s a value that must be either a :p>ointer orr a scalar type. The funetlion 
assigns a value to the functi©lil' Barne before lea:viIDg the functiom. 1

• This vah:ie must be 
assignmeNt c0m]>a:tible witih the type of the functi©N and is returned to the calling exprressi0m. 
at the place when~ the functlio:a was invoked. 

If the funeti0n1 Bame occurs on the right hand side of an exJ.D:uession within the furn~tioB. then. it 
is interpFeted as a Fecursive call:. 

8.4 The FORWARD Directive 
The purp0se ofi the FORWARD directive is to, allow a p:uocedure oIT funetion name to be used 
before itl is defiinecL 'Fhis is :rnecessary whe:n tw0 routines call each other at the same level ofi 
nesting. SN ch roNtines are said to 1 be mutually recl:lrsive. 

The FORWARD directive infoiillls the compiler that the roMtine heading just given will' be 
separated fr0m its declarati0Ns and body. That is, the declaratioBs and body wm be declared 
somewhe:ue forrward in the pFogram. 

Whe:n used, the FORWARD directive simply follows the procechire OF funetion heading). WheB 
time comes to, sup~ly the l:Dody ofi the routine, the heading is repeated without the JDarameteF 
list (0therwise the fbnnal parameter:-s w0Hlal 1De declared twice ancl filagged as an eFroli)t When 
the body ofi a :til:lncti0n. which fuas been declared forwar:'d. is provicl.ed. then both the parameter 
list and: return type are 0mitted. 

EXAMPLE 1 

'Fhe foM0wmg) example illHstrates how to pass a function as a parameter to a pFocedure. 'Fhe 
program calcNlates the area lilndeF two different curves. a simple step functioB', and the cosiir:ie 
functi0in. and prints the f0Ht>wing Jiesult:. 

Area under step function from O to 2 is 1.Q0166666666666737e+OO 
Area under cosine curve from O to pi/2 is 1.0000000002113842e+OO 

pro.gram formal; 

procedure integrate (function f (x:realt: real; 
a,b: real; 

var w., sum: real; 
i: integer; 

begin 
w · - (b-a) I n ;) 
sum := 0.0; 
for i := 1 to n do 

n: integer; 
var area: real) ; 

sum :=sum+ w * (f(a+(i-l)*w) + 4.0*f(a-w/2+i*w) + f(a+i*w))/6.a; 
area := sum; 
end; 

function unitStep (x:real) :real; 
begin 

unitStep .- 1.a + trunc(x}; 
end; 

function cosine (t:real} :real; 
begin 

cosine .- cos(t); 
end; 

NOP Pasca/1 Referem;e Manua/1 

u 



( ; 

\.._,;' 

( ) 
~· 

8 Proeedures and Funetions 

var 
result : real; 

begin 
integrate {unitStep,. O. O, 1. O, 100, result) ; 
wri teln ('Area under step function from O to 2 is ' , result} ; 
integrate(cosine, 0.0, 3.1415927/2, 100,. result}; 
writeln( 'Area under cosine curve from O to pi/2 is ', result); 
end. 

EXAMPLE 2 (ex005.p) 

67 

The followin.g pFog:pam illustrates some of the intricacies in parameter transmission, aml, is 
from fue book Prog77a1T1.Ji11ing &lngu.ages: Desi@m and Implementation., by Tel"I"ance W. Pratt, 
Premtice:...:&Jall, Inc., secoB<tl ed!itio:rn, 1984. 

In this example, the gkobal variable x is passed as a VAR parameterr to IDFOcedure q, which has a 
10cal~ va.Fiable with tfue same name. This reslillbs in a hole iD scope foi; the gl01:t>al x. In adclitio111, 
the function f is passecd as a JDarameter, and has the side effect of changing the gl©bal variable 
x. To uncle:ustancd this p:uogram. the reacler shoulm be familiar with the lexical scope of 
identifierrs as aescFibed in Sectti0n 2.2, and how eNvironments are passed with fonnal' 
:IDarameters, descrtbecl: ffi, Sectwm:8.2.3~ 'Fhat is, thevalue ofi x that wiU be used wiiliin the 
functicm f will be the value that x had when f was 11sed as an actual parameter. 

pro.gram forrnall ;. 

var x: integer; 

procedure q ( var i: integer; function r (j: integer) : integer) ; 
var x: integer; 
begin 

x := 4; 
i := r(i); 
end; 

procedure p; 
var i: integer; 

function f (k: integer): integer; 
begin 

begin 

x := x + k; 
f : = i + k; 
end; 

i := 7 i 
q(x,. f); 

end;, 

begin 
x := 7 i 

p; 
writeln( "x= ',.x:3·).; 
end. 

The program prnduces the folilowing 0u tput: 

x = 9 

!Line numbers are printed with the :wrogram so tllat the program statements can lDe re:fenred to 
in the foll©wing discussi0n. 

Example (ex006.p) 

An executi©n trace ofi this program is pFesented by way of explanati0n. 

NfDP Pasc;a/ Reference Manual 



68 B Procedures and Functions 

Line 
~, Trace Remarks 
22 x = 7 

23 p 

18 i = 2 

19 q (x, f) x=Tand i=2 in f's eaviroIUnent 

3 q (i=7~ f with x=7 and i=2) 

6 x = 4 this x, is !meal to q because o:f the h(J)le in seoJDe 

7 i = f ( 7) 

12 first formal is k=7 

14 x = 7 + 7 x is:frnrn line 19, k is :trrorn l!ine 12 

x = 14 

15 f = 2 + 7 i is fForn line 19, k is f:rorn line i:2 

f = 9 

8 i = 9 

16 x = 9 

24 print x = 9 

i is a VAR parameter so, value 9 passed to actual in calling routine on line 
19 setting x = 9 

x is global to pF0cedure p 

EXAMPLE 3 (ex007.p) 

The foM0wing example illustrates rnu.tual rectirsi0n and the FORWARD directive. This program 
checks the syntax 0£ a simple exprressi0m1 against the following simplified grammar fo[i 
expressioms: 

<expression> .- <term> I <term> + <expression> 

<term> .- <factor> I <factor> <term> 

<factor> .- <expression> I letter I <factor> 

An expressi0n comsists 0£ a teiiliil, or a temn foli0wed by a plus synilD0I1, followed by an 
expressiom. A term consists. o:f a :factor, OF a factor foU©wed by a te:nn. A factoF consists o:f an 
expressiom:, a letter, or a factoF. Varial:t>les are restricted to a single letter in this example. 

Since the grammar is recuFsive, that is, an expression is defined in terms o:f an expressicm, 
etc., then the expFession can be recognized, o:r parsed., by using recursive procech:1!r'es. Flirther, 
since the comw0ne:m.ts of grammar are aefiDed, in ternis 0£ one another, then the procedures 
implementing this grammar will 1De muttially recursive. The pFogram presented below 
implements. this grammar. 'Ffue expressio11 fuas been hard coded into the example to· simplify 
input. The foll0wing output is pFoducea: by the program: 

( (.a+b) * {c+d) ) +f <<is a valid expression>> 

program parse; 

typ.e 
c2 0 = array [ 1 .. 20.] of char; 

procedure expression(s:c20; var t:.integer; var error:boolean}; 
procedure term(s:c20; var t:.integer; var error:boolean); 

forw.ard; 
forw.ard; 

procedure getinput(var s:c20;. var t:.integer; var error:boolean); 
var 

i: integer;, 

NOP Pascal Referem:e Manual.' 

\ 

'~ 



\ ' \...__,.;' 

u 

8' Proeedl!Jf!es an<J; Functi@ns 

begin 
s [1} . - I (I j 

s [2} ·- I (I j 

s [3} . - 'a'; 
s [4} . - I+ I j 

s [5] ·- 'b' i 

s [6] . - I) I j 

s [7] . - 'w'; 
s [8} . - I (I i 

s [9] . - 'c I j 

s [10-J ·- I+ I j 
s [11] ·- 'd' i 

s [12] ·- I) Ii 

s (13] ·- I) I j. 

s [14] ·- I'+ I i1 

s[15] ·- If Ii 

t . - 1 ;. 
error ·- fa1se; 
for i ·- 1 to 15 do 

write { s [ i}} i 

end; 

procedure factor(s:c20;. var t:integer; var error:boolean); 
begin 

if s[t] = '(' then begin 
t := t + 1; 
expression(s,. t, error}; 
if s[t] ')' then 

t := t. + 1 

else 
error ·- true 

end 
else 

if s[t] in ["a I•• I z I} 
t .- t + 1 

else 
error := true; 

if s [t] '*' then 
t := t + 1; 

end; 

pro.cedure expression; 
begin 

term(s, t, error}; 
if s.[t] = '+' then begin 

then 

t := t + 1; 

expression(s, t, error); 
end; 

end; 

procedure term; 
begin 

factor(s,t,error); 

var 

if ( s [ t] = ' (') or (s [ t] in ['a' .. 'z']) then 
term(s,.t,.error); 

end; 

s: c20; 

69 

NDP Pascal Reference Manual 



70 

t :. integer; 
error: boolean; 

begin 
getlnput (s, t,.error); 
expression (s ,. t, error); 
if error then 

writeln(' <<is an illegal expression>>') 
else 

writeln(' <<is a valid expression>>'}; 
end. 

NDP Pascal Reference Manua/1 

8 Proeedures and Functions 

. ) 
~ 

\ 

\._) 



u 

u 

9 Input and Output 

9.1 Overview 
A file is a sequenee 0£ identieal objects, each olDject consisting 0£ any simple or structured type~ 
except the file type. The gmal' of the Pascal file system is to pFovicle an abstraction o:f a 
peripheral input/olltpNt deviee which embodies the iclea 0£ a sequence of arbitrary length and 
upcm which operati©ms om thissequemce are natural and familiar. Of the many devices 
cormnomly attached to compMter systems, the magnetic tape unit is generally chosen to act as a 
model 1 smce it is simple yet general: e11ough to describe the operatioas commonly perfo:nned on 
sequential files. This model of the Pascal file system is briefly menticmed to provide some 
intuitio!il. behind the characteristics and lim:itaticms ofi Pascal's files. The Pascal file system is an 
implementatioB 0£ sequential files on disk . .AS such, it inheritls the advantages and 
disadvantages of magnetic tape files. 

The only operations allowed om. a file are sequentlial reading and sequential writing'. Rand0m 
access is not w0ssible. Since all opeirations are sequential, the word seq:uential is ustJ.aliy 
omitted when referring to, Pascal files. 

Assignme11t aml comparison of files are ID.ot ])Ossible using the assignmelilt or comparisolil 
ope:uatoFs. IB0th ofT these operatimns must be doF.Le cornpo:m.ent by c0mponent. 'fh,e Olilly way to 
exne11d a file is to copy it to another fiile .. and then add the additional records to the new file. No 
operrator is p1:rovided to ccmcate111ate tw0, files or selectively to uwdate a single connpon.ent in a 
fiile. These oper:atioE.s, llike assignme:nb and comparisofl, reqµire that a program be written to do 
the reqµired task. 

A fiile is created by writing rec0rds to it in the seciuence in which it is desired to save the 
rec0rds. A file is accessed; by reading the records in tne seque11ce in which they were written 
frcinn the beginning until the desired record is fotJ.nd, or until the end of file is reached. It is not 
]HDssible to mix the reading and writing operati0ns on a file withoa t first isshling a command, to 
cl0se and open the file (RESET or REWRITE), and then starting from the beginning of the file. 

The Pascal file system maintains a poiateIT to the current positio111 in the file. This pointer is 
automatically aclvanc:ed by reading or writing to the file. The componeBt of the file to which the 
f:ile pointer p0i!flts is called the btlftfe:r:- variable. That is, the buffer variable c0rrespo11ds to the 
current rec0rd' in the :tTile. The btJ.ff er variable is the Bame of the carrent compoIU.eDt in the file 
ancl is :refieremced as an ordinary variable. 

9.2 File Declaration and Initialization 
A file type has the following syntax: 

file type ~t-----•I type 

whe:r:-e type may Bot di:rectly OF indirechly :r:-efer to a file. 

A £ile varial!>le is a variable of the file type ancl is declared like any other variable: 

file variable file type 

11'he file variable is a p0inter that keeps tirack of two pieces of informatiom: the file name and the 
curre:nt locati0n in the file. The file variable is sometimes called the file p0inter fo:r; this reason. 
although it is declared as an oirdinary variable. A pbysical' file on disk is ass0ciated with the file 
variable by tJ.SiBg the RESET or REWRITE :wrocedures. 



72 9 Input and Output 

The predefaned ]H:ocecdu:ues RESET amt REWRITE initialize a file variable and optionally assign it 
to a physical disk file. RESET iiilitiializes the file variable fo:u reading an existing file~ am:l 
REWRITE initializes a file variable for writing to an existing (OF nonexisting) file. In both cases. 
the file pointeF is positi0ned to the beginning ofi the file. Note tlrlat the c0ntents ofi an existing 
file are host if the file is opened l:lSing REWRITE. This is true even if tfue file is Iil<Dt written to and. 
the pirogram SlJlccessfiuUy terminates. 

The second., argument to RESET an<ll REWRITE, the file name, is geiilerally omitted on subsequen.t 
calls unless the file variable is being assigned to, a d:if:ferent disk file. Adcl.itional calls are made 
to RESET and REWRITE :fo:u two reasons: in oFder to, change the diFeeti0n of me access. that is, 
input to oatput 0r Olllt]mt to input, or simply to repositi0n the ]ile pointeli to the beginning. For 
example. c0msider the code fragment: 

rewrite (temp, ''scratch.dat 1
); 

reset (temp) ; 

The first statement assigns tfue file variable temp to· the physical' clisk file scratch . da t. If 
scratch. dat exists. tfuendtl is opemed, otherwise it is created. In either case, scratch. dat is 
opemed for writing to, its flirst cornponemt. The second statement cl0ses and then o]>ens 
scratch. dat fiorr reading', 1Degtru1ing with itls first component. The file, scratch. dat, fl©W 
exists. even th©lJlgh H.1 may ne empty. 

The declaration of a file varia1Dle causes the implicit declaration of a buff er torr l:lse when 
accessing the file. This.blilffer is called the file buffer, oIT buffer variable. The file buffer holcds 
one item off the file 1s base type ancd is the only portion ofi the file th.at is directly accessible~ The 
file variable is a pointer to, the ClJlnJent c©mp<DBent in the file. ancl' the file bHffer contains the 
value of this c<Dinp0memt. 

I 

'\...._/ 

The file variable is s<Dmetimes c©:rnpared to a slicling wincl.ow throLigh which the file can be seen. 
The fil!e is sca.ru~ed by moViNg the window across the file. The position of the wincl.ow 
cowesp0Nds to the file pointer, and by looking into the wincdow the contents ofT the file can be \~ 
seen. 

The file bNffer, whicfu is implieitly deelareci: in a file deelarati<Dn, is treated like any other 
variable. It is r:-eferencecd1 by appemcding a pointer ("),to the file variable~ The general syntax is: 

buffer variable 

----•I file variable 1~----·~ 
FoF example. co:r:isicderr the_ following cocde fragment: 

type 
dailyRec = record 

var 

day : integer; 
temp: real; 

end; 

weather: file of dailyRec; 

rewrite (w.eather,, 'cl irnate. da t' ) ; 

The call to REWRITE ass0ciates the physical file mamed c 1 ima te. da t with the fHe variable. 
weath,er. "fh:e assignmeiilt staterne:ats. 

weather"". day : = 21; 
weather".temp:= 34.5; 

set the value ofi the buff e:rr variable to a ree0Fd wh0se day field is 21, and wh0se temperatrnre 
field. is 34.5. 

NOP Pascal Referenc:e Manual 

\ 



u 

9 Input and Output 73 

9.3 Input and Output Processing using GET' and PwT 

The fundamem.t:al If 0 ro-utines ih Fascal are GET and PUT. GET incFernents the current file 
p0inter to, the next comp0nent an<il cowies this comp0nent to tlhe fuNfferr variable. If the file 
p0inter was alreacly positi<Dned at the last compcment in the file, then the value of the functio:a 
EOF becomes TRUE anCIJ.i the value of the bafifer variabl:e is unclefined. PUT appe:acils the value of 
the buffer variable to the end of the file. 

Reaciling is accomplished t>y accessing the buffer variable. This is Nsually foH0wed by a call to 
GET to aclvance the :Cile pointer in preparati0m forr the next rread. 'Ffue foUowmg statements 
illustrate this: 

component : = f"; 

get (f}; 

The call to, GET foll<Dws the assignment statement because of the way buffei: variables are 
initialized by the RESET prroeedure. RESET sets the file pe>inter to the beginning of the file ami 
copies the fiFst compoBent into, the buffe17 variable. Thus the btlifer variable already contains 
the contents of the first com:w@11entl o:C the file when it is used for the first time by the program. 

The above sequence 0£ Pascal statements als0 woFks when the file being :uead is comnected to 
an interactive device, such as the user's terminal. Notice that this requires a slight m0dificati0n 
to the file initialization process since the first component of the file is Bot available~ If RESET 
were to demanali input when cal'.lecil1

, then p:rngrams would have to distinguish between 
interactive and ID.<Dn.-inteFactive files. otherwise the use:u woNld be required to reply befo:ue the 
program lilad a chance to JDrint any p:r:-ornpts. To avoi<d this proll>lem. the Pascal standard allows 
RESET to <delay reading the first compoaent of: the file ur:itili it is actually used by the program~ 
This all©ws the treatment of interactive an<il n0m.-interactive files to be unifoliIIl and allows the 
I/ O commancls to <l>J!)erate as asuaL The technique of delaying a request f<1>r data until it is 
needed is call'ed lazy evaluati0n ancil1 is tlransparent to the programmer. 

WFiting is dome by assigning, a value to, the buffer variable and using PUT to acld the component 
to the enClfl of the file. The foU©wing staternerits illustrate this: 

f"' : = component; 
put (f}; 

PUT appencils the ccmtents of the me buffer to the file and increments the file pe>inter so that the 
added item becomes tile ClJlrFent compcmemt. Technically, the contents 0fi the buffer variable are 
n© ltmge17 defiried afte:u being m0ved to the file. Since the fl.le variable now points to the last 
comp0m.ent in the file. fue :£unetion, EOF is TRUE. 

EXAMPLE 9.1 (ex008.p) 

This example illustrates the use of the GET and PUT p:rocedures to make an identical ce>py ofi a 
£ile. E3uffe:u variables a:ue used to access the data in the source and destination files. This 
permits the comp0nents of the file to be moved from the source to the destimati0n very 
ef:ficiently ancil withoNt the Nse of a tempoFary variable to h0ld tfue curreBt ccrnnpom.ent. 'Ffue 
program can be ma<lle to cowy any file type by changing the value of f i 1 eType in the type 
declaration. 

program copyl(output}; 

type 
f ileType = file of char; 

procedure copy(var src, des: fileType}; 
begin 

while not (eof (src}} do begin 
des" : = src" i1 

put (des}; 
get(src}; 

NDP Pas<;a/ Referenee Manual 



74 

var 

end; 
end;. 

inp, out: fileType; 

begin 
writeln ( 'copyl started'}; 
reset ( inp,. 'ex008. inp') ; 
rewrite(out,. 'ex008 .out'}; 
copy{inp.,out} ;, 
writeln ( 'copyl finished'); 
end. 

9.4 Buffer Variable Restrictions 

9 /nput and Output 

The Pascal standard d0es n0t allmw the buff er variable to be accessed while the file variable is 
in a p0sitic;m to be altered. This rule is designed to prevent data from being unintennicrrBally 
modified ancl is consistemt with Pascal's co:ncerm foF data security. The three situati0ns in 
which it is p0ssible to· vi0late this rule we given bel0w ancl they are rather obscure. This rule is 
not emorced by NDP Pascal:. The foU0wing describes the three situati©NS in whicfu aliasing is 
possible witih the b:w.ffer and file variables: 

l. The buffer variable is used as an actual variable parameter to a :routine that modifies the 
corresp0md.ing b\hlffer variable; 

2. The buffer variable is used in the le£t-hand sicle 0£ an assigrummt statement whose 
expressi0n. on the right-ltJ.ancl sicle co:ntains a functi0n that modifies the position of the file~ 

3. The h11ffer variable is usecd in a WITH clause. where the comp0nent statement modifies the 
p0siti0m of the file. 

EXAMPLE 1 

This example illustFates the behavi0F of a program that alters the value of a file variable while a 
reference exists to the C©Fliespomding buffeF variable (as. in case l. ab@ve}. This is n0t an 
exampl;e to emulate anrl: is om.ly presented to hint at the diffic'Lllties in del:DuggiBg a program 
when this is dome. 

Tw0 versi<Das ofi the same program are giveB to accomplish the same task: oBe using PUT ancl 
the other using WRITE. The first i;>rograrn uses PUT an<Jl is easy to Nmlerstand. 'Fhe second uses 
WRITE and is rn0Fe difficNlt. B0th progral1Ns gemerate the same output as shown below: 

The initial buffer variable is a 
The final buffer variable is 3 

Program 1 (ex009.p) 

program bvla(output}; 

var 
out:. file of char; 

procedure write3(var c: char}; 
begin 

c . - 'Z I ; 

out A ·- I l 1 i1 put (out}; 
out" . - '2'; put(out); 
out" . - '3' i put {out}; 
end; 

\ 

begin \........,) 
rewrite (out, 'ex009. out'); 

NDP Pascal Reference Manuaf 



( : 
\_) 

9 lnput1 and Output1 

out" : = 'a'; 
writeln( 'The initial buffer variable is ', out"');, 
write3(out"); 

writeln(. 'The finial buffer variable is ', out"); 
end. 

Program 2 (ex010.p) 

program bvlb(output); 
var 

out: file of char; 

procedure write3 (var c:char}; 
begin 

c :: I z I j, 

write(out, 'l'); 
write{out,.' 2'}; 

write(out, '3'}; 
end; 

begin 
rewrite(out,'exOlO.out'); 

out" : = 'a'; 
writeln{'The initial buffer variable is ', out"); 

write3 (out"); 
writeln('The finial buffer variable is ', outA); 

end. 

EXAMPLE 2 (ex011.p) 

75 

This example illustrates the behavior of a pi:;ogram that alters the value of a file variable while a 
reference exists to the correspo:m.dingbuffer variable (as in case 3, above):. Again, this is not an 
example to emulate. This prog17am procluces the following ONtput: 

The initial buffer variable is 
The final buffer variable is 

1 2 3 
101 102 103 

program bv2 (out.put); 
type 

var 

rec = record 
a ,.b, c : integer; 

end; 

buf: file of rec; 
data: rec; 

begin 
rewrite (buf, 
buf".a .- 1; 
buf".b := 2; 

' ex011 . out " ) ; 
data.a .- 101; 
data.b := 102; 

buf". c : = 3; data. c :.= 103; 
wri teln ('The initial buffer variable is 
with buf ~ do begin 

a : = 10; b : = 11; c . - 12; 
write (buf, data); 
end; 

writeln( 'The final buffer variable. is 

end. 

buf".a:4, buf".b:4,. buf".c:4); 

buf".a:4, buf".b:4,. buf".c:4); 

NOP Pascal Reference Manual 



76 9 Input and Output 

9.5 Input and Output Processing with READ and WRITE 
The procedures READ and WRITE aFe simply ablDreviaticms foF the sequence of commands 
neede<ll to d© input an<ll Otlt];i>ut with GET and: PUT. Boun READ and WRITE take an argument that \...__, 
is identical in type to the file's type. SiRce GET ancrli PUT w0:r:-k with any fTile type, so do READ ancd 
WRITE. 

The predefined procedure READ ( t, component) is equivalent to the cornp©l:lncd statement: 
begin 

component : = f";. 
get ( f} 

end; 

The statement READ ( f, vl ,. . . 
reads: 

vn) is equivalent to the folfowing sequence of inclividual 

read {f, vl); read ( f, v2} ; . . . ; read ( f, vn) ; 

Similarly, the J;i>Fecilefined v:r0ceclure WRITE ( t, component) is equivalent to the c0mp0Nnd 
statement: 

begin 
f"' ·- component; 
put (f) 

end; 

The statement WRITE ( f, vl, . . 
incliviclual WFites: 

write (f, vl);.write(f, v2}; 

EXAMPLE 9.4 (ex012.p) 

vn) is equivalent to the following sequence of 

. ; write (f, vn}; 

This example illustrates the use of the READ ancl WRITE procedures in making an iclentical copy \..._ii 
of: a file, ancd is veliy similar to Example 9.1. The program here is less efficient than example 9.1 
because of the need to store the sou.Fee file buffer variable into the variable ch, aml then to 
m0ve ch into the destinati011 file buffeli variable. The penalny foir these extra copies increase 
with a moFe complicated t.y]>e. 

program copy2(output); 

type 
fileType = file of char; 

procedure copy(var src,, des: fileType}; 
var 

ch: char; 

begin 
while not (eof (src}) do begin 

read(src, ch}; 
write (des ,,ch} ; 
end; 

end; 

var 
inp, out: fileType; 

begin 
writeln( 'ex012 started'}; 
reset{inp~ •ex012.inp'}; 
rewrite(out, 'ex012.out'); 
copy {inp, out}; 

NDP Pasca/Reference Manual 



9 Input and Output 

writeln('ex012 finished'); 
end. 

EXAMPLE 9.5 (ex013.p) 

77 

The pirog:ram in this example merges two) files of integers into a third. The integers in the two 
input files ar;e assumecl to be in ascencding1 or;deF. This example illustrates several different 
ways in which buffeF variables may b>e usecd. Buffer variables are used to avoid declaring 
temp0Fary variables when accessing the input files and provicde lookahea~l when comparing the 
current file components. N©tiee that GET is used to aecess the twc input files, while WRITE is 
used to transfer data to1 the omtput file. 

program. mergel(output); 

type 
integerFile = file of integer; 

procedure rnerge(var inputl, input2, result: integerFile); 
begin 

reset(inputl); reset(input2}; rewrite(result); 
while not (eof(inputl) or eof(input2)) do 

if inputlA < input2" then begin 
write(result, inputl"); 
get ( inputl} 
end 

else begin 
write(result, input2"); 
get (input2) 
end; 

while not eof (inputl} do begin 
write(result, inputl"); 
get (inputl); 
end; 

while not eof (input2) do begin 
write(result, input2"); 

var 

get (input2); 
end; 

end;! 

filel~ file2, file3: integerFile; 
i: integer; 

begin 
writeln( 'begin ex013 .p'); 
reset ( filel, 'ex013a. inp'} ; 
reset ( f ile2, 'ex013b. inp' ) ; 
rewrite(file3,. 'ex013.out'); 
rnerge(filel, file2, file3); 

reset ( file3) ;I 

while not eof ( file3} do begin 
read(file3, i) i1 

writeln(i}; 
end; 

writeln ( 'ex013 finished'} ; 
end. 

NDP Pascal Reference Manual 



\~ 

u 



10 Predefined Functions and 
Procedures 

The foll©wing is an alphabetic list ofl the predefinecl functions aml Ji>Foceclures in NDP Pascal. 

ABS (x) 
returns the absolilJ.Jte valwe of x 
Definition: 

function abs i 
function abs ( r 
function abs d 

integer ) : integer; 
real ) : real; 
double } : double; 

function abs f float ) : float; 

where 

i is an expressi0n, ofi type integer, 
r is afl' expFession of type real, 
d is an expression ofl type doub 1 e. 
f is an 1 expFessio:n ofi type f 1 oat. 

'Fhe ABS functi0m. returns an integer. real~. dcnJible or float value dei;>enciing upo11 the type of its 
parameteF. 11'he result is the absolute value of the input warameter. 

U ARCTAN (x) 

u 

returns the arctangent of x 

Definition 

function arc tan i integer 
function arc tan ( r real ) 

function arc tan d double 
function arc tan f float ) 

where 

) : 

) 

i is an expression. 0f type integer, 
r is an expressi0n. ofi type real. 
dis an expressi0m. ofi type double, 
f is an exp;r;essio11: of type float. 

double; 
double; 
double; 
double; 

The ARCT AN function converts the i11put parameter to a temwoz;ary 64-bit £10ating p0int numbel.7 
and returns the arctangent of this value. The input :warameter is assta.med to be expiressed in 
radians. 

ARGC 
returns the number ofi command' lime argi.:.11rnents 
Definition 

function argc : integer; 

The ARGC fua€tion has n0 argumem.ts anm returns an integer equal to the numoer of co:rm:nanm 
line al.7guments specified: when tile program was run. The numl!>eu of c0rmnand; line argume11ts 



80 10PreclefineclFunetilJJns and Procedures 

includes th 1e command name. so ARGC is at least one. An example is included afte:rr the ARGV function. 

ARGV(i, s) 
co~ies the ith cofil!lmancd lime argwrn1emt imt;o the variable s 
Definition 

CONST n=l2 {for example} 
TYPE str=packed array [1 .. n] of char 
procedure argv (i : integer;. VAR s: s tr} ; 

whe:t7e 

i is an integer in the range lJ to the 111umber of c0mrnand lirie arguments (which 
COITeSJj)OildS to the value of the ARGC). 

s is a character array that will' receive ilie i th command line argument. 
The ARGV ( i ,.s) function' c0pies the itfu, command Hne argument into the variables. 'fhe ith command line argument is truncated if the receiving variable is not large enol!lgh to store all its characters. 

EXAMPLE {ex020.p) 

program argl (output}; 

var i: integer; 
arglist: packed array [1 ... 8] of char; 

begin 
wri teln ( 'argc = ',,argc: 2); 
for i := O to argc - 1 do begin 

argv(i, arglist}; 
writeln('arg ',i:2,' = ', arglist); 
end; 

end. 

The above program illustraties the use ofi the ARGC and ARGV functi0ns. In this pFogram. the loop index is ze:uo origined so that the f:Wst collliiland line argHment will be accessed when the loop index is I. anal s0 om: When the example is executed witfuout any arguments cm the 
commamd line. the foll0wing 01.Lltput is g~merated. That is, the co:rnmancl: 

386 Loader: 
860 Loader: 

ndprun argl 
run860 argl 

produces the fol[0wing out]>ut: 

argc = 1 
arg 0 = argl 

When the example is executed with seveFal' command line argumeats. the fol[0wing, outp11t is 
generated. That is, th·e command: 

386 Loader: ndprun argl this is a test abcdefghijkl 11 22 
860Loade~ run860 argl this is a test abcdefghijkl 11 22 

produces the folfowing Olitput (n.otJ.ice that the fifth argument is truncated):: 
argc = 8 
arg 0 argl 
arg 1 this 
arg 2 is 
arg 3 a 

NDP Paseal Reference Manual! 

" \ 
\._) 



l : ' 
~/ 

I I 

~) 

1 O PredefinedFunctions and Procedures 

arg 4 

arg 5 
arg 6 
arg 7 

test 
abcdefgh 
11 

22 

CHR (n) 
retums tfne ASCII cfnaracter wh0se ordinal y,al:we is ni 

Definition 

function chr ( i :. integer) char; 

wheFe i is an integer expressi0n. 

Sf 

The CHR functi©n Feturns the AS8H character wh0se ordinal value is equal to the result o:f the 
integer expressi0n i. 

This functi©n! is the inverse of the ORD function. That is, ORD{CHR ( i)) = i, if i = 0 to 127. 

COS (x) 
retiwrns title cosirile of. x 

Definition 

function cos i 
function cos ( r 
function cos ( d 
function cos f 

where 

integer ) :. double; 
real ) : double; 
double ) : double; 
float ) : double; 

i is an expressi0n. of ty]>e integer, 
r is an expressi0n1 of type real, 
d is all, expressio1a of type double, 
f is an 1 expression· 0£ type f 1 oat. 

The cos functi©ID.1 c0n1Ve:rts the input pararneteF to a tern[DCDliary 64-bit fl©atmg p0int numbeIT 
aml rretNms the cosine of this value. The input parameter is asshlmecl to be expressed in 
radians. 

EXAMPLE (ex036.p) 

program cosl (output};/ 

function cos.(d: double): double; external; 

const 

var 

pi = 3.14159265358979323846; 

i: integer; 
x: double; 

begin 
x := 0.0; 
for i := 1 to 5 do begin 

writeln('x = ', x, • cos(x) 
x ·- x + pi/4.0; 
end; 

end. 

cos.(x)}; 

NlDP Pascal Reference Manual 



82 

This program generates the foll©wing Ohltplllt: 

x = O.OOOOOOOOOOOOOOOOOe+OO 

x = 7.85398163397448286e-Ol 

x 1.57079632679489657e+-Ol 

x 2.35619449019234486e+OO 

x 3.14159265358979311e+OO 

DISPOSE (p) 
deaH0cates a dynarnicc variable 

Definition 

COS(X} 

COS(X) 

COS(X) 

COS (X.) 

COS(X) 

procedure dispose (var p : pointer) ; 

10Predefined'Fum::tions and Procedures 

1.00000000000000000e+OO 

7.07106781186547462e-Ol 

0.00000000000000000+00 

-7.07106781186547550e-01 

-1.00000000000000000e+OO 

procedure dispose (var p,. tl, t2 ,, . . . . scalar) ; 

where 

p is a pomter variable with base type T, 

t 1, t2 • ... are scalar coastants represeroting the tag fielrls if the base type Tis a variant 
record. 

DISPOSE releases stoFage assigned to, a dynamic variable and sets the pointer to NIL. 

EOF (f) 
returns TRUE if, fiile f, is at ernd of fUe 

Definition 

function eof ( f : filetype 

function eof : boolean; 

where f is a variable of a file type. 

boolean; 

EOF is a boolean function that returns TRUE if the flle is positicim.ed at the end of: file. On a file 

opened foF input. this occurs when an attempt is made to read past the last record in the file. 

On a file OII>enedi fioF oNtput, tfu.is functiom always 17etums TRUE. 

EOLN (f) 
ret'U rns TRUE if file f is at end of line 

Definition 

function ( f : TEXT ) : BOOLEAN; 
function eoln : BOOLEAN; 

where f is a TEXT file ope:ro.ed to inpHt. If f is omitne<ll them the file INPUT is used. 

The EOLN fanctioN retNr:ro.s TRUE if file f is posi1lioned at an end of line characteF. and FALSE 

otiherwise. Notice that EOLN is applicable 0nly to TEXT files. 

If EOLN { f) is true. then the file variable f"' has tfue value of a blank. i.e., f"' d0es n0t return 

the end of line character. The blank is ncot in the file but will appear as if it were. This 

generally d0es not rnatteF to most aIDpl!i.catio:as. If the physical layout of the data in a file is 

significant, them the pFogFammer mustl be sem.sitive to the EOLN co:aditicm. 

NDP Pascal Referen~e Manual 

\.._/ 

' \ 



u 

(_)'; 
; 

10 Predefined F1.mr:tiQns and' Ptor:edures 

EXP (x) 
returns the lbase of: the rnatural' l0g (e) raised' to the power x 
Definition 

function exp ( i integer } : double; 
function exp ( r real } double; 
function exp d double } double; 
function exp f float } double; 

where 

i is an exp:rressi0n of type INTEGER. 
r is an. expressi0:n o:fi type REAL. 
dis an expITessi0:n of: type DOUBLE, 
f is an expFessimn of type FLOAT. 

83 

The EXP funeti0n. c0n.velits the input parameter to a temporary 64-bit f10ating p0int number, · 
and returns the base of the natural 10garithms, e~ raised to this JDOwe:u. If the return value is 
too large to, be repiresented, the gl(;)bal vartable errno wm be set to ERANGE. 

GET (f) 
advanees fHe p0inter to the next' component: 0f1 fiJe f 

Definition 

procedure get (f : filetype}; 

where f is a file variable. 

GET Ji>OSiti©ns the file pointer of a file to the next eom.ponent in the :Cile, then assigns the value 
of this co:rnp0:aen.t to the associated buffer variable~ 

If the predicate EOF { f) is FALSE bef0ire the executi©:a of GET ( f) • then GET advances the cucren.t 
file p0siti0n to1 the :aext compo:aent and assigns the vah1e of this cornporo.ent to the buffeli 
variable fA. If :ao next eompoaent exists, then EOF ( f) is set to TRUE, am:l the value of f" is :aot 
defined1. An eFIT01r e>ce11rn ifi EOF ( f) is TRUE before executi0n of GET ( f). 

