

NDP Pascal-386/486 V. 4 0D for UNIX V. 3
Release Notes

1.0 Ovérview

The NDP compilers, available in four languages (C, C|C++, Fortran, and Paséal) allow Vyou‘ to
compile, link, and execute 80486 and 80386 32-bit protected mode code.

1.1 Bug Fixes

Weitek libraries and libraries for use w1th the standard UNIX proﬁler have been updated.
Additionally, the -g switch (debugger information) and the -n2 switch have been updated.

Problems with the cabs function have been corrected.

1.2 Changes.in Previous Releases

Before version 4.0b, loop unrolling was either on or off. The -ur switch was added in version
4.0b which allows the user to control how a loop is unrolled. The syntax of the switch is:

-ur={number}

where {number} is 2, 4, 8, 16, 32 or 64. Whlch switch to use for the best performance depends
on the code being optimized. . »

2.0 Technical Support

If you encounter difficulty irr the installation or operation of the NDP compilers, please notify
Microway Technical Support. You should have the language, platform, operating system,
peripherals, and your user number available.

Microway, Inc.

Box 79 Research Park '’
Kingston, MA 02364
UNITED STATES

Phone: +508/746-7341
Fax: +508/746-4678

T ery QIGTORT

March 8, 1993 Release Notes 4.0d

NDP 3861486
UNIX
USER'S MANUAL

Microway®

ox 79
Kingston ¢ Massachusetts 02364 * USA

NDP C1C++-386, NDP C|C++-486, NDP Fortran-386, NDP Fortran-486, NDP Pascal-386, NDP
Pascal-486, and Microway are trademarks of Microway, Inc.

UNIX is a registered trademark of AT&T:.
Cyrix and EMC87 are trademarks of Cyrix Corporation.
Intel, SX, 287, 386, 387, 486, 1486, and i860 are trademarks of Intel Corporation.

Microsoft, Microsoft Fortran, and MS-DOS are registered trademarks of Microsoft Corporation.
0S/2 is a registered trademark of International Business Machines, Inc.

0S/386 is a trademark of Ergo Computing, Inc.

Phar Lap, 3861 DOS-Extender, 386ASM, 386LINK, and 386 VMM are trademarks of Phar Lap
Software, Inc. '

/_
X .
(u -

Weitek is a trademark of Weitek Corporation.

e

;l\ e
Copyright © 1990, 1992 Microway, Inc. March 3, 1993

L

Set Up

1.1 System Requirements
1.2 Disk Contents
1.3 Installation
1.3.1 Environment Variables
1.4 Testing the Compiler
1.5 Troubleshooting

Using The Compiler

2.1 The Compiler Driver
2.2 Compiler Driver Syntax
2.2.1 Example
2.3 Compiler Options and Switches

Optimizations

3.0 Overview

3.1 Memory Allocation

3.2 Register Allocation by Coloring
3.3 Static Address Elimination

3.4 Register Coalescing

3.6 Peephole Optimizations.
3.7 Speed Optimizations
3.8 Loop Rotation:

" 3.9 Loop Invariant Analysis:
3.10 Strength Reduction
3.11 Dead Code Elimination

Contents

3.5 Prolog and Epilog Code Optimization

3.12 Inline Multiplication and Division

3.13 Constant Propagation
3.14 Constant Expression Folding

3.15 Common Subexpression Elimination (CSE)

3.16 Live/Dead Analysis

3.17 Cross Jumping (i.e., Tail Merging / Code Hoisting)

3.18 Loop Unrolling
3.19 Inliner

3.19.1 Size vs. Frequency of Use

3.19.2 Recursion:

3.19.3 Definition of Function is Exported/Imported/Static

3.19.4 Address of Function Taken

3.19.5 Nested Functions

Runtime Organization and Numerics

' 4.1 Lower Level Characteristics
A / 4.2 Integer Data Type
4.3 Single Precision Real

NN N =

(4]

(22>, .}

11

1l
12
12
13
14
15
15
15
16
16
17
19
19
20
20
21
21
21
22
23
23
23
24
24
24

25
25

25
25

iv

4.4 Double Precision Real
4.5 Single and Double Real Encodings
4.6 Language Data Types
4.7 Internal Registers
4.7.1 General Purpose Registers
4.7.2 Segment Registers
4.7.3 The 80386/80486 Flags Register
4.7.4 Systems Control Registers
4.8 The 80387 Register Set
4.8.1 80387 Data Registers
4.8.2 The Status Word Register
4.8.3 The Control Word Register
4.9 Weitek Architecture
4.9.1 Weitek Data Registers:
4.9.2 The Weitek Process Context Register
4.10 Numeric Exceptions

4.10.1 NDP Compilers' Handling of Numeric Exceptions.

4.11 An Introduction to the IEEE Number System
4.11.1 IEEE Representation of Real Numbers.
4.11.2 Precision and Denormals:

4.11.3 Infinities and NaNs

Mixing Languages

5.1 General Rules

5.1.1 Linking Restrictions

5.1.2 Data Type Differences

5.1.3 Naming Conventions

5.1.4 Parameter Passing

5.1.5 Output Buffers
5.2 Calling Between NDP Fortran and NDP C|C++
5.3 Calling between NDP Fortran and NDP Pascal
5.4 Calling between NDP ClIC++ and NDP Pascal
5.5 Interfacing Assembly Language

5.5.1 Reasons for Writing Assembly

5.5.2 Using the Intelligent Assembler to Optimize Code

5.5.3 General Rules

Porting Programs

6.1 Compatibility with other Compilers.
6.2 Word-Size Problems
6.3 Byte-Order Problems
6.4 Alignment Requirements
6.5 Floating-Point Range and Accuracy
6.6 Assembly Language Interfaces
6.7 Expression Evaluation Order
6.8 Illegal Assumptions About Optimizations
6.8.1 Implied Register Usage
6.8.2 Memory Allocation Assumptions
6.8.3 -OM and -OLM Considerations
6.9 Problems with Source-Level Debuggers
6.10 Problems with Compiler Memory Size

NDP User's Manual,

Contents

386/486 UNIX

26

27
28
29
29

30
31
32
33

33

33
36

38
38
38
39

41
42
42
45

46

49

49
49
50

51
52
53

53

55
56
57

57
58

61

63

63
63
63
64
64
64
64
65
66

66

66
66
66

C.

i

a9

Contents

ASCIl Character Set

Index

386/486 UNIX

NDP User's Manual

69

71

ya h ~
[j

1 Set Up

The NDP-386/486 compiler family is completely hosted on UNIX System V.4. The NDP
compiler family uses all features of the native tool chain as supplied by AT&T.

Each compiler is shipped with a compiler driver and necessary runtime libraries. All native
UNIX system calls are supported. The NDP compiler supports GUI packages only in UNIX
System V Release 4, not Release 3.x.

The compilation process is a matter of compiling, assembling, linking, and Ioading/ running a
program.

Should you encounter any problems, please contact Technical Support:

Microway, Inc.

Box 79

Kingston, MA 02364

(508) 746-7341 Voice
(508) 746-4678 FAX

1.1 System Requirements
The NDP 386/486 compilers require the following hardware and software: -
A 386 or 486

~ * High density 5.25" diskette drive (3.5" disks available on request)
* A hard disk with at least 3 MB of free space.

* Development version of UNIX System V Release 3 or Release 4, specified at purchase time.
(NDP Pascal is available for UNIX V.3 only at present.)

1.2 Disk Contents

This release comes on two or three diskettes, depending on language. The following files
should be available on the diskettes:

1. All compilers: libc.a, libep.a, 1ibcl1167.a, libellé7p.a, libm.a, libmp.a,
libmllé67p.a

2. Fortran only: mf486, ndpf486, 1ibf.a, libfp.a, 1ib£f1167.a, 1if1167p.a, hi.f

3. Cand C++: assert.h, ctype.h, errno.h, exterr.h, float .h, limits.h, locale.h
math.h, setjmp.h, signal.h, stdarg.h, stddef.h, stdio.h, stdlib.h, string.h,
strings.h, time.h, varargs.h, stat.h, times.h, types.h, vm.h

[}

4. Conly: mc486, ndpc486, hi.c

5. Pascal only: mp486, ndpp486, 1ibp.a, libpp.a, 1libpl167.a, 1ibpllé7p.a, hi.p

1.3 Installation
To install the NDP compiler, follow these steps:
1. Log in as root or make sure you have write permissions to /usr.

2. If the directory /usr/microway doesn't exist, create it:

2 1 Set Up

mkdir /usr/microway

3. Change to that directory:
cd /usr/microway

4. Insert the compiler diskette #1 into the floppy drive, then type:
cpio -icBduvm</dev/rdsk/f{drive}qfsize}dt

where {drive} is the diskette drive you are using (0 or 1) and (size} is the capacity of the
diskette (15 for 5.25 inch disks and 18 for 3.5 inch disks). If the message End of Medium on
Input appears, insert the next diskette and type: '

/dev/rdsk/f {drive}qg{size}dt

5. This step is needed for the 5.25 inch versions only. Move the software to the appropriate
directories using the following command(s):

Fortran: mv mf486 /usr/bin/mf486

ClC++: mv mx486 /usr/bin/mx486

Pascal: mv mp486 /usr/bin/mp4sé
mv hi.p src

1.3.1 Environment Variables

Before running the compiler, you should make sure that /usr/bin is in your path. This is
where the compiler driver lives.

If you prefer to break out the components of the NDP compiler, tools, and libraries, the
following environment variables are valid.

setenv inc path
setenv 1lib path
setenv src path
setenv tools path
setenv npd path

1.4 Testing the Compiler

Change to the /usr/microway/src directory and test the compiler using one of the following
commands:

mf486 hi.f (Fortran)
mx486 hi.c (C)
mx486 hi.cxx (C++)
mpd86 hi.p (Pascal)

This produces an executable file named a .out. To run this file under UNIX, type:
./a.out

The message "Hi! " should be displayed.

1.5 Troubleshooting

If you cannot get the compiler to produce the executable a . out, the trouble is probably in the
configuration of the system. That is, the driver cannot find the files it is looking for.

Problems of this type may be pinpointed using the switches -v and -rt2. Switch -v causes
the driver to display the commands of each subprocess. It is a good way to uncover problems
which relate to the search path used by the compiler and driver. Switch -rt2 displays the
name of each file opened by the compiler.

NDP User's Manual . 386/486 UNIX

1IN

1 Set Up

See Appendix A of the Language Reference Manual for a list of errors with their solutions.

386/486 UNIX

NDP User's Manual

(,/‘

Using The Compiler

2

This chapter explains how to compile a program using the compiler driver and its switches.
The switches allow you to select compiler optimizations, vary code generation to suit the
environment, and specify alternative locations of the library and include files, among other
options.

2.1 The Compiler Driver

Microway's compiler driver simplifies program development by automatically compiling,
optional assembling, linking and loading/running an NDP program with a single command.

The compier driver executes the NDP-386/486 compiler, assembler, and linker to produce an
executable binary file. The driver runs the compiler, which creates an assembly language file
from the source file. Next, the driver runs the assembler, which creates an object file from the
assembly file. The driver then invokes the linker, passing the appropriate object files, default
libraries, linker switches, and any additional information supplied on the compiler driver
command line by the user. The linker creates the executable binary file from these modules.
Finally, the compiler driver deletes the assembly and object files created; they may be retained
using the -keep switch. (See Section 2.3 for related toggles -c, -keepobj, -keeps, and -3).

2.2 Compiler Driver Syntax

Syntax: driver_name [switches]) file(s)

driver_name is one of the following:

mf486
mx486
mp486

switches is a list of optional switches separated by spaces. Each switch begins with a minus
sign (-). The following sections discuss the switches.

file(s) is a list of one or more file names. File names must be separated by spaces; the
wildcard characters, question mark (?) and asterisk (*), may be used.

The compiler driver will accept Fortran, C, C++, Pascal and assembly source code files, object
module files, and library files as input.. The file extension designates the input file type using
the following conventions:

* Filenames with the extension . f or .for are assumed to be Fortran source programs.
Files with the extension .r are assumed to be Fortran source files that require the Ratfor
preprocessor. Files with the extension .c, .cpp or .cxx are assumed to be C1C++ source
programs. Files with the extension .p or .pas are assumed to be Pascal programs. The
driver compiles them into assembly files using the appropriate compiler and leaves them
as .s files in the current directory.

* Filenames with the extension .s are assumed to be assembly source programs. /bin/as
assembles them into object files with the extension .o.

* Filenames with the extension .o are assumed to be object programs or object program
libraries compatible with the NDP compilers. These filenames are passed to the linker.

6 2 Using The Cdmpiler

* File names with the extension .a are assumed to be library files compatible with the NDP
compilers. /bin/ar creates and manipulates them. These file names are passed to the
linker.

* Filenames with no extension, or with an extension other than mentioned above are passed
to the linker untouched.

By default, the compiler driver will convert the input file into an executable binary program.
The -s switch stops the process after the assembly file is created, while the -c switch halts the
process after the object file is created. For example, the following commands all produce the
executable file a . out:

mf486 testl.f
mx486 testl.cxx
mp486. testl.p
mf486 testl.s
mx486 testl.o

2.2.1 Example

As an example, assume we have two files, main.p (containing the main program) and subl.p
(containing some subroutines). We want to compile these programs and produce the
executable file test .out. The command is: '

mp486 main.p subl.p -o test.out

The compiler compiles the two source files into assembly files, which are assembled into object
files. The driver invokes the linker, passing it the names of the two object files just created, the
-o switch and its argument, and the names of the default object files and libraries. The linker
produces an output file named test .out. The output file can be run by typing in;

./test.out

2.3 Compiler Options and Switches

The following table describes the switches used by the compiler driver:

Switch Description

-2.1 Recognize AT&T 2.1 rules.

-ansi Assume input program conforms to ANSI standard. (C and Pascal, not
C++)

-ansiconform Create ANSI code but refrain from inlining math functions (C only).

-c Cause the compiler driver to compile each source file to the object file
level only. The driver does not call the linker and produces no
executable code.

-cgl Turn on runtime checking of subranges and array bounds. The code will
be much slower under this option.

-cg2 Allocate all variables to: IMemory.

-cg3 Allocate code temporaries to memory.

-cgd Prepend all variables with an underscore.

-cg5 Output an assembly file with the extension .asm. The default is .s.