The file f must be opeaed fo:u input .. 

LN (x) 
returns the natural' lcogarithm of x 
Definition 

function ln i integer} : double; 
function ln ( r real } : double; 
function ln ( d double ) : double; 
function ln f float ) : double; 

wheFe 

i is an expression 0£ type INTEGER, 
r is an exp:ressi©:n 0fi ty[De REAL, 
d is an expliessiolil.' ofi type DOUBLE, 
f is an expressiom ofi type FLOAT. 

The LN functio:a coaverts the input parameter to a temp0irary 64-bit fl©ating p©int number anCll 
returns the Natural l©gartthm of this value. 

NOP Pascal Reference Manual 



84 

NEW 
all©eates a dynarnie variable 
Definition 

procedure NEW (var p pointer } ; 

10' Predefined Fum;tiams and Procedures 

procedure NEW (var p pointer;. tl, t2, .... scalar}; 

where 

p is a p0inte:rr variable with base type T, 

t 1. t2 • ... we scalar ccmstants l!epresentihg the tag fielas if the base type T is a variant 
record. 

The NEW proceclure all0eates a dynamic va.Iiable ancl initializes the pointer to p0int to the 
variable. The first fomn of the NEW prncedure allocates an amount of storage that is :raecessary to 
represent a value ofi the type to which the pointer refers. If the type contains a variant record, 
then the amotrnt of space alld>cated co:uresporocls to what will be needed by the largest variant of 
the recoFd. 

The secoBd foliiill of! the NEW p:rrocedure all©cates space for a particular instance 0£ a variant 
record. This reci.;w.ires specifying the tag field foIT each sub-variant in tlile reco1rd in the tag field 
list in the pFocedure call. With this infolTIIlation, the NEW pFoeedure will allocate ilie exact 
amount of space needecl' fo:u this Fecord variant. 

ODD (n) 
returns TRUE if the irnte~er n is odcrf 
Definition 

function odd <i : integer) : boolean; 

where i is an expression ofi type INTEGER. 

The ODD function retllms TRUE if the inp11t parameteF i is odd, and FALSE if it is even'. 

ORD (x) 
corrweRs a scalar val:we x to an irMeg;,er 
Definition 

function ord ( x : scalar_ type } : integer; 

wheFe xis a character, boolean, enumerated or SUBRANGE type. 

The ORD functi0a returns an integer value that corresponcds to the scalar x. If xis of type CHAR. 
then ORD retu.ms the cowespo:ading, value of x iR the ASC:II character set. If x is an enumerated. 
type. then ORD returns the p0si1lioiiJ. in the enumerati0:a, beginning, at zero. Since type BOOLEAN 
is defined as BOOLEAN = {FALSE, TRUE}, we have ORD {FALSE) = 0 and ORD {TRUE) = 1. If xis 
a su.brange type. then ORD returns the value of the integer despite the relative lmcatiCDll of the 
integer within the subFange~ 

PACK (a, i, z) 
packs array a, begifilrr11irn~ at imdex i, imt:o) array z 
Definition 

procedure pack ( a: packed_array_type 
i: integer; 

var z: unpacked_array_type } ; 

NDP Pasca/, Referenee Manua/1 

\ 



10 Predef:ined'Funt:ttlr!ms arocf: Ptot:tedt/Ties 

where 

a is the source 1impa.ckec.d' am:ay, 
i is an e.xi;>ression that is compatilDle with the il'l.clex type of a, 
z is the destination packec.d' array. 

85 

PACK copies elements from: the unpacked array a to the packed array z, beginning with the Hh 
element of a. The element types of! the two arrays must be icle11tical. 'fh,eFe must oe enough 
elements in the z array to rnceive the el~ments copied from a. 

Note that PACK is defined foF one'-diinensional arrays only. 

PACK is equi:vale11t to tlil.e f0llowing clefinitio:m: 

type 
tl = array [m .. n] of T; 
t2 = packed array [u .. v] of T; 

procedure pack ( a 
i 

var z 
var j, k:integer; 

begin 
k ·- i; 

tl; 
integer; 
t2 ) i 

for j .- u to v do begin 
z [j] .-a [k]; 

k : = k + 1 ;, 
end; 

end; 

PAGE (f) 
writes an ASCII f1onrn fieed to file f 

Definition 

procedure page (var f: TEXT); 

where f is a TEXT file 0pen for; ou.tput. If f is omitted, then file OUT PUT is used. 

This procedure writes a fomm feed character to file f. 'Fhis is control~Lat prresent, or ord {12 ). 
Whem the file is pnnted, this causes a page ej:eet. 

PRED (x) 
~etums the ~fedecessor value of the scalar x 
Definition 

function pred 1 x : scalar_type ) : scalar_type; 

where xis an expressi0n fo:nned f!rom. OI'le of! the foM0wiflg types: BOOLEAN~ CHARACTER. 
INTEGER, ENUMERATED OF SUBRANGE. 

The PRED function retuir:as the predecessor value of the parameteIT expressi0n. 'Fhe first element 
in an enumeration. list dmes :aot have a predeeesscm. The PRED ofi an integer is the integer minus 
o:ne. The PRED ofi a REAL argument is :a0t all0wed and r;esNlt:s in an ewoli. 

NDP Pascal Referenee Manual 



86 10 PredefinedFunc:tions and Procedures 

PUT (f) 
advan~es title file p©iriltef to t:he mext cofirl:~om.emt; of the tile f: 
Definition 

procedure put ( f: tiletype); 

where f is a file varialMe. 

PUT COJ:i>ies the value of the bNffer variable to the end of the specified file. 
If the predicate EOF ( f} is TRUE befoITe the executio:m of PUT ( f) • then PUT appends the buffer 
variable f"'· to· the file f. EOF ( f) remains TRUE •. and the vah1e o:fi r becomes uncdefined. An 
e:rroi: occ11rs ifi EOF ( f} is FALSE 1Defore execution 0£ PUT ( f) . 

The file f must be opened for outpl!lt. 

READ and READLN (forTEXTfilesonly) 
Definition 

procedure read (f : text;. vList : see_below ) ; 
procedure readln (f text; vList: see_below ); 
procedure readln ( f : text); 

whelie 

f is an optional text file to be used fom inp11t, file INPUT is ass"Limed if this parameteF is 
omitted. 

vList is a list of variables, separated by cormnas, of any combinaticm of the foll0wing types: 
INTEGER, CHAR.DOUBLE, REAL.FLOAT. 

The READ proceclure reads characteIT data from the text file f anCll conveITts it to match the data \._/ type of eacfu parameteF. 

The READLN procedure reads anCll converts data in the same manner as READ if any variables 
are p:resent. READLN then p0siti0ns the file p0inter to the beginning ofi the next line. 
CHAR data is reaCil by reading the next characte:u in the file. The READ pliocedure wiH return 
chr ( 10) foF the end of line character. 
INTEGER data is read by skipping leadmg blanks. processing tfue opti0:mal sign am:l converting 
all digits U].) 1 to the first n©n-numelrie character. An encl of line wiU tenninate an INTEGER. 

DOUBLE, FLOAT anCll REAL data isFead by skipping leacling blanks, processing the opt1i0nal sign. 
and co:m.ve:rting all characters (digits, decinnal point, sign, e or EJ up to the first n0m-numeric 
character that falls Ollltsicle the syntax of a DOUBLE, FLOAT or REAL number. An end ofi line will 
terminate a DOUBLE, FLOAT OI! REAL number. 

READ and READLN wiU accept numlDers 11p to a line bol!mdary, i.e .. a Humber cannot be :wlaeed 
on two separate lines. 

READ aml READLN will! not convert BOOLEAN or hexadecimal' formatted integers. 
Erro:us wili cause the gl10bal variable errno to be set aJ::>propriately. 

READ for non-TEXT files 
Definition 

type ft file of t 
procedure read (f ft; var v t); 

NOP Pascal Reference Manua/1 



u 

( : 

\_) 

10 Predefined Funetions and Proeedures 

where 

f is a file variable, 
vis a variable wh0se type is the h>ase type 0f the file t. 

The READ pr0cedure IIeads om.e file component from fale t and assigns this element to tfue 
variable v. 

EFrors wm cause tl:le glolDal variable errno to be set appFO{DF.iately. 

READ ( t, v) is equivalent to the folhr>wing: 

begin v: = f"'; get ( f) end; 

RESET (f, s) 
operns a frile f0~ iITTput 

Definition 

procedure reset ( t filetype; s string } ; 

where 

f is a variable of a file type. 
s is a variable Oii q:u0ted string, This paramete:rr is 0ptic1n1al 

87 

RESET initializes the file p0inter to the fir:-st CC>mp0nent of the rile and pFe])ares the file foF inpat. 
This procecltlre is equivale:ro.t to the folfowing,; 

1. cl0sing the file if it is ope:ra, 
2. Fewimcling the file, 
3. openi:m.g tfue file for input, 
4. getting the first component ofi the file. 

Tfue second argumemt to! the RESET prr0cedure is the name 0fi tfie fHe to be opened. This may be 
specified as a strong com.stant, that is, a file name embedcled in. single quotes, or as a variable. 
If the secomcl1 arg'l:l.ment is a variah>le, then the file nam.e must be terminated by the value 
chr ( 0). 

RESET posU.ions the file to tlle beginnmg ancl soi is equivalent to rewiading' the file. If the 
specified file f is not emi:>tly. then RESET assigns the buffer variable r· to the value of the first 
comp0n.ent of the file. and sets EOF ( f) to FALSE. If the file t is empty or d0es not exist, then t" 
is unclefined, ancl EOF ( f) is set to TRUE. 

Except for the ID:Uedefined file INPUT. RESET must be used om. eve:ry file l:>efoFe using GET, READ, 

OF READLN to obtain data from the file. 

Foll' interaetive files •. ad:vaaeing: the file pointet" and assigning the buffeF variat>le is deferred by a 
techniCJ_ue caliecl, lazy eval:uati©n. With'Ol!l.t lazy evaluatioa, tfue executi<Dn of the RESET pimcedure 
will cause the pFogram to wait foF input to become available, as step, 4 ab0ve shows. This 
makes it difficult for a pFogram to display messages or p:rnmpts before req:uesting input. Lazy 
evaluation: al10ws pnysical input to' be deferred untH the input is actually aeeded. by access to a 
buffer variable. This IDennits a program to handle interactive teFNlinal inpl!lt in a natural way. 

In Stanclard Pascal and NDP Pascal, there is :ro.0 proced11re for closing a file. Files are el'0sed 
automatically when pF0gram. exectitli0n termiflates. 

REWRITE (f, s) 
oi:oerns a me fon OlJJtpwt 
Definition 

procedure rewrite ( t filetype; s string); 

NfDP Pasca/1 Refenence Manuaf 



88 1 O' Predefined Ft.mctiofils anclProcedtJres 

wheFe 

f is a variable of 1lhe f1le type. 
s is a variable or q~oted strung,~ This parameter is opti0Bal. \..._.,,i 

REWRITE positioas the file pointer to the beginning ofi the file ancl pITepares the file for output. 
This procedure is equivalent to the follmwing; 

1. closing the file if it. is open. 
2. rewmcling the fiile. 
3. opening the fiile for 0t:Itput. 

The seconrl argumemt to the REWRITE procedure is the name of the file to be opened. This may 
be specified as a string coastant. that is, a file name ernbedcled in single quotes oF as a 
variable. If the secamd argumemt is a variable, theri. the file name must emd with tne value 
ch:c { O) .. If this parameter is omitted, a file name with the pFefix "'PASRT" is created, ancl 
ass0ciatedi witfu thre f!ile vartalt>le f. 

REWRITE positions a file to the lt>eginning il1 preparati0n foIT writing to iti, and so any existing 
data in the file is lost. EOF( f) is set to1 TRUE, ancl the bl!l.ffer variable r is undefined. 
Except for tfue ]H!ede:fined file OUTPUT, REWRITE rm1st be usecl on every file befiorre using PUT, 
WRITE, o:r WRITELN to transfer data to the tile. 
In Stanclarcli Pascal and, NDP Pascal:,, there is no procedure for closing a file. Files are closed 
automatically whtm program execution terminates. 

ROUND (x) 
c0rnvelits a flmatirn@: p©int: x to1 ani irilteger by: rowmdim@ 
Definition 

function round d double ). : integer; 
function round f float ) : integer; 
function round ( r real ) : integer; 

where 

dis an expression ofl type DOUBLE, 
f is an expressioa1 off type FLOAT, 
r is an expressi0n of type REAL. 

The ROUND function converts a DOUBLE, FLOAT or REAL expression to an INTEGER by rnunding. 
Positive values less than 0.5 are r0tmded down to the next integer. The following table 
illustrates the ROUND functi0n: 

round (1. 0) = 1 round { -1. 0) -1 .. 0 
round {1.1) = 1 round {-1.1) -1.0 
round (1. 2) = 1 round (-1.2) -1.0 
round (1. 3) = 1 round (-1. 3) -1.0 
round { 1. 4) 1 round (-1. 4) -1 .. 0 
round (1. 5) 2 round (-1. 5) -2.0 
round (1. 6) 2 round {-1. 6) -2 .. 0 
round {1. 7) 2 round (-1. 7) -2.0 
round (1. 8) 2 round (-1. 8) -2.0 
round (1. 9) 2 round (-1. 9) -2 .. 0 
round (2. 0) 2 round (-2.0} -2.0 

Tlle ROUND functi0m. is eq;w.1ivalent to the foUowing: 

if d > o.o then round . - TRUNC (d+O .. 5) 

else round . - TRUNC {d-0.5) i 

NDP Pascal: Referent:te Manual 

'\ 
\.__) 



u 

( 
I i v 

10PredefinedFuncti<:Jns and'Proeedures 

SIN {x) 
returns the sime of1 x 
Definition 

function sin i 
function sin r 
function sin d 
function sin f 

wfuere 

integer ) 

real ) 

double ) 

float ) 

double; 
double; 
double; 
double; 

i is an expressi<m ofi type INTEGER, 
r is an expressi0:n 0£ type REAL, 
dis an expressi0n 0£ type DOUBLE, 
f is an exprcession 0£ type FLOAT. 

89 

'Fhe SIN f'w.net1i0n c0ro.ve:r:ts tfue input parannceter to a temporary 64-bit floating p0int m1m1:!>e:u, 
and returns the sine 0£ this value. The inptlt parameter is assumed to be expressed in radians. 
If the argw.ment is large. some loss 0£ significanci:e in the result may occur. and the gl0bal 
variable errno is sen to ERANGE. 

EXAMPLE (ex074.p) 

program sinl (output); 

function sin(f: double): double; external; 

const 
pi = ~.14159265358~79323846; 

var 
i: integer; 
x: double; 

begin 
x := 0.0; 
for i:= 1 to 5 do begin 

writeln( 1 x = 1
, x,. ' sin(x) 

x ·- x + pi/4.0; 
end; 

end. 

This program g~nerates the foH0wing ©Ntput: 

x O.OOOOODOOOOOOODOOQe+OO 
x 7.85398163397448286e-01 
x 1.57079632679489657e+OO 
x 2.35619449019234486e+OO 
x 3.14159265358979~11e+OO 

SQRT {x) 
returns the sqmare root1 of, x 
Definition 

sin{x) 
sin{x) 
sin{x) 
sin{x) 
sin(x} 

sin(x)); 

O.OOOOQOOOOOOOOOOOOe+OO 
7.07106781186547550e-01 
1.0000DOODOOOOOOQOOe+OO 
7.07106781186547462e-01 
0.00000000000000000e+OO 

function sqrt i integer double; 
function sqrt r real double; 
function sqrt d double double; 
function sqrt f float double; 

NOP' Pascal Referenee Manual 



90 1 O' Predefined Funetimns andProeedures 

where 

i is an exp:ressio1:ri: ofi type INTEGER, 
r is an expression ofi type REAL, \~ 
d is an expressiom ofi type DOUBLE, 
f is an expressio:a 0fl type FLOAT. 

The SQRT functi0n converts the iriput parameter to, a temp0rary 64-bit fl0ating point number, 
and returns the square ro0tl ofi this value. If the argument is negati:ve. the global\ variable 
errno is set to, EDOM, anal the function returns o. 

SQR (x) 
returns the square of x 
Definition 

function sqr 
function sqr ( 

function sqr 
function sqr 

i 
r 
d 
f 

integer 
real 
double 
float 

integer; 
real; 
double; 
float; 

wheFe 

i is an expression, of type integer, 
r is an expFession of type real, 
dis an expression of type double, 
f is an expressi0m of type float. 

The SQR functi0n returns either an INTEGER, REAL, DOUBLE ou FLOAT value d!epencding upom tne 
type of its parameter. The result is the value 0£ the sq'lllare 0£ the input parameter. 

SUCC (x) 
returns the su:ccesson of the scalar x 
Definition 

function succ ( x : scalar_type } : scalar_type 

where xis an expFession fo!iIIled f:rom one 0£ the following) types: char, boolean, integer, 
enlllmerated or subrange type. 

The succ functio1:;1 returns the Shlccessor value ofi the parameter expressioiil. The last item in an 
enumerated list has n0 suecessor. The succ 0f an INTEGER is equivalent to adming one. succ of 
a REAL argument is m0t all0wecl and results in an erroF. 

TRUNC (x) 
cornver:ts a fl0atim9 poh~1t x to, an imteger by trwmcatirng 
Definition 

function trunc d double ) 

function trunc f float ) 

function trunc ( r real ) 

where 

dis an exp:uessiom mf7 type DOUBLE, 
f is an expiressio:ro. ofi type FLOAT, 
r is an expFessi0n o:f ty]>e REAL. 

NOP Pascal Reference Manua/1 

integer; 
integer; 
integer; 

\ . ..__;' 



\_j 

/ u 

( ) 

~ 

10 Predefined Funetions andProeedures 91 

The TRUNC functJ.iC!>Il' converts a DOUBLE, FLOAT Oii REAL expression to an INTEGER by truncating~ 
The foH0wing table gives some values 0:6 this functri0n. 

trunc (1. 0} 1 trunc (-1.0} -1. 0 

trunc (1.1) 1 trunc (-1 .. 1) -1. 0 
trunc ( 1 .. 2) J. trunc (-1. 2) -1. 0 

trunc ( 1 .. 3) trunc (-1. 3) -1. 0 

trunc (1. 4) J. trunc (-1.4) -1. 0 

trunc ( 1. 5) = J trunc (-1. 5.) -1. 0 
trunc (1. 6) = 1 trunc (-1.6} -1. 0 
trunc ( 1. 7} 1 trunc (-1. 7} -1.0 
trunc (1. 8} 1 trunc (-1. 8} -1. 0 

trunc (1. 9) 1 trunc (-1. 9} -1. 0 

trunc (2. 0) 2 trunc (-2 .. 0} -2.0 

UNPACK (z, a, i) 
copies packeaf anay z, to array a, tt>egimmimg at imclex i: 

Definition: 

procedure unpack ( z packed_array_type; 
var a unpacked_array_type; 

i integer } ; 

whe:ue 

z is the s0Mrce packed array. 
a is the destinaticrn unpacked arrray. 
i is an expressi01J1 that is compatible with the index type of z. 

UNPACK co:wies elements from the packed array z, to the unpacked array a, beginning with the 
i-th element o:fi z. Tfue element types of the two a.I'liays must be identical. There must be en0ugh 
elements in the a a:nray to :ueceive the elements CC>I!>ied from z. 

Note tfuat UNPACK is defined for one-dimensional aFrays only. 

UNPACK is ec:iuivalent to the foHowmg definiti0:n: 

type 
tl =array [rn .• n] of T; 
t2 = packed array [u .. v] of T; 

procedure unpack z t2; 

var a t1; 

i integer}; 
var j ,.k: integer; 

begin 

end; 

k := i; 
for j .- u to v do begin 

a [k] . - z [ j J ;. 

k := k + 1; 
end; 

NOP Paseal Reference Manual 



92 10PredefinedFunctions ancf Procedures 

WRITE and WRITELN for TEXT files. 
Definition 

procedure write Cf : text; exp : see_below).; 
procedure WRITELN ( f text;. exp : see_below) ; 
procedure WRITELN ( f : text); 

where 

f is an opti©nal TEXT file opened fo>r output. if omitted thero file OUTPUT is assumecl. 
exp is a list of expressi©ns. separated by commas, 0£ any comfumation of the following 
types: BOOLEAN, CHAR, INTEGER. DOUBLE, FLOAT. ancl REAL. 

The WRITE procedure writ:es character data to the text :fiile t. Each expressi0n in exp is 
evaluated! and. convertled.1 to character data. 

The WRITELN pFocedure writes data in the same manner as WRITE if any valiables are pI!esent. 
WIUTELN th.en writes an end o:t line rnarke:i- to file f. Note that WRITELN is oaly applicable to 
TEXT files. 

Errors will cause the gl©lr>al valiable errno to be set ap]))re>pF.iately. 
Formatting capability is JDroviaed for the data geaerated by the WRITE and WRITELN procedures. 
The WRITE and WRITELN procedure allows the lemgth of the oHtput to oe controlled by 
specifying aclditiona1 1 options following the expFessi@n. The options take the fom:n 

exp : width : fraction 

where 

u 

exp is the parameter to the WRITE or WRITELN pmeedure as deserilDed ab0ve. 
width is an expressi10n that must evaluate to an ifilteger. \....J 
fraction is an expFession thatl must evaluate to an integer. 

width indicates the length of the fielcl into whicfu the result of th:e expressicm exp will be 
:placed. The data is placed left-j1ustified in the case ofT type BOOLEAN ancl CHJ-\RACTER. and right­
Justifiecl in the case ofi type INTEGER, DOUBLE. FLOAT and REAL. 

fraction is only applicable to type DOUBLE, FLOAT and1 REAL, and indicates the number of 
digits to be IDFinted after the decimal' point (withlin the bounds of the width parameter)L 
The following table indicates tfue field widths used· by default: 

type field width 
BOOLEAN 6 
CHAR l 
character string actNal size 
INTEGER 12 
DOUBLE 24 
FLOAT 14 
REAL 14 Oli 24 

Except foF CHAR and characteF string data, each data type is printed with a leading space. This 
space is includ.ed in the field width given in the above table. 

BOOLEAN data is printed as eiuher "TRUE" @Ii ''TRUE" right-justified in a fieltd of 6 characters. 
Numenc data is right-justified in a fieltd. whose size is given in the ab<DVe table. The sign is 
plinted as a space for p@sitive numbers, and the minus sign is used for negative numbers. The 
data type DOUBLE, FLOAT and REAL are printed in scientific notati@ro by default, Le .. a number 
in the form 

1.12345678e+12 

NOP Pascal Reference Manua/1 



10 Predefined'Functions and' Proeedures 93 

where the BurnlDer ofi digits after tTue decttnal point is 8 for FLOAT. 17 foli DOUBLE, and g or 17 
for REAL, de:wending upon the compiler opti0ns. 

U Writing <::HAR data 

u 

(_) 

The value 0£ width inclicates the lemgth ofi the field in which the characteI" is to be placecd. If 
wicdth is !il©t specified, a value of l is used. The character data is rright justtfliecd, Le., it is 
padded Olil the lefit with lDfa.rllis. 

In the :foll©wing· examples. b represetits a blank space in the Ol!ltput result. 

write statement output 
writeln (IX 11 1} i x 
writeln (IX I' 2} i bx 
writeln ( •x• 3} i bbx 
writeln { •'x:• 4) i bbbx 

Writing B©OL..EAN' data 

The value ofT width indicates the ltmgth of the field in which the boolean data is to be placed. If 
wicdtll is 110t specifiecrt a value of 6 is l!lsed. The data is right justified. 

In the follmwing examples, b rep:ueseNts a blank space in the output result. 

write statement output 
writeln {true 3) i true 
writeln {true 4) i true 
writeln (true 5) i btrue 
writeln {true 6) i bbtrue 

Writing INTEGER data 

The value 0£ width indicates the leEgth of the fieltrl in which the INTEGER data is to be placed. 
The data is co11verted to\ characte:u format and placed rtght-jµstified into this field. If the length 
0£ the £ielcil is sh0rte:u than l.ileeessary, tfue11· the field is extended as 11eeded. In the fol10wing 
examples. b represemts a blank space in the oliltlpu.t result. 

write statement output 
writeln {123 l); 123 
writeln (123 2); 123 
writeln (123 3); 123 
writeln (123 4); b123 
writeln (123 5); bbl23 

Writing IDOlJJ!BLE, FLOAT; and REAJ1 data 

WRITE ancl WRITEiuN allow a pwam.eter expressiom' to be formatted by a.fl opti0n plac:ed after the 
exi:>ressi0lil. 'Fhis has the fonn: 

exp: width: fraction 

The value of: width indieates the length crf'. tne field in which the data is to be placed. Tb.e value 
0£ ndigi ts tndicates the number 0£ digits to be printed after the decimal p0int. The number 
will be fo:rrmatted. in scientific nocati0E unless the parameter ndig i ts is inclucdecL When 
ndi g i ts is specified, then the numl:!>er is print.eel rn fTixed fo:urnat. 

When a number is pFinted in scientific n0uatio:a, the wiclth of the JDFint fielcl. is extended if it is 
insuffieitrnt to, comtain the emtrire Nurnber. This is Not the case for Numbers printed in fixed 
format. Wh.en a nurnberr is pliinted in fixed foITinat. the number is tl1u11cated if the wicdth of the 
prrint fiel<!l: will not hold the numbeu. Caveat :wrrogrammer. 

In the foU©wing examples. b representls. a blank space in the outptlt :uestilt. 

write statement outpwt 
writeln {-1.23456e-10 8); b-l.2e-10 
writeln {-1.23456e-10 9); b-l .. 23e-10 

NCJP Pascal Reference Manual 



94 WPredefined Funetions and Procedures 

writeln (-1.23456e-10 : 10) i b-l.235e-10 
writeln (-1.23456e-10 : 11) i b-l.2346e-10 
writeln (-1.23456e-10 : 12) i b-1.23456e-10 
writeln {-1.23456e-10 : 13) i b-1.234560e-10 
writeln (-1.23456e-10 : 14) i b-1.2345600e-10 
writeln {-1.23456e-10 : 8 2) i bbb-0.00 
writeln (-1. 23456e-10 : 9 2) i bbbb-0.00 
writeln (-1.23456e-10 :10 2) i bbbbb-0.00 
writeln (-1.23456e-10 :11 2) i bbbbbb-0.00 
writeln (-1.23456e-10 :12 2) i bbbbbbb-0.00 
writeln (-1.23456e-10 :13 2) i bbbbbbbb-0.00 
writeln (-1.23456e-10 :14 2) ;, bbbbbbbbb-0.00 

writeln (-1.23456e-10 :22 : 12) i bbbbbbb-0.000000000123 
writeln (-1. 23456e-10 :22 : 13) ; bbbbbb-0.0000000001235 
writeln (-1.23456e-10 :22 :14); bbbbb-0.00000000012346 
writeln (-1.23456e-10 :22 : 15) i bbbb-0.000000000123456 
writeln (-1.23456e~10 :22 : 16) ; bbb-0.0000000001234560 
writeln (-1.23456e-10 :22 : 17) ; bb-0.00000000012345600 
writeln (-1.23456e-10 :22 : 18) i1 b-0.000000000123456000 

Writing string data 

The value 0f width inclicates the length 0f the field in which the string is llo be placed. 'rhe 
string will be Fight-j:ustified in the field. If the length of the field is shorter than necessary, the 
string will be truncated 0n the right. 

In the foH0wing examples, b rep!iesents a fulank space in the ©Nt}J>ut result. 
write statement output 
writeln ( •xyz 1

: 1); x 
write 1 n ( ' xy z 1 

: 2 ) ; xy 
write 1 n ( 1 xy z 1 

: 3 ) ; xy z 
writeln ( • xyz 1 

: 4); bxyz 
writeln { •xyz 1

': 5); bbxyz 

WRITE to non-TEXT files 

Definition 

procedure write ( f ft; exp t); 

where 

f is a file variable, 
exp is an expFessi0n th.at evahiates to type t. 

Procedure WRITE writes the value otr the eXJ:>Fession exp to the file f. 

WRITE ( f, exp) is equivalent to the foU0wing: 

begin f" : = exp; PU'I ( f) end 

NDP Pascal Reference Manua/i 

\..._.,/ 

'· \ 



u 

11 Preprocessor Commands 

The folfowing is a list 0£ cornmancls interpreted by the preprocessor. 

#DEFINE 
rep:>lace a riame with: a st,rifilg of1 cnaraeters 
Syntax 

#DEFINE n s 
#DEFINE n(nl, n2,. . . . ) s 

whe:re 

n is the macro name. 
nl. n2, ... are the :Corm.al parameteFs 0£ the mac:uo;, 
s is the text that is toi be substituted for the name n. 

'Fhe #DEFINE directive is a macro definitioH. The first form is Nsed to replace an identifier n 
witl11 an arh>itirary sequence of characters s. The secoad form aUows arguments to be 
substituted into the re:wlacem.e:at text. 

The mac:uo name is an ide:m.titieF with the same syntax as a variable, while the string s is 
arbitrary. N0, spaces are al10wecd between the macro name all<il the open parenthesis. The scope 
of the macITo' name is from its point of definition to tne end of the file being compiled. A 
def1niti0:a 1 may use pFevi@Ns definitli@:as. Substitutioils are only macde :Coli identifiers. and do not 
take place within strings. FOIT example, if Ver is a de£inecl name, then therre is no substitution 
in VERSION, or ia the string 'Ver'. 

StI.Tings can be declared foF the prep>:l.iocessor by using the -D opti@l.11 o:n the c0mpiler driver. 

#UN DEF 
cancels previol!.ls #DEFINE 
Syntax 

#UNDEF n 

wheFe n is the name ofl the syrnt>0l1 to be undefined. 

The #UNDEF cliFective rremoves the mame n, which was previ©l!lSly defined with the #!DEFINE 
dizective. from the preprocessor symfuol tal:!>le. 

#INCLUDE 
nedirects c0ITTilpHer irnJiJWt to a swp:>lPlefirlemta~y fiile 
Syntax 

#INCLUDE f 

wlilere f is the name of the flile to) be included. 'Fhis must be a complete file name in siBgle 
quotes. 

The #INCLUDE c0mmand diuects the compiler to begin readiflg its input from the file f. The file 
that is inclucl.1ed is placed im.mecl.iately after the cucrent line. When the e:m.d of the file is 
reacfued. the c0mpile!i wil1 :uesume reading firom the file containing the last #INCLUDE command. 
INCLUDE statements may be nested 1J6 levels cl.ee:w. 



96 11 Preprocessor Commands 

#IF 
alt1er preprocessor control, flow based UJPOfil 1 result of expfiessicom, 
Syntax 

#IF e 

where e is a COE.Stant expuessi0:ro.. 

The #IF d[rective evaluates a constant integer eX]>ressi0n. If the result is no:ro.zero, then the 
lines foll©wing the #IF are evaluated until an #ELSE or #ENDIF clirective 0cc1:irs. If the result is 
zero, then the lines foU0wingtne #IF directive are skipped until an #ELSE occurs .. and the lines 
within the #ELSE clause are evaluated. 

#IFDEF 
alter preprocessor control: f,l©w based' wpoli"l presernce of: a symbol1 
Syntax 

#IFDEF n 

where n is an icdentifier name. 

1'he # IFDEF diFective deternnnes if the name n is currently defined with a #DEFINE statement. 
If the name is defiinect then the lines foll0wing the # IFDEF are evaluated until an #ELSE o:r 
#ENDIF directive occu:us. !if the name is n0t defined, then the liil!les following the #IFDEF 
directive are skip:wed 1lntil an #ELSE occurs, and the lines within the #ELSE clause, if present, 
are evaluated. 

#IFNDEF 
alter preprocessor cor:ltrol1 fl©w basecrf upon the absence of, a symbol 
Syntax 

#IFNDEF n 

where n is an i<de111tifier name. 

The #IFNDEF directive deteFNlines :i:Hhe name n is cNrrently NOT <defined with a #DEFINE 
statement. This is the opJll0Sit1e 0£ the # IFDEF directive, and works in tfue same way. 

#ELSE 
alternative clause for #IF, #IFDEF or #'IFNOEF diflective. 
Syntax 

#ELSE 

This diFective is an' optional' clause in an #IF, # IFDEF. or # IFNDEF construct. The text following 
the #ELSE directlive is evaluated if the result of the pFevi0us #IF, # IFDEF, or # IFNDEF was zero 
or FALSE. 

#ENDIF 
terminator: for: an #IF, #IFDEF, or #IFNDEF statiement: 
Syntax 

#ENDIF 

The #ENDIF directive is used to end an #IF. #IFDEF and #IFNDEF statement. 

NDP Pascal Reference Manual 



u 

(_) 

11 Preprocesser Cemmands 

#LINE 
set line number ancd file name for emon messages 
Syntax 

#LINE c 
#LINE c f 

wfuere 

c is an integer tlti.at will: lDe Fep0Fted as a line number, 
f is an iclentifieIT that will' be Fep0Fted as a file name. 

97 

'Fhe #LINE directive renurnberrs the lines in the input file to simplify ofi erroF rep0m:ag~ The lines 
are numbered seque:mtially beginning with the line fo1[0wing the #LINE directive, and starting 
with the value c. Any syntax erroz;s rep0rted fuy the compiler occl!lrring after a #LINE directive, 
tlSe the Fe"-seqµencecd line manfuerr. 

The seconcd foIID ofT the #LINE directive renames the source file besides renumbering the lines 
as described ab0ve. Any syntax erroITs repo:uted by the compiler occurring after a #LINE c f. 

directive, use the re-sequencecl line number anal the renamed source file :mam.e. 

EXAMPLE 1 ( ex021.p) 

program prelO; 
#define swap(a, b) t := a; a := b; b := t; 
#define swap3 (a,, b, c) swap(a,b); swap.(b,c); 

var 
t, x, y, z: integer; 

begin 
x := 1; 

swap(x, y); 
w.riteln ( 1 x = 1 

x := 1; y := 2; 
swap3 (x, y, z); 
write 1 n ( 1 x =: ' , 

end. 

x:2, 

z ·-

x:2, 

I y y:2}; 
3; 

y y:2, I z =II z:2); 

The above program Nses the #DEFINE directive to Cl7eate t:wo simple macros. The program 
procl.uces the foU0wing ollltput: 

x = 2 y 1 
x = 2 y = 3 z = 1 

EXAMPLE2 

program prell; 
{ example of preprocessor directive } 
begin 
#line 1234 

errorl; 
error2; 

end. 

The above p:uogram illustFates the #LINE direc11ive. Since the routines errorl and error2 are 
n0t defined, the com.pil~r will p!Ii.nt the fol10wing erroF message when compiling this program: 

11 prell .p", line 1234: Undefined symbol: errorl 
"prell.pµ, line 1234: Undefined symbol: error2 

N{!)P Pascal Reference Manual 



98 11 Preprocess<JJr Commanals 

EXAMPLE 3 

The foll0wing i:mogram :fragment illustuates th.e u.se ofthe #DEFINE directive to set a debugging 
flag, and to establisltt parameters in a data type. 

program pre12; 

{ #define example 
#define DEBUGGING 1 
#define STACKSIZE 100 
#define ELEMENT_TYPE real 

type 
stack record 

top : integer; 
elements : array (1 .. STACKSIZE] of ELEMENT_TYPE 

end; 

procedure pop {var s:stack; var e:ELEMENT_TYPE); 

begin 
if s.top > STACKSIZE then 

writeln {'stack is empty') 
else begin 

e := s.elements [s.top]; 
s.to~ := s.top +1; 

#ifdef DEBUGGING 

#endif 

end; 

wri teln ('pop stack'); 
writeln (' stack index 
writeln (' stack contents 

end; 

NOP Pascal Reference Manual 

=I I s. top-1); 
-· - I e); 

\ v 



( 

u 

u 

u 

A , Selected Bibliography 

American N ati0nal Standards Co:rmnitltlee, IEEE Standard Paseal Computer Programm:i.ng 
Langu&ge. 19$3, 'Fhe Institutte ofi Electrical and Electronie Efilgineers, Inc. 

This b0ok ccmtaias the ANSI:/IEEE Pascal stanclard, 770.x'.3.97-1!983, which is implementecl 
by M!icroway. 

Coopeir, D0ug, and Michael Clancy, Ohl Pascal!, second editi0m., W.W. Norton & Company. 1985 

An excellent introductoey textb00k for learning Pascal. Each feature of the language is 
illustrated with realistic examples, along with sound softwwe engineermg prrnciples. The 
b0ok contains l6 cfilapters. a gl<ossary. and answers to selected exercises. 

Grogpn0 1
, Peter, Progrra:rnming in Pascat sec011d ed!i.ticm, ACilcilis0n-Wesley, H984 

An0theF excellent text'boCDk for learning, Pascal. While this bo0k is smaller than the one by 
CoCDper and: Clancy. the lucicl explanati0ns ofi the language elements rival that ofi any text 
on any comwuter language. The l:Dook cCDntains 10 cfu.apters, many appendices. and an 
annotated l:Dibl!iography. Regrettably, tfu.e ranclom' m1mber generratoF p:rresented in this book 
d0es not have a full pe:r;iod, yet has appea:red in many other Pascal boCDks. See the article 
"Rancl0m Nurnberr GemeFatorrs: Good Ones are :&lard to Find~ by Fark ancl MilleF CACM. Vol1 
31, Num 10, Oct., t988fo>F a c0rrectic1m. 

Jensen, Katl:llee11, ail<ll Niklaus Wirth, Pa:S<ml User M<Jmuat and Report. third editi0n, Springer­
Verlag, 1985. 

The seccH::icd ecliti011: of! this b00k was used as tfu.e clefiniti011 of the Pascal: language until the 
British aml American stancdards were finalized. The third edition was revised by Andrew 
Mickel and James Miner who have greatly improved the text, examples, inclex, and 
typ0grapfuy. 

Ledgard, Henry, The Ameriean P<JLscal Staru!l..ard: WithAT1J1(!)tati©ns. Springer-Verlag, 1984. 

This book contains the same text as the ANSI/IEEE standard but with n0tes in the 
margins. These notes co!il.tain explanati011s foir the terse prose used in the standarcl, ancl:, 
o£ten. the profulern that motivated the rule uncder cliscussi0n. 

Wo0cl1
, Derick, Paradig]lns andPr;ogr:aTTlli11ing with Pascal, C<Dmputer Seien<l!e Press, 1984 

An exceUent b0<Dk that methocdically develops solutions to many classical, p:rngramming 
problems. Ma:ay of! the algorithms receive mathematical amalysis so that the IJ>erfbFinance 0£ 
the resulting IJ>:rr0gram can be uncdeustood. 





u 

u 

B 
! 

·interface to C and Math Libraries 

Overview 
Three cliffeFent libraries are ineluded with NDP Pascal: the Pascal stanclard library. the math 
libFaiy. and the C library. Eacfu li:t>rary comes in a different ve:rrsicm depe:acling up0n its 
c0ntents anc:l the c0pFocessor wiili whieh it is ihtemcded to, be run. 

The compileF diiveF automatically requests that the HnkeF include the coliFect versi0a of each 
libi:ary depencling B.po:m. the options provicded. 1J'b.e following' gives a briefi descriptiolil ofi the 
libraries. See the NDP User's M<!lnu@.L for more details OH the use of the c0mpileF driverr. 

The Standard Pascal Library 
The roB.tines in the standard lilDrary are built into, the Pascal language aml~ are docHmented in 
Ch<ILpter 10~ No, special i;>rovision neecl be taken in order to use the routines in the Pascal 
library in a p:rogliam. 

The Math and C Libraries 
'Fhe roMtines in these ffi:!>Faries at"e used by the compiler amd several of them may lDe called from 
a !Pascal program. In order to use a rol!lt1ime in the Math or C libraries. the Pascal program mHst 
contain the function defiiliti0n that is given in the docmmeIDtation for each n!>Ntine described in 
this appenclix. 

Contents of the Math and C libraries 
'Fhe following is a slllmmary of the con.ten.ts ofi the math and, C libraries that are available to the 
NDP Fascal II>Fogramme:rr. 'Fhe remaincler ofi this appendix contains a complete descrtptioa ofi 
eacJ:il. routine. 

General string, file, and 110 routines 

access 
atof 
atoi 
bcmp 
bcopy 
bufcpy 
bzero 
cl earn 
date 
dosdat 
dostim 
ff s 
filln 
getenv 
idate 
index 
mapdev 
modf 
sec_lOO 
secnds_ 

detel11l1ine file accessibility 
ASCH to floating point conversion 
ASCI1T to mt:.ege:u con.versi0.n 
byte string compare 
COIDY sequeIDce ofi bytes 
copy secque:ace ofi bytes 
byte string zero 
clear lDytes in mem0ry 
return clate in ASCII format 
return. clate from DOS o:u UNIX 
return time from L:>OS or UNIX 
fiincd fi.Fst set bitl 
fiU n bytes ofi memcny with a specific cfuaracter 
get environment variable 
retl!lra date ifl· il1teger format 
incl.ex of a characteli in a string 
map ]>hysical! mem0ry to progFam's data segment 
s:wlit a 64-bit rmmfueF iullo in.teger and fractiioaal :warts 
Fetmm hundredths 0fi a seccnn.d since midnight 
Feturn number of seconcds foorn an origin 



102 

sprintf 
sscanf 
system, 
time 
timedate_ 

print formatted outpu.t to, a stiring' 
Fead fonnatted in'.(i>ut from· a strung 
shell to) DOS 
Feturn time in ASCII format 
Fetum date and time in irrtege:ir fonnat 

Bessel Functions 

First Kind Second Kind 
jO yO 
jl yl 
jn yn 

Trigonometric Functions 

Description 
Order 0 
Order 1 
Orde:r n 

Double Precision Single Precision 
a cos racos 
as in rasin 
a tan ratan 

Description 
arc cosine 
arc sine 
arctangent 

E!l lnterfar::e to G: amcrl Math Libraries 

atan2 
cos 

ratan2 
rcos 

arc tangent of a quotient 
cosine 

co sh rcosh 
sin rs in 
sinh rsinh 
tan rtan 
tanh rtanh 

hyperb0l!ic cosine 
sine 
hyperbolic sine 
tangent 
hyperbolie tangent 

Miscellaneous Mathematical, Functions 

cabs 
ceil 
erf 
erf c 
floor 
f mod 
gamma 
hypot 
ldexp 
loglO 
pow 
srand 
rand 

absolute value of a complex numlr>er 
ceiling functicm 
error functi0n 
c0mplernentaiy erro!i functi0n 
f100r functiCim 
fl0ating p0int m0dulo 
l©g gamma :£unction 
hypotenuse of a right triangle 
l©ad exponent 
base 1:0 10garithm 
x raised to the p0wer y 
seed: Fancl.G>rn number generator 
rand.om integer 

access 
check fUe accessifui1llitiy 
Definition 

type cp = "char; 
function access (path: cp; mode: integer}: integer; 

where 

pa th is a pointer to a null terminated character string com.taming tlle complete path and file 
nrune. 

mode indicates the type of access desired and is the 10gieal OR of the following values: 

NOP Pascal Reference Manua/1 

!\....,.../ 



( j 
'-...._/ 

/ 

L;· 

( j 

~ 

B Interlace to C and Math l!.il!Jraliies 

0: check :for existemce ofi file 
2: check if file can be writ:tem to 
4: clileck if file is read.able~ 

1'03 

The access (path, mode) fiuneti0n. cfueeks th.e aecessibility of the file namecl path in the 
manner specified by mode. access retlllrns 0 it all the s:wecified operations are available. If any 
of the specif:ieal operatiolils. are not possible, then access retums-1 and the gl©bal variable 
errno is set appropmatlel~. 

EXAMPLE (ex022.p) 

program access1(output}; 

typ.e cp = "char; 

function access(path: cp; mode: integer): in~eger~ external~ 

var 
fn: packed array[l .. 10] of char; 

begin 
fn := 'acc.dat'; 
fn[8] := ch:r(O); 
writeln('file name= 1 fn); 
writeln('mode O access indicator 
writeln('mode 2 access indicator 
writeln ('mode 4 access indicator 
end. 

access(&fn[l], 0)); 
access(&fn[l], 2)) ~ 

access.(&fn[l], 4)); 

'Fhis program. generates the foHa>wing oHtplilt whem the file ace . da t is present in the directory 
in which aecess is rtJm: 

file name =acc.dat 
mode 0 access indicator 0 

mode 2 access indicator 0 

mode 4 access indicator 0 

This program gen.euates the fi0lhDwi11g Ol1tput whe:a the fih~ ace. da t is NO'F p:rresent in the 
directory in which access is run: 

file name =acc.dat 
mode 0 access 
mode 2 access 
mode 4 access 

a cos 
Arc cosiITTe 

Definition 

indicator 
indicator 
indicator 

-1 

-1 

-1 

function acos (d: double): double; 

where d is an expiiessio11, ©f type DOUBLE. 

The a cos ( d) functi©n: :r:-ettims the :w:ctncipal value of tile arc cosine ©fi d. a cos takes an 
argumen.t iID the range -1 to, l!. anal returns a resllllt in the range 0, to pi, ex:w:rressed iE. raclians. 
If tfue inpl!lt argumeBt is outsicle ofl - lJ to l!, then a cos returns O~ and tb.e gl©bal variable errno 
is set to EDOM. 

EXAMPLE (ex023.p) 

program acosl(output) ~ 

function acos(d: double): double~ external; 

NOP Pascal Reference Manual 



104 

begin 
writeln(.'acos (0) = ', acos(0.0)); 
writeln( 'acos (-1) = ', acos(-1.0)); 
writeln( 'acos (1) = ', acos(l.O.)); 
writeln( 'acos (2) = ', acos(2.0.)); 
writeln ( 'acos (-3) = ' , acos (-3. O.) ) ; 
end. 

This program g~ne:uates the foHowing outpllt: 

aces ( 0) 1.57079632679489657e+OO 
a cos (-1) 3.14159265358979311e+OO 
a cos ( 1) Q.QOOOQOOOQOOOOOOOOe+OO 
a cos ( 2} O.QOOOOOOOOOOOOOOOOe+OO 
a cos (-3) O.OOQOOOOOOOOODDOOOe+OO 

acosf 
Single precisi0n 1 arc cosime 
Definition 

function acosf {f: float).: float~ 

where f is an exp:uession of type FLOAT. 

B lnterifaee to r; ancl Math Libraries 

The a cos f { f) funct10a rehH'BS the pFincipal vah1e of the arc cosine of f. a cos f takes an 
argument in the range -1 to l, and returns a result in the range O to pi, exwressed in radians. 
If the inpMt argument is outsicle of: - l to 1, them a cos f returns O, aml the gl0bal variable errno 
is set to EDOM. 

acosh 
Inverse hyperb01iic cesirlle 
Definition 

function acosh (d: double) : double; 

where d is an e.xpressicm of type DOUBLE. 

The acosh { d) function returns the value 0£ tfue inverse hyperbolic cosine off d. 

asin 
Arc sine 
Definition 

function asin (d: double): double; 

where d is an eXJJ>Fessio:n of type DOUBLE. 

The as in { d) functi011 rehirns the principal value of the arc sine of d. as in takes an argument 
in the range -1 to, 1, and returns a result in the range -pi/2 to pi/2, expressed in raclians. If the 
inptlt argument is Ol.!ltsicle ofl -1 to 1, then asin returns 0, ancl the gl01Dal variable errno is set 
to EDOM. 

EXAMPLE {ex024.p) 

program asinl(output); 

function asin(d: double).: double; external; 

NOP Pasca/, Referenee Manual: 



u 

u 

B Interlace to C and Matih ll.ibraries 

begin 
writeln('asin (0) = ', asin(0.0}); 
writeln('asin (-1) = ', asin(-1.0))i 
writeln('asin (1) = 'fi asin(l.0)}; 
writeln('asin (2) = ', asin(2.Wl; 
writeln ( 'as in (-3} = ' ,, as in (-3. 0) } ; 

end. 

This program generrates titre foll©wing otJitput: 

a sin ( 0) O.OOOOOOOOOOOOOOOOOe+OO 
a sin (-1) -1.5707~632679489657e+OO 

a sin { 1} 1.57079632679489657e+OO 
a sin ( 2} 0.0000000-0QOOOOOOOOe+OO 
a sin (-3) O.OOOOOOOOOOOOOOOOOe+OO 

asinf 
Single preeisi©n1 arc sine 
Definition 

function asinf (f: float): float; 

where t is an eXIDressior;1 of type FLOAT. 

105 

'Fhe as inf ( t) functi<Dn rreturns the principal value of Hie a.IiC siB.e oft. as inf takes an 
argument in the range - l! to, 1. and returns a restJilt in the range -pi/2 to, p:i.i/2. exwrressed in 
radians. If the input argumen.t is outside of -1 to 1. then asim returns O. amli the gl©li>al 
variable errno is set to EDOM. 

asinh 
lrnlerse hyperb01ic sirne 
Definition 

function asinh (d: double):. double; 

where d is an eX]>ressi0111, of type DOUBLE. 

The asinh ( d) function returns the value 0£ the inverse hyperbolic sine of d. 

a tan 
arc tangent 

Definition 

function atan (d: double):. double; 

where dis an e~Fessio:n ofi 11ype DOUBLE. 

The a tan ( d) ftmcti0n returns the principal value of the arc tan.gent ofi d. a tan returns a result 
in the r:-ange -pi1 to :Wii. eXIDressed ia Fad!i.ans. 

EXAMPLE ( ex025.p) 

program atanl (output) ; 

function atan(d: double): double; external; 

begin 
writeln{'atan (0) = ', atan{0.0)); 
writeln{ 'atan (-1} = ', atan{-1.0.}); 

Nfl)P Pasca/! Reference Manua/1 



106 

writeln( 'atan (1) = ', atan(l.0)); 
writeln{'atan (2)-= ', atan(2 .. 0)}; 
writeln('atan {-3) = ', atan{-3.0)); 
end. 

This pirogram generrates the fo>Hmwing output: 

a tan { 0) O.OOOOOOOOOOOOOOOOOe+OO 
a tan {-1) -7.85398163397448286e-01 
a tan ( 1} 7.853~8163397448286e-Ol 

atan ( 2} 1.10714871779409042e+OO 
a tan {-3} -1. 24 904577 23 9825442e+OO 

atan2 
arc tangent of a qUJotient: 
Definition 

function atan2 (dl,.d2: double}: double; 
var errno: integer~ 

where 

dl is an expressi0n: of ty(De DOUBLE, 

B lnterfaae to C and Math Libraries 

d2 is an expression of type DOUBLE, which has a :ra©nzero, value. 

The atan2 ( dl,. d2} functi©n. returns tfue principal value o:t:the arc tangent ofi dl/ d2. a tan2 
retw.rns a value benween -]>i' ancl pi, exprressed in radians. The signs ofi 1D0th arguments are used 
to determiRe the quacl:uant ©fi the FesNlt. If tfue secolilcl' argument is zero, theri a tan2 returns O 
and the glolDal: variable errno is set to EDOM (whicfu is rep:uese:rated by a zero)!. 
The a tan2 functi0ri is used to av0id comptltati0n with large numlDeFs that might overfl0w. It 
permits the expression of: large tangeRt values as the q:u.0tient ofi two· double ]>recision 
numbers. 

EXAMPLE (ex026.p) 

program atan2(output}; 

function atan2(.d1,d2: double}: double~ external; 

begin 
writeln( 'atan2 (0,1} = ', atan2{0.0,1 .. 0.}}; 
writeln( 'atan2 (-1,1) = ', atan2(-1.0,1.0}} ;. 
writeln(''atan2 (1,.1} = ', atan2(1.0,1 .. 0)).; 
writeln('atan2 (20,.0.1) = ', atan2 (20 .. 0.,0.1)}; 
end. 

This program gene:uatect: the f0UC>wing· 0111tput: 

atan2 ( 0 .1} 0.00000000000000000e+OD 
atan2 (-1.1) = -7.85398163397448286e-01 
atan2 ( 1.1) = 7.85398163397448286e-01 
atan2 { 20,a.1} = 1.56579636846093819e+OO 

atan2f 
Single precision arc tangemt 0f a qui0tie111t 
Definition 

function atan2f (fl,f2: float): float; 
var errno: integer; 

NOP Pascal Reference Manua/1 

/ ) 
I . 
\__./ 

( l 
~ 



(_j 

B lnterrfac:e to C and Math L.ibrar:ies 107 

where 

fl is an expFession ofi type FLOAT, 
f2 is an expITession of: type FLOAT, whieh has a 1.110nzero value~ 

Tl:le a tan2 f ( f 1, f 2) function returns the principal value of the arc tangent- of f 1If2. a tan2 f 
returns a value betweeni -pi and pi, expressed in radians. The signs of botfu, arguments are used 
to detennine the q:uaclrant of th.e result. If the see0lilcl argument is zero, then a tan2 f rreh1rns 0 
and the gl©bal' variable errno is set to EDOM (which is represe11ted by a zerol. 

Tl:le atan2f functi0H is used to av©id computati©n with large 1mm1:Deirs that might overfl<l>w. It 
permits tl1e exp:uessi0n o:ff lai:-ge tange1.1lt values as the q~otient of two single precisi0m. numbers. 

atanf 
Single pre~isi©m: arc tian~emt 
Definition 

function atanf (f: float): float; 

where f is an! expFessi1om. ofi type FLOAT. 

The atanf (f} function returns the pFincipalvalue of the arc tangent off. atanf returns a 
result iu the range -pi 1 to, pi, expressed ifl! radians. 

atanh 
Inverse hyperbolie tiamgent 

Definition 

function atanh (d: double).: double; 

where d is an' expression of type DOUBLE. 

Th.e atanh ( d) funct:ion retrw.ms the value of: the inverse hype:fl:Dolie tange:mt 0:6 d~ 

at of 
ASCII to fltoatirng p0imt comv,ersion 
Definition 

type cp = "char; 
function atof (str: cp): float; 

where s tr is a p0inter to a naH. te:uminated string. 

The atof ( str) functi0Iil coBverts the J.1lull! terminated string :wointed to by str to, a d@uble"" 
precision floating p0iJJ.l.t value. atof starts at the beginning of the string and co!ilverts each 
character in turn. CoBveFsi0n stops when the character is not recognizablti! as part of a f10ating 
point number. atof retw.r:ms the value converted, eveJ.11 if the encl. of the stnng l:las N©t been 
reachem. 

EXAMPLE (ex027.p) 

program atof(output); 

type 
cp = "char; 

function atof (arr: cp): float; external; 

var 
a: packed array [1 .. 28] of char; 

NDP Pascal Reference Manual 



108 

begin 
a:= ''12345e-17 1

; 

a[lO.J := chr(O); 

B lnter:face to C antdMath Librar:ies 

writeln( 'The string 12345e-17 has the value ' atof(&a[l)) ); 
end. 

This program gene:uates the foUmwing oatpMt: 

The string 12345e-17 has the value 1. 234500.0e-13 

atoi 
ASCII to inte@e~ conve~si©n 

Definition 

type cp = "char;, 
function atoi(str: cp): integer; 

where str is a p0inter to a auU tenninatedi string. 

The atoi ( str} function c0nverts the null terminated string pointed to by str into an integer 
value. a toi d©es nmt recognize decimal p0ints or exponeats. It stops coflverting the input string 
when i11 encot:mters a character that is.n0t Fecognizaole as part ofi an integer. 

EXAMPLE (ex028.p) 

program atoil{output); 

type 
cp = "char; 

function atoi(arr: cp): integer; external; 

var 
a: packed array (1 .. 10) of char; 

begin 
a·- '123456789'; 
a[lOJ := chr(O.); 
writeln ('character array = 1

, a} ; 
writeln{ 'Number beginning at column 5 
writeln{'Number beginning at column 2 
writeln('Number beginning at column 1 
end. 

This program g~ne:rates the foUmwing output: 

character array = 123456789 
Number beginning at column 5 
Number beginning at column 2 
Number beginning at column 1 

atol 
ASCII to Ion~, irnte@e~ cornversion 

Definition 

type cp = "char; 
function atol (str: cp): integer; 

56789 
23456789 

123456789 

where str is a pointer to a null ter:rninated striag. 

NDP Pascal Reference Manual 

',.atoi (&a [5])}; 
'' ,,atoi (&a [2]}}; 

'', atoi (&a [ 1] } ) ; 

·~ 



u 

( ) 
'-,/ 

B Interlace to C and Math Libraries 109 

The atol ( str) thlnction converts the null terminated string pointed to by str into an integer 
value. ato1 does D0t Fecogmze decimal points Oli exponents. It sto]>s converting the input string1 

when itl encounters a clil.aracter that is not recognizable as part 0:6 an integer. In NDP Pascal, 
this functi©l!l is iclentical to a to i since integers aFe 4-byte by defiault. 

bcmp 
byte strim@: c0rrnpare 
Definition 

type cp = "char; 
function bcmp (al,a2:cp, n:integer): integer; 

wheFe 

al and a2 are p0inters to an array ofi characte:us, 
n is an integer- less than the length ofi the anrays at al and a2. 

The bcmp (a 1 , a2 ,, n) functi0n. compares the first n characters beginning at a 1 (call these 
characters listlJwith thefiFst n charactleFs beginning at a2 (call these characters lis.t2) ancl 
r-etums one ofi the followmg values inclicatmg1 thei:u :relationsfuip: 

if listl < 1ist2 then retum1 a negative DmnlDerr 
if listl = 1ist2 then return zero 
if listl > list2 then lietum! a positiive numbeu 

EXAMPLE (ex029.p) 

program bcmpl(output); 

con st 
cl 
c2 
c3 

' economy' ; 
•ecology'; 
•eclipse'; 

c4 'eclogue' ; 

type 
cp = "char; 
slO =packed array [1 .. 10] of char; 

function bcrnp(a,,b:cp; n:integer}: integer; external; 

procedure bcompare(a,b:slO; n:integer} ;, 
begin 

writeln( "comparison on first ', n:2,' characters 
end;, 

begin 
writeln('string 1 = ·~cl); 

writeln( •string 2 = ',c2}; 
bcompare(cl, c2, 3); 
bcornpare(cl, c2, 4); 
bcompare (cl, c2 ,, 7}; 

w.ri teln ( 's.tring 3 = ', c3) ; 
wri teln ('string 4 = ',.c4); 
bcompare(c3, c4, 3}; 
bcornpare ( c3, c4 ,. 4) ; 
bcornpare(c3, c4, 5); 
end. 

',.bcrnp (&a [l] ,.&b[l J, n): 3}; 

NDP Pascal Reference Manual 



110 

This example gemwates the foUowiDg ollltpt!lt: 

string. 1 =economy 
string 2 =ecology 
comparison on first 
comparison on first 
comparison on first 
string 3 =eclipse 
string 4 =eclogue 
comparison on first 
comparison on first 
comparison on first 

bcopy 
copy, seqwernee of oytes 

Definition 

type cp = "char 

3 characters 0 

4 characters -2 
7 characters -2 

3 characters 0 

4 characters 6 

7 characters 6 

function bcopy (al, a2: cp; n: integer) : integer; 

where 

al and a2 are p0inteITs to an ar.ray 0£ characteITs, 

B lht1erfaee to C and Math Librar:ies 

n is an integeIT less than the length ofi tfae arrays at a 1 and a2. 

The be opy (a 1 , a2 ,, n) functi0m. copies n bytes from the adGlress pointed to by a 1 to the address 
poiflted to by a2. 

Cauti©ID. 1

: It is the programmer's resi=>omsiibility to ensNre that the receiving bliffer is large 
enough foF what is written: to it. If it is not large en<imgh, adj,aeeat buffers may be overwritten. 
Also. n0 check is made to detennine if tme sotirce and destination btiff ers are overla.pIDing~ 

EXAMPLE (ex030.p) 

program bcopyl(output>; 

type 
cp = "char; 

function bcopy ( src, des: cp; n: integer} : integer;. external; 

var 
a, b: packed array [1 .. 10] of char; 

begin 
a := 'abcdefghij'; 
b := '1234567890'; 
writeln('initial string 1 a); 
writeln('initial string 2 b); 
bcopy (&a [2]" &b.[3] ,, 4) ; 
writeln; 
writeln( 'altered s.tring 2 = ', b); 
end. 

This program generates the fol10wing ©llltput: 

initial string 1 
initial string 2 
altered string 2 

abcdef ghij 
1234567890 
12bcde7890 

NDP Pasca/1 Reference Manua/1 

u 



u 

( ' v 

B Interface te C and Math l:.ibnanies 

bufcpy 
co~y se<q 1~ence of: oytes 
Definition 

type cp. = "char; 
function bufcpy (al, a2: cp; n: integer): integer; 

where 

a 1 anal a2 GWe pointers to an array of characterrs. 
n is an integer less than the lemgth of the anmys at al ancd: a2. 

'Ffue bu f cpy (al, a2, n) function COJDies n bytes :Crrom· the acdcdress pointecd: to by a2 to the 
address pointed; to, lDy a 1. 

1n 

Cauti0B: It is the pFogr:a.rn.mer's respomsibility to ensure that the receiving buffer is large 
enough for what is writte:a to it. If it is ri0t large enanagh. adj aceri t buffers may be overwritten . 
.Also. no check is made to) cdete:rrmine if the source and destinatio!il buffers are oveFlapJDing. 

EXAMPLE (ex031.p) 

program bufcpyl (output} ; 

type 
cp. = "char; 

function bufcpy(des, src:cp; n:integer): integer; external; 

var 
a, b: packed array [ 1 .. 10] of char; 

begin 
a := 'abcdefghij'; 
b := '1234567890'; 
writeln( 'initial string 1 a); 
writeln('initial string 2 b); 
bufcpy (&b [2] ,.&a [3 J, 4); 
writeln; 
writeln( 'altered string 2 = ', b); 
end. 

This progrram geIDerates thie foUowiflg ONtput: 

initial string 1 
initial string 2 

altered string 2 

bzero 
byte st:riril@~ zero\ 
Definition 

typ.e cp = "char; 

abcdef ghij 
1234567890 
lcdef67890 

function bzero (al: cp; n: integer):. integer; 

whe:re 

al is a pointle:u to an ar:uay of cfuaraete:us. 
n is an integedess than the lemgth ofi the arrray at a i. 

11'he bzero (al, n) :Cuneti<I>11 stloFes brnary zeros ih then bytes 1'10inted to by al. 

Cautiom: It is the programmeF's rresp©11siibilitly to, ensure that the :rreceiving buffer is large 
en0tlgh: forr what is wrritte111 to, it. If it is not l'arge encnagh, adJa~erit buffers may be overwritten. 

NOP Pascal Reference Manual 



112 

EXAMPLE (ex032.p) 

program bzerl(output); 

type 
cp = "char; 

function bzera(al:cp; n:integer}: integer; external; 

type 

var 

pa= packed array [1 .. 10] of char; 

al: pa; 
f: file of pa; 
i: integer; 

begin 

al := 'abcdefghij'; 
writeln ('initial array = ' al}; 
bzero(&al [2], 4); 
write(' final array '}; 
for i := 1 to 10 do 

write (al[i]); 
rewrite (f, 'bzerOl. dat') ; 
f" := al; 
put(f); 

writeln; 
end. 

B Interface t(J) ct andMath Libraries 

This program geneFates the foll©wing ow.tput and writes the contemts ofi the fmal array to t:he 
file named BZEROl. DAT: 

initial array = abcdefghij 
final array = a f ghi j 

Notice that NDP Pascal pFints the binary zeros in the anray alJ as blanks. The foll0wing 
hexadecimal dump ofi the file BZERO 1 . DAT verifies that a 1 cotltains the binary zeros at the 
correct l<l>caticms: 

0000: 61 00 00 00 00 66 67 68-69 6a 

cabs 
abs0lut:e value of a c0rnplex nul1Tilber. 
Definition 

function cabs (dl, d2: double}: double; 

where dl and d2 are expFessi0Bs of type DOUBLE. 

a .... fghij 

The cabs ( dl, d2) functi0a. returns the absolute value ofi the complex numlDeF (. dl, d2) . 

EXAMPLE (ex033.p) 

program cabsl(output); 

function cabs.(d1,d2: double}: double; external; 

begin 
writeln('cabs(l,1} =',.cabs( 1.0,. 1.0)); 
writeln('cabs(3,-4) cabs.( 3.0, -4.0)); 
writeln('cabs(-3,,4) = '', cabs( -3.0, 4.0)); 

NDP' Pascal Reference Manual 

' \ 

\..._) 



( \ 
~ 

u 

I . u 

B lnterfaee to, C and Math L.ibrranies 

writeln('cabs(-6,-8} =',cabs( -6.0, -8.0}); 
end. 

This program.1 generates the :fiollowing olltpu.:t: 

cabs ( 1,, 1} 

cabs ( 3 ,, - 4) 
cabs (-3 ,, 4) 
cabs(-6,1-8) 

calloc 
call(Dc 

Definition 

1.41421356237~09515e+OO 

5.00000000000000000e+OO 
~.OOOOOOOOOOOOOOOOOe+OO 

1.00000000000000000e+Ol 

procedure callo.c{nmemb, size: integer); 

wheFe 

nme.mb is the m:u:nberr of it!.ems to 1 be stoFed; 
size is the size of eaefu, item. 

calloc all<Dcates a l:t>l©ck of zero filled memory large em:nagh to hold the nurnbeF of! items 
specified' in the first argtament 0£ a size specified in the seconcl argm.neBt. 

ceil 
ceinn~ 

Definition 

function ceil { d: double} : double 

where d is an expiressioN ofi tJ.ype DOUBLE. 

1:13 

T:fue c e i 1 ( d) functi0B1 returns a 64-bit :floating point uesult representing the smallest integ~F 
that is greaterr than or eqw.al to d. 

EXAMPLE ( ex034.p) 

pro.gram ceill (output); 

function ceil (d: double): double; external; 

var 
i: integer; 
x: double;. 

begin 
x := 1.0; 
for i := 1 to 10 do begin 

writeln('x = ', x:S:l, 'ceil{x} 
x := x + 0.1; 
end; 

end. 

This program.1 generates the following Olltp11t: 

x 1.0 ceil (x) 1. 00 
x 1 .1 ceil {x} 2.00 
x 1.2 ceil (x} 2.00 
x 1.3 ceil (x} 2.00 
x 1.4 ceil {x} 2.00 
x 1.5 ceil (X} 2.00 

ceil(x}:6:2}; 

NOP Pascal Reference Manual 



x 1.6 ceil (X) 2.00 
x 1. 7 ceil (x) 2.00 
x 1.8 ceil (x) 2.00 
x 1.9 ceil (X) 2.00 

clearn 
Glear n bytes of rneA1lory 
Definition 

type cp = "char; 
function cl earn (n: integer; al: cp) : integer;. 

where 

lJJ Interlace to C and Math Libraries 

n is. an integer expnessi0m less. tfuan the le:mgth, of the a.n:ay at a 1. 
al is a pointer to. an array ofi charaeters. 

The c 1 earn { n, a 1) functi0m, stores ll>ina.iy zeros in the n bytes pointecl to by a i. 

Cautio:m.: It is the programmer's responsibility to ensure that the receiving buffer is large 
enough for what is wrttten to· itl. If it is n0t large enough, adjaeen.t blllffers may be overwritten. 

EXAMPLE {ex035.p) 

program clearnl(output}; 

type 
cp = "char; 

function cl earn ( n: in 'i:.eger; a 1: cp) : integer; external; 

type 

var 

pa= packed array [1 .. 10) of char; 

al: pa; 
f: file of pa; 
i: integer; 

begin 
al := 'abcdefghij'; 
writeln('initial array= ',al); 
clearn(4~ &a1[2]); 
write (' final array '}; 
for i:= 1 to 10 do 

write (al [i]}; 
rewrite ( f, 'clearnl. dat'}; 
f" := al; 
put ( f); 
writeln; 
end. 

This pi:-ogram generates the follt1>wing· 0utptit and writes tfue c0ntlents ofl the final ar:rray to the 
file named CLEARN1 . DAT: 

initial array = abcdefghij 
final array = a fghij 

Notice that NDP Fascal pirints the l:Dinary zeITos in the GUTay al as blanks. The following 
hexadecimal dump of the file CLEARNl. DAT verifies that al contains the binary zeuos at the 
colirect lmcaticms: 

0000: 61 0-0 00 00 00 66 67 68-69 6A a .... fghij 

NDP Pascal: Reference Manual: 

u 

(~ 



/ ' u 

u 

B Interlace to C and Math L..ibra/iies 

clock 
Stnow CPU t:irrne 

Definition 

function clock: integer; 

115 

This functi0n Feturns as an unsignecd integer the numl:t>err ofi clmck ti<r!ks the CPU has spent oa1 
the current pFocess. 

clrndpex 
Clear the excepticon bit1s in the tNDP status word. 
Definition 

procedure clrndpex; 

c 1 rndpex~ clears the except.i0:n bits ofi the status woud o:f the active NDP. Nothing else in the 
coII>rocessor is affectecd'. 'Fhis :funct.i0a is available foF the DOS, OS/2. ancl Windows 386/486 
compilers. 

co sf 
Sirngle precisimn c0sine 

Definition 

function cos ( f : float ) : float; 

where f is an expFession ofi type f 1 oat. 

The cosf fonctio:m., co:m:verts the inpl:lt JDarameter to a temporary 64-bit fltDatmg JD©illt rmrnberr 
anrl retlllrns the cosine 0fi this vah1e. The input parameter is assumed' to, be expressed in 
I.Tacliafls. This functi0n cdiffeFs frorn 1 cos in that it: r:eturns a float rath 1eIT than a double. 

cosh 
Hyperbcolic cosirne 

Definition 

function cosh { d: double): double; 

wfueFe d is an expFeSSiOiil of7 type DOUBLE. 

The cosh ( d) function Feturlils nhe hyperbolic cosine 0:£ d. If d is too! large, infinity is returned 
anrl: the global variable errno is set to ERANGE. 

EXAMPLE ( ex037.p) 

program coshl(output); 

function cosh(d: double): double; external; 

con st 

var 

pi = 3.141592~5358979323846; 

i: integer; 
x: double; 

begin 
x := 0.0; 
for i := 1 to 5 do begin 

NDP Pascal Reference Manual 



116 

writeln ( 'x = ', x, ' cosh (x) 
x ·- x + pi/4.0; 
end; 

end. 

This ]>rogram geneITates the foU0wing outtput: 

EB lnterlac;e to C and Math Libraries 

cosh(x)); 

x 
x 
x 
x 
x 

0. 0000:00000000'00000+00 
7.85398163397448286e-01 
1.57079632679489657e+OO 
2.35619449019234486e+OO 
l.14159265358979311e+OO 

cosh(s) = 1.00000000000000000e+OO 
cosh(s) 1.32460908925200593e+OO 

cos hf 

cosh(s) 
cosh{s) 
cosh(s) 

SiA~Je pfeeisi0m ttiyperb01i~ eosir:ie 
Definition 

function coshf (f: float}: float; 

where f is an expuessi0n o:C type FLOAT. 

2.50917847S65805618e+OO 
5.32275214951995857e+OO 
1.15919532755215169e+Ol 

The coshf ( f) function., :returns the hyperbol!ic cosine ofi f. If f is toe:» large, infinity is returned 
anc!l the gk>loal vru:riable errno is set to ERANGE. 

date 
return date irn: ASCII format 
Definition 

type s9 = packed array [ 1 .. 9] of char; 

procedure date_ (VAR date: s9); external; 

where a.ate is an an-ay of at least mine charact1ers. 

The date_ :wroceduT'e :returns a nine character ASCH st1ring de:moting the current date kn0wn to 
DOS, iE., the foFIIlat dd-mmm-yy. 

EXAMPLE {ex038.p) 

program datel (output); 

typ.e 
s9 =packed array (1 .. 91 of char; 

procedure date_ {var date: s9.); external; 

var 
today: s9; 

begin 
date_{ today); 
writeln{ 'Today'' s date is ',today); 
end. 

This pFogr:am geflerrates the foU©wing OllltpHt: 

Today's date is 08-MAY-89 

NDP Pascal Referenee Manual 



u 

(_) 

B lnterfaee to· C JnaJMath Libraries 
I 

difftimle 
Diffe~ence betwee11t tw0 calendar tirrn:es 

',1 Definition 
i 

function d~fftime ( timel, timeO: integer}: double; 
I 

where timel ah©. 1 timeO :uepresent the stopping, ancl starting times to, lDe :rneasNred. 

difftime :uetllll.~S tTue di:ffe:uen<l!e lDetween its tw<D arguments as a double. 