-cgb Do not put an underscore in front of global variables and procedures.

-cg’ Avoid jumps with inline code.

NDP User's Manual, 386/486 UNIX

Pl

7N

™

a,
Ry
—

2 Using The Compiler

-clink

~-¢pplink
-Dname
-Dname=text
-f1

-f2

-£f3

-f4

~-£f5

-fg
-f7
-fdiv

-flink

_ga

-hasm

-i2

-i4
-identl
-ident2
-Idir

~1lname

-list

-LIST
-minit
-n0
-nl
-n2

-n3

386/486 UNIX

Link libraries appropriate for C source code; used when the context is
ambiguous such as mx486 hi.o.

Link libraries appropriate for C++ source code; see -clink above.
Define the symbol name (C!C++ only)

Define name to have the value of text (C|C++ only)

Accept characters as unsigned. (Fortran only)

Turn off the compile-time checking of FORMAT statements. Use this
option if your runtime supports FORMAT statement features that NDP
Fortran does not recognize. (Fortran only)

Pad Hollerith constants on right with blanks. The default is that only the
first byte of the Hollerith constant is significant and the constant is zero
padded on the left. (Fortran only)

Compile lines starting with x, X, 4, or D. The default is to treat them as
comments. (Fortran only)

Do not accept dollar signs ($) in names. The default allows dollar signs
for VMS compatibility. (Fortran only)

Enable backslash editing, e.g., \n represents new line. (Fortran only)
Local variables are automatic (on stack) by default. (Fortran only)

Reduces the amount of time required to divide, at the expense of two bits
of precision. It precision is critical, do not use this switch.

Link libraries appropriate for Fortran source code; see -clink above.
Generate executable code compatible with source level debugger.
Generate frame pointer for stack traces.

Intermix assembly and source code in the assembly file. You should use
-S or -keeps with this switch to retain the assembly file.

Make default integer size 2-byte; this results in code that runs more
slowly (Fortran only).

Make default integer size 4-byte; this is the default (Fortran only).
Accept but do not output # identifier (CIC++).
Accept and output # identifier (ClIC++).

Search for include file names in the directory dir before searching the
standard directories.

Causes the compiler driver to direct the linker to search the library
named libname.a. For example, —1fft will add 1ibfft.a to the search
path.

Output a .LST file showing all source code including include files with
line numbers.

Like -1ist but omit path names and line numbers.

Allow multiple initializations (Fortran only).

Produce 80287 code with library calls, not inline transcendentals.
Produce 80287 code with inline transcendentals, not library calls.
Produce 80887’ code with inline transcendentals, not library calls.

Advanced Intel coprocessor stack utilization.

NDP User's Manual

-n4
_n5~

-né6

-n8
-nof77

-0 name

-of £
-offa

-offcse
-offh
-offn
-offp
-offr
-offs
-OL

-0LM
-OM

-on
-onzcse

~onetrip

-onlr

-onrc

NDP User's Manual.

2 Using The Compiler

Generate code for the Weitek coprocessor family.

Generate Microway:style Weitek macro instructions in the assembly file.
This will not produce executable code. \)

Promote no float.

Use Weitek 3167 multiply accumulate instruction. Requires -n4.
Use Weitek 3167 square root instruction. Requires -n4.

Use Fortran 66 conventions. Also turns on -onetrip (Fortran only).
Do all operations.

(Lower-case 0.) Cause the compiler driver to place the executable output
file into the file name. name must be preceded by a space and can
include an extension. By default, the output file will have the name
a.out.

Same as -offp, -offa, ~offh, -offs, and -of fn.

Do not move frequently used procedure and data addresses into
registers.

Do not do common subexpression elimination (local/global CSE).

Turn off cross jumping optimization.

Keep invariant floating point expressions in loops.

Disable peephole optimizer.

Force variables to be stored in memory.

Turn off dead code elimination. s :
Optimize the program to be as fast as possible even if it is necessary to '
make the program bigger. In particular, most of the available resources
are allocated to optimizations of the innermost loops. The —OL compile
time option will perform optimizations that may make the program faster
but larger. It is counterproductive to specify —OL on code that contains
no loops or that is rarely executed as it will make the whole program
larger but no faster. You can experiment with a program to discover
which modules benefit from ~0L and which ones do not. The —x482
option may be used with —OL to enable various loop optimizations
without turning on loop unrolling. In addition, -OL inlines all scalar
multiplies, and replaces larger block moves with sequential moves
instead of an inline loop.

This option is equivalent to —OL and —oM.

Add memory optimizations to -0.
Sanuaas-on2cse,—onlr,—onrc,—onrepeep,—OLM.

Do common subexpression elimination (CSE) twice.

Execute at least one iteration of every DO loop. The —onetrip switch
may be required for successful execution of certain old Fortran
programs. (The use of the -onetrip option makes the compiler
incompatible with the ANSI Fortran 77 standard default of executing no
iterations of the DO loop when the lower bound is greater than the upper
bound.)

Do loop unrolling. | \)
Do register caching.

386/486 UNIX

2 Using The Compiler

-onrepeep

-onw

_p4
;‘tgzgnk

o

-rtl

-rt2

-rt3

R SOV
v

g,

-rt4

R,

Sy

-S

-u

-uname

-ur=#

-V

-vms

-vms i
-W

-W.

-Wa, toggle
\ -W1l, toggle

386/486 UNIX

Repeat peephole optimizations until no further improvement is achieved.
Emit a warning when dead code is eliminated.

Generate code for filin ,
LEAVE CPAs hr FATERNS CASE RUOVE

Link libraries appropriate for Pascal source code; sée -c1ink above.
Output file names are created by appending the appropriate extension to
the source file name; requires -s.

Display the names of files as they are opened.

Continue to compile after a code generator abort or Internal Compiler
Error (ICE). '

Recognize all 80386 library calls instead of inlining routines {e.g.,
memcmp).

Do not produce object files or executable files, produce only assembly
language files. For each source language file specified, compile the
source language file into assembly language output. Put the assembly
language output into a file with the extension .s.

 Make "undef ined" the default data type for undeclared variables, as if

"implicit undefined (A-Z)"were placed at the top of each routine
(Fortran only).

Do not convert upper case user-supplied names in Fortran to lower case.
By default, Fortran is not case sensitive and all Fortran names that are
externally visible are in the object file in lower case. If one wishes to gain
access to names defined in C as upper case, this option can be used.
However, use of this option makes the compiler incompatible with the
ANSI Fortran 77 standard.

Undefine the definition of the symbol name (CIC++ only).

where # is 2, 4, 8, 16, 32, or 64. Unrolls a loop # times. This switch
MUST be used with -OLM. For example: mp486 -OLM -ur=32 liver.p
-o liver

Causes the compiler driver to display the program name and command
line arguments of each subprocess it invokes.

Accept VAX VMS Fortran compatibility over Fortran 77 interpretation.
(Fortran only)

Enable VAX extensions for intrinsic functions only (Fortran enly).
Make all warnings fatal.

Suppress warning messages.

‘Pass the specified toggle(s) to the assembler.

Pass the spécifi‘ed toggle(s) to the linker.

werteid o pills af i howm 31 2560

NDP User's Manual,

Optimizations

3

3.0 Overview

The NDP compilers do many optimizations, several of which are not available in other
compilers. These optimizations can reduce the size of a program by 30 percent and increase its
speed by a factor of up to four. The compiler does typical optimizations such as constant
folding, strength reduction in simple operations and loops, code hoisting between blocks,
movement of invariant expressions out of loops, and conversion of multiplications and divides
into shifts and additions when advantageous. The compiler also eliminates: redundant jumps,
unreachable code, and never-referenced variables and expressions. The key to the
effectiveness of the optimizations is a global data-flow analysis that maximizes the use of CPU
registers and numeric coprocessor registers for the storage of variables. The compiler does the
following optimizations:

Memory Allocation
Register Allocation
Static Address Elimination
Register Coalescing
Prolog and Epilog Code Optimizations
Passing Parameters in Registers
Various Peephole Optimizations
Speed Optimizations
Loop Rotation
Loop Invariant Analysis
Strength Reduction
Dead Code Elimination
In-line Multiplication and Division
Constant Propagation
Constant Expression: Folding
Local and Global Common Subexpression Elimination (CSE)
Live /Dead Analysis
Cross Jumping
‘Loop Unrolling
Inliner

® @ @ & & & o0 o o O o O o o 0o o 0o o o o

The NDP compilation process is made up of three phases: the front end, the intermediate
optimizer, and the back end.

The front end phase translates each procedure into an idealized internal representation,
including a directed flow graph (DFG), for each of the semantic operations allowed by the
language. This first phase, which includes lexical analysis and parsing into DFG's, also does
several optimizations such as strength reduction.

The DFG is then passed to the intermediate optimizer where optimizations are done on each
DFG before code is generated. Each node of the DFG represents a block of code that has one
entry and one exit point.

The code generator (back end phase) takes optimized DFG as input and maps it onto the
operations. of an ideal 32 bit processor that has an infinite number of virtual registers. The
register allocation is done by a register coloring algorithm that coalesces and maps the virtual
registers into the 80386 or 80486 and Intel or Weitek coprocessor registers. Optimizations
such as instruction scheduling and peephole optimizations occur during the code generation
phase.

12 / 3 Optimizations

Most optimizations can be turned on by supplying the compiler with the -on option.
mf486 -on dwhet.f

The rest of the chapter provides a brief description of each optimization during the compilation B ,,J
process.

3.1 Memory Allocation

The NDP compilers allocate variables based on their size, frequency of use, and other
attributes. Variables that are never used usually are not allocated. Variables normally are
sorted to allocate the smaller and more often used variables first, and the larger and less often
used variables later.

3.2 Register Allocation by Coloring

Register allocation is used to keep the most commonly used values always in registers. The
entire function or subroutine is examined to determine which local variables and parameters
are used most often. The most commonly used variables and parameters are allocated to
machine registers. No memory is allocated for them. This optimization provides the most
significant savings in execution speed and the largest reduction in program size. Referencing a
variable in a register takes about one third of the space and time required for referencing a
variable in memory. '

All local variables of the main program, or any function, are candidates for allocation to a
register unless they are passed to a function. The register allocator uses the global data-flow
analysis to find the lifetime of each variable. This information makes it possible to increase the
number of variables that can be stored in registers by using the same register for variables that
do not overlap in the same procedure. Two variables may be allocated to the same register if
there is no place in the program in which both variables hold a value that will be used later. O _
Usually, all local variables stay in registers if possible. When register space is exceeded, the \.aj
compiler creates procedures which set up and use the stack for local storage.

Programmer Hint: Procedures that are coded so that they do not require storage on the stack
have reduced calling overhead and run faster. Also, variables that are passed as parameters to
procedures have to stay in memory. If you have to pass a "hot" variable to a procedure, then
(1) assign it to a dummy and pass the dummy or (2) use a dummy in the innermost loop of the
calculation and assign it outside of the loop. I/O statements behave like procedures; it is
better to print duplicates of important variables than the variables themselves. See the
example in Section 3.18, Loop Unrolling, page 22.

Register allocation may be turned off with the -cg2 compiler switch. This may be necessary for
specialized programs that do not want variables stored in registers, but rather require that
variables reference physical memory.

All'variables that are candidates for register storage will be allocated to the available registers
to give either the fastest or densest code possible (as controlled by the -0OL compile time
option). Most compilers allocate all local variables in memory. The NDP compilers will allocate
as many local variables to registers as it can. The quality of the code generated with this
allocation scheme is exceptional.

In the following example, The NDP compiler allocates I and J to the same register because their
lifetimes do not overlap. The translation is one-to-one from source code into assembly
language.

NDP User's Manual 386/486 UNIX

N

3 Optimizations

NDP Fortran Code

SUBROUTINE PROC
INTEGER I,J
I =1

1 CALL F
I =1I+1
IF (I.LT.10) GOTO 1
J =1

2 CALL G
J=J + 1
IF (J.LT.10) GOTO 2
END

NDP CIC++ Code

proc() {
int. i,3;
i=1;
do {
£0);
++1;
} while (i < 10);
j=1;
do {
g();
++]7
} while (j < 10);
}

#i=1, uses ebx

386 Assembly Language
mov ebx, 1
align 4
L7:
call _f
inc ebx

cmp ebx, 10
jge L6 short
jmp L7 short

align = 4
L6

mov ebx, 1

align 4
L5:

call o i

inc ebx

cmp ebx, 10
jge L4 short
jmp L5 short
align 4

pl=1+1
#i.1t.10

7J=1, also uses ebx

7j=j+l
7J=1t.10

3.3 Static Address Elimination

A valuable optimization the NDP compilers do is to store frequently used static addresses in
registers. Since the static addresses are 4 bytes long, if a static address is used just twice in a -
function, it is faster and smaller to load the address into a register at the beginning of the
procedure or function and always use register indirect addressing to access it. In this way,
most static references shrink to one third of the space and use less execution time. For

example:
NDP Fortran

SUBROUTINE P

COMMON /X/X

INTEGER X

Do 10 I=1,9
10 X = X + 1

RETURN

END

386/486 UNIX

NDP CIC++

pO) {
static int x;
int i;
for (i=1;i<10;i++)
X=X+1;

13

NDP Pascal Code

procedure f; external;
procedure g; external;
procedure proc;

var
i, j: integer;
begin
i = 1;
repeat
£;
i = i+1;
until (i>=10);
repeat
gi
J o= 3+ 1;
until (j>=10)
end;

NDP Pasqal

procedure p;
var
i, j: integer;
begin
for i := 1 to 10 do
X 1= X+1
end;

NDP User's Manual

14 3 Optimizations

386 Assembly Language
mov eax, 9 ;71=1,9
lea ecx,dword ptr ds:_X_ ;static address elimination,
align 4 ;address of common |x| to register
L23:
inc dword ptr [ecx] pX=x+1
dec eax ;decrement number of loops left
jne L23 short
s .ef:

i

The improvements by the NDP optimizer can be summarized as:

¢ Static Address Elimination: 2 instructions per iteration
¢ No frame pointer: 3 instructions
¢ Instruction Scheduling; 2 instructions and 1 gap per iteration

Static address elimination also plays an important role in loop unrolling of array subscripts
(see Section 3.18, Loop Unrolling, page 22). In this case, the addresses of sequential elements
in an unrolled loop are computed by using indexed addressing along with a statically stored
base address that changes once per loop. '

3.4 Register Coalescing

Register coalescing organizes the computation of expressions to ensure that values end up in
the registers where they will be needed. This eliminates shuffling the values in registers to set
them up as needed. Most microprocessor compilers will copy the arguments of a computation
into scratch registers, do the computation in the scratch registers, and then copy the result to
the destination. The NDP compilers use the destination register in the computation to save
unnecessary copies of the source registers into scratch registers.