I 

dosdaf 
~et!urnr date firoritl~ lDOS 

Definition I 

procedure ~osdat (VAR month, day,, year,, dayofw, integer); external; 

where month. qa.y. year. an cl dayofw rrn.Jstl be intege:u variables. 

117 

I 
i 

The dosda t p:r<t>cedw.re :ueturns f©lllr integeFs that coITespoad to the date maintained by DOS. 
The return 1 :waduneters have the fol10wing range of values (dayofw is an abbreviation for day o:f 
week): \ 

month 
day 

I 

:I 
! 

:I 
! 

:i 
I 

EXAMPLE (ex0~9.p) 
i . 

dayofw 

1 to 12 
1 to 31 

1 to 7 

program da~e (output} ; 

procedure f osdat (var month,. day, year, dayofw., integer); external; 

var 
1 

month, aay, year, dayo.fw: integer; 
! 

begin I 
i 

dosdat (i;nonth,, day, year,; dayofw}; 
I 

month: 4}; 

day: 4}; 
writelnl( ·.month = 
writeln ('day = 

wr i telnl( •year = year: 4} ; 

wri telnl( 'dayofw = ' dayofw: 4}; 

end. \ 
I 

This pimgram generrates the foll0wing Ollltwut: 
I 

month I 4 

day 124 
year =19~9 
dayofw 1 1 

I 

dostinl 
! 

return t:ime frorn DOS 
I 

Definition I 

procedure fostim (VAR hours, minutes, seconds, hundredths: integer}; external; 

where hours, ibinutes, seconds. and hundredths must be integer variables. 

NOP Pascal Reference Manual 



118 BJ Interface to C and Math t.ibraries 

The dost irn. procedure returns four iBtegers that COFfesponct: to the time of day maintained by 
DOS. Tfuis is a 24-hour clG>ck, so1 the return parameters have the following range of values: 

hours 0 to 23 
minutes 0 to 59 
seconds 0 to 59 
hundredths 0 to 99 

EXAMPLE (ex040.p) 

program time (output); 

procedure dostim( var hours,. minutes, seconds,. hundredths: integer); external; 

var 
hours, minutes, seconds, hundredths: integer; 

begin 
dostim(hours, minutes, seconds, hundredths); 
wri teln ( 1 hours hours) ; 
writeln('minutes = ',minutes); 
writeln ( 'seconds = ' , seconds) ; 
writeln( 'hundredths =', hundredths); 
end. 

This program generates the fo>U0wing Ollltplllt: 

hours 14 
minutes 58 
seconds 55 
hundredths 84 

ecvt 
Floating point: to ASCII cornversion 
Definition 

type 
s9 = pack.ed array ( 1 .. 9] of char;. 

function ecvt (value: double;, ndig, decpt, var sign: integer): s9 

where 

value represents the fl©ating-point value to be converted; 

ndig is the Duml:Der ofi cligits to whieh! the number is to, be rcrw.acled: 

de<r:pt is the decimal pcoint positi<Dn relative to the first character ofi the returned string~ If 
decpt is zero the decimal point is iimnecliately to the left 0£ the first character of the 
rreturDed string. If decpt is p©sitive, the decimal ]>Oint is to the left ©fi the character 
numl:!>ered decpt (the :£irst eharacter being:aumberecl zero)1. If decpt is lilegative, leading 
zeros have Tueelil suppFessed aml the decimal poin.t is decpt characte:rs to the I1eft of the first 
character o:C the smng~ 

sign is set on.: ireturn tomr>lilz:eFOJif the value is Negative and zern otheFWise. 

ec:vt :rretlllrns an ASCH swing equivale:at to the first argument in %e format. Leading zeros may 
be suppressed. 

NDP Pascal Reference Manuaf 



u 

u 

B Interface to· C and Math Librar;ies 

erf 
error fumctiion 
Definition 

function erf {d: double): double; 

where d is an expressi0ro ©fi tyf>e DOUBLE. 

The erf ( d) function :returns the eIJro:u functiom of d. For large arguments, erfc, the 
complementary en.roF furoetion, should be used to maintain accurracy. 

EXAMPLE (ex041.p) 

pro.gram erf 1 { output) ; 

function erf (d: double): double; external; 

var 
x: double; 
i: integer; 

begin 
x := 0.0; 
for i := 1 to 6 do begin 

writeln{' X= ', x:5:2,' erf(x} 
x ·- x + 0.2; 
end;. 

end. 

This program gemerates the following1 ©NtpHt: 

x 0.00 erf {x) o.ooooooooonoooooo-0e+o-0 
x 0.20 erf (x) 2.22702589210478451e-Ol 
x 0.40 erf (x) 4.28392355046668436e-01 
x 0.60 erf {X) 6.03856090847926019e-01 
x 0.80 erf {x) 7.42100964707660362e-01 
x 1.00 erf {x) 8.42700792949714914e-01 

erfc 
coirn~lefilllemtary enmn f:uFlccNom: 
Definition 

function erfc {d: double): double; 

where d is afl! expression ofi type DOUBLE. 

erf (x)); 

The erfc ( d) fun<I!ti©B rehifm.s the complementary eIJror fumctio11, of d. 

EXAMPLE (ex042.p) 

program erfcl (output); 

function e:rfc (d: double): double; external; 

var 
x: double; 
i: integer; 

begin 
x ·- 0.0; 
for i := 1 to 6 do begin 

writeln{' x = ', x:S:.2, ' erfc{x) 
x := x + 0.2; 

erfc (x)); 

119 

NDP Pascal Reference Manual 



120 

end; 
end. 

This program generates the following, output: 

x 0.00 erfc{x) 
x 0.20 erfc (X) 

x 0.40 erfc (x) 
x 0.60 erfc{x} 
x 0.80 erfc (x} 
x 1. 00 erfc (x} 

_err no 
Returns value of, errn0, 

Definition 

1.000QOOOOOOOOOOOOQe+OO 
7.77297410789521411e-Ol 
~.7160764495~331470e-Ol 

3.96143909152074024e-01 
2.57899035292339548e-01 
1.57299207050285108e-Ol 

function _errno: integer; 

B lnteda<;e t10 <; and Math Librafiies 

The g10bal variable enmo is set in many functioNs to inclicate what sort ofi e:r:-:uo:u occun-ed. 
_errno returns the value of errno so a puogram can respom.d appropdately to e:uoFs. 

exec I 
Executes a file 

Definition 

type cp = "'char; 
function execl (path, argl, . . . char_zero: cp}: integer; 

where 

pa th is the pointer to the path m.arne foJ.T the new file to be executed; 

argl . .. is the p0inter to the first argument. After the last argument. include a character 
(0) to let the functiom km.ow there are no moi:-e arguments. 

"Fhis function executes a file anal does not return. On failure. the functi0n returns -1 and the 
global variable errno is sen appropriately. This function is identical to exec 1 under UNIX. 

exec le 
Execwtes a fHe 

Definition 

type cp = "'char; 
function execle (path, argl, . . . , argn, char_zero: cp): integer; 

where 

pa th is the pointer to the path name for the new file to be executed; 

arg 1 . .. is the p©inter to the first argumem.t to be passed to! the new file. 

argn is the p<Dinter to an array of pointers to the envirorn:mmt strings. After the last 
argument. include a character (O} to let the function !mow there are no m0Fe argume:ro.ts. 

This functi0n.. executes a file and does n.ot return. On failure. the function returns -1 ancl the 
gl<Dbal variable errno is set ali>pro:prniately. This function is identical to exec le under UNIX. 

Nl!JPPasca/! Referenee Mamua/1 

u 

( \ 

\._,) 



L 

( J 

~ 

B lnterfaee te C and Math Libr:aries 

execv 
Exeeutes a fHe 
Definition 

type cp = "char; 
function execv (pa th, arg: cp) : integer i1 

where 

pa th is the ID©inter to tfue path name f0F tile new file to, be execBted; 
arg is a p0inteF 1:01 an array 0fi wguments t01 be wassecl to the new file. 

121 

This functiCDiil executes a file ancl: does n<Dt Fetw.m. On failure, the functi©n Fet1:1rns -1 and. the 
gl©lDal! variable errno is set appropFiately. This function is identical to execv uncder UNIX. 

exit 
Termirnate p:>mgrnm. 
Definition 

procedure exit(. status: integer) ; 

where status is the Feturn value to the pa.reNt p:rncess. 

exit encls tll,e program. flushing all buffers and returning its integeu argument to the parent 
process. 

fabs 
D0uble p:>~e~isi0n: absollute vallue. 
Definition: 

function fabs ( d : double ) : double;; 

where dis an eXli>ressi©ID ofi type double, 

The FABS £uncti0:n Fetums a double. 'Fhe result is the absolute value of the inpat parameter. If 
the argument is out 0:£ range, the global! variable errno will be set to EDOM. If the rettlm value 
is out of range. errno wili lDe set to ERANGE. 

fcvt 
C0nve rt F fonn:ati to, string 
Definition: 

type cp= "char; 
function _fcvt { value: double; number_of_digi ts, decimal_point,. var sign: 
integer) : cp; 

where 

value is the value to t>e conveFted; 

number_of_dig its is the number 0£ digits to which value is to be irou.ncded; 

decimal_point speci£ies the decimal point position relative to the first cnaracter of the 
retumecd string. If decimal_point is zero the decimal' point is immediately to the left ofi the 
first character ofi thereturnecl string. If decimal_point is positi:ve, the decimal' point is to 
tfue 11efit ofi the character numbered decimal_point (the first character being Numbered 
zero)'. If decimal_point is Degative, leading zeros have been sNppressec:t ancl the decimal 
point is decima l_po.in t charaeteITs to, the lefit ofi tile first eharacter of the string. 

NDP Pasea/I Referenee Manual: 



122 B Interlace to C an.d Math Libra/iies 

sign is set to nonzero if the value is negative; otherwise it is set to zero. 
_fcvt l'etums a pointer to a string containing the first argument in fixed point t%fl format. 
Leading zeros may be suppFessed. · 

ffs 
find first set biti 
Definition 

function ffs (i: integer): integer; 

where i is an expressiom ofi type INTEGER. 

'Fhe ff s { i} functiioiil. returns the place of tfue first bit in i that is set. counting the l'east 
significant bit as 1. 

EXAMPLE (ex043.p) 

program ffsl (output); 

function ffs(i: integer): integer~ external; 

var 
i ,. j : integer; 

begin 
i := 1 i 
for j := 1 ta 16 do begin 

writeln (' i 
i ·- 2 * i; 
end; 

end. 

i:6, I ffs(i) 

This program generrates the folhDwing output: 

i 1 ffs(i) 1 
i 2 ffs{i) 2 
i 4 ff s (i) 3 
i 8 ffs (i) 4 
i 16 ffs(i) 5 
i 32 ffs(i) 6 
i 64 ffs{i) 7 
i 128 ff s (i) 8 
i 256 ffs(i) 9 
i 512 ff s.(i) 10 
i 1024 ffs(i) 11 
i 2048 ffs(i) 12 
i 4096 ffs(i) 13 
i 8192 ffs(i) 14 
i 16384 ffs(i) 15 
i 32768 ffs(i) 16 

filln 
fill' n bytes of memory with: a specif.ic character 
Definition 

type cp = "char; 

ffs{i):6); 

function filln (n: integer; al: cp;. ch: char): integer; 

NDP Pascal' Reference Manual 



i . 
~; 

( . 

~ 

B Interface te C and Math f..ibrrar:ies 

where 

n is an integc;r less than the length of the array at al, 
al is a p0inter to· an array ©f characters, 
ch is the fill: chwacteF. 

123 

The f i 1 ln ( n, a 1 , ch) functi©ID. fills n bytes of mern01~y pointed to by a 1 with the character ch. 

Cauti<!m: It is the programmer's resp©ID.sibility tJo enstire tfuat the receiving buffer is large 
enomgh for what is written to it. If it is n©t large en0Ngh. adj1acent buffers may be overwritten. 

EXAMPLE (ex044.p) 

program fillnl (output); 

type 
cp "char; 

function filln(n:integer; des: cp; ch: char): integer; external; 

var 
a: packed array [1 .. 10] of char; 

begin 
a := 'abcdefghij ·~ 
w.ri teln ( 'intial array = ',.a) ; 
f illn ( 4 ,. &a [ 2] I I - I ) i 

writeln(' final array = ', a); 
end. 

This pr©gram, generrates true f\ol[(l)wing 0:w.tput: 

initial array abcdefghij 
final array = a----fghij 

floor 
fl.00r 

Definition 

function floor {d: double): double; 

where d is an expFessi©n of type DOUBLE. 

The floor ( d) functi©m1 returns a 64-lDit value that represents the largest intege!i that is less 
than OF equal: to d. 

EXAMPLE (ex045.p) 

program floor (output) ; 

function floor(d:double): double; external; 

var 
i: integer; 
x: double; 

begin 
x := 1.0; 
for i:= 1 to 11 do begin 

w.riteln(' x = ',1 x:5:1,. ' floor(s) 
x := x + 0.1; 
end; 

end. 

floor ( x} : 6 : 2 } ; 

NOP Pasc;a/1 Ref.erence Manua/, 



124 

This progi:-am retl:1rns the foll0wing Ol!ltput: 

x 1. 0 floor (x) 
x 1.1 floor(x) 
x 1. 2 floor(x) 
x 1. 3 floor(x) 
x 1.4 floor (x) 
x 1.5 floor (X) 

x 1. 6 floor(x) 
x 1. 7 floor (x) 
x 1.8 floor (x) 
x 1. 9 floor(x) 
x 2.0 floor (x) 

fmod 
floatirig poirit moau10, 
Definition 

1. 00 
1. 00 

1. 00 
1.00 

1.00 

1.00 

1.00 

1. 00 

1. 00 

1. 00 

2. 00 

function fmod (dl, d2: double): double; 

where dl ancl d2 are e~Fessio:ms of type DOUBLE. 

B Interlace to C and Math Libraries 

The fmod ( dl, d2} function returns the flcl>ating, p<Dintl remaincler of its argumeDts. such that dl = z + n * d2 •. where n is the largest integ~r value for which the eciuati0n can be true for a noB-negative n. If the input value is out of Fange, the gl01Da1 variable errno will be set to EDOM. 
EXAMPLE {ex046.p) 

program. fmodl (output); 

function fmod(dl, d2: double): double; external; 

var 
x, y: double; 
i: integer; 

begin 
x ·- 16.5; 
y := 1.5; 
for i := 1 to 16 do begin 

write 1 n ( ' x x :.5 : 1 , ' y 
y := y + 1; 
end; 

end. 

This program generates the following Ol!ltpat: 

x 16.5 y 1. 5 frnod(x, y)= 0.00 
x 16.5 y 2.5 frnod{x, y)= 1.50 
x 16.5 y 3.5 frnod(x, y)= 2.50 
x 16.5 y 4.5 fmod(x, y)= 3.00 
x 16.5 y 5.5 frnod(x, y)= 0.00 
x 16.5 y 6.5 frnod(x, y)= 3.50 
x 16.5 y 7.5 frnod(x, Y)= 1. 50 
x 16.5 y 8.5 fmod(x, Y)= 8 .. 00 
x 16.5 y 9.5 frnod(x, y)= 7.00 
x 16.5 y 10.5 frnod(x, y)= 6 .. 00 
x 16.5 y 11. 5 fmod(x, y)= 5.00 
x 16.5 y 12.5 fmod(x, y)= 4.00 
x 16.5 y 13. 5 frnod(x, y)= 3.00 

NOP Pascal Referenee Manual 

y : 5 : l ,, ' f rnod ( x, y) frnod (x,y).: 6: 2}; 

\ 

' J 

\.....,_,,/ 



u 

B Interface to, C and Matfr llibfiaries 

x 16.5 y 14.5 fmod(x, y) = 2.00 
x 16.5 y 15.5 fmod(x, y) = 1. 00 
x 16.5 y 16.5 fmod{x, Y)= 0.00 

frexp 
exp0Aent amd ma~tissa of 1 a f:loatirng-poirnt number 
Definition 

function frexp (d: double,. VAR exptr: integer): double; 

125 

This d©able prrecisi©m funeti©n returns the mantissa ofi the first argumemt (d©uble) and. places 
its exponent into the seconcd argument (integeF):. If the return value is out of range, the gl<:>mal 
variable errno will be set to ERANGE. 

frexpf 
exp0ment amd 1 mantissa of, simgJe,.preeisi0m f1ltDat 
Definition 

function frexpf (f: float, VAR exptr: integer): float; 

This smgl 1e pFecisi©n functi©ro.1 ofl frexp returns the ma.Etissa ©fi the first argument and places 
its exponent into the secofld argument. If the reh1rn value is out of range, the gl'01Da.l variable 
errno will be set to ERANGE. 

gamma 
10g garrnma tum~ticom1 
Definition 

function gamma (d: double): double 

where d is an expITessi0m ofi type DOUBLE. 

The gamma ( d) fu:action returns the flahiral logarithm of the absolute val'La·e 0£ the g4:Uilfila 
funeti©B ofi d. The sign ofi the gamma funeti0n 0£ dis returned in s igngam. If the input value is 
oat of b0uncds, the gl©fual: variable errno will be set to EDOM. 

EXAMPLE ( ex047 .p) 

program gammal (output); 

function gamma<d: double): double; external; 

var 
signgam: integer; external; 
i: integer; 
x: double; 

begin 
x := 1.0; 
for i := 1 to ~ do begin 

writeln (' x = •, x, ' gamma (x) 
x ·.- x * 10 i 
end; 

end. 

This pFogram. generates the fToU©wing output: 

x 1.00000000000000000e+OO garruna{x) 

gamma {x)); 

0.000-00000000000000e+OO 
x = 1.00000000000000000e+Ol gamma(x} = l.28018274800814673e+01 

NDP Pasca/1Referenee Manual' 



126 

x 1.oooooooooooooooooe+o2 gamrna(x} 
x 1.00000000000000000e+03 gamrna(x} 
x 1.00000000000000000e+04 gamrna(x} 

gcvt 
convert fl0ating-i;:>0im~ to G format: strimg, 
Definition 

type cp = "char 

B Interlace to C and Math Libraries 

3.59134205369575l41e+02 
5.90522042320918081e+03 
8.2099717496442l612e+04 

function gcvt (d: double, ndig: integer, buf: cp): cp 

This functi0n takes tnree arguments. d (d0uble). ndig ~integer). and buf (character p0inter)'. It 
con.verts the first argumen.t to a prnperly rounded ASCII strung placed b©tlil in the third 
argumen.t and retw.rnecl; by the fonctiom.. If p0ssi1Dle it generates number_of_digits. digits after 
the decimal point in. % f format, 0therwise in %e foliIIlat. 

getdat 
get date 
Definition 

procedure getdat CVAR month, date,. year, dayofweek: integer} 

This pFocedure changes its fo:w.r integeF arguments to return tne m0nth. elate. year, aml day 0£ 
week. 

getenv 
get: envimmn:ent variable 
Definition 

type cp = "char; 
function getenv (str: cp) : cp; 

where str is. a ]>©inter to a m1U terminated character string, 

The getenv ( str) function returms a pointer to tfue environment variable pointed to by str. 
The user shoulcrl remember that D0:S converts enviromment variables to uppercase and should 
allmw for case matching. If n0 em try is :6mmcl, then a nuU pointer is returned. 

EXAMPLE ( ex048.p) 

program getenvl(output}; 

type 
cp "char; 
s70 = packed array [1 .. 70] of char; 
s7 Op = "s7 O; 

function getenv(str:cp): s70p~ external; 

var 
str: packed array [1 ... 10] of char; 
p: s70p; 
i: integer; 

begin 
str : = 'PATH';. 
str[SJ := chr(O.}; 
p := getenv(&str[l]}; 

NDP Pascal Reference Manua/i 

\ 
' l u 

u 



u 

G 

/ u 

B Interlace to C and' Math tibfiaries 

writeln('path = ', pA); 

str := 'PROMPT'; 
st r [ 7 J : = chr ( O ) ; 
p := getenv(&str[l]}; 
write('prompt = '}; 
i := 1; 

while p"[i] <> chr(O.) do begin 
write (p" [ i] ) ; 

i := i + 1 

end; 
writeln; 
end. 

127 

This example ilh1stirates trwo, diffe:reBt technicrues to access the resNlt pointed to by the getenv 
function. This p:uogram gener:-ates the foll<Dwiag oNtput: 

DOS: 
path = C: ; C: \ i.; C: \DOS; C: \ PHAR;.C: \EPSILON; C: \BATCH; C: \NORTON; C: \MSC\BIN 
prompt = $p$g 

UNIX: 
path = . : /ndp/bin/ sysv_O: /usr /bin :/bin: 
prompt 

gettim 
get1 tirrne 

Definition 

procedure gettim(VAR hour, minute, second,. hsec: integer); 

This proceduue chaages its fouir imtegeF arguments to :ueturn the hour, minune, second, and 
h uncilrecdth o:C a second. 

hypot 
hypcotiernuse of a ri@tM trieJ1~,le 

Definition 

function hypot (.dl, d2: double) : double; 

The hypot (dl, d2) functiom :ueturns the leagth of the hypotenuse of a right tFiangle with sides 
of length dl anciJ., d2. 

EXAMPLE ( ex049.p) 

pro.gram hypotl(output); 

function hypot (dl, d2: double): double; external; 

begin 
write 1 n ( ' hypo t ( 3 ,. 4 ) 

w.r i teln ( ''hypot ( 5 ,.6) 
write 1 n ( ' hypo t ( 6 , 8 ) 
write 1 n ( ' hypo t ( 7 , 9 ) 
end. 

hypot ( 3 • 0 I 4 • 0) } j 
hypot(5.0, 6 .. 0)) ~ 
hypot(6.0, 8.0)); 
hypo t ( 7 • 0 I 9 • 0} } j 

This program; generates the foU<l>wing out1rrut: 

hypot (3, 4) 

hypot(5, 6) 

5.00000000000000000e+OO 
7.8102496759-0665400e+OO 

NlJJP Pascal Reference Manual 



128 

hypot(6, 8) 
hypot(6, 9) 

id ate 

1.00000000000000000e+Ol 
1.14017542509913792e+Ol 

return date irn' irntegerr format: 

Definition 

B Interface to C and Math Libraries 

procedure idate_ (VAR month,! day, year: integer); external; 

where month, day, anal'· year are intege:rr variabl'es. 

The idate_ procedure returns the current date known to DOS or UNIX in three integer 
variables. Each value returned contained at most two c:ligits. 

EXAMPLE (ex050.p) 

program idatel (output); 

procedure idate_ (var month, day, year:. integer); external; 

var 
month, day, year: integer; 

begin 
idate_(month, day, year); 
writeln (' month month}; 
writeln(' day day); 
writeln(' year year); 
end. 

This program generates the foU©wing OhltIDlit: 

month 5 

day 8 

year 89 

index 
index of a character im a strimg 1 

Definition 

type cp = "char; 
function index (str:cp; ch:char) :cp; 

where 

s tr is a pointer to a null terminated character string, 
ch is the character to match. 

'The index { s tr, ch) functioID. returns a pointer to1 the fiirst :iflstanee 0:£ the character ch in the 
string pointed to t>y str. If ch is n0t fot.mcl, then inclex retB.ms a nun p0inter. 

EXAMPLE (ex051.p) 

pro.gram indexl (output} ; 

typ.e 
cp "char; 
slO =packed array [1 .. 10.J of char; 
slOp = "slO;. 

function index(str:cp; ch:char).: slOp; external; 

NOP Pascal Reference Manua/1 

u 

\ 

<.._) 



u 

B Interface to C and Math Libraries 

var 
str: slO; 
p.: slOp.; 

begin 

str := 'invisible'; 
str[lO] := chr(O); 
p := index(&str[l), 'v'); 
writeln('The initial string= invisible'}; 
writeln('The substring beginning with v p~)~ 

p := index (&str[l], 'w'); 
writeln( 'The substring beginning w.ith w p"'); 
end. 

This program gelile:rrates tlil.e foU<Dwing ©llt:prw.t: 

The initial string = invisible 
The substring beginning with v 
The substring beginning with w 

int* 
Generatie a s0ft:ware irnteHwpt; 

Definition 

visible 
(null} 

129 

type dwordregs = packed record ea.x, ebx, ecx, edx, esi, edi, eflag: integer; end; 
typ.e segregs = record es,cs,ss,ds: short; end; 
type regs16 =record a.x,bxlicx,dx,si,di,cflag:. short; end; 
pro.cedure int386( interrupt: integer; var inregs,. outregs: dwordregs); 

external; 
procedure int38.6x( interrupt: integer; var inregs, outregs: dwordregs; var 

sregs: segregs) ; external; 
function int86 ( interrupt: integer; var inregs., outregs: regsl 6) : integer; 

external; 
function int86x( interrupt: integer; var inregs, outregs: regsl6; var sregs.: 

segregs} : integer; external; 
function intdos( var inregs, outregs: regsl~: integer; external; 
function intdosx( var inregs, outregs: regsl 6;. var sregs: segregs) : integer; 

external; 

where 

interrupt is the numbeF ofi tfue inte:rrrupt desiFed; 

inregs Fecords h0w the registers sh0ukl be set just beforre the intierru~t; 

out regs is set on return to: the coRtemts of the Fegistersjµst after the interrupt; 

sregs recc)!Tds h0w the segment registers shollll<ll be set just before the inte!iFU.pt, ancd: is set 
on return: to: the eomtlentis ofi the segmemt Fegisters jrw.st afte:rr the inteITIIpt. 

Tfuese functioms getieFate sofltware interrupts. interrupt is the rmmbeF 0fi the interrupt to 
ge:meFate (in intdos and intdosx, the interrupt generated is always 2 lh). inregs is a pointer 
to a structure comtaining the values to 1De placecd1 in tfue registeFs before the interrupt is issued. 
ou tregs is a pointe:r to 1 a stmctl1re tfuat, OE.1 return, will contlam the values of the registers 
irmned!i.ately f0ll©wing the interFl1pt. 

int386x, int86x, ancl, intdosx also, require the argumeE.t sregs, whieh p0ints to a structure 
camtaining tfue segment registe:u values to be set before the interrupt (the user can set BS and 
Esh O!il.1 return, this structure will c0B.taia the segment register values immediately foU0wing 
the interrupt. 

N()P Pases/Reference Manual 



130 B Jnterfaee to C and Math Libraries 

int386 anal int386x cliffer :t:rnrn the others in that they expect 32-bit :rregister structmres, while 
the others expect packed 16-bitl register structures like Microsofit C. 

To use these funcmcms. yoH must unclerstand the details of the interrupt you wish to execu.te. 
Failure to aclheJ.Te to, the guidelines 0f the system documentation will p:roduce unpredictable 
:results. Consl.Jllt a technical mam1al for further details. 

The functions ret'l:lrn the value left in the eax register by the interrupt service roHtine~ The 
proced11res have n0 return vah1e. 

isalnum 
Is a charact:er alpmanumeric? 
Definition 

function isalnurn (c: integer): boolean; 

This 1D00lean function. ascertains whether its character argtiment. represented as an integer 
(i.e .. 65 for A, etc.). is alphanumeric. 

isalpha 
Is a clilaracter alptilabetic?' 
Definition 

function isalpha (c: integer): boolean; 

This boolean fiunctucrn ascertains whether its character argumeat, represemtecl as an integer 
(i.e .. 65 for A, etc.). is alphabetic~ 

iscntrl 
Is a charact1er: a comtw1: character? 
Definition 

function iscntrl {c: integer): boolean; 

This b00lean £uncti<Dlil.1 ascert1ains whether its characterr argument. representecl as an integer 
(i.e., 65 for A. etcJ. is a coliltrol; character. 

isdigit 
Is a c~aracter a digit? 
Definition 

function isdigit (c: integer): boolean; 

This b0olean f:un<I:ti01il ascertains whetfuer its character argument, represented as an integer 
(i.e .. 65for A, etc.}. is a digit. Note that isdigit ( 9) returns false .. while isdigit (ord(. '9' }. ) 
returns true. 

is.graph 
Is a charact:er: graphical? 
Definition 

function isgraph (c: integer}: boolean; 

NOP Pascal Reference Manua/1 



u 

B Interface to C and Math Libraries 131 

This b0olean, functi0m ascertains whetheF its character argument, represented as an intege:rr 
(i.e .. 65 toF A, etc~)). is a grraphics character (1ette:rr, numeral'. OF pNnctlJlaticm).. 

isinf 
Is the argurrnent il7lfimity? 

Definition 

function isinf (d: double}.: boolean; 

This b0olean functi0n asce:rtains whether its ai:-gument (d0ufule) is infinity. 

is lower 
Is a charactier a lowercase lett·er?) 

Definition 

function islower { c: integer): boolean;. 

'Fhis 1D0olean fltlncti©n asce:rtains whetheF its characteu argument:. repFesented as an integer 
(i.e .. 65 for A. etc~):. is a IoweF case !enter . 

• 1snan 
Is tne argumernt: Nrot1 A Nunnber? 

Definition 

function isnan (d: double): boolean; 

U This 1D0olean fiun<I!ti011 ascertains whether its argument (double) is a NAN (n0t a numbe:11')'. 

u 

isprint 
Is a clnaractier pfir:lttabf e? 

Definition 

function isprint {c: integer}: boolean; 

This b0olean functi0a ascenains whetheF its charaeter argumeNt, repi:-esented as an· integer 
(i.e .• 65 for A, etc~l. is a printable character. 

ispunct 
Is a cltlaracter a pwrnctiLJatimrn; rniarK?' 

Definition 

function ispunct (c: integer): boolean; 

This b©oleall' fTuncti0n ascertains whetheF its character argument, repuesented as an integer 
(i.e .. 65 for A. etc.}. is a punctuation rnark . 

• 1sspace 
Is a 8haracter a space? 

Definition 

function isspace (C: integer): boolean; 

Nf!JP Pascal; Reference Manual 



132 B Interlace to C and Math Libraries 

This boolean functi©n ascertains whether its characte:u argument, rell>resented as an integeIT 
(i.e., 65 for A, etc.)J, is a spaee. 

is upper 
Is a character t:Jp~err case? 
Definition 

function isupper (c: integer}: boolean; 

This boolean functicm as<!!ertains whether its character argument, :uepFesented as an integer 
(i.e., 65 for A. etc.),, is an upperr case letter. 

isdigit 
Is a ctnaractier a hexadecirrnal: diga:? 
Definition 

function isdigi t (.c: integer): boolean; 

This boolean function ascertains whether itls characte:rr argumerit, repFesented as an integer 
(i.e .• 65 for A, etc.). is a fuexaclecimal cligit. 

jO 
Bessel! functiorn1 ofr the first, kimd, order 0. 
Definition 

function jO (d: double): double; 

where d is an expressi0m ofi type DOUBLE. 

The j o ( d) :functi©Il returns the Bessel function of the first kind, oFder o~ of: d. This correspcmcls 
to J 0 (d) in the usual! notation. If the inplit argument is out of range, the glol:t>al variable errno 
will be set to EDOM. 

EXAMPLE (ex052.p) 

program jOa (output}; 

function jQ( d: double): double; external; 

var 
x: double; 
i: integer; 

begin 
x := 0.0; 
for i := 1 to 7 do begin 

w.r i te 1 n ( I x = I I x: 6 : 2 I I j 0 ( x} 
x : = x + 2. 5;. 
end; 

end. 

This pFogram gene:uates the fbll0wing Ollltput: 

x = 0.00 jO (X} 1.00000000000000 

x = 2.50 jO(x) -0.04838377646820 

x = 5.00 jO (X) -0.17759677111434 

x = 7.50 jO (X} 0.26633965788038 
x = 10.00 jO (x.} -0.24593576445135 

NDP Pascal Referenee Manuafr 

j 0 ( X} : 2 0 : 14 ) i 

u 



: ' 

\...._) 

( ·. 

B· Interface tCi> C anat Math li.ibrrar:ies 

j1 

x 12.50 jO(x) 

X 15.00 jO.(X} 
0.14688405470042 

-0.01422447282678 

Bessel f unet1i0rn, o.f the fii:rrsti Kimm, orderr 11. 

Definition 

function jl (d: double}: double; 

wheFe d is an eXJDrressi0n 0f type DOUBLE. 

133 

'Fhe jl Cd) fhmctiou1 Feh1rns the Bessel1 fun.cti0n 0fl tlhe fmst kincd, ordeF 1:, ofT d. This corresp0mcds 
to, J 1 ( d} ifl1 the t:IS11al: notati©lil. If the im.put argument is Olllt ofl ralilge, the gloli>al variable errn0 
will be sen to· EDOM. 

EXAMPLE (ex053.p) 

program jla (output); 

function jl( d: double}: double; external; 

var 
x: double; 
i: integer; 

begin 

x = 
x = 
x 
x 
x 
x 
x 

jn 

x := 0.0; 

for i := 1 to 7 do begin 
w.riteln(.' x = ', x:6:2, ' jl (x) 
x := x + 2.5; 

end; 
end. 

0.00 jl (X) 0.00000000000000 

2.50 jl (X} 0.49709410246427 
5.00 jl (X) -0.32757911759147 
7.50 jl (X) 0.13524842757971 

10.00 jl (X) 0.04347274616886 
12.50 jl (X) -0.16548380461476 
15.00 jl (X) 0.20510403861352 

Bessel; fumetii0m, of: the fi 1nst l<ind, order L 
Definition 

jl (X} :20.:.14) i 

function jn {i: integer; d: double): double; 

whelie 

i is an expressi0Ill1 ofl type INTEGER, 
d is an expFessiom· 0£ type DOUBLE. 

The j n ( i, d) fame ti on returns the lBesseli functi0:a 0£ the first kifilcd. olider i. of d. This 
c01!Tesp0aCils to, Jn ( i ,, d) im. the usuali m0tation. If the input argument is otit ofl Fange, the global 
variable errno willi be set to' EDOM. 

U EXAMPLE (ex054.p) 

program. jnl(output); 

NDP Pascal Reference Manual 



134 B lnterfac:e to C and Math Libraries 

function jn(i: integer; d:double): double; external; 

var 

x: double; 
i, j: integer; 

begin 

for i := 1 to 3 do begin 
x := 2.50; 
for j := 1 to 3 do begin 

writeln{'i = ' i:2, ' x = ' x:6:2,. ' jn{i,x) 
x := x + 2.5; 
end; 

w.ri teln ;. 
end; 

end. 

This pirogram generates the f0ll0wiag output: 

i = 1 x 2.50 jn{i,x) 
i 1 x 5.00 jn{i,x) 
i 1 x 7.50 jn{i,x) 
i 2 x 2.50 j n ( i,.x) 
i 2 x 5.00 jn{i,.x) 
i 2 x 7.50 jn{i,x) 
i 3 x 2.50 jn { i,x) 
i 3 x 5.00 jn(i,x) 
i 3 x 7.50 jn{i,x) 

labs 
returns the Imig att>solwte valrw,e 
Definition: 

0.49709410246427 
-0.32757913759147 

0.13524842757971 
0. 44605905843962 
0.04656511627775 

-0.23027341052579 
0.21660039103911 
0.36483123061367 

-0.25806091319346 

function labs ( i : integer } : integer~ 

where i is an exprressiom of type integer. 

j n { i,x) : 2 o : 14) ; 

The labs functi0m takes ancd1 returns an integer. The result is the absolute vah:1e ofi the input 
parameter. 

Id exp 
load exp©nent 
Definition 

function ldexp (d: double; i: integer): double; 

where 

d is an expressi0m. 0£ type DOUBLE. 
i is an expressi0m1 of1 type INTEGER. 

The ldexp (d, i). functiom cal~l!llates the value ofi d*2i. If tile input vall!le is out o:f range. the 
g10t>al variable errno will be set to EDOM. Oa overflow errno is set to ERANGE. 

EXAMPLE (ex055.p) 

program. ldexp1(output); 

function ldexp( d:double; i:integer): double; external; 

NOP Pascal Reference Manual 

u 

' i \ u 

u 



u 

B lnterfaee to C and' Math t.ibraries 

var 
i: integer; 

begin 
writeln(' i ldexp{2,i) ldexp{3,.i) '); 
writeln{' ---------- ----------'); 
for i := 1 to 5 do 

writeln{i:4, ldexp{2.0,i}:l2:6, ldexp{3.0,,i) :12:6);, 
end. 

'Fhis i;>rogram geIDerra.tes the foll<Dwing out])ut: 

i ldexp.{2/!i) ldexp.{3, i) 

1 4.000000 6.000000 
2 8.000000 12.000000 
3 16.000000 24.000000 
4 32.000000 48.000000 
5, 64.000000 96.000000 

ldexpf 
l0ad sing;i,le ptiecisicorn1 exponemt 
Definition 

function ldexpf Cf: float; i: integer): float; 

where 

f is an eX])ressi<Dlil ofi ty]>e FLOAT, 
i is an expressioH ofi type INTEGER. 

135 

Tb.e 1 dexp f ( f, i) functi0:m.1 calculates the va.lw.e of f*2 i. On1 oveFfl0w the gl01Dal variable er:rno 
is set to, ERANGE. errno is not set for d<Jnnain e:rroFs. 

log 
returns tithe d©wble ptiecisicorn, natural l©g;iarit!t'Him: 
Definition 

function log ( d : double ) : double; 

wheFe dis an expression 0:£ type double. 

The LOG foncti0m c0:n.veFt1s the in]>ut parameter to a temp0rary 64-bit f10ating p0int numbe:r:­
a.nd returns th 1e matw.rrat 10ga.rith1Jn of tb.is value. If the argum<:rnt is nG>t p0sitive, the return 
value is zero.' and the g101Da.l variable errno is set to EDOM. 

log10 
base t01 10garith:rn 

Definition 

function logla Cd: double) : double; 

where d is an exprression 0£ type DOUBLE. 

-" ,, 'Fhe 1 ogl o ( d) fun~lioID ret1ffns the base 10 10!!a.rithm of d. If d is not wositi:ve. the ITeturn vah1e ( ,, ..., 
\_) is o and the gl©1Dal 1.variable errno is set to EDOM. 

NfDP Pascal Reference Manual 



136 

EXAMPLE { ex056.p) 

program. loglOa(output); 

function loglO(d: double): double; external; 

var 
x: double; 
i: integer; 

begin 
x : = 1 .1 ;. 
for i := 1 to 5 do begin 

B Interface to C and Math Libraries 

wr i t e 1 n ( ' x = ' , x : 14 , ' 1og1 O ( x) 
x := x * 100.0; 

', loglO.(x) : 16); 

end; 
end. 

This pFogram generates the following' oatp11t: 

x 1.lOOOOOOe+OO 
x 1.1ooooooe+02 
x 1.10000000+04 
x 1.10000000+06 
x 1.10000000+08 

log1 Of 
base 10 lco~arithrn 

Definition 

loglO(x) 4.139268516e-02 
loglO (X) 2.041392685e+OO 
loglO(x} 4.041392685e+OO 
loglO(x) 6.041392685e+OO 
loglO(x) 8.041392685e+OO 

function loglOf (f: float): float; 

where f is an expressi01j1 ofi ty]>e FLOAT. 

The loglOf ( f) functi0:m. returns the base 10 logarithm off. If f is n©tl posiUive. the return 
value is O amt the glmt>al variable errno is set to EDOM. 

logf 
returns the single precisi0m natural liogarithr;n 
Definition 

function logf { f : float ) : floati 

where f is an expressi0n ofi type float. 

The LOGF function c0nivens the inpUit parameter to a temporary 64-bit fl0ating point number 
and returns the natural logarHth.m of this value. If the argument is not positive, the return 
value is zero and the gl©bal variable errno is set to EDOM. 

mapdeV (DOS only) 
map pfrlo/,Sicar memory to program's data segmernt 

Definition 

type 
n = user_specified; 
sn = array [Q . . n] of chart 
sp = "sn; 

function mapdev (address, nBytes: integer): sp; external; 

NDP· Pascal: Pleference Manua/1 

u 

; ) 
'\.....-/ 



u 

u 

B lnterlac:e to C and Math /l.iJiJrar:ies 137 

where 

n is an integer representing the Npper dimensi©n of the zero, origililed array type sn. 

sn is a tyii>e defimti©H floli an array o:fl characters. 'Fhe si~e of this array is specified my the 
parameter n. Note that this array definitiam is zero origined. 

sp is a p0iroteir ty]>e to an array of characters. 

address is the physical adclliess ofT the device. 

nBytes is the size of the device in bytes. 

The mapdev (address, nBtyes) functi0ITJ. returns a pointer to a physical device that can be used 
by the program. The device is mapped into virtual memo:uy aml does ITJ.©t occupy an;}" usable 
mem0:rry. 'Fhe value Fetmmed is not Felated t0: the JDhysical address in any obvioMs way. The 
program treats the device as an anray ofi chaFacters and accesses physical locatio:as in the 
device by reacling1 or WFiting t<D tne character an:ray. 

mapdev retMrns a rm.H p0inter to indicate an e:rrror. However. a moN-nuU value d0es not 
guarantee -chat the mapped device ou mem0ry is present. Theuefo:re. testing for presence of the 
device is recommended if there is any doubt. 

EXAMPLE (ex057.p) 

program. mapdev1 (output); 
{ Interface to mapdev function in C library. } 
con st 

monochrome 
normal 

under 
reverse 

OxbOOOO; 
Ox07; 
Ox01; 
Ox70; 

type 
m2048 
m2048p 

array [O .. 2047] of record data,, attr: char; end; 
"m~ 048; 

function mapdev (address, nbytes: integer}: m2048p;, external; 
procedure box (mem:m20.48p; sym: char; attr,. srow11 scol, erow, ecol: integer}; 
{ Fill in region of screen from start_row to end_row." start_co1 to end_col 

with the ch~racter sym. 
Legal values: srow and erow from O to 23, scol and ecol from O to 7~. 

var row, col, i: integer; 
begin 

end; 

for col := scol to ecol do 
for row := srow to erow do begin 

i := row * 80 + col; 
mern" [i] .data .- sym; 
mem~[i) .attr .. - chr(attr}; 
end; 

procedure clearmem (mem:. m2048p.); 
{ Erase the screen by filling it with blanks. } 
var i: integer; 
begin 

end; 

for i:= O to 79*25 do begin 
mem" [i] .data .- ' '; 
mem"(i} .attr .- chr (normal); 
end; 

NOP· Pasc:a/, Referenee Manual 



138 

var 
videornem; m2048p; 

begin 
videornern ·- rnapdev (monochrome, 
clearrnern {videomem} ; 
box (videomem, 'a I/ normal ,, 4, 
box {videomern, 'b' ,, under 

' 
4, 

box (videomern, 'c I I reverse, 4, 
end. 

B lntertac:e to C and Math Lil!Jraries 

4096}; 

0, 4+2, 0+4}; 

10, 4+3, 10+6}; 
23, 4+4, 23+8); 

This example uses the mapdev funet.icm to aecess vicleo mem01ry directly on a rnaclti.ine equipped 
with a m0n0chrome adapter. The program clears tfue screen and then generates the following 
outpHt: 

(n01:mal): (l:l.Iild e:rl!in ed) ~inverse) 
aaaaa bbbbbbb ccccccccc 
aaaaa bbbbbbb ccccccccc 
aaaaa bbbbbbb ccccccccc 

bbbbbbb CCC CC CC CC 

CCC CC CC CC 

memchr 
Locat1e a cli\aract,er im' an obj~ct: 
Definition 

type cp = "'char; 
function rnernchr{s: cp; c, n: integer}: cp; 

where 

s is a p0inter to the bl0ck 0£ rner.n0iry to lDe searclrled; 
c is an integer represe:mtati011 ofi the character to1 be sotight; 
n is the length ofi the memany 1Dl0ck. 

rnemchr fincls the first occuwence ofi a character in a bl0ck of memG>Iiy. It rretums a pointer to 
the cfuaracter if fimimcl and. NIL otherwise. 

memcmp 
Compare two, memory buffers 

Definition 

type cp: "'char; 
function rnerncmp { sl, s2: cp; n: integer) ; 

where 

s 1 and s2 are ]><Dint1ers to th.e blocks ofi memory to t>e compared: 
n is the number otr bytes to be compared. 

memcmp compares two blbcks 0£ merncmy f>Ointed to by its first ancl seco:ad arguments. The 
number of: bytes to be comparecl, is given in its third argument.. If the first block is lexically 
prioF to, the secoad, U:fu.e functi0n returns a Negative integer. If the bl0ck are the same. the 
functi0n returns zero. If the second functi©B is lexically pli0r to the first argument. the 
function returns a positive integeF. 

NDP Pascal Referenee Manua/1 

u 

u 



B Interface t0 ~ and' Math Libnanies 

memcpy 
Copy charact:ers frnrrn ome buffer tio ancottherr 
Definition 

type cp = "char; 
function rnerncpy ( sl, s2: cp; n: integer) : cp; 

where 

sl ancd s2 are pointers tlo/ the destination and soNrce bufferrs, res:wectively; 
n is the aumber of lDytes to l:t>e copied'. 

t39 

memcpy co]>ies the numlDer ofi bytes specifiecl in its tfuiFd argument from the buffer J)©inted to by 
its seconcl argument to tile buffer !l>Ointed to li>y its fi.J.:st argument. The i:etum value is a 
p0inter to the fwst buf!fler. 

memmove 
Copy clnaractiers frorrn om~e bwffer t:o amotrher, ctneclt:ing for overlap 
Definition 

type cp = "'char; 
function rnernrnove(sl, s2: cp; n: integer): cp; 

wheFe 

sl ancd s2 are ]>OinteFs to, the destination ancl S<Dlilrce buffers, respectively; 
n is an expressilon ofi type INTEGER re]>Fesentiiilg1 the munbeIT ofi bytes to be copied. 

memmove is the same as memcpy exce]>t tlhat it transfers bytes in Feverse OITder as a resMlt ofi 
wfuich the m<DVe wi!illt li>e coFrect even. ifl the two, t>u£fers overlap. 

memset 
FiU an object1 with1 a charaetier 
Definition 

type cp. = "char; 
function mernset(s: cp; c, n: integer): cp; 

where 

s p0iats t© the mem0ry to 1 be :Cilled; 
c represents the character wit:t:l which the merrmry is to be filled; 
n is tfue :m.umbe:u of bytes to fill. 

memset sets the Ntlml:i>er ofi bytes specifiecd' in its thiFd argument of the block ofi memory pointed 
to, by its first: aFgumentl to the value storred in its seeoncl argumerot. The retlum1 value is the 
same as the firnt argurnc.mt. 

mktemp 
Make tiernporary, ~ar:n:e 

Definition 

type cp = "char; 
function mktemp(str: cp): cp; 

wheFe str is the prefix ofi the Bame to fue macle~ 

NOP Pasr:at Reference Manuar 



140 B ln.terfaee to C and Math Libraries 

mktem:w returns a uni<llue file name for use as a temporary file. It takes a string argument that 
contains the desired file name pre£ix and six extra characte:rrs for internal use. 

mktime 
Convert, bfiokern~down timi:e tio calendar time 

Definition 

type tm = record sec,min,hour,.mday,,mon,year,wday,yday,isdst: integer; end; 
function mktime (timeptr: tm) : integer 

where 

sec is secomcl.s in the minute (0.i..59). 
min isminutesm. the h0ur (0-59)'. 
hour is hour of the day (:Q ... 23). 
mday is day ofi th.e mcmth (1-3 n. 
mon is months sinceJ1anuacy (0;..J: 1), 
year is years sinee 1:99@. 
wday is days since Stm<Ilay (O'i..6);. 
yday is days siace January 1 (0;.365),. 
i sds t is whether it is IDaylight Savings Time. 

mkt ime returns an unsignecl. integeF that can be usecl in other timing ftmctioms. 

modf 
split a 64-bit rmmber into integer and £racti©nal parts 

Definition 

typ.e dp = "double;, 
function modf ( d: double; dptr: dp) : double; 

where 

d is the 64-oit value that wiU: be decornposecd,, 
dptr is a pointier to the integral part ofi d returned by modf. 

The modf ( d, dptr) :functrioa, splits the value din.to its im.teger and fractional parts, each ofT 
which has the same sign as d. The fractiomal part is returned in the modf function name. The 
integral part is stoFed in the object Ji><Dinted to by dptr. 

EXAMPLE (ex058.p) 

program modfl (output); 

type 

dp = "double; 

function modf ( value: double; iptr: dp}: double; external; 

var 
x: double; 
integral: dp; 
fractional: double; 

begin 
x := -123.4567; 
new( integral); 
fractional := modf{x, integral); 

writeln('x = ', x:l4:6); 

writeln ('integral part of x = ' 

NDP Pasca/1 Reference Manual 

integral"': 14: 6) ;, 

\ v 

u 



u 

B Interface te C and Math Lil!maries 

writeln('fractional part of x = ', fractional:l4:6}; 
end. 

This pFogram generates the following, o:w.tput: 

x = -123.456700 
integral part of x 
fractional part of x 

perror 
Print errof r:lilessage 
Definition 

type cp = "char; 
procedure perror ( s: cp} ; 

-123.000000 
-0.456700 

where s is the beginning of the text to lDe pliinted. 

141 

perror senals to: the stanclaFd error; deviee its string argument foU0wed by a colon and the text 
associated with the cucre111t setting of the gloli>al variable errno. 

pow 
x raised to the pcowe~ y 
Definition 

function pow (dl,d2: double}:. double; 

where dl a111al: d2 are expressicms ofi type DOUBLE. 

The pow ( d1, d2) funeti0Iil returns the value of d1 17aised to the power d2. If the return value is 
01at ofi range, the gl©lDal variat>le errno will be set to' ERANGE. If at least one ofT the arguments is 
ONt 0fi range, errno wm be set to; EDOM. In the ease ofi Nndeflined 17esults .. pow returns o but 
errno is not set. 

EXAMPLE ( ex059.p) 

program. powl{output}; 

function pow.{dJ., d2: double): double; external; 

var 
i: integer; 

begin 
writeln{' 
writeln(' 

i 

for i := 1 to 10 do 

2**i 3**i'); 
----I); 

wri teln { i ,.pow ( 2 . 0 ,.i) : 9: 1, pow ( 3. 0, i) : 9 : 1} ; 
end. 

'Fhis program ge111erates the following oNtput: 

i 2**i 3**i 

1 2.0 3.0 
2 4.0 9.0 
3 8.0 27.0 
4 16.0 81.0 
5 32.0 243.0 
6 64.0 729.0 
7 128.0 2187.0 

NDP Pascal Reference Manual 



142 

8 256.0 6561.0 
9 512.0 1968~.o 

10 1024.o 59a4g_o 

powf 
x raised to the p0wer y 
Definition 

function pow.f (f1,f2: float): float; 

where fl and f2 are eXJ.D:rressions of ty]>e FLOAT. 

B lnterfat:e to C and Matb Libraries 

The powf {fl,, f2) fuNctiOl.11 returns the value of f 1 raised to the poweF f2. If at least one of the arguments is out 0:6 range. the g101Dal' variable errno Wilt be set to EDOM. If th.e return value is out of range. errno is not seti. In the case of lincdef:i.necd results, powf returns O but errno is not set. 

racos 
single precisiofil' arc cosine 
Definition 

function racos (f: float): float; 

where f is an expressicon of type FLOAT whose value is l:l>etween-1and1. 
The racos ( f). function retw.ms the pFincipal value 0f the ar:c cosine 0£ f. a cos takes an argumeat in the range -1 to 1 and Feturns a result in the range o: to pi, expressem: in racdians. If the input argument is outsi<de 0:6 -1 to 1, then rac:os returns O~ 
EXAMPLE (ex060.p) 

program racosl(output)i 

function racos( f :float): 
float;. external; 

begin 
writeln('racos (0) = ', racos(0.0}); 
writeln( 'racos (-1 l = ', racos (-1. 0}}; 
writeln( 'racos (1) = ', racos (1. 0}); 
writeln( 'races (2) = ', racos(2.0}); 
writeln( 'races (-3) = ', racos(-3.0}}; 
end. 

This pFogram generates tlhe foU0wing outpat: 

racos ( 0.) 
racos (-1) 
racos ( 1) 
racos ( 2) 
racos (-3} 

raise 
Sencrf a si@r1al 
Definition 

1. 5707964e+OO 
3.1415927e+OO 
O.OOOOOOOe+OO 
O.OOOOOOOe+OO 
O.OOOOOOOe+OO 

function raise(sig: integer): integer; 

where sig is an expressi0n 0fi type INTEGER. 

NDP Pascal Reference Manua/1 



u 

u 

B Interface to, C and Mathr Librraries 143 

raise is Nsecd in c0njuneti0n with a prioF call to the UNIX function s i gna 1 and will return: -1 if 
the argumeRt is out of Fange~ If the argument is one of the fol[owing. it will call _exit: 

SIGABRT SIGHUP SIGQUIT 
SIGALRM SIG ILL SIGSEGV 
SIGBUS SIG INT SIGSYS 
SIG EMT SIGKILL SIGTERM 
SIGFPE SIGPIPE SIGTRAP 

If the wgurnent is oRe ©fi the follmwing, it. wm Fetm1m zer0: 

SIGCHLD 
SIGCONT 
SIG IO 

rand 
rand0m intieger 

Definition 

SIG PROF 
SIGSTOP 
SIGTSTP 

function rand: integer; 

SIGTTIN 
SIGTTOU 
SIGUSRl 

SIGURG 
SIGVTALRM 
SIGXCPU 
SIGXFSZ 

SIGUSR2 
SIGWINCH 

Tfue rand function Feturns a pseudo~ rancdom integer between Q: ancd 2147483647 (MAX-INT),. 
The rand function seeds itself unless the srand funetiou is used. 

EXAMPLE (ex061.p) 

program randl(output); 

function rand: integer; external; 

var 
i: integer; 

begin 
for i:=l to 5 do 

wri teln (rand); 
end. 

This progFam generates rancdom output. 

rasin 
sirilgle precisi©ril arc sime 
Definition 

function rasin (f: float): float; 

where f is an expression o:C type FLOAT whose vall:le is between -1 aml. 1 1. 

The rasin { f) function reh1msthe ]>rineipalvalue of the arc cosine ofi f. rasin takes an 
argument ir:l the range -1 to 1 and returns a iresult in the range 0 t0 pi,, expressed in radians. If 
tfue input argument is outside 0£ -1 to 1, then ras in retu.ms Q:. 

EXAMPLE (ex062.p) 

program rasinl(output}; 

function rasin(f: float): float~ external; 

begin 
w.riteln('rasin(O} = ', rasin(O.O)); 
writeln('rasin(-1) = ', rasin(-1.0)} ~ 
writeln( •rasin(l} = ',. ras.in(l.0}); 

NOP Pascal1 Reference Manual, 



144 

writeln('rasin(2) = ', rasin(2 .. 0}); 
writeln(. 'rasin(-3) = ', rasin{-3 .0)); 
end. 

This program gemeraties the following output: 

rasin ( Q) Q.0DDOOOOe+OO 
rasin (-1} -1.5707964e+OO 
rasin { 1) 1.5707964e+OO 
rasin { 2) O.OOOOOOOe+OO 
rasin (-3) 0.0000000e+00 

ratan 
single precisiofi1 a~c tangemt: 
Definition 

function ratan (f: float}: float; 

B lnterifar;e tG C and Math Libranies 

where f is an expressio:m ofl type FLOAT wh0se value is between - l! aml 1. 

The ra tan (f) function returns the pr:-incipal value of the arc tangent ofi f. ra tan takes an 
argume:at in the range -1 to lJ ancl retNms a result in, the range 0 to pi', expressed in 11-adians. If 
the input argument is outside ofi -1to,1, thefl ratan returns o~ 

EXAMPLE (ex063.p) 

program ratanl (output); 

function ratan{f: float}: float; external; 

begin 
writeln( 'ratan{O.) = ', ratan{0.0.}}; 
writeln('ratan(-1) = ',1 ratan(-1.0));, 
writeln('ratan(.1) = 'r ratan(l.0}}; 
writeln('ratan(2} = ', ratan(2.0}}; 
writeln('ratan(-3) = ', ratan(-3.0)}; 
end. 

'Ffuis program gelil.eFates the foI:l0wing oHtptJ.t: 

ratan ( 0) O.OOOOOOOe+OO 
ratan (-1} -7 .. 8539824e-01 
ratan ( 1) 7. 85398'.He-01 
ratan ( 2} l.1071488e-01 
ratan (-3} -1.2490458e+OO 

ratan2 
simgle precisic1m arc tam~.ernti of a qwotiemt 
Definition 

function ratan2 (fl, f2: float} : float; 

whei:e fl is an expressiolil. ofi type FLOAT, ancl t2 is an exp:uessi0lil. of type FLOAT that has a 
n0:m.zeITo value~ 

Tfue atan2 (fl, f2) functiOiiHeturns tlle principalvalue oftlle arc tangent of fl/f2. atan2 
returns a value between -pi, ancl1 ]>i,. expFessecl in Faclians. The signs ofT b0th arguments are used 
to detennine the qµadtrant of! the :rresllllt. If tfu.e secom1l argument is ze:rro, then a tan2 returns 0 
and tlle gl©lt>al variable errno is set to EDOM (whicfu is re:wFeseNted by a ze:ro}. 

NfJP Pasca/! Referencte Manua/1 

u 

'\ u 

u 



u 

B lntertaee te C anal Math IJ.i/:IJt:aries 

EXAMPLE (ex064'.p) 

program ratanx(output); 

function ratan2(f, g: float): float; external; 

begin 
writeln( 'ratan2 (afll) = ', ratan2( o.of! 1 .. 0)}; 
writeln ( 'ratan2 (-1,.1) = ',. ratan2 ( -1. O fl 1. 0)); 
w.riteln('ratan2 (1,1) = ', ratan2( 1.0, 1.0)); 
w.riteln( •ratan2 (20,0.1) = ', ratan2( 20.0, o .. l)); 
end. 

'FlMs :wrogrram geaerates the f0U0wing ON.tput: 

ratan2 ( 0.,.1) O.OOOOOOOe+OO 
ratan2 (-1,.1) = -7.8539824e-01 
ratan2 ( 1,.1) = 7. 8539824e-01 
ratan2 (20(10.1) = l.5657964e+OO 

rcos 
single pliecr:isi0rn: cosine 
Definition 

function rcos (f: float): float; 

where f is an exprressi0111' 0f type FLOAT. 

The rcos ( f) fiu:aetio:ro. returns the c0sine ofi f, whe:rre t is expressed in radians. 

EXAMPLE (ex065.p) 

program rcosl (output) ; 

function rcos(f: float): float; external; 

const 

var 

pi 3.1415926535&979323846; 

i: integer; 
x: float; 

begin 
x ·- 0.0; 
for i:= 1 to 5 do begin 

writeln (' x = ' , x, ' rcos.(x) 
x : = x + p.i I 4 .. o ; 
end; 

end. 

This pFogram geroeraues the foll0wing out:wtI.t: 

x 0.0000000e+OO rcos (x} 1.0000000e+OO 
x 7.8539819e-01 rcos(x} 7.0710683e-01 
x l.5707964e+OO rcos(x} O.OOOOOOOe+OO 

rcos (x}); 

x 2.3561945e+OO rcos(x} -7 .0710683e-01 
x 3.1415927e+OO rcos (x} -1.0000000e+OO 

145 

NDP Pascal Reference Manual 



146 

rcosh 
single precisimil~ tnype~bcolii~ cosine 
Definition 

function rcosh (f: float): float; 

where f is an expression of type FLOAT. 

The rcosh { fJ functio:a retur:-ros the hyperbolic cosine of f. 

EXAMPLE ( ex066.p) 

program rcoshl (output); 

function rcosh{f: float).: float; external; 

con st 

var 

pi = 3>.14159265358979323846;, 

i: integer; 
x: float; 

begin 
x := 0.0; 
for i:= 1 to 5 do begin 

B Interlace to, C and Math Libraries 

wri teln { ' x = ' , x, ' rcosh (x} 
x := x + pi/4.0.; 

rcosh{x)); 

end; 
end. 

This program generates the f©Uowing outIJ>lLlt: 

x o. o.oo.ooooe+oo 
x 7. 853 9819e-01 
x 1. 5707964e+00 
x 2.3561945e+OO 
x 3 . 1415 92 7 e + o O 

remove 
Delete a fiile 
Definition 

type cp = "char; 

rcosh{x) 1.0000000e+OO 
rcosh{x) 1.3246090e+OO 
rcosh(x} 2.5091784e+OO 
rcosh(x) 5.3227520e+OO 
rcosh(x) 1.1591953e+01 

function (filename: cp): integer; 

where f i 1 ename is the name of the file to, be deleted. 

remove deletes the file :aamed in its string argument. It returns 0 if successful ancl -1 
otherwise. In the case of failure, th 1e gl01Dal variable errno will be set eitlher- to, ENOENT. 
iadicating the file could not be fouID.d, orr to EACCESS, incdicating the file ccmfol not be cdeleted. 
Uncder UNIX the functi.on calls unlink, the return value is that ofi unlink. 

rename 
ReAame a file 

Definition 

type cp = "'Char;, 
function rename (old, new: cp) : integer; 

NDP Pascar ReferentZe Manuar 

(_) 



u 

B Interface to C and Math Lil:!,,iaries 

whe:ue old is tfue ©ligrnal name 0f the file, and new is its new name. 

This intege:rr funetu0:a: :rrenames the file named in its first string argument to the name given in 
its seccmcl strung argument. It rretl!1ms 0 if successful anGi -1 otlherwise. In the case of failure, 
tfue glmbal 1 variable errno wm be set either to ENOENT. indicatmg the file could n0t be founci, or 
EACCESS. illclicating the file c0ulGii n0t be renamed. 

rexp 
sirngle-precisicom ex~onential ful7lct1iom, 
Definition 

function rexp Cf: float): float; 

where f is a siHgle-pFecisi0n float. rexp returns eE. 

rfrexp 
comJDwte simgle-pt:ecisi0m 1 exp0memt1 anm: rmamtissa 
Definition 

function rfrexp {f: float, VAR exptr: integer): float; 

where 

f is a single-p:rrecisi©JJ1' fl0at. 
exp tr c0ntains. ©fl return, tfu.e exp©B.en.t pa.rrt 0f f. 

The return value is the mantissa of t. This is a single precision versi011 of f rexp. 

rindex 
reverse searclil' f10rr character in st:rimg 
Definition· 

type cp = "'char; 
function rindex ( str: cp; ch: char): cp; 

where 

s tr is a pointer to a row.Ii terminated string to be searchecl:, 
ch is the character being searched for:. 

The rindex( str, ch) fun<I:ti©n :rretums a p0inter to the l0catioro of the character ch in the null 
termiillated string pointed to by str, 0r a rmll p0intier if no match 0ccurs. 

EXAMPLE (ex067.p) 

program. rindexl {output); 

type 
cp = "'char; 
s40 =packed array [l .. 40.J of char;. 
s40p = ""s.40; 

function rindex(str:cp; ch: char):. s40p; external; 

var 
str: s40; 
ptr: s40p; 

procedure printstring(c:char); 
begin 

NOP Pascal· Reference Manual 



148 

writeln( 'the last substring beginning with ·~c,' 

if ptr = nil then 
writeln{'(',c,' is not present}'); 

end; 

begin 
str := 'A little learning is a dangerous thing.'; 
str[40.] := chr(O); 
writeln ('The initial string = ', str); 
writeln; 
ptr .- rindex(&str[l], 'l'}; printstring('l'); 
ptr ·-
ptr ·-
ptr ·-
end. 

rindex(&str[l], 
rindex(&str[l], 
rindex(&str[l], 

'd' ); printstring('d'); 
't' ); printstring('t'); 
' x ' ) ; prints tr i ng ( ' x' ) ; 

This program generates the following C>tLitput: 

B /ratedace to C and Math Libraries 

I ,,ptr"} j 

The 
The 

initial string 
last substring 

= A little learning is a dangerous thing. 
beginning with 1 learning is a dangerous thing. 

The last substring 
The last substring 

beginning with d 
beginning with t 

The last substring beginning w.i th x 
(x is not present) 

rldexp 
single-precisicofil: multiJrJlicaticon by a p0wer of t\vo 
Definition 

function rldexp ( f: float, exp: integer): float;. 

where 

f is a single~p:uecisi0n filmat. 
exp is an integer. 

dangerous thing. 
thing. 
{null} 

The return value is f * 2exp. Tflis is a single precision ve:r:sion of ldexp. The glolDal variable 
errno is not set for domain errors fou this function. 

rlog 
single-precisicon natural: l0garithrn 
Definition 

function rlog (f: float}: float; 

where f is a single-precision float. 

rlog returns ln(:f}. I:t is a single precisi©m version of ln. 

rlog10 
sirngle-precisicorn common. l0garithm 
Definition 

function rloglO ( f: float): float; 

where f is a single-precision. float. 

rloglO returns the comm0n (base 10)'10gartthm off. It is a single precision versi0n 0£ loglO. 

NDP Pascal Reference Manual' 

u 

'\ u 



u 

B lnterfaee to C and Math Libfiaries 

rpow 
sil'ilgle~precisi0f'ili pcower fum~tkm 

Definition 

function rpow (f: float}: float; 

where f is a single-]>Fecisi0m float. 

149 

This is a single pFecisi0n version ofi pow.. If the treturn value is out of r:-ang~. the global vartable 
errno is not set . 

• rs1n 
sil'il~le precisi0rn1 sil'ile 

Definition 

function rsin (f: float}: float; 

where f is an expFession ofi type FLOAT. 

The rs in ( f) functriom :retun:1s the sine of f, where f is exp:ressecl in raclians. 

EXAMPLE ( ex068.p) 

program rsinl(output); 

function rsin(f: float): float; external;. 

con st 
pi = 3 .14159265358979323846;. 

var 
i: integer; 
x: float; 

begin 
x ·- 0.0; 
for i:= 1 to 5 do begin 

writeln {' x = ', x, ' rs in {x} 
x ·- x + pi/4.0; 
end; 

end. 

This program gene:uates the following output: 

x = O.OOOOOOOe+OO rs in (x) O.OOOOOOOe+OO 

x = 7.8539819e-01 rsin(x) 7.0710683e-Ol 
x = l.5707964e+OO rsin(x) l.OOOOOOOe+OO 
x = 2.3561945e+OO rsin{x.) 7.0710683e-01 
x = 3.1415927e+OO rsin{x) O.OOOOOOOe+OO 

rsinh 
single precision hyperbolic sine Definition 

function rsinh (f: float): float; 

wheFe f is an expression 0f type FLOAT. 

rsin(.x) ). ; 

The rs inh ( f) function :returns the hypelibol!ic sine ofi f. 

EXAMPLE (exOG9.p) 

program rsinhl (output); 

NOP Pascal· Reference Manual 



150 

function rsinh(f: float): float; external; 

con st 
pi= 3.14159265358979323846; 

var 
i: integer;, 
x: float; 

begin 
x := 0.0; 

for i:= 1 to 5 do begin 
writeln (' x = '', x, ' rsinh {x) 
x := x + pi/4.0; 
end; 

end. 

This program generates tfue follmwing otatplllt: 

x 0.0000000e+OO rsinh{x) 
x 7. 8539819e-01 rsinh(x) 
x 1.5707964e+OO rsinh(x) 
x 2.3561945e+OO rsinh{x) 
x 3.1415927e+OO rsinh{x) 

rsqrt 
simgle-preeisi©fl sqware ro0t1 

Definition 

O.OOOOOOOe+OO 
8.6867094e-01 
2.3012989e+OO 
5 .2279720e+OO 
1.1548738e+01 

function rsqrt (f: float): float; 

whe:re f is a single-precisicm fil0at. 

This is a single precisi0m versiom, of sqrt. 

rtan 
single precision tangent Definition 

function rtan (f :. float): float; 

where f is an expFessiom ofi type FLOAT. 

B lnterfaee to C and Math Libraries 

rsinh(x)); 

The rt an {f} functi0n retumas the l)rincipal value of the arc tangent ofi f. rt an rettims a result 
in the range -IDi to! pi, expressed in radians. If the result is Olilt of range, the gl0bal variable 
errno will be set to, ERANGE. errno is flOt set if the input argumeflt is Olllt 0£ range~ 

EXAMPLE (ex070.p) 

program rtanl(output); 

function rtan (f: float): float; external; 

con st 

var 

pi 3.14159265358979323846; 

i: integer; 
x: float; 

begin 
x ·- 0.0; 
for i:= 1 to 5 do begin 

NDP Pascal Referenc:e Manual 

u 

u 



u 

u 

B Interface to G and Math Libranies 

wri teln (' x = ' , x, ' rtan (x} 
x ·- x + pi/4.0; 

rtan(x)); 

end; 
end. 

This program gel!le:rates the foU0wing Olll.tput: 

x 0.0000000e+OO rtan(x} O.OOOOOOOe+OO 
x 7.8539819e-01 rtan(x} 9.9999988e-01 
x 1.5707964e+OO rtan (x} -2. 2877332e+07 
x 2.3561945e+OO rtan (x} -1. 0000001e+OO 
x 3.1415927e+OO rtan (x} 8.7422784e-08 

rtanh 
sirilgle pnecisiCDrn hypenboli~ tan@ernt 

Definition 

function rtanh (f: float}: float; 

where f is an expressiol!l ofi type FLOAT. 

The rtanh ( f} funeti©m.! returns the hyperbol!ie tangent of f. 

EXAMPLE (ex071.p) 

program rtanhl (output}; 

function rtanh ( f: float} : float;. external; 

const 
pi 3 .14159265358979323846; 

var 
i: integer; 
x: float; 

begin 
x := O .• O; 

for i:= 1 to 5 do begin 
writeln (' x = ', x, ' rtanh (x} 
x :.= x + pi I 4 . O; 
end; 

end. 

This program generates the foU©wing <JrtJitpllt: 

x O.OOOOOOOe+OO rtanh(x} O.OOOOOOOe+OO 
x 7.8539819e-01 rtanh(x} 6.5579420e-01 
x 1.5707964e+OO rtanh(x} 9.1715235e-01 
x 2.3561945e+OO rtanh(x} 9.8219335e-01 
x 3.1415927e+OO rtanh (x} 9. 9627209e-01 

SeC_1 00_ (DOS only) 

re~um hufilcf :nedths of, a secorild simce mi©ni@tnt 

Definition 

function sec_lOO_ : integer i. external; 

rtanh (X)); 

151 

The sec_l o o _ tuncticm returns the number ofi hundredths of a secoBcd since the previ©us 
midnight. 'Iifuis functicrm 1 has n©, argumemts. 

NDP Pascal Reference Manual 



152 B Interface ta C and Math Libraries 

EXAMPLE ( ex072.p) 

program seclOO (output) ; 

function sec_lOO;_: integer; external; 

var 
hsecs: integer; 

begin 
hsecs := sec_lOO_~ 
writeln('The number of hundredths of a second since midnight =',hsecs); 
end. 

This program gene:uates the foUCDwing CD11tput: 

The number of hundredths of a second since midnight 

secnds_ 
return number of secomds f:rom an Ofii~im 
Definition 

function secnds_ (VAR lastTime: integer) : integer;. external; 

where last Time is a variable ofT type INTEGER. 

The secnds;__ functi0m :r:et.11rns the rmmbe:us ofT sec0111cls since the previ011s midnight. less the 
value of last:Ti:rne. A day's worrth 0:6 seeonals are adcled to the result if the calculated value is 
less that thevalu'e 0£ lastTime. 

EXAMPLE ( ex073.p) 

program secndsl(output); 

function secnds_ (var lasttime: integer): integer~ external; 

var 
ten_am, ten_pm, thistime, lasttime: integer; 

begin 
lasttime := O; 
this time : = secnds_{lasttime); 
writeln('Seconds since midnight thistime}; 

ten_am := 10 * 60 * 60; { seconds since 10 AM 
ten_pm. : = 22 * 60 * 60; { seconds since 1 O PM 
writeln('Seconds since yesterday at 10 am 
writeln('Seconds since yesterday at 10 pm= ' 
end. 

This pirograrn generates the foU0wing 011tJDlllt: 

Seconds since midnight = 
Seconds since yesterday at 10 am 
Seconds since yesterday at 10 pm 

setndpsw 
set ncdp status w0fid 

Definition 

procedure (SW: integer} ; 

NOP Pasca/1 Referem;e Manual 

secnds_(ten_am)}; 
secnds_(ten_pm}}; 

\ v 



\_) 

B Interface to C and Math Libraries 

where swis an mteger. 