For example:

NDP Fortran NDP CIC++ ' NDP Pascal
SUBROUTINE p p() {) ' procedure p;
INTEGER i, Jj, k int i,3,k; var .
i=1 i=1; i,3.k: integer;
j =1 j=1; begin
DO k = 1,10 for (k=1l;k<= 10;k++) i:=1;
1= i*4+3 i=i*4+73; j o= 15
END DO } for k := 1 to 10 do
END =i * 4 + 3
end;

386 Assembly Language:

mov eax, 1 pi=1
mov ebx, 1 ;=1
mov ecx, 10 ;number of loops=10
align 4
L21+

lea eax, [ebx] [eax*4];i=i*4+]
dec ;decrement number of loops
The instruction lea eax, [ebx][eax*4] does the computation and stores its result directly in
the correct register, representing i, rather than in a scratch register, demonstrating register
coalescing. The most interesting optimization in the code is the way i=i*4+7 is coded. eax
represents i; ebx represents j. There is an instruction that multiplies two numbers and adds

NDP User's Manual: 386/486 UNIX

C

3 Optimizations 15

a third, but this can be done with addresses, commonly when arrays are involved. In the
instruction

lea eax, [ebx]{eax*4]

eax and ebx are treated as if they were addresses but those "addresses" are just the values of i
and j is i*4, [ebx] [eax*4] is j+i*4. The result is stored in eax, which is i.

3.5 Prolog and Epilog Code Optimization

Most compilers use a frame pointer register in each function. The frame pointer is used to.
access local variables, to point up the call stack to allow stack traces to be printed during
debugging, and to unwind the stack for an exception mechanism. The frame pointer is
valuable but it is usually not necessary. The NDP compilers generate a frame pointer only if
adding the frame pointer will not expand the code. Otherwise, they do not set up a frame
pointer in each function. Instead of creating a frame pointer, the NDP compiler accesses all
local variables by using the stack pointer.

If it is necessary to have a frame pointer in every function, the -ga compile time option can be
specified on the compiler driver command line. This compile time option guarantees that there
will always be a frame pointer, but it increases the size of the program.

If a function is very short, the entry and exit code may take a large fraction of the space and
execution time of the procedure or function. If, as a result of global optimization, the
parameters and local variables of a function are allocated in registers (usually true for a
procedure or function of 20 lines or less), the compiler can often eliminate the procedure entry
and exit code entirely. The bottom line here is that the code is even better than handwritten
code because it is often not practical for an assembly language programmer to keep track of all
register contents.

Default Code With -ga option
P proc near _P_ proc near
push dword ptr ds:L8 push ebp ;extra code
call _f_ push dword ptr offset ds:L8
pop ecx call _f_
ret pop ecx)
leave jextra code
ret
align 4

3.6 Peephole Optimizations

Peephole optimizations are local improvements to the code that are certain to be correct
without further analysis of the surrounding code. An example would be a move from one
register to another, followed by a move in the reverse direction. In this case, one of the move
instructions is unnecessary and may be removed. All the peephole optimizations that have
been implemented are safe for the target environments. If there is any reason to suppress.
these optimizations, use the -of fp compile time option. In some situations, code can be
improved by repeating the peephole optimization phase. The -onrepeep switch repeats
peephole optimization until no further improvements can be made. It is not on by default
because it causes the flow graph to be traversed a second time, which is expensive in terms of
compilation speed. ‘

3.7 Speed Optimizations

The -OL compile time option selects the speed optimizations. This improves the speed of the
program, but usually at the cost of making the program larger.

386/486 UNIX NDP User's Manual

16 ‘ 3 Optimizations

To increase the speed of a program, it is necessary to identify which instructions are executed
most often and concentrate the optimizations in these areas. Computer languages have two
main constructs for repeating the execution of instructions: loops and procedures. By making
specific optimizations for each of these constructs, it is possible to improve the performance of
most programs significantly.

The -OL compile-time option should be used only on modules in which most processing occurs
inloops. If -0 is specified, the compiler does everything it can to reduce program size. The -OL
compile-time option will sacrifice program size to increase the performance of loops. It will
allocate nearly all the registers to the variables and temporaries used in the innermost loop of a
procedure or function. This will prohibit them from being used for variables that are used
elsewhere. If -OL is specified on a main program, the compiler could do much work to optimize
many loops that are rarely executed. This would result in a program getting larger, but not
very much faster. The -OL switch also invokes loop unrolling (see Section 3. 18, page 22).

3.8 Loop Rotation

Many compilers generate a termination test at the top of the loop and an unconditional branch
from the bottom of the loop to the top of the loop. The loop will execute two branch
instructions on each iteration of the loop.

A better way to generate code for loops is to place the test at the bottom of the loop. This is
called "loop rotation." If it can be determined at compile time that the loop will always execute
at least once, then the loop is entered from the top. If it cannot be determined that the loop
will be executed at least once, then an unconditional branch to the termination test is placed
before the loop entry. With the test at the bottom, only one branch is executed on each
iteration of the loop. ‘

For example:

NDP Fortran NDP CIC++ NDP Pascal
SUBROUTINE P p() { procedure p;.
INTEGER X,.I int x,1i; var
DO 10 I=1,9 for (i=1;1i<10;1i++) X,1i: integer;
X = X+ 1 X = X+1; begin
10 CONTINUE 1 for i := 1. to 9 do
RETURN X 1= X+ 1
END end;

386 Assembly language

mov eax, 1 x=1
mov ecx, 9 ;number of loops=9%
align 4
L23
add eax,eax PXEXA+X
dec ecx ;decrement number of loops

jne L23 short ;test and branch moved to bottom of loop

3.9 Loop Invariant Analysis

Loop invariant analysis is used to speed up loops. Each loop is examined for expressions and
address calculations that do not change in the loop. These computations are moved out of the
loop and the value is stored in a register. This optimization is particularly valuable for
removing array subscripts from a loop when the subscripts are variables or expressions that
are not modified in the loop. In a small loop, all invariant expressions will be accessed with
register mode and all invariant addresses will be accessed with register indirect modes. This
optimization usually eliminates all computations of invariant expressions and addresses in
loops.

NDP User's Manual, 386/486 UNIX

'3 Optimizations 17

NDP Fortran NDP CIC++ NDP Pascal
SUBROUTINE LOOP loop () { procedure. loop;
INTEGER 1i,j,k int i,3.k: var i,j,k: integer;
i=1 i=1; begin
3=17 j=T" i = 1;
k=1 k = 1; j o= 7;
DO WHILE (I.LT.j-2) while (i<j-2) { kK 1= 15

i=i+l i=i+1; : while (i<j-2) do begin

k=k+k k=k+k; i = i+1;

END DO } k := k+k
END } end

end;

386 Assembly Language

mov eax, 1 ;i=1

mov ecx, 1 ;k=1

mov ebx, 5 ;The invariant j-2 --> constant 5
cmp eax, ebx

jge L19 short

In the source example, j is not changed in the loop, but j-2 would need to be recomputed for
each loop iteration. This loop invariant is optimized by doing the computation once outside the
loop, and using the result in the loop at each iteration.

3.10 Strength Reduction

A reduction in strength occurs when a less expensive operation (in terms of execution size or
speed) replaces a more expensive one, as happens when a multiplication replaces an
exponentiation (e.g., becomes x*x), or an addition replaces a multiplication (e.g., becomes
X+X).

Most compilers do simple strength reductions such as the conversion of multiplies and divides
into shifts. However, only the most advanced compilers do strength reductions on loop indices.
The NDP compilers do a strength reduction on loops that have an index variable that is
incremented by a constant on each iteration of the loop (such as a FOR loop). When a loop
index variable is used as the subscript for an array, most compilers will multiply the loop index
by the size of the array elements and add this offset to the base of the array. Each such
reference requires at least three instructions. In the NDP compilers, a register outside of the
loop is loaded with the address of the array element to be accessed on the first iteration of the
loop. The array access is then done using the indirect register addressing mode. On each
iteration, the element size is added to the register so that it contains the address of the element
to be accessed on the next iteration of the loop. The reduction in strength involves substituting
an addition of a constant to a register for a multiplication of the loop index by a loop invariant
value. This optimization results in a four to ten fold increase in speed.

Strength reduction and loop invariant analysis involving array subscripts are particularly
important to Fortran programmers, for whom repetitive array indexing in DO loops is common.
NDP Fortran does. the strength reductions and loop invariant analyses that many mainframe
programmers have come to expect.

NDP Fortran

SUBROUTINE MATMUL (A, B, C)
REAL A(100,100), B(100,100), C(100,100)
DO 10 I =1, 100
DO 10 J = 1, 100
A(I,J) =0
DO 10 XK = 1, 100
10 A(I,J) = A(I,J) + B(I,K) * C(K,J)

386/486 UNIX : NDP User's Manual

18 v 3 Optimizations

RETURN
END

NDP CIC++

matmul (float a[100]([100], float b[100][100], float c[100][100] {
int i,3.%k;.
for (i=0; i<100; i++) {
for (j=0; <100 J++) {
afil[(3j] = 0;
for (k=0; k<100; k++)
alill3l=alil[(j1+bli][k]I*c[31(3]:

}
NDP Pascal

type
matrix=array(1.100, 1.100] of float;
procedure matmul (a,b,c:matrix) ;
var
i,3.k: integer;
begin
for i := 1 to 100 do
for j := 1 to 100 do begin
ali,jl := 0;
for X := 1 to 100 do
ali,j] := ali,jl+bli,k)*clk.]]
end
end;

Matrix Multiply inner loop comparison in 386 Assembly Language:

L68
mov esi, [ecx]+(-4) ;Load C(K,J)
imul esi, [eax]+(-400) ;B(I,K)*C(K,J)
add [ebx],esi ;A(I+J)=A(I+J)+B(I+K)+C(K+J)
mov esi, [ecx] ;Repeat. for K+1

imul esi, [eax]

add [ebx],esi

mov esi, [ecx]+4 7Repeat. for K+2
imul esi, [eax]+400

add [ebx],esi

mov esi, [ecx]+8

imul * esi, {eax]+800 ;Repeat for K+3

add [ebx],esi

add eax, 1600 ’ ;Increment B to next address
add ecx,16 ;Increment C to next address
dec edi

jne L68 short
The strength reduction shows up in the assembly code, in the instructions:

add eax, 1600
add ecx, 16

Instead of multiplying an index by the size of the array at each step, an addition to the current
location is made.

NDP User's Manual 386/486 UNIX

3 Optimizations 19

Also note the loop unrolling optimization (See Section 3.18 Loop Unrolling, page 22). With a
loop unrolling factor of 4, 25 iterations of 4 merged loops takes the place of 100 iterations,
increasing performance by eliminating the number of times the loop control code is executed.

3.11 Dead Code Elimination

The NDP compilers will eliminate any block of code that has no predecessor block in the DFG
(i.e., there exists no path to the block) or any sequence of code that is not reachable (i.e., code
following a return statement).

Other optimizations may expose potential Dead Code Eliminations that would otherwise be
inane. Consider that constant propagation may convert a conditional jump into an
unconditional jump. This would eliminate a path out of the associated block creating dead
code. Consider the following example:

NDP Fortran NDP CIC++ NDP Pascal
SUBROUTINE P p() { procedure p;
INTEGER. X,Y int x,v¥; var
X =1 X =y =1; X, Y@ integer;
Yy =1 if (0) { begin
IF (0) THEN x=x+1; X 2= 1y

X=X+ 1 y=y+1l; y = 1

=Y + 1 ¥ if (0=1) then begin
ENDIF y=y+1; X 1= X+1;
Y=Y+ 1 return (); Yy 1= y+1
RETURN X=x+1; end;
X=X+1 } y = y+l
END end;

There are two opportunities here for dead code elimination. The first is the IF statement and
its enclosed body; the second is the code (x=x+1) following the RETURN statement. These pieces
of code will never be executed, and disappear from the generated code.

3.12 Inline Multiplication and Division

Since the instructions to do an integer multiplication potentially take nine cycles to execute, it
is often faster to do constant multiplies by a series of shifts and adds (or subtracts). For
instance, a multiply by four is a shift left by two, multiplying by five is a shift left by two
followed by an add, and multiplying by seven is a shift left by three followed by a subtract. For
an example of this, see the code under Section 3.4, Register Coalescing, page 14.

Integer division is much worse; it takes about 60 cycles to do a divide. When dividing a
constant the compiler can calculate a (floating-point) reciprocal at compile time and convert the
divide into a floating-point multiply which only takes about 15 cycles. In certain rare cases
when using 16-bit integers, the compiler can do a divide using an integer multiply and a shift.
Floating-point division can often be accelerated by calculating a reciprocal either in the
compiler (if division is by a constant), or at the head of a loop if the divisor is a loop invariant.

Consider the following example:

NDP Fortran NDP CIC++ NDP Pascal
SUBROUTINE SHIFTS shifts() { procedure shifts;
INTEGER 1, j int 1i,3; var 1,j: integer;
i=i*4 i=i*4; begin
j=3j*8 j=j*8; i = i*4;

END } i 1= j*8
end;

386/486 UNIX NDP User's Manual:

20 3 Optimizations

The compiler coded the two muitiplications in the source file, i*4 and j*8, as shifts in the
assembly file:

s

sal dword ptr [eax], byte ptr 2 J
sal dword ptr [ecx], byte ptr 4 S

3.13 Constant Propagation

The NDP compilers will back-substitute any variable vV with the constant ¢, if C was the last
value assigned to V. More simply, the compiler analyzes variable assignments and determines
if they can be propagated to constant assignments.