This proceclure takes an imteger as its argumenti, ancl1 sets the NDP Statlils Worcl, sim1:llatmg 
exceptions. 

sinf 
single-preeisi0n1 sime 

Definition 

function sinf (f: float)~ float; 

where f is a single-precision ffo>at. 

This is a single 1nrecision verrsion 0fi sin. 

sinh 
h1yperbolic sime 

Definition 

function sinh (d: double): double; 

where dis an expressiom ofi type DOUBLE. 

The sinh ( d} functiom:returns the hyperb©lic sine ofi d. If the result is to© large, the gfobal 
variable errno is sen no ERANGE ancl tfae fiuneti0n :ueturns HUGE_ VAL. 

EXAMPLE {ex075.p} 

program sinhl(output); 

function sinh ( f: double) : double; external;, 

const 

pi = 3.14159265358979323846; 

var 
i: integer; 
x: double; 

begin 
x := 0.0; 
for i:= 1 to 5 do begin 

wr i t e 1 n ( ' x = ' , x, ' s i nh ( x) 
x ·- x + pi/4.0; 

end; 
end. 

This pFogram gene:uates the following, oliltpu.t: 

x 0.0000000000000-0000e+OO 
x 7.85398163397448286e-Ol 
x l.57079632679489657e+OO 
x 2.35619449019234486e+OO 
x 3.1415926535897931le+OO 

sin hf 
sirngle .. precisiorn: tnywertbolic sirne 

Definition 

sinh(x) 
sinh(x) 
sinh(x) 
sinh (X) 

sinh(x) 

function sinhf (f: float): float; 

sinh (x)); 

0.00000D00000000000e+OO 
8.68670961486009747e-01 
2.30129890230729427e+OO 
5.22797192467780292e+OO 
1.15487393572577464e+Ol 

NDP Pasca/1 Reference Manual 



154 B Interlace to C andMath Libraries 

wheFe f is a single-precisi1©:ro.1 float .. 

This is a single prrecision veFsi0n· 0£ s inh. 

sprintf 
print formatte<1:f: owtpwt: t10, a string: 
Definition 

type cp = "char; 

function sprintf (str, fmt: cp; 

arg: {variable length argument list, see text}): integer; 

where 

str is a p©inter to a string that is to receive the character data from the argument list arg, 
f mt is a p©inter to a null terminated string co:ro.taining formatting instructio:ro.s, 
arg is a variable length argume:ro.t list representing the data to be transferred to string str. 

The sprintf { str, fmt, arg) famctio:ro.: reads the data in the variable length argument list arg, 
CC>BVerts it according to the foIIDat Specification in fmt and writes the lieSult as a null 
terminated string to the array s tr. sprint f rreturns the number off items written to the output 
string str, not coNnting the tenninating nuU. 

A descriptli0:ro. 0£ the syntax of tfue descriptors in the form.at specificati<Jm is best left to a book on 
the C programming languag~. for example, The CProgTiammingLo.n@uo.ge lDy BFian Kernighan 
and· Denn.is Ritchie, publishecl by F:re:ro.tice Halt 1988. The explanatio:ro. given here will 
necessarily be co:ro.cise •. and n©t d0justice to tfue fall power of this functi0a. 

How the sprintf function works 

The format strmg, fmt, inilicates h0w the data in the argument list is to be interpreted and 
formatted when copied to the Otltphlt strring s tr. The foliIIlat string may contain text and 
format specifiers. A foFrnat specifaer is a character sequence that begins with a perrce:ro.t sign (%) 
and ends with a single character abbreviation (listed below) foF the type of comveITsion to do. A 
format specifier is required fo:rr each item in the argurneRt list. Any text within the format 
string is c0pied to tfue 011tput strri~g withoNt any format conver:sicm. 

The sprintf functioa proceeds in the following ma.rm.er. The format string is read from left to 
right. Any text within the folililat string is immediately copied to the Otltput string. When a 
format specifier is em.countered, (,iclentified by the leading percem.t sign), the next item from the 
argument list is read ancl copiecl to the output string while doing the co:ro.version Feq:uirecl by 
the format specifier. The sprintf function then comtim1es with where it left off in the format 
string. Eac:h format specifier causes the :ro.ext item in the argument list to be foIIDatted aml 
CC>Jl>ied to the 011tplllt st:rring. 'Fhis pz;ocess stops when the ene1l of the forrrnat string is 
encccmntered. 

As a simple example. the format string "The answer is %f" will copy tfue text "The answer 
is "to the 011tpmt string, tfuen rread one number of type double from\ the argument list, convert 
it to an ASCII string, and c©py the ASCII representation of the number to the output string. 

Declaring the sprintf function 

Tfue :following sh 1ows the declaration of the sprintf functiom when n different data items are to 
be formatted and copied to the output string (pointed to by)' s tr. 'Fhe format string, fmt, must 
contain n fo:nnat specifiers compa11ible with the correspoEding, data types t 1 through tn. 

type 
cp "char; 
tl 

t2 

tn 

NDP Pascar Referen~e Manua/1 

u 



I 

! ' 
\._) 

B lnterfaee to· G and Math Lii!Jranies 155 

function sprintf (str,fmt:cp; dl:tl;. d2:t2; .... , dn:tn): integer;; 

The format Specifiers 

The fom:nat specifier begins with the percent sign, and eacds with the format character. The 
fomlat conversi0m.1 ;may be m©dified by plaeing acdclitional characters between the percent sign 
and the format specifiier. These m©di£iers pmvide additiom.al control ovel.7 the conversi©n 
process. If piresentl, they must be placed between the percent sign and the :format ccmversion 
character in the foll©wing order: 

1. Flags 

+ 

space 

# 

Left Justifies the data item in the field. 

FoFces a plus or minus sign befor:-e any m1merie data. By default, the plus sign 
is omitted for positive values. and the minus sign is placed before negative 
values. 

Places oae space l:Defo:rre IDOSitive values. and the minus sign befoFe roegative 
vahaes. By clefault. the space is omitted for positive values. 

The actual' FesNlt depends llpon the conveFsion character. For o, the first digit 
will be zero;; for x o:u x, the string "Ox" OF "OX" wiU be prefixed to a nonzero value. 
Fore, E, f, g. ancd G, a decimal point will be placed in the Fesult. For g and G, 
trailing ze17<l>S will not be removed. 

O Specifies that the padding characters to be used with numeric data is a zero. 
'Fhe defial:llt padding, characte:rr is a space. 

2. Minimum field wicltll 

The conve:uted value will occllpy a fielcl in the Ollltput string at least this wiclle. and wider if 
necessary. 'Fhe converted value is padded on the le~ (or rigl1lt if the - flag is pFesentl to fill 
up the fielcl width. The O:filag contuols the padding character. 

3. Period 

A peri0cl is used to separate the minimum field width from the precision. This is only 
necessary if U:he precisi:on m0cl!i.fier wm: l:De 11sed. 

4. Precision 

FoF s •. this is the number of characters to place ia tlhe output string; foF e, E, or f, this is 
the number o:D digits after the decimal point; foF g or G, this is the :aumber of: significant 
digits; for integers, this has the same meaning as the minimum field width. 

Tb.e foUowing table is a list 0£ format identifiiers, or coro:versioro characters: 

d,i,o,u,x.x Formats data stored in integer form .. d ancl i converts tne data into decimal 
form; o converts the data into octal form; u coroverts the data into an unsigned 
rouml:Der: x aml x coJ.ilverti the data into hexadecimal' form. x uses 10wercase 
hexadecimal~ characters while x uses uppercase hexadecimal: characteirs. 

e,E Formats cl.ata stoFed in fl0ating point f0Fm. Data is converted into scientific 
notation, foli example, 1. 2F34e+56. One digit is always placecl before the 
decimal point. 'Fhe precision specifies the numbet' of digits after the decimal 
]>©i!nt, the default is 6, 'Fhe decimal point is root printed if the precision is zero. 
The case of the letter e in the expa>nent matches the case ofT the format S]>ecifier. 
The exponentl contains at least two digits. and then as many digits as necessaiy. 

f Form.ats cl.a.ta stofed in fl0ating ]>©int form. Data is converted intlo decimal' 
notation, foli example 12 . 3 4. 

NDP Paseal Reference Manual 



156 

g,G 

c 

s 

B lntenface to C and Math Libraries 

Causes tfue e or E format to be used if the expor;ient of the data item is less than 
-4. o;r greater than the pFecisiQn. OtheliWise f format is used. Trailing zeros are 
n0t c0pied to the Ollltput string, and a decimal point is used only if it is followed 
by a digit. 

COJ!>ies a singl<:e character to the Ollltput strring. 

C©pi,es a strtn.g 0£ characters lintil the null terminatoF (chr ( o) I is found. or until 
the mumber ©f characters copied equals the pFecisicm. 

Co:wies a pe:uce:mt sign-to the outp11t string. 

EXAMPLE 1 (ex076.p) 

program sprintfl{output}; 

type 
cp "'char;, 

function sprintf (des, fmt: cp; d:double}: integer; external; 

var 
des, fmt: packed array [l ... 40] of char; 
i, n: integer; 
d: double; 

begin 
fmt := 'The answer is %f' 
fmt[17] := chr(O}; 
d := -123.456; 
n := sprintf{&des[l], &fmt[l],. d); 
writeln { 'Format string = ', fmt: 20) ;, 
writeln ('Number of characters transferred 
write('The destination string= '); 
for i : = 1 to n do 

write(des[i]}; 
writeln; 
end. 

n:4); 

This example creates a null terminated string that c0:r:itains the message "The answer is" 
followed by the value o1 a variable~ The ftlnctio:a sprintf oll>tains this result by copying two 
strings to the destinatlo:a array. The first string is the text "The answer is ··. The seconcd 
string is the ASCII repr:-esentati0:a of the value stored in a variable o:tT type DOUBLE (so the format 
specifier is f). This example generates the following Ol!.ltplllt: 

Format string = The answer is %f 
Number of characters transferred = 25 
The destination string = The answer is -12}.(56000 

EXAMPLE 2 (ex077.p) 

program sprintf2(output}; 

type 
cp "char; 

function sprintf (des, fmt: cp; il, i2, i3: integer): integer; external; 

var 
des,. fmt: packed array [1 .. 100.] of char; 
i, n, x: integer; 

begin 
fmt. := 'x (in decimal} 
fmt[52] := chr{O); 

NOP Pascal Reference Manua/1 

%d, {in hex} %x,. {in octal) %0' ; 

\ u 



u 

/ 
I : 
\._) 

( \ u 

B Interface to C and Math L.ibranies 

x := Ox7fff0000; 
n := sprintf(&des[l], &fmt[l] ~ x, x, x}; 
wri teln {'Source data = ', x}; 

writeln{ 'Format string= ', fmt:52}; 
writeln( 'Number of characters transferred 
writeln; 
writeln {'Destination string = '} ;, 
for i := 1 to n do 

write(des[i)}; 
wri teln;, 
end. 

157 

I 11n:4} j 

This example com.verts a number into its decimal. octal and hexadecimal equivalents, and 
copies these values into a character array. Brief titles also pI1aced into the array to identify the 
numbers whe:n printed. 'Fhis example illustrates the d, x and o format specifiers an<Il geneFates 
t.he f oll©wiHg1 oNtput: 

Source data = 2147418112 
Format string = x {in decimal) = %d,, (in hex} = %x, tin octal) = %0 
Number of characters transferred = 74 
Destination string = x (in decimal) = 2147418112, (in hex) = 7fffQ00.0, (in octal) 
17777 600000 

sqrtf 
simgle-~recisi©ril square root: 
Definition 

function sqrtf (f: float}: float; 

where f is a single-precision. fl©at. 

This is a singl'e p:uecisio111' ve:rrsio:n ofi sqrt. 

srand 
seed rand©m number genenator 
Definition 

function srand ( i: integer} : integer; 

wheue i is thevall.lle 0£ the seed. 

The srand ftJ.nction. initiafizes the rancdom numoei:: ge:tierato:rr used Tuy rand. 

EXAMPLE (ex078.p) 

program srandl (output}; 

function rand: integer; external; 
function srand{i: integer}: integer; external; 

var 
jfi seed: integer; 

begin 
seed := 1009; 
srand (seed} ; 
writeln('seed = 'fiseed); 
for j:.= 1 to 5 do 

writeln (rand); 
writeln; 

NDP Pasc:al Referenc:e Manual· 



158 

seed := 155921; 
srand (seed) ; 
writeln('seed = ' seed); 
for j:= 1 to 5 do 

writeln(rand); 
writeln; 
end. 

B Interlace to C and Math Libraries 

This progi:;am generates the foHG>wing Ol.Qtput: (rFhis will vaiy from machine to machine.) 

seed = 1Q09 

16152143 

1084389312 

48409366 
515415905 

681807129 

seed = 
313258710 

551196409 

2630685~8 

1703377437 

1715819866 

sscanf 

155921 

read formatted impt1t1 from a stirirn~l 
Definition 

type cp = "char; 
function sscanf (str, fmt: cp; 

arg: {variable length argument list, see text}}: integer; 

where 

st r is a p0inter to a null terminated string comtaining the character data to be read. 

fmt is a p0inter to 1 a null tem:ninated string c0ntain.ing formatting instructioms. 

arg is a variable length. argumemt list: each argument is a p0inter to an item that is to 
receive the converted data from s tr. 

'Fhe sscanf (str,.fmt,.arg) fuacticm L"eads formatted input from the string str, coBverts it 
according to the fbFIIlat S!i>ecification in fmt and writes the results to the data items p0inted to 
by the argument list arg. sscanf returns the number of arguments that were comverted and 
assigned. The Feturn value d©es not include iriplit characters that were read but .n0t assigned. 

The sscanf fun<!!ti<Dn, is nea.Fly the reve:use of the sprintf funeti0l11 and works in a similar 
manner. Note that altltlomgh! many ot the ablDreviations used for the foFmat conversi0ns are 
identical to those used by the sprintf function, they 0£ten have slightly different meaning~. 

A descrtpti0n of tltle syntax ofi the descriptorrs in tfue format specifii<!!ati0n is best lefit to a b0ok on 
the C programming languag~. forr example, The CProgTiammin.@Languagie by Brian Kernighan 
and Dermis Ritchie. published 1Dy Prentice Hall, 1988. 'Fhe explanati0n given here will 
necessarily be c0ndse .. aml not cl©justiee to the fun power of t:lilis funeti0n. 

How the sHanf function works 

The format string, fmt, indicates how the character data in the source string is to be convertecl. 
Note that the a.Fg11ment list c0m.tains p0inters to the variables that are co receive the results ofi 
this c0:aversion. 'Fhe fonnat string c0ntains text and. format specifieFs. A format specifier is a 
character sequence that begins with a percen~ sign (1%f and ends with a single cha:t"acter 
abl:i>;r;eviation (listed below) forr tile type 0fi c0nversi0m to d0. A format specifier is req:uirecl for 

NOP Pascal! Reference Manual 

u 

! \ 

\~ 

. \ 
I J 

\.,_,/ 



( 

\_) 

u 

B lnterfaee to C and' Math. JJ.ili>f7ar:ies 159 

eacfu argument in the destihaticm argument list. Characters other than a format specifier or a 
space must match the characters found 1n the input string~ A space causes leadlllg spaces to 
be skipIDed. 

The sscanf £uncti01;1 maintaias two pointers to its current location iH the fomnat aml source 
strings. Both pointers initially point to the beginning ofi these strings. The pointers are 
advanced ur~til the end of the forniat stliing is reached. the end of the argument list is reached. 
OF a conflict occurs. The data in the folTIIlat string is :wrocessed as follows: 

l. A space causes s scan f to skip over any spaces in the soNrce string. 

2. Text in the :fTonnat strtng, is corn pared agaim.st data in the source stnng. If the character 
data is identical then it is skipped, @tkeITWise sscanf teITNlinates. 

3. A format specifier causes sscanf to, com.vert tlte appropriate m.umber ofi characters from the 
soHrce string, to) tke SJDecWied represem.tation, and; place the result at the lbcation indicated 
by the cowesIDonaling argumeat. 

Any format specifier may be pFeceded by a maximum field width or an assignment suppiressiom 
cfuaracter. The fiefol wiclth is a decimal digit that specifies the maximum numoer of characters 
to Feaal from the sotirce string fbli this particml'ar fonnat specifier. The assignment supp:ression 
character is a.fl; asterisk (* l that causes a field in the source string to be read but not assigned 
to any vari,able in the argument list. 'Fhe item in tfue inpm.t string is simply skipIDecl. FoF 
example, %*s, ©Ii%* i. 

As a simple example, the fhrmat string "The answer is %f" will Fead ancl' skip over the 
d1aracteFs ".The answer is" in the source string1

, then skip over any blanks until a number is 
founal'. 'Iihis m.urnlDer wiH oe converrted ancl sto:redi ifl the locati<Dn pointeal: to by the 
co:rrespondir:ig argumetltl. 

Declaring the sscanf function 

The foH<Dwing shows tfue declaration of the sscanf function when n different values are to be 
C©lilverted from. tfue inphlt string, str, and stoJJeali in the locatiolils pointied to 1 by the variables dl 
through dn. The fo:nnat string. fmt, must contain n foITmat speciliers compatible with the 
cco:rrespondimg data types to which t 1 throHgh tn point. 

type 
cp "char; 
tl A {some type} 
t2 " {some type} 
tn A {some type} 

function sscanf (src,,fmt:cp; dl:tl; d2:t2; ... . , dn:tn): integer; 

The Format Specifiers 

A fiomnat specifieli lDegins with the pei:;cent sign, and em:ls with the format characte:r:. It may be 
m0Cllified by ilire maximum fielal width or assigmneat suppression flag. 

The fol[(J)wing table is a l!i.st 0£ format identi.f!iers. or conveFsiom. characters: 

d,u 

i 

0 

x,X 

Converts a alecimal integer. The corresponding data argumeat mast be a 
p0inter to an integer. 

Converrts a decimal integer with an optional prefix. Ox or ox den0te a 
hexaclecimal constant; o deBoti.es an octal consnant. The co:rrespcmding 
data argument must be a pointer to, an integerr. 

CcoroveFts an octal' integer with or without a leading o. 'Fhe corresp0ncliag 
data argument must be a p0inter to, an integer. 

Ccmverts a fuexadeeimal integer with OF without a leadiflg Ox oIT ox. 11'fue 
cowespom.ding data arrgumenti m11st be a p0inter to an intege:rr. 

NOP Pascafi Reference Manual 



160 

e,E, f ,,g, G 

s 

B Interlace to C and Math Libraries 

Co:nverts a filoating p0int constant. The input is an optional sign, a 
string 0£ numbers with an opti<DIDal decimal point, and an opti0nal 
exp0m.ent fiielm containing an e Oli E followed by a J:DOSsibly signed integ~r. 

Reads a string ofi characters until a space is encw1'mtered. A null 
characteF (chr ( 0}) is appended to the elild o:f the string, The 
con:resp0nding data argument rm1st be a p0inter to an array ofT type char. 

c Reads a charactei:; does not skip oveF spaces OF a null terminator. The 
co:rresp011d.mg data argument f©F %c must be a p0inter to type char. foF 
%we. where w is the field wiclth. the data argument must be a, p0inter to 
an anray ofl type char. 

n Writes the number of characteFs read so fw by sscanf to the 
c0ITesp0nding argument, wflich must be a pointer to type INTEGER. No 
characters are :rread from the input string with tlrlis specifier. 

[char. s tr fog] Matches the character string within the square brackets to the fomgest 
seqµelilce of! iclentical characters from the input stliing. The matching 
characters are cc>:(!>ied to an anray of type char and end with the null 
character, chr ( o). The couesp0adimg data argurneat m11st be a p0inter 
to this arrray. For example, [xyz] will match with the three strings x. xy 
or xyz. 

["'char. string] Matches any characters not in the character string within the square 
brackets to the longest sequence of characters from the input string~ The 
matching characters are copied to an array of type char and are 
terminated with the nun character. chr ( o}. The correspond.ing data 
argument must be a pointer to this array. For example [ "xyz] will 
match with any sequence of characters except x, xy or xy z. 

% Reads past a peFcent sign in the input string withoat making any 
assignment. 

EXAMPLE 1 (ex079.p) 

program sscanfl{output); 

type 
cp = "char; 
fp = "float; 

function sscanf{src,fmt: cp; des: fp): integer; external; 

var 
src, fmt: packed array [1..40) of char; 
des: float; 
n: integer; 

begin 
src : = 'The answer is -123. 456' i1 

src (23] : = chr { O) ; 

fmt := 'The answer is %f'; 
fmt [ 17 J : = chr ( 0.) ; 

n := sscanf {&src(l], &fmt[l], &des); 
writeln('Source string is= ', src:25); 
writeln ('Format string is = ', fmt: 19 l; 
writeln{'number of items transferred 
writeln{'Destination =',des); 
end. 

NDP Pascal Reference Manual 

n:4); 

\ 



! 
\_,,! 

u 

B lnterfaee to C and Math Libraries 161 

This example mt:istrates how a nmnlDer may be o btainecl· from a character string and converted 
into a numeric format. The characte:rrs preceding· the numberr are discarded, and the number is 
copied into) a vartabl~ of type FLOAT. 'Ffuis example produces the following output: 

Source string is = The answer is -123.456 
Format string is = The answer is %f 
Number of items transferred = 1 
Destination= -1.23456QOe+Q2 

EXAMPLE 2 (ex080.p) 

program sscanf2 {output);. 

type 
cp "char; 
ip "integer; 

function sscanf (src, frnt: cp; 
sign: cp; dl:ip; ch:cp; d2:ip): integer;. external;. 

var 
src, frnt: packed array [ 1 .. 2 OJ of char; 
sign,. dot: char; 
dl, d2,. n: integer; 

begin 
src := '-123.456'; 
frnt : = 1 %1s%u%1s%u'; 
frnt [ 11] : = chr ( 0) ; 
writeln('Source string= ' src:lQ); 
wri teln ('Format string = ' fmt: 10.); 
n := sscanf{&src[l], &frnt[l], &sign, &dl, &dot, &d2); 
wri teln ('Number of i terns transferred n: 4); 

writeln(' sign sign); 
wri teln ( ' integer part dl: 4) ;. 
writeln(.' decimal point dot); 
wri teln { 'fractional part dl: 4) ;. 
end. 

Tfuis example converts a stliihg reprresenting a clecimal numlDer into pieces that represent the 
sign, integer and fractional: parts ofi the number. 'Fhis example generates the following output: 

Source string = -123.456 
Format string = %1s%u%1s%u 
Number of items transferred 

sign 
integer part 123 

decimal po.int 
fractional part 456 

strcat 
col'ilcatema:te two strim~s 

Definition 

type cp = "char; 

4 

function strcat (strl,str2: cp): cp; 

wheFe strl and str2 are JDC!>intleFs to nulli ternll.nated strings. 

NDP Pascal Pleference Manual 



162 B lnterlar;e to C and Math Libraries 

The strcat { strl, str2) func1Ji0:m. copies th.e null te!iIIlinated string, str 1, onto the eml of the 
null terminated strmg, str2. The first character of strl replaces the nun terminating str2. No 
test is made for overflowing str2. strcat Feturns a pointer to the co:mcatenated string. 
EXAMPLE (ex081.p) 

program strcatl(output); 

type 
cp "char; 

function strcat(strl, str2: cp): cpi external; 

var 
s, t: packed array [1 .. 75] of char; 
p: cp;. 
i: integer; 

begin 
s ·- 'Go in and out the w.indow as'; 
s [ 2 8 J : = chr ( 0) ; 
t : = ' you have done before. ' ; 
t [:HJ := chr(O); 
p := strcat(&s[l], &t[l]); 
writeln( 'String 1 s:27); 
writeln('String 2 = ', t:22); 
writeln; 
write{.'Cornbined strings= '); 
for i:= 1 to 75 do 

wr i t e Cs [ i ] } ; 
writeln; 
end. 

This program generates the following output: 

String 1 

String 2 = 

strchr 

Go in and out the window as 
you have done before. 

imdex of a cha~acter iril a stirirn@: 
Definition 

type cp = "char; 
function strchr {str:cp; ch:char): cp; 

where 

s tr is a p0mter to the null terminated character string to be searched. 
ch is the cha:racter to. match. 

The strchr {str,.ch) functio:n returns a pointer to the first instance of the character eh in the 
string p0inted to by str. If ch is not found, then strchr returns a null p0inter. 

EXAMPLE (ex082.p) 

program strchrl{output}; 

type 
cp "char; 
s40 = pac]ced array (1 ... 40] of char; 
s40p = "'s40; 

function strchr(str:cp; ch:char): s40p; external; 

NDP Pasc:al Referenc:e Manua/i 

' ·v 



u 

u 

B Interface t1CJ) C afild Math Libraries 

var 
str: s40 ;, 
ptr: s40p; 

procedure printstring.(c :char); 
begin 

writeln( 1 The last substring beginning w.ith ',C,1' 
if ptr = nil then 

writeln(' (' ,c,' is not present) 1
'); 

end; 

begin 
str := 1 A little learning is a dangerous thing. 1

'; 

str[40.J := chr(O); 
wri teln ( 1 The initial string = •, str) ; 
writeln; 
ptr .- strchr(&str[l], 'l'); printstring( 'l'); 
ptr 
ptr 
ptr 

.-

.-

.-

strchr(&str[l], 'd'); printstring('d'); 
strchr(&str [1 J, 't' ). ;, printstring ( 't'); 
strchr(&str[l], 'x') ~ printstring('x') ~ 

end. 

'Fhis program ge:aerates the foU©wing output: 

The initial string = A little learning 
The last substring beginning with 1 
The last substring 
The last substring 
The last substring 
(x is not present) 

strcmp 
string compare 

Definition 

type cp = "char; 

beginning with d 
beginning with t 
beginning with x 

is a 
little 

ttle 

function strcmp (str1,str2: cp): integer; 

dangerous 
learning 

learning 

where st r 1 a:acd~ st r 2 are Ji>©intlers. to null termililated strings. 

163 

I ,.ptr"') i 

thing. 
is a dangerous thing. 

dangerous thing. 
is a dangerous thing. 

(:null) 

The st rcmp (st r 1,. st r 2) famcmon compares two nul11 terminated stITings an.cl returns o:ae of 
the foHowim.g val'l!les incdieating theiif relati0nshi:w: 

if strl < str2 then ret11m a negative numlr>e:u 
if strl = str2 tlle:nretumzero 
if strl > str2 then return a p0sitiv-e numl:Der 

EXAMPLE (ex083.p) 

program strcmp(output}; 

con st 
s 1 ''economy ' ; 
s2 'ecology' ; 
s3 'eclipse' ; 
s4 'eclogue' ; 

type 
cp = "char; 
slO =packed array [1 .. 10) of char; 

NOP Pascal Reference Manual 



164 B Interlace to· C and Math libraries 

function strcmp(strl,.str2 :cp; n:integer): integer; external; 

procedure compare (a ,.b: slO; n: integer); 
begin 

a[n+l] := chr(O.}; 
b[n+l] := chr(O); 
writeln('Comparison on first ' n:2,' characters 
end; 

begin 
writeln( ''String 1 = I Isl) j 

writeln( 'String 2 = I I s2) j 

compare ( s 1 , s2, 3} i 

compare ( s 1 , s2, 4} i 

compare ( s l , s2, 20) i 

writeln (.'String 3 = It s3) j 

writeln( 'String 4 - I f:S4} j 

compare(s3, s4, 3} i 

compare(s3, s4, 4) i 

compare(s3, s4 ,. 20.) ;, 

end. 

This program geaerates the foMowing output: 

String 1 = economy 
String 2 = ecology 
Comparison on first 3 characters 
Comparison on first 4 characters 
Comparison on first 20 characters 

String 3 = eclipse 
String 4 = eclogue 
Comparison on first 3 characters 
Comparison on first 4 characters 
Comparison on first 20 characters 

strcoll 

0 

2 

2 

0 

-6 
-6 

cornpare two, strimgs based om: a pfiogram•s locale 
Definition 

type cp = "char; 
function strcoll (strl: cp~ str2: cp): integer; 

where s tr 1 anal s tr2 are p0inters. to null term.i:raaned strings. 

strcmp(&a[l] ,&b[l] ,n)); 

In the preseiiltl im:wlemeDtatiom, this functiom behaves identically to strcmp. 

strcpy 
string copy 
Definition 

type cp = "'char; 
function strcpy (.strl,str2: cp}: integer; 

where s tr 1 anCil st r 2 are p<Dinters to null termiEated strings. 

The strcpy function C<Dpies the null terminated string str2 to the aCildress pointeal to by strl, 
up to an including the nun tenninating str2. 

NDP' Pascal Reference Manual' 

' I l 

\..._,) 

u 

' ) 
\~ 



u 

( \ u 

u 

B Interlace to ~ amd Matfr Libraries 165 

Cautio:n: It is the progFammer1s responsibility to enslJlre that the receiviag blJlffer is large 
emn.1gh fmr what is written t© 1 it. If it is not large en.ough, adj;acent ~uffers may be overwritten. 
EXAMPLE (ex084.p) 

program strcpyl (output);. 

type 
cp "'char; 

function strcpy(des, src: cp): integer; external; 

const 
a 'The gardener planted the flow.er in fresh potting soil.' ; 
b 'The search continues for new subato~ic particles.'; 

var 
des, src: packed array [l .. 10.0) of char; 
i: integer; 

begin 
src := a; 
src[55] := chr(O.); 
des := b; 
des[50.J := chr(O); 
writeln('String 1 a); 
writeln('String 2 = ' b}; 
writeln; 
strcpy (&des.[26] 11 &src (36]} ;/ 
write(' Altered string 2 = '}; 
i : = 1 i 

while (des[i] <> chr(O.) do begin 
write(des[i)); 
i := i + 1 

end; 
writeln; 
end. 

This ~rogram gene:uates the foM0wing outphlt: 

String 1 = The gardener planted the flower in fresh potting soil. 
String 2 = The search continues for new subatomic particles. 
Altered string 2 = The search continues for fresh potting soil. 

strcspn 
compute tit~e len@th of the init1ial p>0fit,i0n of a stirimg comsistirt@' of cha~acters that, do not1 

occur in a secornd' strim~, 
Definition 

type cp = "'char; 
function strcspn (s.trl: cp, str2: cp): integer; 

where strl anal str2 are null terminatecl strings. 

strcspn retu.ms the Hummer 0£ conseclitive characters in its fiust st:uing argument that are n0t 
fou.ncl, in its seconcl string argumentl. 

NOP Pascal Reference Manual· 



166 B lnterfaee to C andMath Libraries 

strerror 
comverrt an eHor: nwmlDer: into an appr:o~r:iate message 
Definition 

type cp = "char; 
function strerror (errnum: integer): cp; 

where errnum is an integer eil'©F nl!lmbei:-. 

strerror returns the erroF next associated with its argume:nt as found in the anray ofT strings 
sys_errlist. If the argument is out ofrange. the string rett1mecl says simply that n©.further 
i:nfbrmati0Iil is available~ 

strftime 
Cofilveft brokefilH::i©wn time to string, 
Definition 

type cp = "char; 
type tm = record sec,.min,.hour,mday,mon,year,wday,yday,isdst: integer; end; 
function strftirne(var S: cp; maxsize: integer; Format: cp; timeptr: tm): 

integer i1 

where 

sec is sec0nds in the mimune (0:-59). 

min is mi!ilutes in th:e hohlr (0,..59)', 

hour is h0l1r ofT the day (© .. 23), 

mday is clay 0fT the month· Cl-31)], 

mon is mamths since Jamaary ((};.. l lL 
year is years since 1990, 

wday is days since Sunday (Q;..6):, 

yday is days since January l (0-365}i, 

isds t is whetherr it is DayH.ght Savings Time. 

sis the smng int0,which the informati0Iil1 is to be placed, 

maxsize is the maximum numlDei: 0:6 characneFs to be placed' into s. 
Format is the format connrolling what is to go into s, consisting ofi zero 0:r; more conversion 
specifiers and 0z:-dinary mMltibyte characters. .A co:mversicvn specifie:rr consists of a % 
character foU0wed by a character; that determines its behavi©F. All 0rrdinary multibyte 
cb.araetei:-s, including the terminating nult character, are copied 11nehanged into s. Each 
conversi©B specifieIT is replaced by appropriate chamcters, as cleteITIIlined by the LC_T IME 
category ofi tlle curreHt locale and by the values co:mtained in the structmi:e p0inted to by 
timeptr. 

strftime places characte:us into the aTiay l)Ointed to· bys as controlled by Format. The return 
value is the length of s. F©llowing is a list of conversi©H specifiers all0wed. 

%a ablDreviated weekday name 

%A full weekday name 

%b abbreviated m0nth name 

%B full m0nth name 

NOP Pasc:af Referenc:e Manual· 

u 

(~ 



u 

/ \ [ . 
\~ 

B lnterfaae to, C and Math Libraries 

%c date and1 time 

%d day 0fi the m0ntfu. as a decimal rn1mbeu (CH - 3iJJ} 

%H hour (24-h0Hr clock)\ as a decimal; mmibe:u (00- 23)' 

%I hoti:tr ('lJ2-hour cl0ck); as a decimal number (01 - 12) 

% j day ofi the year as a decimal number (0© 1 - 3ffiffi): 

%m. m0nth as a decimal: NililmlDer (0:1 - 12), 

%M mi:ru1te as a decimal :ro.umbeu (:00 - 59); 

%p AM/ PM designation. 

%S secamd as a decimal: numfuer: (OO; - ffi.l)i 

167 

%U Week 111tunber: o:f7 the year as a decimal roumbei: (00:..53). where first Sunclay is the first 
day 0fi week 0 l 

%w weekday as a decimal number (0:..6) wheFe Sunclay is 0' 

%x date 

%X time 

%y year witihoutl cemtury as a clecimal nw.mbeli (00 - 99)) 

%Y year with ce:atti1:rry. 

strindex 
in<dex of a swbstrim@' withim1 a string 
Definition 

type cp = "'char; 
function strindex (strl,str2: cp): integer; 

where strl and str2 are p0iinters to<ro.ul[ terminated strings. 

'Fhe strindex (strl,.str2) fium~ti0n finds the first occurrence ©f7 string str2 (not including 
the terminati:ag :ro.un characteul i:m. the string' strl. It Fetumsa p0inter to the l©cated string in 
strl, ©IT -lJ ifi :ro.0)match 0ce1Jlrs. 

EXAMPLE (ex085.p) 

program strindex(output); 

type 
cp "char; 

function strindex{str, sub: cp): integer;. external; 

con st 
sl 
s2 
s3 

s4 

s5 

'Tw.inkle, tw.inkle little star, how I wonder what you are.'; 
'Twin'; 
I ink' j 

'hat I j 

•·xxx'; 

var 
str, sub: packed array [1 .. 60] of char; 

begin 
str := sl; 
str[57] := chr(O); 
sub := s2; 

NlllP Pascal Reference Manual 



168 

str [ 5] : = chr { 0.} ; 
writeln (•String = ' s 1} ; 
writeln; 
writeln('The index of substring ' s2,' 
sub := s3; 
str[4] := chr(O}; 
writeln ('The index of substring ' s3, ' 
sub := s4; 
str[4] := chr(O}; 
writeln (•The index of substring '' s4, ' 
sub := s5; 
str[4] := chr(O}; 
wri teln (''The index of substring •, s5, ' 
end. 

This program gene:uates tfu1e fo>U0wing oNtp:ut: 

B Interface to C and Math Libraries 

strindex{&str [1 J, &sub [1]) :3}; 

strindex(&str[l] ,&sub[l]) :3}; 

strindex(&str[l] ,.&sub[l] ). :3} ;. 

strindex(&str[1J,&sub[1)):3); 

Index 1 2 3 4 5 6 
012345678901234567890123456789012345678901234567890123456789 

String Tw.inkle, twinkle little 
The index 
The index 
The index 
The index 

strlen 
string lengtih 

Definition 

of substring 
of substring 
of substring 
of substring 

type cp = "'char; 

Twin 0 
ink 2 
hat 44 
xxx -1 

star, how I wonder what you are. 

function strlen ( str: cp}: integer; 

where s tr is a pointer to a null terminated stMg. 