Consider the following code in which 1 is back-substituted in the IF statement:

NDP Fortran NDP CIC++ NDP Pascal
INTEGER. DEBUG int debug; debug: integer;
5ééUG =1 éégug = 1; éégug o= 1;
ig'(DEBUG.EQ.l) THEN ié.(debugzzl) then ({ ;é.(debug == 1) then begin
ENDIF) end;

Also consider:

NDP Fortran NDP CIC++ NDP Pascal
FLAG = 1 flag = 1; flag := 1;

SAVE_FLAG = FLAG save_flag = flag; save_flag := flag;

Instead of assigning FLAG as SAVE_FLAG, the constant 1 can be assigned to SAVE_FLAG.

3.14 Constant Expression Folding N
NDP Fortran

SUBROUTINE CONSTANTS (A)
REAL*4 A,PI,RADIUS

PARAMETER (PI=3.14,RADIUS=4.2)
A = PI * RADIUS**2

END

[NDP CIC++ doesn't have "constants" per se]
NDP Pascal

procedure constants (a: float);
const
pli = 3.14;
radius = 4.2;
var
a: float;
begin
a ¢= pi*radius*radius;
end;

386 Assembly Language

; .bf:
mov eax, [esp]+4 . .
mov dword ptr [eax],1113427699 ;pi*radius**2 computed at compile time SN
i .ef: ; ‘ J
ret ' \ﬁlj

NDP User's Manual, 386/486 UNIX

3 Optimizations 21

3.15 Common Subexpression Elimination (CSE)

NDP compilers will eliminate common subexpressions across the DFG. In addition, Global
CSE also keeps track of copy propagation such that, in the following example, expressions A+B
and C+D would be recognized as redundant:

NDP Fortran NDP CIC++ NDP Pascal
INTEGER A,B,C,D,E,F,G,H int a,b,c,d,e,f,g,h a,b,c,d,e,f,g,h: integer;
E = A+B+G e = a+b+g; e := a+b+g;
D = A d = a; d := a;
C = B c = b; e := b;
B =G b= g; b := g;
F = C+D+H £ = c+d+h; f := c#d+h;

Since A+B+G and C+D+H are redundant, C+D+H would not have to be calculated. Only the value
of E would have to be assigned to F.

3.16 Live/Dead Analysis

- Computations whose results are never used are eliminated. The NDP compilers also eliminate

dead stores. This is an extension of common subexpression elimination. Consider:

NDP Fortran

INTEGER X, Y

X

=1
Y = 2
X =Y+ Z

NDP CIC++

int x,vy;

?‘(.

i

1
2
Y

o<

i
i
+Z;

NDP Pascal

y.y: integer:;

X s
Yy
X

1;
2;
y+z;

Since X is never referenced between the two assignments, the first assignment of X may be

eliminated.

3.17 Cross Jumping (i.e., Tail Merging / Code Hoisting)

Two or more nodes in the DFG that end in the same sequence of code that have a common
successor node are reorganized to eliminate the redundant code.

Cross jumping is also.commonly called tail merging because tails of nodes are merged. Less
commonly, it is called code hoisting, for code is hoisted from one node to another.

Consider:
NDP Fortran

IF (AB .EQ. 1) THEN
A = A+l
B = B+l
CALL FOO
ELSE
B = B+l
CALL FOO
ENDIF

is reorganized to:

NDP Fortran

IF (AB.EQ.1) THEN
a=a+1
end if

B = B+1

CALL FOO

386/486 UNIX

NDP CIC++

if (ab==1) {
a = a+ly
b = b+l;
foo() ;

} else {
b = b+l;
foo():

}

NDP CIC++

if (ab == 1) a=a+l;
b = b+l;
foo():

NDP Pascal

if (ab
a :
b
foo;

end else begin
b := b+l;
foo

end;

= 1) then begin
a+l;
b+1;

on

NDP Pascal

if (ab=1) then a:=a+l;
b := b+1;
foo;

NDP User's Manual

22 3 Optimizations

In some instances, entire nodes may be eliminated. Consider:

NDP Fortran NDP CiC++ ' NDP Pascal
IF (AB .EQ. 1) THEN if (ab==1) { if (ab=1) then begin S
A = A+l a = a+l; a := a+l; N’
B = B+1 b = b+1; b «= b+1l;
CALL FOO foo(); foo;
ELSE } else { end else begin
A = A+l a = a+l; a = a+l; v
B = B+1 b = b+l b := b+l;
CALL FOO foo(); foo
ENDIF } end;

is reorganized to: ~

NDP Fortran NDP CIC++ NDP Pascal
A = A+l a = a+l; a 1= a+l;
B = B+l b = b+l; b = b+l
CALL FO0OO foo() & foo;

3.18 Loop Unrolling

If loop invariants (indices) can be determined at compile time, it may be advantageous to
duplicate (unroll) the body of a loop N times rather than making N iterations through the loop.
Execution speed increases because the looping mechanism overhead is eliminated, but at the
cost of increased code size. NDP compilers can unroll loops up to 8 times. However, unrolling
large loops may adversely affect register coloring because more contention is added to the DFG.
Also, loop unrolling can generate difficult code to: debug.

Loop unrolling is effective because it eliminates the need to execute certain pieces of code with

each iteration. A loop contains two kinds of code, the body that does the work and the loop [
control code that determines whether another iteration of the loop is needed. By determining \,,J
the number of iterations at the beginning and by unrolling the loop, it is not necessary to

execute the loop control code with each iteration.

Loop unrolling is done by merging several loop bodies into a new body that does the work of the
merged bodies. This new larger loop requires a single piece of loop control code. The number
of loop bedies that are combined inside the merged body of the unrolled loop is the unrolling
factor. The NDP compilers use an unrolling factor of four. When a loop is unrolled by a factor
of 4, four bodies and four pieces of loop control code merge into four bodies with a single piece
of loop control code.

If a loop contains more than 4 iterations, a new loop is created that iterates once for each
merged loop. If a loop contains 100 iterations, a new loop. of 25 iterations will process the
merged loop that has unrolled 4 loops. If a loop contains 103 iterations, the first 100 will be
processed as above, and the last 3 iterations will be processed separately. This last group of 3
iterations is often called the cleanup code.

There are several expenses related to loop unrolling. The size of the code can increase by as
much as a factor of five in size for unrolled loops. Another expense is the data dependency
analysis the compiler must do to avoid aliasing of cached variables. This is particularly costly
for nested loops, and may slow compilation time by as much as a factor of ten.

Because of the costs associated with loop unrolling, the compiler invokes heuristics, which only
unroll loops for which the payoff is significant. If we assume that the body takes as long to
execute as the end, loop unrolling can give you an improvement of:

2Tona* U/ (Tepg (U+1)) = 20U/ (U+1)

NDP User's Manual, 386/486 UNIX

3 Optimizations 23

where T.,, is the time to execute the end code, or loop control code, and U is the unrolling
factor. The maximum improvement available approaches 2 as U increases. With U set to 4, as
in the NDP compilers, the improvement is 1.6, or 80% of the maximum.

As the size of the loop body increases in relation to the size of the loop control code, the
improvement available by loop unrolling decreases. The NDP compilers use a heuristic that
prevents loop unrolling when the size of the loop body is more than three times the size of the
loop control code.

Unrolling is less effective when the body takes significantly longer than the loop control code to
execute. It is also less effective when the body contains floating point instructions, particularly
if they are towards the end. The Intel coprocessors may take up to 5 times as long to execute a
floating point instruction as the CPU does to execute an integer instruction. The floating point
instruction execution can overlap the execution of integer instructions. If the floating point
instruction is the last instruction in a loop body, the loop control end code can execute while
the floating point instruction is still executing. Here, eliminating the end code will not result in
a performance improvement. With a Weitek coprocessor, this overlap does not occur, and loop
unrolling can lead to significant improvements. See Section 3.10; page 17 for an example of
loop unrolling.

3.19 inliner

Microway's Inliner is a general purpose utility that replaces a call to a function with the logic
contained inside that function. This avoids the overhead of prolog and epilog code inside the
function, register saving and restoring, with the potential cost of increased code size. Inlining
of functions can increase the potential for other optimizations also, such as loop optimizations
(if the call is in a loop), copy propagation, constant folding, and instruction scheduling.
Inlining is considered an optimization because generally its correct use increases execution
speed of the resultant module.

Microway's Inliner is. available for all NDP languages. Syntactically, the inliner works
differently for each of the NDP languages. In C++, the type qualifier inline designates that a
function is to be inlined. In C and Pascal, the type qualifier -Inline designates that a function
is to be inlined. In Fortran, command line options are used. Command line options also may
be used as well as the respective type qualifiers for C, C++, and Pascal. (See Section 2.3, page 6
fer switches for using the inliner.)

There are various issues that must be addressed when considering the inlinability of a
function:

Size vs. Frequency of Use

Recursiveness.

Definition of Function is Exported/Imported/Static
Address. of Function Taken

Is it a Nested Function? (in Pascal)

e e o o o

3.19.1 Size vs. Frequency of Use

Small frequently used functions are the best candidates for inlining. The cost of register saving
and restoring, and prolog and epilog code execution, must be weighed against the time spent in
the body of the function. It is the programmer's responsibility to choose wisely which functions
are to be inlined. A good profiler may aid in this decision process.

3.19.2 Recursion

Functions that are recursive are not inlined.

386/486 UNIX NDP User's Manual

24 3 Optimizations

3.19.3 Definition of Function is Exported/imported/Static
Functions that have their definition exported may be inlined, but must still be defined.

Functions that have their definition imported may be inlined. Functions that are static may be

inlined and the definition may be discarded.
A general problem with inlining is that a function definition is not available at compile time.
Consider this problem in C|C++:
#include <string.h>
foo () { :
memcpy (sl,s2,size);

}

memcpy () is declared as external in string.h and its definition is not seen until link time.
Any library routine or routine whose definition is imported cannot be traditionally inlined.
Seeing this limitation, Microway has provided a general solution.

A library archive file is created when inlining is activated with -inline. Routines whose
definitions are imported can be inlined because the inlining database stores each routine in a
library (. in1) file and retrieves it as required as compilation progresses.

3.19.4 Address of Function Taken

Functions whose addresses are taken may be inlined. The definition may not be discarded, so

an address is. still available.

3.19.5 Nested Functions

Only Pascal may contain nested procedures. As a rule, nested procedures that are contained
within procedures that are inlined, are inlined as well. In the instance that the nested routine
must be defined, it is cloned, and multiple copies of the cloned procedure may exist.

NDP User's Manual 386/486 UNIX

3

C

4 Runtime Organization and
‘Numerics

This chapter details runtime organization and numerics as they relate to the NDP 386/486
compilers.

4.1 Lower Level Characteristics

The Intel 80386/80486 memory is byte addressed with 32-bit addresses. Bytes are ordered
with the least significant byte of a multiple byte value stored at the lowest address (little
endian), the opposite of the IBM 370. Bits are numbered with bit zero as the least significant
bit.

Floating point values are stored in IEEE 854 format (32- and 64-bits), with the least significant
byte at the lowest address. Character encodings are ASCII. The use of IEEE 854 and IEEE
754 are interchangeable in this discussion.

4.2 Integer Data Type

An 80x86 integer is a 32-bit signed value in two's complement form. ng"e 4-1 lists two
character and six integer types and their values.

‘ Type Range

 signed character -128 to 127

' unsigned character 0 to 255

- short integer -32,768 to 32,767

| unsigned short integer 0 to 65,535

~integer -2,147,483,648 t0 2,147,438,647
. unsigned integer 0 to 4,294,967,296

- long integer -2,147,483,648 to 2,147,428,647
- unsigned long integer 0 t0 4,294,967,296

Figure 4-1. Character and Integer Types

4.3 Single Precision Real

A single precision real data type is a 32-bit binary floating-point number. Bit 31 is the sign bit
(s in the example); bits 30..23 are the exponent (e); and bits 22..0 are the fractional part (£).
The values for single precision real are IEEE-854-Std conformant; they obey the following
rules:

I.Ife = 0and f <> 0,0re = 255, then a floating-point source-exception is generated.

2.If0 < e < 255, thenthe valueis -1s * 1.f * 2e-127. (The exponent adjustment 127 is
called the bias.)

3. Ife = 0and f = 0, then the value is signed zero.
See Figure 4-2 for the special values of NaN's, INF's, and other anomalies.

26 4 Runtime Organization and Numerics

31 22 0
lsl e 1] | £ 1

s = Sign of Fraction (1 bit)
e = Biased Exponent (8 bits)
f = Fraction (23 bits)

Single Precision Real

4.4 Double Precision Real

A double precision real data type is a 64-bit binary floating-point number. Bit 63 is the sign
bit; bits 62..52 are the exponent; and bits 51..0 are the fraction. A double precision value
occupies an even/odd pair of floating-point registers. Bits 31..0 are stored in the even-
numbered floating-point register; bits 63..32 are stored in the next higher odd-numbered
floating-point register. The values for double precision real are IEEE-854-Std conformant:

l1.Ife = 0and f <> Oore = 2047, then a floating-point source-exception is generated.

2.f0 < e < 2047, thenthevalueis -1s * 1.f * 2e-1023. (The exponent adjustment
1023 is called the bias.) '

3.Ife = 0and £ = 0, then the value is signed zero.

63 51 0

Ls | e | £ |

s = Sign of Fraction (1 bit)
e = Biased Exponent (11 bits)
f = Fraction (52 bits)

Double Precision Real

NDP User's Manual 386/486 UNIX

4 Runtime Organization and Numerics 27

4.5 Single and Double Real Encodings
Figure 4-2 shows both single and double real encodings.

| Biased Significand
i Class Sign Exponent fE-ff*
; | . 0 11..11 11..11
P S‘: Quiet 0 11::11 11:.11
0 D . 0 11..11 01..11
s | N |Signalling 11::11 00::01
I Infinity 0 11..11 00..00
T - Normals 0 llZIlO 111211
| | 0 00::01 00::00
v iDenormals 0 OOIIOO 11:211
E | R | 0 00::00 00::01
E Zero 0 00..00 00..00
A Zero 1 00..00 00..00
N L Denormals 1 00::00 00::01
E 1 00..00 11:..11
e a1 1 00. .01 00..00
A 3 1 11..10 11..11 |
T Infinity 1 11..11 00..00 |
I - . 1 11..11 00..01 |
v g Signalling 11::11 01::11 |
B . 1 11..11 10..00 i
; N Quiet 1 11::11 11::11

The integer bit of the significand is implied and not stored. For single precision, the biased
exponent is 8 bits and the significand is 23 bits; for double precision, the biased exponent is 11
bits and the significand is 52 bits.