The strlen (.str) function :uetums the length of the string pointed to by str. The terminating 
null character; is mot colJlnted whe111 determining· the length. 

EXAMPLE (ex086.p) 

program strlenl(output}; 

type 
cp "'char; 

function strcat(strl, str2: cp): cp; external; 
function strlen(str:cp}: integer; external; 

var 
strl, str2: packed array[l .. 10.0J of char; 
i, len: integer; 
p: cp.;. 

begin 
strl : = 'At the end of a row' ; 
strl [20) := chr(O); 
str2 := • I stepped on the toe'; 
str2[22] := chr(O}; 
p := strcat(&strl[l], &str2[1]}; 
str2 := ' of an unemployed hoe.'; 
str2 [23] := chr(O}; 

NDP Pascal Reference Manual 

u 

u 

' \ 
\ ) 
\.....,,,,,; 



~· 

u 

B Interface to C and Math Libraries 

p := strcat(&strl[l], &str2[1]); 
i : = 1; 

while strl [1 J <> chr ( 0.) do begin 
wr i t e ( s tr 1 [ i J ) ; 

i := i + 1; 

end; 
writeln; 
writeln; 
len :.= strlen(&strl[l]); 
writeln('The number of characters in this string is ' len:3r~ 
end. 

1i'his prc>gram gernerratles tne f0U©wing1 outwut: 

At the end of a row I stepped on the toe of an unemployed hoe. 
The number of characters in this string is 62 

strncat 
st1nimg co111eatemat:e wit:h1 maxirrnurrn lemgttt~~ 

Definition 

type cp = "'char; 
function strncat (strl,.str2:cp;. n:integer): cp; 

where 

strl and str2 are p0i:ateITs to· rmll terrrninated. strtra.gs. 
n is an, integer less tna:ro. the hrngtfu 0£ tlhe strings at strl orr str2. 

169 

'Fhe strncat { strl, str2) £tincti:o11 c0pies th.e :ro.uU tenni:ro.ated 1 string'. strl, onto the encl o:f 
the null tenninated strung'. str2, l:lntil n cllaracters are c0pied orr a null is encountered in strl. 
'Ffue ril!st character o:f strl reJJ>laces th.e nuli! terminating str2. If the terminating null characteF 
in strl is fiotmd 1DeffoITe n characters are copied. then the :rn1U is aclded to str2 ancl no other 
characteFs are written. If n characters are written before a terminating null-is found. then 
strncat places a t:e:rrmiaating nu![, ©Bt©1 str2. strncat returns a Ii>Oillter to the concatenated 
stliing. 

EXAMPLE (ex087.p) 

program strncatl (output); 

type 
cp "char; 

function strncat(des, src: cp; n:integer): cp; external; 

var 
a, b,1 c:. packed array[l .. 80.J of char;/ 
p.: cp; 
i: integer; 

procedure printc; 
begin 

i :.= 1 i 
while c[i] <> chr(O} do begin 

w.rite (c [i]); 

i := i + 1; 

end; 
writeln; 
end; 

N[J)P Pascal Reference Manual 



170 

begin 
a ·- 'Where never is heard a discouraging word'; 
a [ 42] : = chr { 0) ; 
b : = 'and the skies are not cloudy all day. ' ; 
b[38] := chr(O.}; 
writeln ('String 1 
writeln( 'String 2 
writeln;. 

I ,,a: 42) i 

I /.b:42} i 

p := strncat{&c[l), &a[l], 20}; 
write{'First 20 characters from string 1 '}; 
printc; 
~ := strncat{&c(l], &a[21], 100}; 
write ('Remaining. characters from string 1 '); 
printc; 
p. := strncat (&c [1], &b[l], 50) ;. 
writeln; 

B Jntenfaee to C and Math Libraries 

writeln( 'String 1 concatenated w.ith string 2 '); 
printc ;. 
end. 

This program generrates the folhi>wing output: 

String 1 = Where never is heard a discouraging word 
String 2 = and the skies are not cloudy all day. 
First 2Q characters from string 1 = Where never is heard 
Remaining characters from string 1 = Where never is heard a discouraging word 
String 1 concatenated with string 2 
Where never is heard a discouraging word and the skies are not cloudy all day. 

strncmp 
string cofinpafe with maxirrnum lern@~h 
Definition 

type cp = "char; 
function strncmp (.s.trl, str2: cp; n: integer) : integer; 

where 

strl anCll str2 rure poiiJJ.l.ters toinuH tenninated strings, 
n is an integer specifying· the maximum number ofi charaeters to· c0mpare. 

The strcmp (s.trl, str2) foncti0n~com11ares the first n characters 0ftwo null terminated 
strings an<lli returns Olil.e of the foU©wing valu.es inCllicating their relati0nship·: 

if strl < str2 then return a negative number 
if strl = str2 then reh1rn zero 
if strl > str2 then return a p0sitive rmmber 

The c0mpa:uis0B· stops if a null is emcohlntered befo:rre n characters .. since that marks the en<ll of 
the string. 

EXAMPLE (ex088.p) 

program strncmp(output}; 

con st 
sl 
s2 
s3 

'economy'; 
'ecology'; 
'eclipse'; 

s4 'eclogue' ; 

NfJP Pascal Reference Manual! 



u 

u 

B Interface to G amJ/1 Math Libraries 171 

type 
cp = "char; 
slO =packed array [1 .. 10.J of char; 

function strncmp(strl,str2:cp; n:integer}: integer; external; 

procedure compare (a, b: slO; n: integer); 
begin 

a [ n + 1 J : = chr ( O) ; 

b[n+lJ :.= chr{O); 
writeln('Comparison on first ' n:2,' characters 
end; 

begin 
writeln ('String 1 = I ,s1}; 
writeln( 'String 2 = 1 

I s2) j 

compare ( sl, s2, 3} i 

compare(sl, s2, 4) ; 
compare ( s 1 , s2, 20.} i 

writeln('String 3 = I I s3) i 

writeln ('String 4 = I ,s4); 
compare(s3, s4, 3) i 

compare(s3, s4, 4) j 

compare ( s3 ,, s4, 20) i 

end. 

String 1 = economy 
String 2 = ecology 
Comparison on first 3 characters 
Comparison on first 4 characters 
Comparison on first 20 characters 
String 3 = eclipse 
String 4 = eclogue 
Comparison on first 3 characters 
Comparison on .first 4 characters 
Comparison on first 20 characters 

strncpy 
strin@! copy, with maxirrnum len@th 

Definition 

type cp = Achar; 

0 

2 
2 

0 

-6 
-6 

function strncpy ( strl, str2: cp; n: integer) : cp;. 

where 

strl an@: str2 are ]><DihteFs to null terminated strings. 
n is the maximum nurnbeli ofi characters to coJ:>y. 

strncmp{&a[l] ,&b[l] ,n)) ;; 

'Fhe strncpy (s.trl, str2,,n) functioN COIDies up ton charaete:us frornthe string str2 to the 
stFing strl. The copy involves the f0H0wing tw0 sitw.ations: 

l. if a null' character is eNcotintiered in. s tr2 before n characters have been copied. then s tr 1 
is filled with nuns until n charactlers have written. 

2. If str2 is longer than n charncters. then a null character is not copied to 1 strl. strncpy 
returns a pointeF to tfue Fesulting string. 

NDP Pascal: Reference Manual 



172 B lnterfaee to C and Math Libraries 

Cauti0n: It is the prngrammer's responsibility to ensure that the receiving buffer is large 
encJ>Ugh foF what is written to it. Iif it is n0t large en0ugh, adjacent buffers may be overwritlten. 
EXAMPLE {ex089.p) 

program strncpyl (output) ; 
{ Interface to strncpy function in c library } 

type cp = "char; 

function strncpy (des,.src :cp;. n:integer): cp.; external; 

var 
des,.sl,s2: packed array [1. .100] of char; 
i: integer; 
p: cp; 

begin 

end. 

si := 'Say not of a thing which cannot be understood'; sl [46) :=chr(O.); 
s2 := 'that in the end it will be understood.'; s2 [39) :=chr(O.}; 
writeln ('String 1 ',s1:45}; 
writeln ('String 2 = ·~s2:30); 

writeln; 
p := strncpy (&des[l],. &sl[l], 25); 
p := strncpy (&des[26], &s2[20], 50); 
write ('Final string= '); i := 1; 
while (des[i) <> chr(O)) do begin write(des[i]); i:= i+l end; 
writeln; 

This program geBerates. the fol10wi:ng 0l!l.tput: 

String 1 = Say not of a thing which cannot be understood 
String 2 = that in the end it will be understood. 
Final String = Say not of a thing which will be understood. 

strpbrk 
Find first occUJrremee 0f any character fforo a givem strimg, im another string 
Definition 

type cp = "char;, 
function (sl,. s2: cp): cp; 

where 

sl is the strung being searched1; 
s2 is a list of cllaracters being so'Llght. 

strpbrk Fetums the 10eati0n· in sl 0£ the first character that appears in s2. If n0character 
fr01n s2 appea:rrs in sl, NIL is Fetlurned. 

strrchr 
reve~se index of1 a ettlaract;en in: a stirimg 
Definition 

type cp = "char; 
function strrchr (str:cp; ch:char): cp; 

NDP Pascal Referenee Manual' 

I ~ v 



u 

B lnterfaee f10. C and Math /J.ibraries 

where 

str is a p0inter to the :rmll te:r:rninated string to be searched, 
ch is the characte:rr to match. 

173 

The strrchr ( str ,.ch) functiom retliirns a pointer to the last instance ofi the character ch in the 
string pointed .to by str. If ch is not found, then strrchr returns a null pointeir. 
EXAMPLE (ex090.p) 

program strrchrl(output); 

type 
cp = "char; 
s40 =packed array (1 .. 40] of char; 
s40p = "s40; 

function strrchr{str:cp; ch:char) :. s40p; external; 

var 
str: s40; 
ptr: s40p; 

procedure printstring (c: char) i1 

begin 
writeln('The last substring beginning w.ith ',c,' 
if ptr = nil then 

writeln {' (' , c,' is not present) ') ; 
end; 

begin 
str := 'A little learning is a dangerous thing.'; 
str[40J := chr(O.); 
writeln{ 'The initial string= ',str); 
writeln; 
ptr .- strrchr{&str[l], 'l'); printstring( 'l '}; 
ptr .- strrchr(&str[l], 'd'); printstring('d'); 
ptr .- strrchr(&str[l], 't') ~ printstring('t'); 
ptr . - strrchr (&str [1 J, ''X'); printstring C 'X') ; 
end. 

This program gene:rraties the foMmwing1 output:. 

I ,ptr'') j 

The initial string = A little learning is a dangerous thing 
The last substring beginning with 1 learning is a dangerous thing. 
The last substring beginning with d 
The last substring beginning with t = 

The last substring beginning with x 
(x is not present) 

strrindex 
reverse immex of~ a sUJlDstrimg within a strimg· 
Definition 

type cp = "char; 

function strrindex (.s.trl, str2: cp) : integer; 

where strl and str2 are p0inters to null terminated striID.gs. 

dangerous thing. 
thing. 
(null) 

NfJP Pasca/1 Reference Manual 



174 B Interface to C and Math Libraries 

The strrindex { strl ,. str2) functioa :fincds the last occurrence 0£ striflg str2 (not inducling 
the terminating null cl:laracte:u) in the stliing strl. It returns a p0inter to the l©catecd string in 
strl, or -1 if n0·ma:tcl:l occurs. 

EXAMPLE (ex091.p) 

program strrindex(output); 

typ.e 
cp = "'char; 

function strrindex{str, sub: cp): integer; external; 

const 
sl 
s2 
s3 
s4 
s5 

'Twinkle, tw.inkle little star, how I wonder what you are.'; 
'Tw.in'; 
I ink' j 

'hat'; 
''XXX' i 

var 
str, sub: packed array [1 .. 60] of char; 

begin 
str := sl; 
str[57] := chr{O); 
sub := s2; 
str[5] := chr{O.); 
writeln ('String = ' sl) ; 
writeln; 
writeln('The index of substring' s2,' 
sub := s3; 
str[4] := chr(O.); 
writeln ('The index of substring ' s3, ' 
sub := s4; 
str[4] := chr(O.); 
writeln('The index of substring ' s4~' 

sub := s5; 
str[4] := chr(O); 
writeln{ 'The index of substring ', s5,' 
end. 

This programs g~neirates the fhll0wing oNtJDlllt: 

strrindex(&str[l] ,&sub[1]}:3); 

strrindex(&str[l] ,&sub[l] }:3); 

strrindex{&str(l] ~&sub[l]} :3); 

strrindex(&str[l) ,&sub[1)}:3); 

Index 1 2 3 4 5 6 
0123 4567 8901234567 890123 4567 8901234567 8901234567 890123 4 567 89 

String = Tw.inkle, twinkle little 
The index of substring 
The index of substring 
The index of substring 
The index of substring 

strsave 
Save a c0~y1 of a strim@ 
Definition 

type cp = "char; 

Twin 0 

ink 11 

hat 44 
xxx -1 

function strsave { str: cp) : cp; 

where str is the stnng to·lDe coJDiecrL 

NDP Pascal Reference Manuafi 

star, how I wonder what you are. 

\._,) 

u 



u 

u 

u 

8 lnterfaae to c;; am cf Math lliliJ/ia/iies 

strsave uetrurns a p©inter to a new copy 0fi itls string argument. 

strspn 
Compwte the lelilgttn of1 the imitial rm at:cln betweem, two strimgs 
Definition 

type cp = "char; 
function strspn(sl, s2: cp): integer; 

where sl amf: s2 are the two st:ring$ l:l>eing compared. 

175 

strspn returns the numlDe:r:- of con.secu.tive characters in its fi:r:-st string argument that are also 
in its sec0m.d st:uing argument. 

strstr 
Loeate a st:dng, withirn ariothen stfing 

Definition 

type cp = "char; 
function strstr(sl, s2: cp}: cp; 

where 

s 1 is the string fueing searched; 
s2 is tble strung beiBg s©ugfut. 

strstr returns a p0inter to tile first occurrence of s2 in sl. If s2 isn't found in sl. NIL is 
returned. 

strtod 
lnt,erptret a strin~ repnesemtat:i©fili of a d0w1l:>le valwe 
Definition 

type cp = "'char; 
function strtod (nptr: cp; var endptr: cp) : double; 

whelie np.tr is an expression representling a pointerr to a char. 

The return value 0£ strtod is a cloubl'e representing the contentls of nptr. If endptr is not! 
already set to, NIL. it is set on Fetu:rn to woint to' tfue first character of nptr that cannot be 
inte:upFeted. If the number is too, large to, store as a double, the constant HUGE_ VAL isreturned 
and the glolDal variable errno is set to ERANGE. If the number is too small to store as a double, 
zero is :uettffroed and errno is set to1 ERANGE. 

strtok 
Tokenize a stiriflg 

Definition 

type cp = "char; 
function strtok {var sl: cp; s2: cp) : cp; 

where 

sl is a pointer to a char; 
s2 is an expressicm re]>resentiing a pointe:u to a char. 

NOP Pascal Reference Manual 



176 B lnterifac:e to C and Math Libraries 

strtok returns tfu1e p0rrtio:n ofi sl tfuat precedes the first instance of a character appearing also 
in s2. If the st.m.ng$ fuave no characters in common, NIL is returned. If NIL is passed as the 
first argument, the next token of the original string is returned. <__) 

strtol 
lnterpret1 a strimg rep:>rreseritati©n of: a lmil@ imteger valwe 
Definition 

type cp = "char;, 
function strtol (nptr: cp;, var endptr: cp;, base: integer): integer; 

whe:re 

nptr is an exprressioN representing a ]>Ointer to a char; 
endptr is a pointer to a char; 
base is an expression representing an integer. 

strto1 conve:rrts nptr in.to a lomg vah1e, assuming the base specified in base. endptr is set on 
retum 1 to tfue end, 0£ the co!i1ve:rted string. 

strtoul 
Interpret; a strim~, reJDresentati©n cof an wnsi@me~f lorn@ imtiemer vah:.1e. 
Definition 

type cp = "char; 
function strtoul (nptr: cp; var endptr: cp; base: integer} : integer; 

where 

nptr is an expression Fepresenting a pointer to a char; 
endptr is a p<Dinter to a char; 
base is an expressi0n representing an integer. 

strtoul c01rnverts nptr into an unsigmed long value, assuming the base specified in base. 
Leading spaces anal zerros are permitted, anal, if the base is 16 the number- may be pFecealed by 
the sequence Ox or ox. If the base is zero the form is expected to be that 0£ a stanalard integer. 
i.e., Ox orr ox foF hexadecimal, leading o for octal, anal Ieaaling n0nzero digit fol" decimal. If 
endptr is n0t NIL •. it will Feturn a p0inter to the p0rtion ofi the string that cohlld n0t be 
interpreted. 'Fhe string to be interpreted may contain a sign, which is applied to the result 
before converting it to unsigned. If the numlDer is too large to be expressed by an unsigned 
l<lmg integer. the return value is ULONG_MAX and the glG>balvariable errno is set to ERANGE. 

strxfrm 
Transform a stirirng 1 imto another based' upon the p~ograrn's lo~ale 
Definition 

type cp = Achar; 

function strxfrm (str1,str2:cpi n:integer} :. cp; 

where 

strl anal str2 are pointers t© nhlll terminated stnngs. 
n is tlle maximum number of characters to COIDY. 

N[J)P Pascal Reference Manual' 

:~ 



( ; 

~ 

( ! 
·~ 

B lnterlaee to C and Math Libraries 177 

Tfue strxfrm (strl, str2, n) function copies up ton characters from the stliring str2 to the 
string strl. The COJDY involves the following two sitmatioBS: 

:H if a null character is encountered in str21Defore n characters have been copied. then strl 
is filled witih nulls mwtil n characters have written. 

2)1 Ifi str2 is l©Nge:rr trhan n characters, then a nul1 character is not copied to strl. strxfrm 
returns a ]'>Ointeir to the reslJllting st:rring'. 

Caution: It: is the pirog:rarnmer's Fespo:m.siibilit:Iy to enslJlre that the receiving buff er is large 
enough foF what is written to Ui. If it is not large encnilgh. adjacent buffeFs may be overwritten. 
In this irnplementati©N1. this function is identiea1' to, st rn cpy. 

swab 
swai:>bytes 
Definition 

type cp = Achar; 
function swab ( strl, str2: cp; n: integer} : integer; 

where 

strl and str2 are pointers to nun terminated stll'ings, 
n is an mteger rewresenting the maximum :m.u:mber ofT charactleJ:s to co]>y. 

The swab (strl, str2, n) function copies n bytes in pairs from strl to str2. reversing the 
pairs in the ]>Focess. If n is oddi. theni it is FO:t;Indecl d0w11. 

EXAMPLE (ex092.p) 

program swab2 \output); 

type 
cp "char; 

function swab( src, des: cp; n:integer}: integer; external; 

var 
src, des: packed array [1 .. 20] of char; 

begin 
src := '12345678badcfehgji'; 
src [19) := chr(O); 
writeln('Initial string= ', src}; 
writeln; 
sw.ab(&src [1], &des [1), 18}; 
writeln (' 
src := des;/ 

swab once= ', des}; 

swab(&src[l], &des[l],/ 18); 
writeln( '' 
end. 

swab tw.ice = ' , des} ; 

This program generates the foll0wing output: 

Initial string 
Swab once 

swab twice 

12345678adcfehgji 
21436587abcdefghij 
12345678abcfehgji 

N[J)P Pasc;a/ Referenc;e Manual 



178 B Jnterfar;e t<J> C and Math Libraries 

System (DOS only) 

shell to DOS Definition 

type cp = Achar; 

function system { c: cp) : integer; external; 

where c is a p0intel1' to a nuU te:nninated characteu st:ring. 

The system.Cc) funci:ti0fl shells.to.DOS, and executes the com:rnancd coBtainecl in the null 
tenninated character string p0inted to by c. The noliillal return value of sys tern is zero: a nofil,.. 
zero return value indicates failure. 

The system,functioH woFks by 10ading a c0py ofi COMMAND. COM iato memory and passing' it c, 
the p0inter to the command to be execNted. Both internal: and. exte:unal DOS commands may be 
executecd. In oFderr forr the system functicm to work conectly. sNfficien1.1 memory must be 
available for 10ading COMMAND . COM and any program it might load. 'Ii'helie are several ways to 
accom]>lish this using, the Phar Lai;> DOS, extencler, RUN3 8 6. For example. the foll<i>wing 
commancl will l©ad and' run the compiled program f n. exp, leaving the maximum conventi©nal 
mem(iny available fou 10ading COMMAND . COM: 

run386 -maxreal ffffh fn.exp 

EXAMPLE (ex093.p) 

The program in this example uses the systemfunction to execute three DOS commands. 
These ccmnnands I} get a diFectory of the curnent drive and. redirect tfue listing to a file, namecd 
dir 1st; 2) p!iint the file di r 1st om. the screen; 3l echo a message OB the terminal. 

program systeml(outpuc); 

type 
cp "char; 

function system { c: cpl : integer; external; 

var 
cmd: packed array[l .. 20] of char; 

begin 
cmd := 'dir > dirlst'; 
cmd[20] := chr(O); 
if {system. (&cmd [1 J) <> 0) then 

wri teln ( cmd, 'failed! ') ; 

cmd := 'type dirlsc '; 
cmd[20] := chr{O); 

if {system {&cmd [1 J} <> 0.) then 

wri teln ( cmd, 'failed! ') ; 

cmd := 'echo -- all done.'; 
cmd[20] := chr(C); 
if (system {&cmd[l]) <> 0) then 

writeln {cmd,. 'failed!'); 
end. 

This pFogram was executed with the c01mnand: 

run386 -maxreal fff fh systeml 

ancl generated tfue following oB.tplilt: 

Volume in drive D is DISK2_VOL1 

Directory of D:\PAS\SYSTEM 

NOP Pascal Reference Manual 



u 

B lnterfac:e te C and Math Libr:ar:ies 

<DIR> 5-12-89 

<DIR> 5-12-89 

SYSTEM DOC 1920 5-12-89 

SYSTEMl p 548 5-12-89 

SYSTEMl MAP 9212 5-12-89 

SYSTEMl EXP 22807 5-12-89 

ZSYSTEMl TXT 0 5-12-89 

DIRLST 0 5-12-89 

3:08p 

3:08p 

2: 45p 

3 :30p 

3:3lp 

3:31p 

3:3lp 
3:31p 

8 File{s) 44498944 bytes free 
-- all done. 

tan 
tangent 

Definition 

function tan ( d: double} : double; 

wheFe d is an expressi©n of type DOUBLE. 

179 

The tan ( d) functiom· rreturns the value o:C the tangent of d. If the input argument is out of 
range. the gl©li>al variable errno is set to EDOM. 

EXAMPLE (ex094.p) 

program tanl(outputf; 

function tan{d: double}: double; external; 

const 
p.i 3.14159265158979321846; 

var 

i: integer; 

x: double; 

begin 
x := 0.0; 

for i:= 1 to 5 do begin 

wri teln (.' x = ' , x, ' tan (x) 

x := x + pi/4.0; 

end; 

end. 

This p1:rogram ge11eITates the fbll©wing outwut: 

x Q.OOOOOOOOOOOOOOOOOe+OO tan(x) 

x 7.85398163397448286e-Ol tan(x) 

x 1.5707963267948~657e+OO tan(x) 

x 2.35619449019234486e+OO tan(x) 

x 3.14159265358979311e+OO tan(x) 

tanf 
Cornpwte simgJe-prrecisiom 1 tan~emt 

Definition 

function (f: float): float; 

where f is an expFessi0n, 0£ type FLOAT. 

tan(x)}; 

O.OOOOOOOOOOOOOOOOOe+OO 

l.OOOOOOOOOOOOOOOOOe+OO 

-1.70000000000000149e+308 
-1.00000000000000000e+QO 

O.OOOOOOOOOOOOOOQOOe+OO 

ND P Pascat Reference Manual 



180 B Interlace to C and Math Libraries 

The tan f ( f) function retn:J.rns the value of the tangent of f. If the result is out of range, the 
gl<lil!>al variable errno wm lDe set to ERANGE. errno is not set if the input argument is Ol!l.t of 
range. 

tanh 
hyperboliG tangernt 
Definition 

function tanh (d: double}: double; 

where d is an expressiom ofi type DOUBLE. 

The tanh ( d) functioID. Feturns the hyperbolic tangent ofi d. 

EXAMPLE {ex095.p) 

program tanhl(output); 

function tanh(f: double}: double; external; 

const 

var 

pi= 3.14159265358979323846; 

i: integer; 
x: double; 

begin 
x := 0.0; 
for i:= 1 to 5 do begin 

wri teln ( ' x = ' , x, ' tanh (x} 

x := x + pi/4.0; 
end; 

end. 

This program generates tih.1e foll0wing output: 

x 0.000-00-000000000000e+OO tanh (x} 

x 7.853~8163397448286e-Ol tanh (x) 
x 1.57079632679489657e+OO tanh(x) 
x 2 .35619449019234486e+OO tanh(x) 
x 3.14159265358979311e+OO tanh(x} 

tan hf 

tanh (x}); 

O.OOOOOOOOOOOOOOOOOe+OO 
6.55794202632672541e-01 
9.17152335667274345e-Ol 
9.82193380007238656e-Ol 
9. 9627 207 622 07 50153e-01 

Compwte sirngle-p~eGiSi©rTll rn)'perbolic tamgent, 

Definition 

function tanhf (f: float}: float; 

whe:r:-e f is an expression of type FLOAT. 

Tfue tanhf (f) function, returNs the hyperbolie tangent off. 

time_ (DOS only) 

return the curremt time in ASCII format 

Definition 

type sB = packed array [ 1 .. 8 J of char; 

procedure time_ (VAR timeStr: s8) i1 external; 

NDP Pascal Reference Manual, 



u 

u 

u 

B lnterfac;e to C and Math Libnaries 181 

whei:;e timestr is an array variable of type CHAR co:rataining at least eight elements. 

The time_ functioa rretums the current. time. known to :DOS. as an eight character ASCII string 
in the fonn.: hh: mm.:· ss. 

EXAMPLE { ex096.p) 

program timel (output); 

type 
s8 = packed array [1 .. 8] of char;. 

procedure time_ (var timeStr: s8}; external; 

var 
now: s8;. 

begin 
time_ (now) ; 
writeln('The time is ' now); 
end. 

This pi:;ogram ge:m.erates the following output: 

The time is 14:4Q:40 

timed ate_ 
return date ancf: time im integer format 

Definition 

procedure timedate_(VAR yea.r,month, da.y,hour,minute, second,mcsec: integer); 

external; 

where year, month, day, hour, minute, second, and mcsec are variables ofi type INTEGER. 

The timedate_ ]>Focedure returns tfue current date and time as these items are known to DOS. 
Remember, the DOS. time granularity is ap:Proximately 5 hundredths ofi a second. 

EXAMPLE {ex097.p) 

program timdat(output); 

procedure timedate_ 
(var year,/ month, day, hour, minute, second, mcsec: integer); external; 

var 
year, month, day, hour, minute, second, mcsec: integer; 

begin 
timedate_(year, month, day, hour, minute, second, mcsec); 

wri teln (•year = • , year) ; 
writeln( 'month = ', month); 
wri teln ('day = '11 day);. 
wri teln ( 'hour 
writeln (•minute 
wri teln ( 'second 
wri teln ( 'mcsec 
end. 

', hour); 
= ', minute); 
= ', second}; 

= ', mcsec); 

This ]J>rogram generates the toll0wing1 011tpH t: 

year 89 

month 4 

day 8 

ND P Pasc;a/i Referenee Manual 



182 

14 
34 
40 

hour 
minute 
second 
mcsec 750000 

tmpnam 
Create a file marne 
Definition 

type cp = "char; 
function tmpnam (.s: cp): cp; 

where s is an expressioiil FeJi>Fese11ting a pointer to a char. 

B lnte/ifac:e to C and Math Libraries 

tmpnam creates a file in tb.e /tmp director;y (UNIX} OF current working directory (DOS, OS/2, 
Wincilows)i beginning with x_ and a characte:u and ending with a £ive digit number that does not 
have the same :aame as an existing file. Ifs is not NIL, the return value is s. Ifs is NIL, the 
re tum value is a p0inteF to! a string c0atail1ing the new file name. 

to lower 
Convert charact:efi to l0wer case 
Definition 

function to lower (c: integer) : integer; 

where c is an expression ofi type INTEGER. 

to lower retarns the lower case equivalent 0£ its ch.aracter argument. 

to upper 
Comvert character to upper case 

Definition 

type cp = "char; 
function toupper(c: integer): integer; 

where c is an expressi0a 0£ nype INTEGER. 

toupper returns the upper case equivalent ofi its charactler argument. 

yo 
Bessel: fur1et1i0ril' of, trhe secomd ltimcf, order 0: 

Definition 

function yO (d: double) : double; 

where dis an expressi0:n of! type DOUBLE. 

The yO { d) functiom. Feh1ms the Besseli function of the second kind, orcler 0; 0£ d. This 
corresponds to Y0 { d) in the usual notatiom.. If the inpmt argument is out of range, the g101Dal 
variable errno will be set to EDOM. 

EXAMPLE (ex098.p) 

program yOa(output); 

function yO (d: double): double~ external; 

NDP Pasc:a/ Reference Manual, 

' 1 u 



u 

B Interface to C ancrl Math Libr:aries 

var 
x: double; 
i: integer; 

begin 

x := 0.0; 

for i := 1 to 7 do begin 

writeln(' x = •, x:6:2, • yO(x} 

x := x + 2.5; 

end; 

end. 

This prog:rram generates thie foll<Dwing OHtput: 

x = 0.00 yO(x} 0.00000000000000 

x = 2.50 yO(x} 0. 49807035961523 

x 5.00 yO(x} -0.30851762524903 

x 7.50 yO{x} 0.11731328614821 

x 10.00 yO (X} 0.05567116728360 

x 12.50 yO(x} -0.17121430684467 

x 15.00 yO(x) 0.20546429£03892 

y1 
Bessel, f:uneti0mi of, the seeond kin©, order 1:. 

Definition 

function yl (d: double}: double; 

where d is an exp:r:essio11 o:fi type DOUBLE. 

183 

yO(x} :20:14); 

The yl ( d) functtio111, retums the Bessel 1 funetJi0111 of: the seeoncil kin©.. orrder 1, ofi d. This 
corresp0ncds to Y 1 { d) in the tisual' Iilotatiom If the inplllt argument is Olllt of range, the gl0bal 
variable errno will.I be set to EDOM. 

EXAMPLE (ex099.p) 

program yla(output}; 

function yl (d: double): double; external; 

var 
x: double; . 
i: integer; 

begin 
x ·.- 0. O; 

for i := 1 to 7 do begin 

w.riteln('x= ',x:6:2, 'yl(X) 

x ·- x + 2.5; 

end; 
end. 

This program generates the foU0wing ou.tput: 

x = 0.00 yl (X} 0.00000000000000 

x 2.50 yl (X} 0.14591813796679 

x 5.00 yl (X) 0.14786314339123 

x 7.50 yl (X) -0.25912851048611 

x 10.00 yl (X) 0.24901542420695 

x 12.50 yl (X) -0.15383825653750 

x = 15.00 yl(X) 0.02107362803687 

yl (X}: 20.: 14} i 

NDP Pascal Reference Manual 



184 

yn 
Bessel 1 fum~t:ion of the se~om1(1j, kimd, order i. 
Definition 

function yn (i: integer; d: double) :. double; 

where 

i is an expression of type INTEGER, 
d is an expressi0n of type DOUBLE .. 

B Interface to C and Math Libraries 

The yn ( J, d) functi0n returns the Bessel' functiom. of the seccmcl. kincl., oFder i, of d. This 
corresp0m.cl.s to Yn ( i, d) in the 11sual n.otaticim. If the inp11t argument is Ol!lt of range, the global 
variable errno will be set to EDOM. 

EXAMPLE (ex100.p) 

prograrn.yna(output); 

function yn(i: integer; d:double}: double; external; 

var 
x: double; 
i,. j: integer;. 

begin 
for i := 1 to 3 do begin 

x := 2.50; 
for j := 1 to 3 do begin 

writeln{' i == ', i:2, 'x X ! 6 ! 2 t I yn ( i f x) 
x := x + 2.50; 
end; 

writeln; 
end; 

end. 

This program gem.erates the foll0Wing outI,?Nt: 

i = 1 x = 2.50 yn ( i ,.X} 0 .14591813796679 
i = 1 x 5.00 yn(i,,x} 0.14786314339123 
i 1 x 7.50 yn{ i,x) -0.25912851048611 
i 2 x 2.50 yn(i ,,X} -0.3S133584924180 
i 2 x 5.00 yn{i ,.x} 0.36766288260552 
i 2 x 7.50 yn ( i ,.x) -0.18641422227784 
i 3 x = 2.50 yn (i ,.x} -0.7560554~675367 

i 3 x 5.00 yn ( i ,,X} 0.14626716269319 
i 3 x = 7.50 yn ( .i ,.x} 0.159707591937~3 

NOP Pascal Reference Manual 

yn ( i, x) : 2 O: 14}; 

. ) 
\___,! 



u 

c NOP Pascal Error Messages 

Overview 
Secti0m: C.11 0fi this appendix c0ntains a listing and explanation o:C the compile time error 
messag~s. Secti0m C.2 contains a listing and explanation of the execution time error messages. 
Other listings ofi eIJliors may be found. in Appencilix A of the NDP User's Manual and the NDP 
Tools Manual. 

C.1. Compile Time Error Messages 

1 Selector must be constant 
This occurs when the selectoli in a variant recoFd is not a com.stant. The variant record may be 
defined in either a type definitiom. or a variable declaration. This err0r is sometimes caused by 
misspellmg a pFeviousl:Y defined. em~meFated constant. 

2 Tag field must be a scalartype 
This occurs in a type definition or variable declaration that makes use ofi a variant record with 
a tag fielcl. The constant o:rr variable used in the tag' field must be a scalar. It may not be an 
array. recoFd .. set. pointer. or file type. 

3 Initial value for tag must be constant 
Tfuis occurs when the pre<.defin.ecd procedure NEW is called to all0cate s:wace foF a dynrunic 
variable witfu a variant reccmd. 'Fhe vahie for the tag fielCJl· must be a co11stant. 

4 Statement expected: function call illegal 
A function call appears where a staterne11t is expected. 

5 Ordinal type expected 
The incdexes of an array type must be ofi type ordinal. This en::-or occurs when an array is being 
declared with0ut incl.exes, or the indexes are not ordinal values. 

6 Type not defined 

A type idemtified is lDeing used that has not yet been definecd. This is probably caused l:Dy 
omittiJB.g tll,e type definition, IDlaeing tfue type defliniti0n in the wroNg IDlace. or a spelling 
mistake. 

7 Scalar value expected 
The upper and 10werr limits ofT a subFange type must lDe scalar values. 



186 C NIJ)P Paseal Error Messages 

8 Incompatible scalar values 
The l:lpper and l©wer limits ofl a subrange type were specified as scalar values, but n011 ofl the 
same base type. 

9 Labels must be in the range 0 .. 9999 
Labels must be integer values in the range O to 9999:. 

1 O Illegal use of a procedure as a function 

11 Multiple definition of identifier: 
An identifierr may only be defaned oroce. This is pFobably a spelling mistake. 

12 Ordinal type required in case statement 
The expressioro used as tfue seleeto:u in a case statemenn must be of ordinal type. 

21 Must be a record 
A variable is being used as if it weR J!)art 06 a record. The variable is not a record, hence, it may 
not be qualified with a field name. 

26 Illegal variable or expression 
This message has a variety ofl causes and prnlDably Festilts from a typing mistake. 

An invalial type in a ty]>e definlitioro. For example: 

type tl = nil; or type t2 = ; 
An unrecognizable operator in an expression. Fo:r example: 

:=* or x := : 

Providing an im.eo:rrect type to a predefined funeti©n. For example, l:lSing mod { r, r) for real 
r. 

27 This object has no defined size 

29 Operand must be a variable 
The dyadic operators taken from, the C language, +=, -=, etc., may n0t be used in an expression 
togetlheF with the assignment ope:r:atoIT. 