Figure 4-2. Real Encodings

386/486 UNIX NDP User's Manual.

28

4.6 Language Data Types

Figure 4-3a shows the encodings for Fortran's data types.

4 Runtime Organization and Numerics

' Data Type Size (Bits) Alignment
BYTE 8 8
CHARACTER*1 8 8
CHARACTER*n 8*n 8*n
LOGICAL 32 32

LOGICAL*1 8 8

' LOGICAL*2 16 16

- LOGICAL*4 32 32
INTEGER {(default) 32 32

. INTEGER (switch -i2) 16 16
INTEGER*1 8 8
INTEGER*2 16 16

' INTEGER*4 32 32
REAL 32 32
REAL*4 32 32
REAL*8 64 64
DOUBLE PRECISION 64 64
COMPLEX 64 32
COMPLEX*8 64 32

 COMPLEX*16 128 64 ﬁ

- DOUBLE COMPLEX 128 64

Figure 4-3a. Fortran Data Types

Figure 4-3b shows the encodings for CIC++'s data types.

' Data Type Size (Bits) Alignment
. char 8 8
| char[n] 8*n 8*n
- short 16 16
long 32 32
int 32 32
float 32 32
 double 64 64

Figure 4-3b. CIC++ Data Types

Figure 4-3c shows the encodings for Pascal's data types.

Data Type Size (Bits) Alignment
‘ char 8 8

boolean 8 8
| integer 32 32
- float 32 32
~real (switch -P3) 32 32
' real (default) 64 64

double 64 64

Figure 4-3¢. Pascal Data Types
NDP User's Manual:

386/486 UNIX

4 Runtime Organization and Numerics _ .29

4.7 Internal Registers

The registers described below are those of the 80386 SX, 80386 DX, 80486 SX, and 80486,
whose register set also includes the registers of the 80487SX.

The register set of the 80386/80486 appears in Figure 4-4.

General Purpose Registers

31 15 7 Q
E?X AH ?X AL |
E$X< DH ?X DL
E$X CH %X CL
E?x BH ?X BL
- E?P BP
Eil ST
E?I DI
EiP Sp
Segment Registers

15 7 0

CS (Code Segment)

SS (Stack Segment)

DS (Data Segment)

ES (Data Segment)

FS (Data Segment)

GS (Data Segment)

Status and Instruction Registers
31 23 15 7 0

EFlags

EIP (Instruction Pointer)

Figure 4-4. Applications: Register Set

4.7.1 General Purpose Registers

As Figure 4-4 shows, there are eight general-purpose registers. Each of these includes another,
smaller register located in its lower word. In the cases of EAX, EBX, ECX and EDX, the lower
word register is further divided into two registers of a single byte each.

386/486 UNIX NDP User's Manual

30 4 Runtime Organization and Numerics

All eight general-purpose registers can be used with logical, most integer math, and most 32-
bit addressing instructions. Many also have special purposes assigned to them:

EAX Extended (dword) Accumulator register. Certain instructions, such as MUL and
DIV require the use of EAX as a source or destination register. Other
instructions, including MOV, treat EAX or AX specially, having a special,
shortened, opcode when it is a destination or source.

AX (word) Accumulator register. Usage of AX is similar to that of EAX, but applies in
: 16-bit code. Additionally, it is used for ASCII adjust instructions.
AL (the Accumulator's Lower byte). Along with AX and EAX, AL is used as

destination and source for IN and OUT instructions for reading from and writing
to ports. AL is used for decimal adjust instructions.

EBX/BX Extended Base register and base register. BX is used as a base in 16-bit
addressing (not supported by the NDP compilers, which do all their work with
32-bit addressing).

ECX/CX Extended Counter register and Counter registers. ECX and CX are used with
LOOP instructions and string instructions for that purpose.

EDX/DXx Extended Data Register and Data Register. EDX is used for the high dword of the
DX dividend for DIV instructions. DX is the lower word of EDX. It is used as for
the high word of the dividend for word-sized DIV instructions.

ESP/EBP Extended Stack Pointer and Extended Base Pointer. ESP and EBP are used to
point at the stack. ESP points to the last value placed on the stack. EBP is often
used to point at a stack frame. The stack grows downward. On entry into a
routine, ESP points at the return address and parameters are above ESP. If
there are no local automatic variables, parameters may be accessed through EsP
where there are local variables or a stack frame may be created by setting EBP to
a value relative to ESP's on entry (ESP's entry value is usually 8) and subtracting
the size of the frame from Esp. All references to local automatic variables and
parameters can then be made through EBP.

SP/BP (word) Stack Pointer and Base Pointer. SP and BP are natural to 16-bit code,
which requires a 16-bit stack. They must not be used in 32-bit code, which
requires a 32-bit stack.

ESI/EDI Extended Source Index register and Extended Destination Index register. ESI
and EDI are used to point at the sources and destinations of a variety of
instructions, such as REP MOVSD.

SI/DI Source Index (word) register and Data Index register. SI and DI use 16-bit
addressing, and are not particularly useful in most 32-bit code.

EIP Extended Instruction Pointer. Instructions execute one by one as the EIP points
to them. EIP is not accessed directly but is updated as instructions execute
depending on their nature and size.

4.7.2 Segment Registers

Cs, Ds, Es, Fs, Gs and ss hold segment selectors for protected mode segments. In real mode
programs, they hold segment addresses, which are distinctly different in character from
segment selectors. A segment selector is not an address; it is a handle, or, perhaps more
accurately, it indexes into a lookup table. In addition, protected mode segments are not
contiguous in physical RAM, but are paged. Address decoding can, for practical purposes, be
regarded as instantaneous.

cs Holds the descriptor of the Code Segment. Memory accessed through Cs cannot
be written to, but can be executed as instructions.

NDP User's Manual 386/486 UNIX

4 Runtime Organization and Numerics : 31

Ds - Data Segment. Most addresses held in general purpose registers act through it,
unless there is an address segment override associated with the instruction.

ES Extra Segment. It is used with EDT or DI for string MOV instructions.

Fs, GS New segments in the 80386. They are used by placing address segment override
bytes on the instructions that access memory through them.

ss Stack Segment

NDP compilers expect called subroutines to respect the values in EBX, EST, EDI, EBP, ESP and
all segment registers. This means that a subroutine must restore all values it finds in the
segment registers it uses.

4.7.3 The 80386/80486 Flags Register
Figure 4-5 shows the 12-bit 80386/80486 flags register, called EFLAGS.

0 31 S = Status Flag, C = Control Flag
0 X = System Flag
8 . Note: 0 or 1 indicates Intel Reserved.
5 Do not define.
ol
0]
0]
0 23
O i
0
0
0]
0|
VM | X Virtual 8086 Mode
RF | - X Resume Flag
O 15 — 16-
NT bit X _Nested‘ Task Flag
10 | flags = YO
PL | ' reg- Privilege Level
OF e S Overflow
DF C Direction Flag
'IF X Interrupt Enable
TF S Trap Flag
SF 7 S Sign Flag
ZF | S Zero Flag
0
AF | S Auxiliary Carry
0]
PF | S Parity Flag
1
CF | 0 - S Carry Flag
Figure 4-5. EFLAGS Register
VM Virtual Mode flag. VM is not usefully accessed in protected-mode code.

386/486 UNIX NDP User's Manual

32

RF
O NT

IOPL

IF

DF

TF
CF
PF
AF
ZF
SF

OF

4 Runtime Organization and Numerics

Resume Flag. RF temporarily disables debug exceptions so an instruction can
be restarted successfully. It is useful to programmers building debuggers.

Nested Task flag. NT is useful for controlling interrupt returns in nested tasks.
This flag is not normally useful to applications programmers.

I/0 Privilege Level. An application that finds it useful to adjust this 2-bit field

- probably will not be able to do so. IOPL defines the application's rights to do

I/0 through IN, INS, OUT and OUTS instructions and to change the IF flag with
CLI and STI instructions.

" Interrupt-enable Flag. The operating system or DOS extender determines

whether the application has access to IF. IF's purpose is to disallow or allow
interrupts.

Direction Flag. DF is the only flag on the process of the control flag type. Its
value determines whether the index registers, DI and SI, auto-increment or
auto-decrement with string instructions.

Trap Flag. Variously included by Intel as a status flag or not, TF is used to set
single stepping for debuggers.

Carry Flag. CF is set on high-order bit carry or borrow. Otherwise arithmetic
operations clear it.

Parity Flag. PF is set or cleared depending on whether the low-order eight bits of
a result contain an even or odd number of set bits.

Adjust Flag. AF is set or cleared on a bit carry or borrow involving the high-
order nibble in the AL register.

Zero Flag. ZF is set or cleared depending upon whether the result of an
operation is. 0. ‘

Sign Flag. SF is set or cleared depending on the sign of the result of an
operation.

Overflow Flag. OF is cleared or set depending on whether the result of an
operation is within bounds of representation.

4.7.4 Systems Control Registers

Applications programs do not normally reference the systems,'centroli registers, CRO, CR1, CR2
and CR3. Whether they are accessible depends on the operating system or DOS extender.

CRO contains six one-byte fields called system control flags. These are as follows:

PE
MP
EM

TS

ET

PG

Protection Enable flag. Setting this flag puts the system into protected mode.
Math Present flag. MP controls the function of the WAIT instruction.

EMulation flag. EM indicates whether math coprocessor functions are to be
emulated.

Task Switched flag. The system sets TS as tasks are switched. It is used in
connection with: coprocessor functions.

Extension Type, is used to indicate the type of math coprocessor (80287 or
80387).

PaGing flag, is used to indicate whether the processor uses page tables to
translate linear addresses into physical addresses.

The remainder of CRO is reserved.

CR1 is reserved.

NDP User's Manual 386/486 UNIX

Nt

4 Runtime Organization and Numerics a3

CR2 holds the page fault linear address. It is used for handling page faults.

CR3 is only used when PG is set. It holds the page directory base register, and is used for
locating the page table for the current task.

4.8 The 80387 Register Set

The 80387 register set, shown in Figure 4-6, includes eight 80-bit data registers; three 16-bit
registers: the control register, the status register, and the tag word register. The Intel 80486
has a built-in 80387-compatible FPU.

80387 DATA REGISTERS
79 78 64 63 ' 0
RO | SIGN |EXPONENT | SIGNIFICAND ‘
R1 ‘
R2 |
R3 , 3
R4 | ; |
R5 ‘ ‘
R6:3 ; |

R7 % \ |

15 0

CONTROL REGISTER

STATUS REGISTER

TAG WORD

Figure 4-6. 80387 Register Set

4.8.1 80387 Data Registers

The 80-bit data registers are referred to in two different ways. As actual hardware they are RO
through R7 (or, historically, ST0 through ST7 -- note lack of parentheses). Software sees them
as a stack through which data moves as it is pushed on or popped off ST (0) through ST (7).
The most commonly used forms of instructions operate on ST (0), which is the top of stack.

The first datum loaded normally goes into ST (0). When a second datum is loaded, the first is
normally "pushed" inte: ST (1) and the second in' ST (0). A third will "push" the first into ST(2),
and the second into ST (1). What is happening is that a pointer to the top of the stack is
decrementing.

NDP compilers make special use of registers in the floating point unit. Specifically, functions
returning real values, when they are compiled to run on the Intel floating point unit, always
leave their return values in ST (0) . Special optimizations also can cause special use of
registers. See Chapter 5 for further discussion of optimization.

4.8.2 The Status Word Register

The Status Word Register, shown in Figure 4-7, contains several flags indicating the status. of
the coprocessor chip. Also, four bits of the Status Word form a field called the Condition Code,
and three form the Top of Stack Pointer. The Top of Stack Pointer points at one of the 80-bit
data registers, RO through R7, which is associated with ST (0). The Condition Code, in
connection with the FX2M instruction, can be used to discover what kind of number is in
ST(0).

386/486 UNIX ' NDP User's Manual

34 4 Runtime Organization and Numerics

~__B| 15 Busy
C3 Condition Code
LT
of Top of Stack Pointer
3]
1C2 Condition Code
Cl Condition Code
co | Condition Code
ES | 7 Error Summary Status
SF Stack Fault
PE | = Excep- Precision
UE | tion Underflow
OE | ! flags Overflow
ZE Zero Divide
DE | Denormalized Operand
IE | o Invalid Operation

Figure 4-7. 80387 Status Word Register

Use the Condition Code, shown in Figure 4-8, to learn about the results of an operation.

NDP User's Manual 386/486 UNIX

4 Runtime Organization and Numerics : 35

C3 C2 c1 co Value at TOP
(-0 0 0 0 +Unsupported
[i
0 0 0 1 +NaN.
0 0 1 0 ~-Unsupported 5,
0 0 1 1 ~NaN
0 1 0 0 +Normal
0 1 0 1 +Infinity
0 1 1 0 -Normal
0 1 1 1 -Infinity
1 0 0 0 +0
1 0 0 1 +Empty
1 0 1 0 -0
1 0 1 1 -Empty
1 1 0 0 +Denormal
Q-/ ‘ 1 1 0 1 +Unsupported
1 1 1 0 -Denormal
1 1 1 1 —Unsupported ;

Figure 4-8. Condition Code Defining Operand Class

When used in connection with the FXAM instruction, the Condition Code helps to reveal what
kind of number is in ST (0). Consider Figure 4-9.

386/486 UNIX NDP User's Manual

36

4 Runtime Organization and Numerics

Instruction

C1(A)

c2(C)

Reduction

FPREM, FPREM1 Q2 i Q0 : Q1 0 = complete
{ | or O/U# 1 = incomplete
FCOM, FCOMP, FCOMPP, Zero
FTST, FUCOM, FUCOMP, Result of Comparison or O/U#% Operand is not
. FUCOMPP, FICOM comparable.
FICOMP; FXAM i Operand Class Sign or O/U# Operand Class
FCHS, FAB, FXCH,
FINCTOP, FDECTOP,
Constant loads UNDEFINED Zero or O/U# UNDEF INED
FSTRACT, FLD, FILD,
FBLD, FSTP
(ext real)
: |
FIST, FBSTP, FST |
FRNDINT, FSTP, FADD,
FMUL, FDIV, FDIVR, UNDEFINED Roundup
FSUB, FSUBR, FSCALE, or O/U#
FSQRT, FPATAN
F2XM1, FYL2X,
FYL2XP1 :
FPTAN, FSIN, FCOS, UNDEFINED Roundup Reduction
FSINCOS or O/U#% 0 = complete
undefined 1 = incomplete
if C2 =1

FLDENV, FRSTOR Each bit loaded from memory

FLDCW, FSTENV,
FSTCW, FSTSW, FCLEX,
FINIT, FSAVE

UNDEFINED

Figure 4-9. Condition Code Interpretation

4.8.3 The Control Word Register

The Control Word register, illustrated in Figure 4-10, is used to regulate the actions of the
coprocessor. There are six bits in the control word called exception masks. When an exception
is masked, the corresponding sticky bit in the status word is set; no other action is done. Each
mask bit corresponds to an exception flag in the status word, described above. :

NDP User's Manual 386/486 UNIX

4 Runtime Organization and Numerics 37

X| 15 Reserved
X| Reserved
X Reserved
X (Infinity Control)*
RC | Rounding
* Control
PC| Precision
Control
X| 7 Reserved
O X| Reserved
PM | | Excep- Precision
UM ! tion Underflow
OM : Masks Overflow
ZM | ‘ Zero Divide
DM | | Denormalized Operand
IM | O Invalid Operation
Precision Control ’ Rounding Control
00 - 24 bits (single precision) 00 - Round to nearest or even
01 - (reserved) 01 - Round down (toward -o)
10 - 53 bits (double precision); 10 - Round up (toward +o)
11 - 64 bits (extended precision) 11 - Chop (truncate toward O}

*This "infinity control" bit is not meaningful to the 80387. To maintain compatibility with
the 80287, this bit can be programmed; however, regardiess of its value, the 80387 treats
infinity in the affine sense (-oo, +oo).

A Figure 4-10. 80387 Control Word Format
PM Precision Mask.

UN Underflow Mask.

OM Overflow Mask.

M Zero: divide Mask.

DM Denormalized operand Mask.
IM Invalid operation Mask.

Applications produced by NDP compilers run, by default, with all exceptions masked except
invalid operations.

Two bits of the control word regulate precision control. These are present to satisfy IEEE
definitions of compliance. They are set to highest precision by default. There is no benefit to
setting them to reduced precision; the only result of setting them to reduced precision is a loss
of precision.

Two bits of the control word control rounding. If both bits are set to 0, rounding is toward
nearest or, in the event there is no nearest, toward even. If they are 01, rounding is toward
-infinity; if they are 10, rounding is toward infinity; if they are 11, rounding is toward O.
Default is round nearest.

The infinity control bit is obsolete and ignored.

The Tag Word describes the types of values in the 80-bit data registers. It splits into eight 2-bit
fields, starting at the least significant, numbered TAG (0) through TAG (7). These refer to the
registers as addressed as hardware, i.e., TAG (0) refers to R0, TAG(1) to R1, etc. If a tag field
value is 00, then the value in its register is called a "valid," that is, it is a normal or denormal,

386/486 UNIX NDP User's Manual

38 4 Runtime Organization and Numerics

but not zero. If the value is 01, then the number in the register is zero. If the value is 10, then
the number in the register is a NaN or an infinity.

4.9 Weitek Architecture | \.)

The Weitek coprocessors (1167, 3167, 4167) have a register set consisting of thirty-two 32-bit
registers, which can be treated in pairs as 64-bit registers, and a 32-bit Process Context
Register. Figure 4-11 illustrates these below.

WDO --> WSO (Restricted) WsS1
WD2 --> WS2 WS3
WD4d --> WS4 WS5
WD30 --> | WS30 | WS31

Figure 4-11. WTL Register File

4.9.1 Weitek Data Registers

The thirty-two single precision registers are named ws0 through ws31. Sixteen double
precision registers are all even-numbered, and are named wWDO through wD30. Each double
precision register is actually an even/odd numbered pair of single precision registers. wso0 and,
hence, WD0 are restricted use registers, having special purposes for some instructions.

The NDP compilers use WS2 and WD2 for the return values. of single precision and double
precision functions respectively. Special usage of other registers depends upon optimizations.

C)
4.9.2 The Weitek Process Context Register
The Process Context Register consists of five fields, MDSEL, MD, AE, EM and CC.
MDSEL

MDSEL, the MoDe SELect field, (bits 28-31 of the Process Context Register), determines which
fields in the Process Context Register are to be changed on reinitialization. On reinitialization, -
the EM, CC and AE fields are always updated. If MDSEL is set to 0000, the MD field is also
updated, but if MDSEL is set to 1100, it is not. Weitek does not define other values.

MD

MD, the MoDe field, bits 25-27 of the Process Context Register, determines what method of
rounding to use. It has two fields, RND, bits 26-27, and IRND, bit 25. If RND is 00, rounding is
toward nearest; if 01, rounding is toward zero; if 10, rounding is toward infinity; if 11, rounding
is toward -infinity. If IRND is O, integers are rounded in the same direction as reals; if IRND is.
1, integers are rounded toward zero.

AE

AE, the Accumulated Exception field, consists of eight 1-bit flags indicating exceptions that
have occurred while executing code. Many of these are practically identical to 80387
exceptions that are similarly named; refer to Section 4.8.2, page 33 for descriptions of these
exceptions.

They consist of the following:

DE Data chain Exception flag. This is obsolete and unused.

NDP User's Manual 386/486 UNIX

(\\
4y
i
/

4 Runtime Organization and Numerics 39

UOE Undefined Opcode Exception flag. Indicates an undefined operation was:
attempted. This is always a problem, indication something wrong with the code
in the executing program at the time of the exception. Causes could range from
bad code generation by a compiler or assembler to runaway pointers in the

application.
PE Precision Exception flag. Similar to that of the 80387.
UE Underflow Exception flag. Similar to that of the 80387.
OE Overflow Exception flag. Similar to that of the 80387.
ZE Zero divide Exception flag. Similar to that of the 80387.
EE Exception Enable Flag. Used to enable or disable exception handling.
IE 7 Invalid Operation Exception flag. Similar to that of the 80387.
EM
EM Exception Mask field. Consists of seven 1-bit flags indicating masking of related
exceptions. These include the following;:
DM Data chain Flag. This is obsolete and unused.
UOoM Undefined Opcode Flag. Masks UOE's, described above.
PM Precision Flag. Masks precision exceptions, described above.
UE Underflow Flag. Masks underflow exceptions, described above.
OE Overflow Flag. Masks overflow exceptions, described above.
ZE Zero divide Flag. Masks zero divide exceptions, described above.
1E Invalid Operation Flag. Masks invalid operation exceptions, described above.
cc
cc Condition Code field. Consists of three bits, numbered 8 (called c0), 10 (called

C1) and 14 (called 7), of the Process Context register. It is used for comparing or
testing numbers. Its meaning is as follows:

If C0=0, €2=0, and Z=0 the result is "Greater than."
If C0=0, C2=0, and Z=1 the result is "Equal."

If cC0=1, C2=0, and z=0 the result is "Less than."

If C0=1, c2=1, and z=1 the result is "Unordered."

4.10 Numeric Exceptions

For our purposes, a numeric exception is a numeric error occurring during operations that
take place in the body of the program (i.e., inline) rather than within a library routine. In this
limited sense, numeric exceptions apply only to operations a single coprocessor instruction
does and the coprocessor's direct and immediate response to an error condition. Algebraic
operations (addition, subtraction, multiplication, division and square roots) are done inline
whereas trigonometric or transcendental operations are not. Our definition includes division
by zero and taking the square root of a negative number but excludes taking the log of a non-
positive number.

For errors that happen in a library routine, software in the library handles errors during
trigonometrics and transcendentals and the coprocessor handles errors during algebraic
operations. Most of the library routines have built-in safeguards that prevent out-of-range
arguments from being passed to the coprocessor. In the NDP compilers, these move an error
value into an internal compiler variable whose value can be obtained by calling the function
geterrno (in Fortran), or checking the variable errno in CIC++. The return values pertinent

386/486 UNIX NDP User's Manual

40 ' 4 Runtime Organization and Numerics

to math functions are 33 (error in domain) and 34 (error in range). You will have to monitor the
value returned at key points by geterrno to discover whether your program has suffered any
errors. You should be aware, however, that these rules are not absolute. For more information
on the NDP compilers' response to exceptions within a library routine, look under the routine's
name in the appropriate NDP Library Reference Manual.

The Intel and Weitek numeric coprocessors respond in very similar ways. -- for the most part
identically -- to numeric exceptions. Both types have a default response that takes place
entirely within the chip and a customizable response that takes place in software, outside the
chip. The programmer can choose which response the chip will take by masking exceptions or
unmasking them. For convenience, we call the former passive error handling and the latter
active error handling. If exceptions are unmasked, an error condition will cause the
coprocessor to generate an interrupt request. The exact route the request takes varies among
machines, and usually need not concern the applications programimer.

Below is the list of exceptions recognized by the Intel 80387 and 80860:

1. Invalid Operation
Denormal Operand

Zero Divide:

Overflow

Underflow

Precision (inexact result)

DU s

The sections on coprocessor architecture (Sections 4.8, 4.9) expand on the nature and meaning
of each of these errors.

Computational operations in the mathematics realm differ fundamentally from computational
operations in the cybernetic realm (j.e., within computing machines). For example, numbers
are continuous and unlimited but the operands of computing machines are discrete and
bounded. What constitutes a numeric error and how to handle it properly turns out to be an
very complex question for the NDP environment. A division by zero is unquestionably a
mathematical error but in the cybernetic world can be important -- see the example in Section
4.11, page 42, of a parallel network of resistors that takes advantage of both zero and infinity
in duplicating the real world behavior of the network. Perhaps that is why computer jargon
uses the term "exceptions” instead of "errors." The many "provinces" of the cybernetic realm
can differ greatly among themselves, as many of our customers discover while porting
applications from mainframes to the NDP environment. Because the IEEE. number system is
unlike any other they have encountered on a computer before, an error in an NDP environment
is far from an error on an old-fashioned mainframe. For example, operations like division by
zero and division by infinity are well defined. The results generated by each can even be
signed, making it possible to compare infinities.

Not only does the user have a large say in determining what an error is, but virtually everyone
disagrees on what should and should not be treated as an error. To accommodate differing
views of what constitutes an error, we made it possible for the user either to change the
response characteristics of the default handler, or to write his/her own. The default exception
handler that is part of the NDP runtime environment employs a combination of active and
passive responses. It unmasks the exceptions considered most severe, allowing the
coprocessor's default response for the others. We chose this because the passive response of
the coprocessor is the most reasonable for most exceptions. Many exceptions even produce
results that are "self-healing" when used with the reciprocal operations. If a masked: error
occurs at any time during the program, a Microway NDP language routine will print out an
error message when the program ends.

You may want to modify the compiler's default exception-handling response without going so
far as to write a custom exception handler. Consider the invalid operation exception such as
trying to take the square root of a negative number, which has no mathematical or cybernetic
meaning in the world of real numbers. The compiler normally unmasks this exception; if such
an error occurs, the program prints an error message and halts. In your particular application,
you may want the program to proceed to the end of a certain series of calculations -- perhaps

NDP User's Manual 386/486 UNIX

f\«_/’

4 Runtime Organization and Numerics 41

in a curve-fitting program -- even if such an exception occurs. You can mask the invalid
operation bit, thus enabling the NDP's default response to an invalid operation, which is to
return a number known as an indefinite real, one of the "quiet NaNs," and continue (for more
on these, see Section 4.11, on IEEE numbers, page 42). If an indefinite real enters a
calculation stream, it propagates to the end, allowing you to test the final result. If it is an
indefinite real, you can adjust and repeat.

4.10.1 NDP Compilers' Handling of Numeric Exceptions

The coprocessor's default response to an exception is to emit a result that is appropriate for the
error that has just occurred, to set the appropriate bit in the status register, and to continue
processing. For example, division by zero will produce infinities while invalid operations such
as the square root of a negative number will produce a NaN (Not-a-Number). Both infinities
and NaNs have special binary representations in the IEEE format (see Section 4.11, page 42).
Any binary numeric operation that has a NaN as an argument produces a NaN as a result, i.e.,
once a NaN enters a calculation stream it propagates to the end. For the most part, the chip's
default responses result in acceptable -- even innocuous -- consequences for all operations
except invalid operations and denormals.

To find errors, the NDP compilers have a filter in place at all locations, including the PRINT and
WRITE routines, at which binary reals are converted to strings. When the filter finds a NaN or
infinity, it outputs "NaN" or "Infinity" rather than a string of digits that might be mistaken for a
legitimate value. At the end of the program, the exiting routine checks to see if any errors
occurred. If so, a brief message to that effect is sent to the standard output device before the
program returns to the operating system. However, for invalid operations (and, with a Weitek,
undefined opcode and data chain exceptions), the NDP compilers' response is active exception
handling, i.e., an interrupt is generated immediately. Information about the state of the
coprocessor goes to the standard output device, and the program returns to the operating
system. The programmer can change the default behavior by leaving the default handler in
place and masking or unmasking exception response bits or by substituting his or her own
exception handler (See Section 2.6. 1, Exception Handling).

The default active exception handling response of an NDP program is roughly the same as that
found in many runtime environments -- dump some information about the state of the
machine where the exception occurred and exit the program. This minimal response to
exceptions may be perfectly adequate for any given program. On the other hand, it may be too
harsh, as even invalid operations do not necessarily indicate a serious program flaw. In many
real world problems that involve iterative solutions, especially in simulations of physical
systems, the systems being simulated tend to wander into regions that generate invalid
numerical operations. In these situations, it is often possible to come up with a reasonable
response to the exception that will deflect the simulation back into a "stable" region. For
example, one Microway developer recalls a case in which he was taking the square root of the
difference of two large numbers that were almost identical. The simulation in question would
converge only when the absolute value divided by 2 replaced negative differences. For those
users who require more than the minimum, we have provided high-level functions with which
the users can write their own exception handlers.

Before field errors occur, the user can place checkpoints in the program. For example, one can
test a divisor against zero before dividing and pay a time penalty for doing so if this makes
sense in a particular program. As a practical matter, this may often be perfectly adequate. On
the other hand, an advantage of active exception handling is that it is never invoked unless an
error occurs. A further advantage is that the user can craft his own exception handler from
high-level routines provided in this product by Microway.