30 REAL operand not allowed here 
A variable ofl type REAL is being used in an expression in whieh the real type is not all0wed. FoF 
example, using the integer divide oweITatoIT, div, with real argl:lments. 

31 Cannot take the address of this object 
The adclress ofi (&} operatoIT is being in~onectly used. Tfuis usually occurs when the address of 

' ) 
\._,/ 

operator is used on an entire array, instead of an array element. For example, if x is an array, ·,~ 
then &x [ 1 o J is legal', while &x is not. 

NDP Pascal Refereru;e Manua/1 



u 

/ 
{ : 

'V 

u 

C NOP Pasc:a/.1 Errorr Messages 187 

33 Type mismatch 

The variable Oli ccmstant being refereneed is I'l0t 0£ the expected type. This message has a 
v~ety qf7 causes CID.?: ~ITolD_a,B_ly r:esults from,.~ 11ypi111g ~istlake. -~- , t p ~ , _ "'' ,,., r-. t::,f""' · .t p .. pu.. s ~ f" } -e. ~- o' t e e v t ~- CA.$, <A.c-t-·t.t{}.t p o.J:~ ~ {,.c..f t.t ~4 n t r ,>.1 ~. po 1 "i-e_ r ( r.~ f'li't 

-e K.~-wJ'~s ~p~J~e.ol. +-}\~. $Gl,,.\A>\~ t?i.A~-J (•'f~~1 1o-"·F~~.re~.se. & tJ'h.e ~i·'Z..t~I i's ~~f"Car.,,_ ·~ 
35 Can only mdex arrays · e 

Sciuare brackets are used: to designate array subscripts. Check to see that the identifier is an 
array. If the identifier is a p:rncedure CD!i function, thel'l parel'ltheses must! be used to delimit the 
argumemt list. 

36 This is not a variable 
The iclentifierr li>eing referen.cect: is not a variat>le. Tfuis occl!l.rs when an identifier is declared in 
two dil'feremt ways: as a co:astant in a CONST declaration, and later as a fielcl, iclentifie:u within a 
recoFd defiinitioai. This c0nfliet in usage is reported when the qualified variable name is used om 
the left fuancl sicle o:C an assigmm.emt stiatement. 

37 Illegal operation 
The operato:rr symlt><l>l: is mot recognized OF is being incorrectly used. This is asually a typing 
mistake, for; example, using** foi: *, OF using I I fioF I. 

Using an opeFatoF on a data type foF which the operator is not defined als0, ]>reduces this 
message. FoF exam{i>le, using the integer clivide functi01!1, div, to divide two real numli>ers. 

38 This is a binary file 
'Fhe co:rnpileF is Feading a ll>inaiy file. Check that tfue file name and exte:asioB Oiil the co:rnpileF 
c©mm.and line is c0rFect. 

40 This must be a procedure or function 
Attempt to, use an ime:atifiier as a procedure or functi0m. This erroF may result from eac10sing 
array subscnpts with paFentheses iifilsteacl ofl squai:-e brackets [ and: J • 

This el'For also may 0ccur in a :wrocedure or funeti0:n call when a formal :warameter is a 
proceclure 0r functi0n, ancl the aetual parameter is a constant, variable, or expr;essi0n. 

- ~ ~ h·C. 4'"t ~ ~ -·,$fa.,.Mtd ~ t-b\ f &1.se..r,r,.l, ( $ th'V_) r· '.:"!'.' ~' ~·~ • ~ t~- tt:: 

41 A procedure may not return a value 
A prncediure name may :a.ot occur o:a the left siC!le 0£ an assigmrnmt statement. 

42 No return type specified for function 
The heading of a £uncti0m definiti0n d<:>es not contain a Fetum type~ 

43 Unpacked variable required for actual parameter 
Actual variable par-Cl!netlers used in function or procedure calls must be unpacked. This issue is 
discussed in Seetwm. 4.111. 

Using a constant or a type identifier as an aetual variable parameter also, proclu.ees this error . 
.,_, !,,, I I --· """ r, / _.t :~, r-· .. , ·' ..... • J tilf, "" ~Otl c ((_, .. ·kt ""'.!"' I~-:; $ 0 

""'" f--1/¥J:,!1,.~~ st C\ ~ f, ~-' C; r t>: '. ,.,,. Ct., 

_"') ,p- "' \_ ~ j "2 .,,,,,...._ I".. t \ ~fA):.C.$.$ ~~~ '.s ~'..\,,_ reJlt'1'?v: .... 1. ('·->t" d.tt-·~J' 

NDP Pasca.l Reference Manual 



188 C NDP Pasc;a/ Error Messages 

44 Not enough arguments given 

The numbtl!IT of argumerotls. in a i:irrocedure or func:tio:a call is less that the numlDer of parameters ; ) 
declared in the :wrocedure or functiori definition. \..._,/' 

45 New requires a pointer variable 

The argument to the pFedefined pFocedure NEW reqµires a variable whose type is a pointer. 

46 Argv requires a string variable 
The secoml argument to the piredefinecl p:rrocedure ARGV must be a stliing. that is, a packed 
array [l..11) of char. 

47 Pointer type undefined 

48 Scalar value required 

A variable whose type is a scalar is required by the syntax. For example, the lower and upper 
values in the defmitiom of .a subrang~ type must be scalar values. 

49 Program ends before end of file 
The e:ad of the input file has been em~ountered without finding the final periocd in a prngram, orr 
final semicol0N in a se:warately compiled module. 

This message often occurs when a syntax error is encountered and the parser is unable to 
recognize the J!\exU stateme11t lDeiag· scannecl lDecause ofi the J!lITevious eIToF. \ ~ 

- yte.~i-1!.t.{ Crt~·vV\ vt·"'e<\l\'t-S J - o._y, ie . .xti·c.4., po.fei-\t~e'1ts )'I""' ~"'-4:-<., s.e\M~ch~ i rt -b':J'f€- (}('\It\{' ;';;t
1 

50 Record variable expected 
A variable whose tyiDe is a record is req:uired by the syntax. For example, tile WITH statement 
requires a record variable. 

51 Type expected 
A type identifiei:r is Feq~ired; an anonymous type is not allowed. For example, ch: Apacked 
array [ 1 .. 5] of char; is not legal since a type name must follow the pointer. 

52 No assignment to return variable in function 
The function name is net assignecl a value witihin the lDody of tltte functi011. 

53 Dispose requires a pointer value 
The argument to the pi:redefined pi:rocedure DISPOSE requires a variable whose type is a p0inter. 

54 Cannot write this type of expression 
The pFedefined f)rocedures WRITE and WRITELN can oflly :wrtnt expFessions of type BOOLEAN, 
CHAR, INTEGER, DOUBLE, FLOAT, ancJ.: REAL. 

NOP Pascal Reference Manua1' 



/ ' u 

/ 
{ ' u 

C NDP Pasc:a/ Error Messages 

55 Cannot read into this type of variable 
The wredefiBed prncedures READ and READLN can only read data of type BOOLEAN, CHAR, 
INTEGER, DOUBLE, FLOAT, an@.: REAL. 

56 Text file expected 
The predefined; pzroced.ures READLN aBd WRITELN :ue([uire a text tile. 

57 Text variable expected 

189 

The predefined function EOLN aml PAGE require an actuali parameter that is 0£ type TEXTF]LE. 

58 File expected 
A variable 0£ FILE type was expected. 

59 Set constructor elements must be ordinal values 

60 Unexpected end of file 
The end ofi the input file has been enco1mtered before the e:acd.: o-fi the program has been 
reached. This is p1:roba1l>ly because ofi a mismatched BEG IN I END pair. or a semicololil 
prematurely tem1inating an IF statemelilt. 

61 Type illegal in expression 
A type identifierr may not be Nsed in an expression. An expressi<DJ!l' rnay only contain constants. 
variables, fumcti<DiilS calls, amd operators. 

62 Procedure call illegal in expression 
This occurs whelil, a procedure name is used in an expression as if it were a functicm. 

64 Built in operation may not be an actual parameter 
A p;i;ede:Cined !Pascal: routiue m.ay be used as an actual paramet:er. To get around this, create 
another functiic>n that simply returns tne required value of tfue predefined Pascal routine. See 
Example 11 itn Secti<i>m8:4 foli an example using the cos functi©n. 

65 Subrange type expected 
A subrange type identifier is Feq:uired. For example~ the definition of an array required the use 
0£ a subFange type~ 

66 Packed array variable expected 
The prredefiined pFocedures PACK and UNPACK require a packed actual argument. 

67 Array component types incompatible 
( 'Fhe array parameters to the predefined UNPACK procedure are ncDt compatible. This error 0nly 
\\,. ) 
'-.../ occurs when tltle -ans i compile time switch is usecd.. 

NDP Pascal Reference Manual 



190 C Nf!)P Pasca/1Error Messages 

68 Unpacked array variable expected 
The predefined procedures PACK and UNPACK Fe<l!:uire an unpacked! actual argument. 

69 Duplicate case 
There is a duplicate constant value in the alteunatives of a case statement. 

71 Cannot open file: <filename> 

The file inc!licated by < f n ename> cann0t be found. 

72 expected: <symbct>ll> got: <symbol2> 

The scanneu expected to see <symbol 1>. Instead <symbol2> was enccnmte:ued. 

74 File name too long 
The file name specified is greater than 13 l characters. 

_...., ': ' ';' c, J" i<;~'!;,<<<t;:_; \_, \-,«,<·<~:.;' .. 

78 Too many -I options 
A maximum of sixteen - I optlions are all0wed to, the compiler. 

79 Illegal option: <string-> 

The optiom swecified by <string> is Bot recognjzed by the compiler. 

80 Type name expected 
A formal paxameter in a procedure or function is missing a type ic!lentifier. or the icdentifier 
p:rovided is not a type ic!lentifier. 

82 File of file not allowed 
A file may n0t be rnac!le up: of files. 

83 Input or output not defined 
The file identifiers INPUT or OUTPUT do,rn:ot occur in the program heading· and the program 
contains a READ OF WRITE sbatement. This oruy occNrs if the -ans i comi;>iler option is used. 

85 Low bound must be less than high bound 
The botmds in a sub!range type must be given with the lower bcmnd first. This error also, can 
be caused by entering an integer constant large:r:- than MAX INT. which causes the value to be 
stoired as a negative number. 

86 Null string 
The null string is not all0wed iH standard Pascal. This error only occurs :ll the -am; i compiler 
option is used. 

NDP Pascal Reference Manua/1 

' \ 
u 

\ 

' ) \~ 



/ u 

C NOP Pasca/1 Errorr Messages 

87 A number may not be followed by a letter 
An integeF constant coatains a letter. This omly occNrs when the -ans i c©mpiler option is used. 

88 File may not be assigned to 
A file variable may not be l!lsed om1 the left hancl. side of an assignment statement. 

89 File comparison not legal 
Two file varial!>les :may !i10tl be used in an expression. File comparison must be do:ae OB a 
compcrment by comp0nent basis. 

90 Subrange not legal in record tag/case 
In stanclard Pascal, a subrange may n.0t Tue used as the constant selector in a case statement. 
This occur;s in two sitBatioBs: in a variant record: definition. or in a CASE statement. Get arou.nc.d 
this restricti©n by explicitly listing each constant in the subrange. This error oBly occurs when 
the -ans i compile:rr opti@.n is used. 

91 Tag field used as var parameter 
Stanc.dard Pascal' does B0t allmw the tag fiel(tl: ofi a variant recoird to be passed as a vartable 
parameter to a pr0cedure or function. This error only occl:lrs when me -ans i compiler ophlcim is 
used. 

92 Illegal type for comparison 
Standard Pascal: d0es n0t a1fow comparisol!l.1 betweem the types specifiecl.. F©r example, 
comparisG>n between two r:eccH.id structures is C©RsideFedt illegal ancl must 1>e d<:>me 0n a 
compoaent by c0mpomemt 1>asis. This enror only 0ccurs when the -ans i c0m]>iler: option is 
used. 

93 Argument to round or trunc must be real 
The ih])ut argument to the pr:-edefined funetio:ms ROUND and TRUNC must be ofi type REAL. 

94 Nil may not be in constant 
Stanc.dard Pascal cd©es m0t permit a con.stant to be defined with, the value ofi NIL. 'F1111s ewoF only 
occBrs if the -ans i c0mpHeF optdcm is use<:li. 

95 Expression not legal in constant 
Stanc.dard Pascal d©es not permit an expression to be hlsed in a co:mstant definition. This eFFOF 
o:aly oectlrrS :ifT tl:le -ans i c0mpiler opti0n is used. 

96 For index may not be var parameter 
The index· of a FOR l©<D]) may m0t be passed as a variable :warameter to a :wtrocedure or functi0n. 

97 Assignment to FOR loop index inside loop 
The index ofi a FOR l'oop may n.0t l!>e altered with the 1D0dy ofi the l<~o:w. 

NDPPasca/1 Reference Manual 



192 C NDP PascatError: Messages 

98 Not all tag cases specified in variant record 
The list of case selectoF constants is n©t exhaustive foli the type specified in the selector 
expressioa. This omly occurs whem the -ans i opti0n is used, and typically occc11rs in the form \..._) 
"case intege:r: o.f", since n<Dt all ifltegers are listed. 

99 May not dispose of a value parameter 
Standard Pascal' d0es m0t all©w a parameter that is passed by value to l:De an argument in the 
dispose procedure. This only occurs ifi the -ans i compiler 01Dti0m is used. 

100 Goto out of scope 
The target ofT a GOTO statement is not within the current sc©pe~ A GOTO statement crumot 
transfer coRtrol; into a structured, statement, Oli into OF out off a procedure OF function. Further 
details are in Seeti.<J>m 7. 7. 

101 Label already defined 
Duplicate definitio111 ofi a label. 

102 Local variable required 
The index ofi a FOR l0op must be an cmfilFe variable. It may n©t be an element ofi an array, 
reco:r:-d, or pointer to, an integer:. 

103 Statement expected 
The Pascal syntax requires a statement here. This message oce-l1rs in a variety of ways, m0stly 
caused by typing mistakes. For example, typing the assigmne:ro.t o:werator withoHt the c0l<lm, 
e.g., = •. instead of : =. -.f<1 es +cJ. ~ {!) -.,11,A li!."-(, . ...,,~""+5 

- ~1../l"'•F ,,.A ... ·1,k\,_t l _f'. <• • ·r· •' c\. ·;,.;~'" I I f\ "V,~ tJ f \§~• t· ~ ~;:. ~· ~ ~'O 

104 Case expression not constant 
'rhe selectoF in a case e:q;>:ression is not a coRsta:ro.t exp:rressi©n. 

105 Label not declared 
A label was fmmd, that was m.ot declared. 

106 Label expected 
A label1 is expected in thre GOTO statement. 

107 Variable expected 
The Fascal syntax requwes a va.rial:Dle here. Tfu.is can be caUised by using a constatit ident.llieF 
on the left hand side 0£ an, assignmerot stateme:ro.t. o:r:- qualifying a variable with an undefined 
field name (:Le., rec. x : = 7; whe:ue the fiel(ll; x d<Des mot exist in the recoFd rec). 

108 Structured type expected 
A structHred type is expected after the keyw0rd pack in a type decl'aration. 

NDP Pascal Reference Manual; 

\.._,i 



C NDP Paseal. Erro/i Messages 193 

109 Function return must be scalar/pointer 

u A functi0m C!ID omly retu~ a scalar o:u a p0iat~:u value. It cannot return a stFuetured data type. 
~ . .ft.<\.:1/\C'\ I·~~~ <.·~f: .. 'f/"~£t- f"~t\.t..,\V'\ f·~c.e;.fdi..$ ( ~T#iAt"'f\ ft>;'/'<~'C,f' +t> °ttC:fJt·~)r? v\.tt.t' IA.'ilMr\+ "f..-o 

~ i.....l.\.\>'18-e +-~ ~ Pt·. 
110 Digit required after decimal point ~ ~ 11""~~ 
Standard Fascal requires tfuat numerie constants have a digit after the decimal p0int. This only 
occurs when tl1e -ans i c0mpile:u optioN is used. 

111 Cannot index string constants. 
String constants can oEly be aecessed in thei:r entirety. They may not be indexecl: like arrays. 

112 Cannot dereference a function call 
A functi01J1 that returns a pointer cannot be de:r:e:fieueneed in an expressiam. 

113 Multiple forward declarations 
On:Jy one forward declarati<J>N is all0wed for any proeedure OF function iclentifier. 

114 Second parameter required 
The secc>li1cl: argumen.t is missing in a call' to the predefined READ or WRITE procedure. 

115 Only equality and inequality allowed on pointers 
U ArithmetJie· :may n0t l:De d0ro.e on. pointe:us. 

/ 
( ! u 

116 FOR loop variable assigned in procedure 
Standard Fascal cl©es m0t perntit tltt.e 1©0p imdex to be altered in· a functi0n or procedure. The 
instance <detected h.ere 0ccurn whem the lc:>op) incl.ex is altered in the functJiCDlil. or procedure since 
it is gl©bal! tJo' the :rOlatine. 'Fhis only occurs ifl tlle -ans i ccrm.pileF optiCDm.. is used. 

117 Value out of bounds 
An assignment is l:t>eing; made to a subrange variable that is oNtsicd'e ofT the subrange cype. This 
o:m1y occurs ifl the -ans i compiler opti0:m.1 is usecl. 

118 Array size undefined 
This occurs when th.e size 0£ the arFay passed as th.e seccmcd argument to the p!iede£ined ARGV 
pFOcedure is uncleflined. 

119 Set too large for representation 
The default. rmmber of elements in a set is 32. This may be extemded to 256 by using the -p4 
compHer optliom'. 

120 Packed variable may not be passed by reference 
A packed variali.>le may n0t l:De passed as a variable actlial parameter. See the d!iscussioa o:f 
packed ancl unpaekecl types in Secti©n 4.1 J. 'Fh.is err<Df oruy occurs when the -ans i compileu 
opt.i0m1 is used. 

NDP PasGal· Reference Manual' 



194 C N[f)P Pas<:a/1 Error Messages 

121 Variable expected 
This occNrs when a type ide:mtifier is used out the left hand: side 0£ an assignme:m.t state:me:m.t. 

122 External declaration only allowed at top level 
Only identifiers declared at the Oliterm0st level of a puogram or separately compiled module 
may be declarecl external. 

123 Type size exceeds implementation limit 
The length of a type is zero, (the nnU suring is illegal)., o:rr the siZe of a constant exceeds the value 
allcowecl for an iHtegeF, r:-eal. ©Ii fl0ating c0mstant. 

130 Internal Compiler Error <number> 
This is geneFatedi when an i:ntemal comsistency check within the compiler has failed. Please 
send this message~ J}rogram SOl.Lirce code and otheF pertinent material to Micm)way. 

""'."."('.'..?ii~.*:!. CK f'e01. v"-~,o.A•:: (:' $~-·. lj ~r Jt:P..(;:cv; ·f 1 '.(";, 0-.te.. ,~;,..~{!.i!f~.J. c:of'Nc 
..... L\·n~'. ;,ji.;. f'.,f< 'li'>.()JV\ w·~rtl'h<\AJ:.i),\"J.. f«.1.'5-c.t:tL Gsv..V!t) <.A.$€. 

171 Ran out of string space · · 
There are too many characters in the identifier names and character strings to store in the 
string table. Space foli this table is dynamically allocated, with a maximum ofi roNghly ome-half 
megabyte. Get around: this restriction l::>y b:r:-eaking the program into smaller routines and 
compiling them separately. 

173 End of line found in string 
A character stm.ng is missing its terminating apostrophe. 

176 Include nested too deeply 
INCLUDE files may be nested 11 6 levels deep. 

177 Illegal character 
A character was emcountered that is n<Dt valicl in the context in which it occu:nred. Fol" example, 
a := 1 \ 2; 

180 End of file found in IF 
An. IF statement has m.0t 1Deen teFiniflated with a semicolon. Tfuis has caused the remaining 
p0Ftiom of7 the :wriogram to be :r:-ead in as a comme:nt. 

181 Preprocessor expression must be constant 
PrepFocessor expFessi0ms must evaluate to a ccmstant. 

182 Unmatched #endif 
A prep1:rocessorr #IF, #IFDEF'~ #IFNDEF does n0t have a matching #ENDIF. 

183 Too many parameters for a macro 
The maximtlm number 0£ pa.Fameters to a maero is 64. 

NDP Pascal Reference Manual 

' \ v 



u 

u 

C NOP Pasea/1 Error Messages 195 

184 Illegal preprocessor command 
'Fhe identifier fToHowing the # symb0I1 is n0tI recogrueed as a pz;epFocess0r commancrL 

185 End of file found in comment 
A commentl has notI been te:rrninated with its matching symbolr. This has caused the r;ernaining 
portion o:f nhe program to be read in as a comment. 

186 #'defines nested too deeply 
Macros can be nested to a maxfinum level! ofi 32. 

188 Wrong number of params in macro call 
The numoerr ofi mguments in a macro call does not c0Fresp0m.d to tlrle number o:f parameters in 
the macro1 de:fim.itio:n. 

191 Warning: Cannot take the address of this object 
It is not p0ssible to take the acld.:ress of a numeric constant, a type identifiezr. OF an array name. 
'Fo get the address ofi an cmray, take the a<ildress o:f the array indexed l:>y its lower bouncl. 

200 redeclaration of: <name> 

Standard :EPascal' reCJiuires that the identi!Cierrs in the prrogram heading lDe uniC[ue. This is caused 
by a duplieate name .. probably a fTile name, in the program statement. This errozr only occurs 
when the -ans i ·compileF opti0n is used. 

201 Label not defined: <label> 

'Fhe label: specified by <label> has been declared bat not defilil.ed in tfue program, or not used 
with a statement. Note that the label does motI have to appear as the target of a GOTO statemeI>.t 
for this enro:rr to, ocem:rr. 

202 Type not declared <t> 

The type specified by <t> has beelil.1 used in a :foiward declaration but not 1Deen declared. 

203 Used before defined in scope <t> 

The identifier: specified by <t> has been pFeviol!l.sly defined in an outer scowe level, (so that it is 
gkil!>al t<D some routines), and tnen used and redefined in another:- scope level!. This is equivalent 
to Il.aving an iclentifie:r with: tiwo, cliff erent meanings iia the same scope level', which is not 
allowed in Pascal1

• 

This also occurs in the definiti0n ofi a p0intler type where the type lDeing pointed to is separated 
from the type being defined. Fo:rr example: 

typ.e ptr = "'t; 

procedure p ir 

begin 
end;. {p} 

type t = {type definition} 

NDP Pascal Referenee Manual 



196 C Nl!JPPasc:a/I Error Messages 

204 Parameter not declared: <P> 

The parameteF specified by <p> was used in the program statement ancl not declared 1n the 
body of the program. This erF©I.i oro.ly occurs w1len the -ans i c0mpHer OJDtiori is used. 

205 Parameter is not a variable: <P> 

The parameter specified by <P> was used in a program statement, then later declaFed as 
something otiher tihan a variable, for example, a type. This enor only occurs whem. the -ans i 
compiler opti0a is used. 

206 Forward procedure not defined: <P> 

A body procedure OF functiom. that was declarecJl fo:uward was not fow.nd. This erroF omly occlllrs 
when the -ansi ccnnpiler 0ptii0n is used. 

209 No such field in this record: <ff> 

A record name is being qualified with an icJlemtifiier that has not been declared to be part of this 
reco:ud. 

211 Undefined symbol: <s> 

The irlero.tifier:- sweeiified lDy <S> has not been· :wrevicrw.sly decla.recL 

212 Undefined type: <t> 

The specified type identifier was used that was not prevfomsly defined. This messag~ normally 
occurs in the parameter list of a procedure 0r function. 

217 Duplicate field: <f> 

The specified fielcl< mames occur moFe than, omce in a reccnrd defiiniti0n.~ 

NDP Pascal Reference Manuaf. 



u 

( ! 
~ 

Ir 

I ! 

I 

'1 

#DEFINE 95 
#ELSE 96 
#ENDIF 96 
#J;F 96 
#I'FDEF 96 
#IFNDEF 96 
#INCLUDE 95 
#.LINE 97 
#.UNDEF 95 
_errno 120 
ABS 79 
Access 102 
Acos 103 
Acosf 104 
Acosh 104 

i 

i Index 

.Actual parameter 64 
Afiasing 64 .. 74 
ARCTAN 79 
ARGC 79 
ARGV 80 
Array 

multi~dimemsi0mal 42 
Array, comp0aent 33 
.Array. imdex 33 
Array 'Fy]>e 33 
Arrays. mHlti-dimensi0n.al' 33 
Asin 104 
Asinf 105 
Asinh 105 
Assigmnent compafil~le 48, 51. 55. 58 
Atan 105 
Atan2 106 
Atan2f 106 
Atanf 107 
Atanh HY7 
Atof 1!07 
.Atoi 1 108 
Atol 108 
Bcm]> 109: 
Bcopy 1110 
Block 11 
BOOLEAN Scalar Type 29 
BufCIDY JJJ.:] 
Buffer variable 71, 83, 86 
Buffeli variables 

variable 37 
Bzero llJlJ 
C lilDrary functi0ms 

_eF.lTilo 120 
access 102 

acos 103 
acosf 104 
acosh 104 
asin 104 
asrnf 105 
asinh 105 
atan 105 
atan.2 1!06 
atan2f l0€> 
atanf 107 
atan.h 107 
atof 107 
atoi· 108 
atol1 108 
1:1>cmp 1 109 
bco:wy 11',Qi 
bufcpy 111 
bze:uo lJ l lJ 
cabs 112 
calloc 1 l3 
ceil l~ 13 
elearn 1!14 
clock 115 
cl:rnclpex l lJ5 
cosf li 115 
cosh 115 
eoshf llJ6 
date_ lJl6, 
difftirne l 17 
d0sdat 11!7 
dostim' l 17 
eevt n8 
erf 119 
erfc 119 
execl 12©' 
execle 120' 
execv 121 
exit 121 
fabs 121 
fcvt 121 
ffs 122 
fiUn l22 
:filoorr 123 
f:rnod 1:24 
frexp 125 
frexi:if 125 1 

gamma 1:25 
gevt 126 
getdat 126 
getenv l26 
gettim 127 



hyp©t 127 
klate_ 128 
index 128 
isalnum 130 
isalpha 130 
iscntrl: 130 
isdigit 130, 132 
isgraph 130 
isinf 131 
isfower 131 
isnan 131 
isprint 131 
ispunct 131 
isspace 131J 
isUlpJ;i>er 132 
jO 132 
jl 133 
jn 133 
lclexp 134 
Iclexpf 135 
log 135 
10g10 135 
10glOtr 136 
lc>gf 136 
mapclev 136 
memchr 138 
memcmp 138 
memcpy 139 
me:rnm0ve 139 
memset 139 
mktemp 139 
mktkne 140 
m0cdf 140 
perror 141 
p0w 1!41 
:p>©wf 1:42 
rac0s 142 
raise 142 
rancl 143 
rrasin 143 
Fatan 144 
ratan2 144 
rcos J.:45 
rc0sh 146 
rem0ve 146 
reflarne 146 
:uexp 147 
rfrexp 147 
rinclex 147 
Fl<ilexp 1:48 
rl0g 148 
rrl0glO 148 
rp0w 149, 
rsin 1:49, 
rsinh 149: 
rsq;rt 150 
rtan 150' 

Ftanh 151 
sec_lOQ~ 151 
secnds_ 152 
sinfi 153 
sinh 153, 
sinhf 153 
spmnti 154 
sqrtfi 1J57 
srand 157 
sscanf 158 
stJrcat lJ61 
strchr 162 
strcrnp 163 
StliCOll 164 
strc:p>y 164 
strcs1m 165 
strerroF 166 
strftime 16<5 
strinclex 167 
strlen 168 
strncat 169 
strnemp 170' 
stmc:py 171 
stJ;plDrk 1 72 
StlTI'ch:r 1:72 
strnnclex 173 
strsave 174 
strspn 175 
strstr 1!75 
strtod 175 
strtok 175 
strtol 176 
strtoul 176 
strxfrm 176 
swab 177 
system. 178 
tan 179 
tam 179 
tanh 180 
tanhf 180 
time_ 180; 
timeclate_ un 
tmpnam 182 
tolower 182 
touppe:rr 182 
yO 182 
yl 1!83» 
yn 1!84 

Cabs 1lr2 
Call0c 113 
Case sel'ectorr 52 
Ceil 113 
CHAR 3<l} 
CH:R 81 
Clearn 114: 
Cl©ck 115 
Cl:rndpex l!l 5 



( u 

/ \ u 

( l 

\_) 

Cc:n:npile time eIT0r messages 185 
Coastant 26 
Coatrol1 variable 55 
cos 81 
Cos£ 115 
Cosh 11!5 
Coshf 116 
Data type 23 
Date_ 116 
Declarati0m.1 ©rcler l!4 
Difftime 11 l, 7 
DISFOSE 82 
DOS Intenrupts 

INT21;,h 129 
D0sclat H7 
D<r>stim 117 
Dynamic valii.able 84 
Dynamic variables 36 
Ecvt 118 
Encl 0fi l:i:ae 86 
Em tire variable 55 
EOF 82. 83. 86 
EOJ1N 82 
Eq_ual prrececlence 46 
E:rf 119,. 123 
E:rfc 119,. 1123 
EITno 120!, 141 
Evaluati0Jrr order 46 
E.xed 120 
Execle 120! 
Execv 121: 
Exit 12l 
EXP 83 
Exprressiom.s 

boolean expFessi0m.s 47 
EXTERNAL 14 
Fabs 1,21 
Fcvt 121 
Ffs 122, 123 
File 71 
File p0inteF 83, 86, 87, 88 

pointe:rr 37 
File variable 82 
FiHn 122, 123 
Fl©0r 123 
Fm0cl 1:24 
Formal functli0m. 64 
Fo:nnal parameter 64 
Formal: pFoceclur:-e 64 
FoFinal rou.tine 65 
FORWAFID 66 
Frexp 125 
Frrexpfi 125 
Fancti0n 63 
Functi0n call' 48 
FlJl.nctiom,results 66 
F11mc1lloms 

sicle effectis 48 
Ga.mm.a 1125 
Gcv1.1 126 
GE'F 43, 73 •. 83 
Getdat 126 
G~terov 126 
Gettim. 127 
Heading, functi0n 63 
Heading, p:uoceclure 63 
Hole ifl sc0pe 1!3, 67 
H)ipOt 1127 
!date_ 128 
If statementl 54 
Inclex 128 
INPUT 15 
IN'FEGER 30 
Isalnum 130 
Isalplrla 13Cl 
Iscntrl 130 
Isdigit 130), 132 
Isgraph 13{!} 
Isinf 131 
Islower 131 
Isnan 131 
lS:IDiiint ]3]; 

Isp:unct 13·1! 
Isspace l!3.1J 
IsuppeF 1!32 
JO 1'32 
J:lJ lJ33 
Jn lJ33 
Label 54, 56 
Labs 134 
Lazy evalw.ati0n 73,, 87 
Ldexp lJ34 
Ldexpf 135 
LN 83 
Log 135 
LoglO 135 
Log lOfi 136, 
Logf 136 
Macro· 95 
Mapdev 136 
M~INT 31 
Memchr lJ38 
Memcmp, 138 
Memcpy 1!39 
Memm.ove 139 
Memset 139' 
Mktemp: 139 
Mktime 140: 
Moclf 140·· 
MutuaHy rectirsive 66 
NDP status worrd 115 
NEW 43, 84 
NIL 37 
0DD 84 



Operator 46 
Operatorrs 

boolean operators 47 
rel'ation.al' operratoiis 47 

Optimization.s 47 
ORD 84 
OUifPUT 15 
PACK 33 •. 84 
PACKED 33 

records 35 
Packed array 85, 91 
PAGE 85 
Parameter, actu.al 58 
Parameter, formal 58 
Parameter list 64 
Parameter trrans:rnission 64 
Parameters 48 
Parenthesis 46 
Pass by reference 65 
Pass by value 65 
Pass by variable 65 
Perrm:r 141 
Pointer 23, 43 
Pointer data cype 23 
Pointers 

file 43 
Pow 141 
Powf 142 
P:r:-ecedence 46 
Precision 29· 
PRED 55. 85 
Procedure 63 
Procedure call 58 
PlJT 43,73,86 
Racos 142 
Raise 142 
Rand 143. 1J49 
Range 29 
Rasin 143, 149 
Ra.tan 144. lJ49 
Ratane 144, l.!49 
Reos 145,lJ49 
Rcosh · 146. 149 
READ' 76,86 
READLN 86 
Record 34, 35 
Remove 146 
Rename 146 
RESET' 72, 87 
REWRITE 72, 87 
Rexp 147 
Rfrexp 147 
Rirnilex 1:47 
Rldexi:> 148 
Rlog 148 
Rl0g10 148 
ROUND 88 

Routirle 64 
Rp0w 149 
Rsin 149 
Rsinh' lJ49 
Rsqrt 150 
Rtan l50 
Rtanh 151 
Scalar 26) 
Scalar data type 23 
Sec_l!OO_ 151 
SecEcls_ 152 
Selecto:u. case 52 
Set 

set constructor 48 
Setnclpsw 152 
SIN 89 
Sililf 153 
Sinh 153· 
Sin.hf 1!53 
Sp:uintf 154 
SQR 90 
SQRT 89 
Sqrtf l57 
Sscanf 1,58 
Statement 

assigmmmt 51 
case statement 52 
compotJJ.ncl statement 53 
empty statement 54 
fo:u statement 55 
goto statement 56 
if statement 57 
repeat state:men.t 59 
while statement 60 
WITH statement 61 

Statement, procedure 63 
STATIC 14 
Streat 1!61 
Strchr 162 
Stircmp 1Jf33 
Strcon1 l.!64 
Strcwy 164 
Strcspn 1:65 

. Strer:rnr 166 
Strftime 166 
Strrindex 167 
Stritng 9 
Strlen 168 
Strncat 169 
Strncmp 1.70 
S trncpy lJ 71 
StroEg typing 24 
Strpbrk 172 
Strrchr 172 

. Strrindex 173 

. Strsave 174 
Strs1m 175 

\ u 



/ 
( l 

\._,J 

StFstF JJ75 
Strtlocl JJ75 
Strtok 175 
Smol 1!76 
Smoul 1!76 
Structurecl da.ta type 23 
Stirxfrm 176 
Subprogram 63 
SlJCC 55. 90 
Swab 177 
System 178' 
Tag field 35 
'Fan 179 
'Fanf 179 
Tanh 18©i 
Tanhf 18© 
'Fextfile 38 
'fitne_ 18©: 
Titnedate:.... l' 81 
'Flnpnar.n 182 
T0l0we:r: 182 
'Fcrupper l! 82 
TRUNC 9©: 
Type 

.Assignment compatibility 24 
compatibiility and conveITsi0ns 24 
compatible 24 
enumerated 26 
file 37 
iclentical', 24 
implicit type colilversi0n 25 
pack 

urapack 39, 
pointer 36 
irecord 34 
se11 27 
subrange 27 
text 38 

Type ideliltlliie:u 23 
UNFACK 33, 91: 
Unpacked array 85, g,]J 

Value parameters 65 
Variable 42 

buffer 43 
cornp0:aelilt 41 
coliltFoI1 variable 55 
data ty]>e 24 
entire 41 
file ref:e:uencing 43 
irndexed 41! 

Variable, contrrol 55 
Variable parameter 65 
Variant rec0rd 84 
WRI!FE 76\ 92 .. 94 
WRI'FE!l.N 92 
YO 182 
YI 183 




	Cover
	Release Notes
	NDP 386|486 UNIX User's Manual
	1. Set Up
	2. Using the Compiler
	3. Optimizations
	4. Runtime Organization and Numerics
	5. Mixing Languages
	6. Porting Programs
	ASCII Character Set
	Index

	NDP Pascal Reference Manual
	Contents
	Preface
	1. Base Vocabulary
	2. Program Structure
	3. Pascal Definitions
	4. Type Definitions
	5. Variables
	6. Expressions
	7. Statements
	8. Procedures and Functions
	9. Input and Output
	10. Predefined Functions and Procedures
	11. Preprocessor Commands
	A. Selected Bibliography
	B. Interface to C and Math Libraries
	C. NDP Pascal Error Messages
	Index