The programmer is in the best position to decide whether to use active handling, passive
handling, or placing checkpoints. The many issues that might be encountered in a custom-
written exception handler are beyond the scope of this manual. We touch upon them only
insofar as they may help in the understanding of the error handling functions provided with

386/486 UNIX NDP User's Manual

42 4 Runtime Organization and Numerics

the compiler. Successful use of these functions presupposes some knowledge of the

coprocessors' underlying architecture. Using the functions does not necessarily require a full
understanding of the often esoteric issues involved in exception handling. However, those who: .
want a fuller understanding should read the next section. L J

4.11 An Introduction to the IEEE Number System

This section is for users who want to write their own exception handlers. Users planning to
use the Microway default exception handler also may find the following discussion useful for
understanding and responding to error messages such as "invalid operation.” Invalid
operation, under IEEE specifications, does not include overflow, underflow, divide by zero, or
divide by infinity.

Understanding NDP exceptions is inseparable from understanding IEEE-754 floating-point
numbers, in particular, the set of special values that the IEEE system recognizes, handles and
produces. These values simplify and improve the handling of errors but complicate the idea of
what an error is. For example, the following formula algebraically determines the resistance of
a network of parallel resistors: .

Rt = 1/(1/R1 + 1/R2 + 1/R3)

It is well determined where any of the resistances in the network are zero (i.e., the total

resistance of the network is zero when any of its components is zero). Normal floating-point

number systems, however, do not handle this case because it requires that division by zero

generate an infinity and that division by infinity generate a 0. In a normal numeric system

there are zeros but no infinity, and dividing by zero is always an invalid operation. The

numbers plus and minus zero are special (i.e., they have their own special representation)

along with the numbers plus and minus infinity. The existence of special numbers at both

extremes of the number system (instead of at zero only) are what set the IEEE number system

apart from the older systems used by micros and mainframes. Besides signed zeros and RN
infinities, the special numbers include a group of numbers called denormals that have reduced \\/}
precision, a group of numbers called NaNs that are not numbers at all (i.e., they are

combinations of bits that fall outside the domain of the valid numbers and are intended for

special purposes), and a special NaN called an indefinite real.

4.11.1 IEEE Representation of Real Numbers

IEEE floating-point numbers are binary: they include a binary fraction that is multiplied by 2
raised to a binary power and the number -1 raised to the power O or 1 (which controls the
sign). A binary fraction is easy to interpret: the digits to the left of the binary point are an
ordinary unsigned integer while the digits to the right show which of the negative powers of 2,
(1/2, 1/4, 1/8. . .) are to be included. Consider the binary floating-point number, 101.101.

power = 4 2 1 1/2 1/4 1/8
0 1 1 0 1

101.101 4+ 0+ 1+ 1/2 +0+ 1/8 = 5.625

The binary floating-point numbers used by the IEEE convention cannot be used to represent

any arbitrary number (i.e., they do not have infinite precision) and they have an associated
"granularity." Numbers near zero are usually capable of being more precisely expressed than

very large numbers. In other words, if we examine the spectrum of IEEE real numbers, we find

that the number of expressible real numbers between 0 and 1 is almost equal to the number of
expressible real numbers between 1 and infinity (more on this below).

The number system used to represent IEEE reals combines three binary numbers: a sign bit, a

binary exponent consisting of 8, 11 or 15 bits and a binary significand (mantissa) consisting of o
24, 53 or 64 bits. For example, the decimal floating-point number +4.0 can be expressed as C)
the product of -1 raised to the power of the sign bit times a significand (mantissa) of 1.000000 /

NDP User's Manual: 386/486 UNIX

-

4 Runtime Organization and Numerics 43

times 2 raised to the 2 power. To represent any IEEE floating-point number we use the
following formula:

real_number = (-1)s* (significand)* (2)ex
For the decimal number +4.0 the three components have the following values:

s = 0 {(i.e., the number is positive)
gsignificand = 1.0000000000000000000000 (i.e., 1.0)
exp = 00000010 (i.e., 2)

Before going on, please note that the significand is in the form 1.00..0. This format was not an
accident -- IEEE significands are always expressed in normalized format, which means having
a single 1 to the left of the binary point. The process of getting reals into this format is called
normalization and involves shifting the binary point to the left or right, as appropriate, until a
appears ahead of the binary point (properly adjusting the exponent while this is being done, of
course). This saves one bit when the number is stored in memory.

We will now examine how a binary real number is encoded in a computing machine and how
the number system is extended to introduce the special numbers that play a very important
role in IEEE exception handling. We will treat all numbers as if they were non-negative,
because the negative values are just the mirror image of the positive values.

If we count the bits used above to represent the three parts of the number 4.0, we find that we
used 33 bits, 1 more than the 32 bits we normally associate with single real numbers. The
"extra" bit is the leading 1 in the significand. Since the standard states that valid reals always
have a single 1 to the left of the binary point, this bit never changes and therefore does not
have to be explicitly stored in the computer representation of the number. This reduces the
number of bits to 32, and effectively increases the precision of 32-bit numbers by a single bit.

Since both positive and negative exponents are represented in the computer, the binary value
used to represent them must be some form of signed integer. The exact scheme chosen plays
an important role in determining how the special numbers with which this section deals are
encoded. The goal is to take by eminent demain from the binary floating-point number space,
a representation for the extra numbers we need to make the number system well-behaved
around zero and between the largest numbers and infinity. We do this by expropriating a
binary value at the bottom and top of the exponent's range, and using these two values to
encode the special numbers near zero and infinity.

As an example, let's examine what happens with the exponent of the single real. Single real
(32-bit) floating-point numbers have an 8-bit exponent that can take on 256 values. The most
obvious tactic is to map one of these 256 values to an exponent of zero, leaving 255 for positive
and negative exponents, but this leaves nothing for special-purpose numbers. Therefore we
reserve the exponent values 0 and 255 for the extremes of the range, leaving the integers
1..254 to represent all "ordinary" exponents: negative, zero, and positive. We use one of this
254 member set to represent an exponent of zero, leaving only 253 members for the positive
and negative exponents, which creates an asymmetry in the exponent set. The IEEE
committee chose to have 126 negative exponents and 127 positive exponents. We represent
the exponent zero using the value 127 (7FH) and the values between 1 and 126 will map to:
negative exponents while the numbers between 128 and 254 map to positive exponents. The
value 127 is known as the bias, and is added to the true exponent to obtain the binary
representation in the computer. A binary exponent representation consisting of all zeros is, as
we said above, a special case. If the significand is also all zeros, then the value is a true zero;
otherwise, it is a denormal. A binary representation of 255 represents infinity or a NaN,
depending on the value of the significand. The relationship between the true exponent and its
representation in the computer -- the biased exponent -- including a description of what each
biased exponent follows:

Biased exponent True exponent Comment
0] not defined zero, denormals.
1 -126 smallest exponent

386/486 UNIX : NDP User's Manual:

44 4 Runtime Organization and Numerics

2 -125

125 -2

126 -1

53 126

254 127 largest exponent
255 not defined infinity, NaNs

Consider what happens to the number 4.0 above. IEEE represents 4.0 as 1 times 2 raised to
the power of 2, which means the number 4.0 will have a true exponent of 2. Looking in our
table we see that a true exponent of 2 combines with the bias 127 to form a biased exponent of

The three binary components of an IEEE floating-point number real are arranged in the order:
sign bit, biased exponent and normalized significand. This is not necessarily the way the
numbers are stored in memory, which is machine dependent. Intel processors, for example,
store values "backwards," i.e., low byte to high byte. When the processor moves them into a
register, it reverses their "backwards" orientation so they are placed high byte to low byte. That
is, the highest byte is the most significant byte, the next highest is the next most significant,
and so on. This is the way numbers in any number system (binary, decimal, octal, or what
have you) are ordinarily arranged. The IEEE floating-point specification is designed for
generality, and leaves details of implementation to the manufacturer. The NDP compilers
assume a normal arrangement, but the actual arrangement of a particular value in an Intel
machine depends on whether it is in memory or a register.

Let's now examine what happens to the binary components of +4.0 as we build the IEEE
representation. As mentioned, for the case of single reals, the exponent is biased with 127,
which when added to an exponent of 2 yields an exponent of 129. The official IEEE binary
representation of the number 4.0 becomes: .

sign bit 0 (i.e., it's positive)
exponent 10000001 (i.e., biased exponent = 129)
significand = 00000000000000000000000

(fraction = 1.0 and the leading 1 is now implied)

Taking these bits and lining them up in a row we get the 32-bit IEEE single real number in
binary (with its hexadecimal representation below):

binary 0100 0000 1000 0000 0000 0000 0000 0000
hexadecimal 4 0 8 0 0 0 0 0

We print the above notation stretched out to show how each 4-bit nibble maps to a
hexadecimal digit. For ease of readability, the hexadecimal number is:

40 80 00 00

This is its normal byte sequence, and the way a debugger would display the value in a 32-bit
Intel processor register. If the debugger displays the same number in memory, however, it will
show the following:

00 00 80 40

Let's now examine the rules used to build the IEEE floating-point number types: single real
(32 bits) and double real (64 bits). The rules are fundamentally the same as those used to
build the single real numbers above, except that the sizes of the exponents, biases and
significands are a function of the type being used. The parameters all three types use are
summarized in the table below, along with the maximum and minimum size of the exponent for
each.

Representation of Exponents

Real Type Single Double
Total binary bits 32 64
Significand width 23 52

NDP User's Manual ' 386/486 UNIX

4 Runtime Organization and Numerics 45

Exponent width 8 11

Exponent bias 127(7FH) 1023(3FFH)
Maximum exponent 127 1023

Minimum exponent -126 -1022

To see these rules in action, we will now build the number 4.0 in the double real format:
Double Real format of 4.0

sign = 0

exponent = 2 + 3FFH = 1000 0000 001

significand = 0..0 (52 bits wide)

binary 0100 0000 0001 0000 0000 0000 0000 0000
hexadecimal 4 0 1 0 0 0 0 o

The IEEE representation:
40 10 00 00 G0 00 00 00
is stored in memory by the Intel CPU as:

00 00 00 00 00 00 10 40

4.11.2 Precision and Denormals

To understand what happens to floating-point precision as we scan over the real numbers, let
us examine the case of single reals. We shall focus on the non-negative values, remembering
the negative side of the IEEE number line is the mirror image of the positive. The mantissa
here is 24 bits, an implicit leading bit that is always 1 and 23 explicit bits that can be either O
or I. Therefore the interval between any two powers of 2 contains just 223 unique
significands, e.g., the number space between 1 and 2 can be divided into 8,388,608 unique real
numbers and so can the interval between 1/2 and 1. The number of reals stays constant in
any interval, so that there are approximately 8.38 million real numbers between 1 and 2,
between 2 and 4, between 4 and 8, etc. Likewise, there are approximately 8.38 million real
numbers between 1 and 1/2, between 1/2 and 1/4, between 1/4 and 1/8, etc.

Thus, the density per interval grows between successively smaller negative powers of 2, and
diminishes between cardinals in each interval between successively greater powers of 2. Thus
we have around 8.38 million values between 1 and 2, but only around 4. 18 million reals.
between 2 and 3, because the same number of significands must be stretched out over a
greater range. In the interval from 4 to 8 there are around 2.09 million reals between
cardinals, and from 8 to 16, around 1.04 million. By the same logic, we see that in the interval
between 8,388,608 and 16,777,216, we will have just one floating-point number per cardinal,
which is the same granularity as an ordinary integer representation. Above 16,777,216, 32-bit
integers do a more exact job of representing numbers; they suffer from having a limited range
and do a much worse job with numbers smaller than 8,388,608. On the average, however,
floating-point numbers are a better choice than integers, if you need precision near zero or a
large dynamic range.

To understand the denormal, we must look at what happens as the numbers get smaller,
which is equivalent to asking what happens as the IEEE representation approaches zero. We
begin by taking the smallest valid single real (1.0*2-12¢), and start dividing it by 2. This
smallest number has a biased exponent of 1, which drops to. O when it is divided by 2. An
exponent of all zeros is used as a flag to indicate that the exponent has now passed its smallest
value (-126) and that the system is now reducing the significand by factors of 2. The process
begins by moving the first (implicit) significant binary digit to the right of the binary point. The
special numbers between the smallest number and zero no longer have an implied 1 at the
head of their significand. As the values are progressively halved, the significand bits continue
being shifted right, until the number system runs out of room. When the process finally shifts
the last significant digit out of the fraction, it arrives at the IEEE representation of zero, which
is a zero biased exponent and a zero significand. In effect, the number system trades precision

386/486 UNIX NDP User's Manual.

46 4 Runtime Organization and Numerics

for range by turning off normalization for the sequence of numbers between the smallest
number and zero.

number biased exp implied bit significand
2-126 1 1 00000000000000000000000

2-127 0 0 10000000000000000000000
2-128 0 0 01000000000000000000000
2-129 0 0 00100000000000000000000
2-130 0 0 00010000000000000000000
2-149 0 0 00000000000000000000001
zero 0 0 00000000000000000000000

There are 8,388,607 (223-1) of these positive single real denormals, providing a "cushion”
between the smallest valid number and zero. Since you can't halve your value and keep it too,
the system must give up something with the introduction of denormals, and that something is
precision. Denormals extend the low end range of single reals, from 2-126 to 2-149, but for every
power of two that they drop, they lose a bit of precision, till at the low end the precision of the
significand is reduced to a single bit, while double precision is 15 digits. If you could
determine the distance of the moon with this much precision, you could determine the distance
within two miles. With double precision, your range would be within .0012 inches. Weitek
coprocessors do not support denormals. Any number that would become denormal becomes O.

4.11.3 Infinities and NaNs

The encodings for all the types of numbers that can be used in the IEEE representation appear
in Figure 4-2, page 27. The largest possible biased exponent is always reserved for special
numbers, (infinities and NaNs) just as the smallest biased exponent is reserved for zero and
denormals. Normals refer to numbers that can be normalized, i.e., valid numbers.

As Figure 4-2 shows, the biased exponents of infinities and NaNs have all bits set to one. They
can be signed positive or negative but as we did with denormals, we shall focus on the non-

" negative values, remembering the negative side of the IEEE number line is the mirror image of
the positive. Infinities and NaNs are distinguished by the bit pattern of their mantissas. There
is only one pattern for the significand of an infinity: the leading bit is one, all the rest are
zeros. Infinities are the masked response to an overflow or a division by zero. (The rounding
mode in effect determines whether these errors produce infinity or the largest representable
number.) The use of infinities as operands has well-defined results. Some of these are legal
and produce sensible results, for example, division of a finite number by infinity, which
produces zero as a result. Legal arithmetical operations on infinities are always exact. Illegal
operations on infinities result in the invalid operation exception. Because the NDP default
exception handler is set up to detect invalid operations (i.e., they are unmasked), the handler
will get invoked any time infinities are used illegally and generate an error message saying
"invalid operation.™

Figure 4-12 summarizes how infinities are used. It should be noted that the exceptions
(overflow or division by zero) can be unmasked so that, rather than return an infinity, they will
instead trigger the exception handler. The NDP languages' default, however, is that they be
masked. '

NDP User's Manual: 386/486 UNIX

4 Runtime Organization and Numerics

Infinity Operands and Results

Operation } Operands % Result
Addition | +00 plus +oo } +0o
-0 plus -oo % ~00
+oo plus -oo ! Invalid operation
« -oo plus +eo Invalid operation
| too plus *X *oo
5 X plus oo *o0.
Subtraction +00 minus +oo +00
-00 minus -oo ~00
+00 minus -oo Invalid operation
-0 minus +oo Invalid operation
Foo minus *X *oo
X minus Zeo -*00
Multiplication | too * too | **oo
oo * AV, Y * oo | "o
40 * too, oo * 0 Invalid operation
Division oo / oo ' Invalid operation
Foo / XX ; **oo
+X / oo 0
too / £0 1 **oo
Compare +00 +00 +00 = 400
-0 -0 -0 = =00
+00 -00 400 > -—-o0
—00 -0 -0 K -0
+o0 ; EX 400 > X
-o0 ; +X -o0 < *X
X . 4oo X < 400
+X ¢ -0 X > -oo

Key: X Zero or nonzero positive operand

Y nonzero positive operand.

* Sign of original oo operand.

-* Complement of sign of original e operand.
Exclusive OR of signs of operands.

386/486 UNIX

Figure 4-12. Infinity Operands and Results

NDP User's Manual

5 i Mixing Languages

The NDP compilers (NDP CIC++, NDP Fortran, and NDP Pascal) provide great power and
flexibility by making it possible to write programs that use modules written with any Microway
language or with assembly language. The ability to mix modules written in different languages
allows the programmer to code each task in the most appropriate and natural language for the
task.

Although the NDP compilers have many extensions that should make it unnecessary to use
assembly, the ability to write assembly routines and link them with code generated by the NDP
compilers gives the programmer greater control. Generally, programmers use assembly
routines to fine-tune programs by optimizing for speed or size, and to access the PC hardware
or system services in ways not normally available through high-level languages.

5.1 General Rules

The NDP compilers have a high degree of compatibility. Regardless of the high-level language,
each compiler translates source code into the same intermediate language that is eventually
output as object code and is linked with common runtime routines. All the compilers use the
same memory model, a flat model. Moreover, the NDP compilers all push parameters onto the
stack in right-to-left order. That is, the last named is pushed first, then the next to the last,
and so on. Thus the arguments end up on the stack in the order in which they are named in
the parameter list. (The exception to this rule is the lengths of strings passed by Fortran, see
below.) The runtime system for all three compilers is an NDP C|C++ application and includes
the complete NDP C runtime library, so that an NDP C|C++ module called by an NDP Fortran
or NDP Pascal program will have all the runtime support it expects.

There are several unavoidable differences among the NDP compilers that arise directly from the
definitions of the languages themselves. There are also differences that occur to maintain
compliance with industry standards. The following sections explain these differences.

5.1.1 Linking Restrictions

Modules written in NDP CIC++, NDP Fortran, NDP Pascal, and assembly can be linked freely
among themselves, with the following restrictions:

1. If a program has any NDP Fortran modules that use Fortran I/0O, (a) the main module must
be written in Fortran and it must be linked with the library LIBF, or (b) the main program
must initialize Fortran I/O properly. For instance, let us assume the following Fortran
subroutine is to be linked into a C|C++ program:

subroutine fortran_subroutine (i)
integer 1i,j
character*64 string
if (iargc() .gt.0) then
do j=1,iargc()
call getarg (j,string)

write (6,210) j,': ',string
210 format(i5,a,a)
enddo
else
write(6,*) 'No command line arguments were given'
endif

write(6,220) 'Input argument: ',1

50 - 5 Mixing Languages

220 format(lx, a, 1i5)
return
end

Because this Fortran routine does I/0, the Fortran I/O system must be initialized. If the | _,/
main program is a Fortran program, the initialization occurs automatically. If the main
program is a C|C++ program, the initialization must be done explicitly:

#include <stdio.h>

int xargc; /* used 1f Fortran calls IARGC */
char **xargv; /* used if Fortran calls GETARG*/
int zero = 0; /* used by parts of LIBF */
int one = 1; /* used by parts of LIBF */
void rec_init () ; '
void (*initrec) () = rec_init; /* used by parts of LIBF */
void = rec_uninit(); ‘
void(*uninitrec) () = rec_uninit;/* used by parts of LIBF */
char *tempfiles([100] = {NULL, }:;/* used by parts of LIBF */
main(int argc, char *argv[]) { -

int 1i;

Xargc = argc;
Xargv = argv;

fmt_init(); /*initialize Fortran formatting*/
rec_init{); /*initialize Fortran units */
/*program body */

i=5;

fortran_subroutine_ (&i);

rec_uninit(); /*close flush Fortran units */

)

The data declarations for zero, one, initrec, uninitrec, are needed to avoid symbol conflicts
during the link stage. Omitting any of these declarations causes the standard version of
main () tobe linked, and duplicate symbols result. The link file must include a reference to
the Fortran library. If, for instance, the executable program is built using the C1C++
driver, e.g., mx386, then the Fortran library must be included on the command line:

mx386 main.cxx forsub.o -1f3
The -1£4 switch will cause 1ibf4.a to be linked in.

2. Programs that contain any modules written in NDP Pascal and that perform Pascal I/0
must have the NDP Pascal library, 1p4.a, linked in.

5.1.2 Data Type Differences

Usually, the NDP compilers share the same major data types, all having the same range of
values and the same rules for operations. There are, however, some important differences (and
ways around them).

Integers

NDP Pascal has no predefined 16-bit integers, as are found in NDP C|C++ (short int) and
NDP Fortran (INTEGER*2). This difficulty can be overcome by creating two new types:

type short -32768..32767 { 16-bit integer }
type ushort 0..65535 { 16-bit unsigned }

This allows you to pass these items between NDP Pascal and the other NDP languages.

NDP User's Manual 386/486 UNIX

5 Mixing Languages 51

Char

NDP Pascal's predefined 8-bit data type, char, is restricted to values between 0..127, unlike
NDP CI|C++ (char, unsigned char) and NDP Fortran (CHARACTER*1, INTEGER*1). This
difficulty can be overcome by creating two new types:

type schar -128..127 { signed char }
type uchar 0..255 { unsigned char }

This allows you to pass these items between NDP Pascal and the other NDP languages.
Remember that in Fortran all integers are signed.

Floating Point

NDP C|C++ and NDP Pascal by default promote all floats to double, but NDP Fortran does
not. This problem affects only those functions that return floating point values and use the
Weitek coprocessor, or that pass between Fortran and C|C++ or NDP Pascal, using NDP
Fortran's $VAL operator. Passing by reference is not affected. There are three ways around
this problem:

1. Declare all floating point parameters as doubles.

2. Include in your CIC++ programs function prototyping to coerce floats to remain floats; or
use the -p3 switch to compile NDP Pascal programs, causing REAL values to be interpreted
as 4-byte values.

3. Pass by reference.

5.1.3 Naming Conventions

The differences in naming conventions among the compilers are related to case sensitivity and
the use of leading/trailing underscores.

NDP C|C++ compiler is case sensitive; it outputs identifier names exactly as they are entered.
It appends an underscore to the beginning of all identifiers but not to the end.

NDP Fortran is not case sensitive. It transforms all identifier names into lower case and
outputs them in that form. It also appends an underscore to the beginning and end of all
identifiers. Fortran can be made case sensitive by using the -U (upper-case U) compiler switch.
Identifiers will then be output exactly as they are entered, with a leading and a trailing
underscore.

NDP Pascal is by default not case sensitive; it normally outputs identifier names in lower case,
like NDP Fortran. Like C|C++, it appends an underscore to the beginning of all identifiers but
not to the end. NDP Pascal can be made case sensitive by using the -pl compiler switch.
Identifiers will then be output exactly as they are entered, with a leading underscore.

Consider the following identifiers:

Language Identifier Output to assembly file
NDP CiC++ Flag _Flag

NDP Fortran Flag _flag_

NDP Fortran (-U) Flag _Flag_

NDP Pascal Flag _flag

NDP Pascal (-p1) Flag _Flag

To make an identifier global between NDP C|C++, NDP Fortran, and NDP Pascal, use all lower
case letters and postpend an underscore to the CIC++ and Pascal names, as in the following
example:

Language identifier Output to assembly file
NDP CIlC++ flag_ _flag_
NDP Fortran flag _flag_
NDP Pascal flag_ _flag_

386/486 UNIX NDP User's Manual

52 5 Mixing Languages

5.1.4 Parameter Passing

All the NDP compilers extend character and integer values to four-byte size when passing them
on the stack.

Passing Values

Except for strings (see below), NDP Fortran passes only by reference, i.e., it passes the address
of the data item. The default in CIC++ is to pass by value. The default in Pascal is to pass by
value, unless the var keyword is used in the formal parameter list.

When being called from NDP Fortran, the CiC++ function must declare its formal parameters
as pointers. When calling NDP Fortran, an NDP C|C++ function must pass each actual
argument as a pointer.

When passing parameters to or from NDP Fortran, the NDP Pascal routine must declare its
formal parameters with the var keyword. Alternatively, the Fortran program can pass by value
using the keyword $VAL in the actual argument list. It is also possible to change a pass-by-
reference of a variable to an effective pass-by-value by assigning that variable to a local variable
and using only the local variable.

Note that by default, NDP Fortran variables are REAL*4, but NDP Pascal variables declared as
"real" default to- DOUBLE (REAL*8), unless the Pascal module is compiled with the -p3 switch.

Passing Strings

When NDP Fortran passes a string, it passes both the address of the string and its length, but
the length is passed by value, not by reference. Further, Fortran pushes the lengths of every
string in the parameter list onto the stack, and then the other data items, including the string
addresses. For example:

INTEGER. i

CHARACTER*10 S1
CHARACTER*20 S2
CALL F(Ss1,1,82)

The stack will look like this:

20 (length of S2) Bottom
10 (length of S1})
{address of S2)

(address of 1)

(address of S1) Top

When passing strings from NDP CIC++ to:NDP Fortran, the actual argument list in the NDP
CIliC++ program must declare a char pointer and an int for each string passed so that the
interface between the two routines will be set up the way the NDP Fortran compiler expects.
Assuming the example above, the CIC++ version of the code would look like this:

char *psl;

int *pi;

char *ps2;

int 11,12;
f(psl,pi,ps2,11,12);

When passing strings from NDP Fortran to NDP C|C++, there are two possible approaches.
First, the formal parameter list in the NDP C|C++ program may declare a char pointer and an
int for each string passed if it is necessary for the NDP C|C++ function to know the length of
the string. For example:

void f(char *psl, int *pi, char *ps2, int 11, int 12)
{

}

NDP User's Manual 386/486 UNIX

5 Mixing Languages 53

Second, in CIC++, a string has no intrinsic length associated with it. Its end is marked with a

null byte (value 0, not character ‘0'). In Fortran, every string has a fixed length and characters
N within it do not necessarily have special meaning. If the NDP Fortran calling program (or the
\ i NDP C|C++ function) places a null byte following the last significant character in the string,
— the NDP C|C+ string handling functions will be able to handle it in the normal way.

When passing strings from NDP Pascal to NDP Fortran, the formal parameter list in Pascal
must declare strings with the var keyword and an integer for each string passed so that the
interface between the two routines will be set up the way the NDP Fortran compiler expects.
Assuming the example above, the Pascal code would look like this:

type
al0 = packed array [1..10] of char;
a20 = packed array [1..20] of char;
var
sl ¢ alo;
s2 : a20;

i, 11,12 @ integer;

procedure p_(var sl:al0; var s2:a20; var i:integer;
11,12:integer); external;

begin
p_(sl1,1,82,11,12);

end.

When passing strings from NDP Fortran to NDP Pascal, there are two possible approaches.
First, the formal parameter list in the Pascal program may declare strings with the var keyword
and an integer for each string passed, as in the above example.

Second, a Pascal procedure can ignore length parameters completely, since the length of a
Pascal datum is part of its type. This causes no conflict, since the lengths are passed highest
(\/ on the stack. A cautious program, however, might access the lengths of the strings passed and
check them against the declared lengths, to ensure there is no discrepancy.

5.1.5 Output Buffers

One area of difficulty exists in interfacing NDP C|1C++ and NDP Fortran. If both the CIC++
functions and Fortran routines do screen I/0, it may be necessary to flush the CIC++ output
buffer after using a function such as printf (); otherwise, the output may print to the screen
out of order. With NDP Fortran, the runtime environment flushes the buffer every time an end
of line occurs, while NDP CIC++ does not. The C|C++ output buffer can be flushed with the
fflush () function, or by outputting a newline ('\n') character.

5.2 Calling Between NDP Fortran and NDP CIC++

The following example demonstrates passing parameters, both string and numeric, between
NDP Fortran and NDP C|C++. For passing strings, it uses the first of the two methods
mentioned above. Note in the code below that a trailing underscore has been added to the
lower case function names, to match the underscore added by the Fortran compiler. The
compilers also add an underscore to the beginning of the name.

Listing 5-1: Fortran Main Program

¢ This program calls the external routines SCALAR, STRING,)
¢ and STRUC. Compile this program and link it with the object
c file created by Listing 5-2 or Listing 5-3.
c

BN CHARACTER*50 STRING

<‘_/j STRUCTURE /STRUC/

INTEGER I

386/486 UNIX '] NDP User’'s Manual:

54

INTEGER CH
REAL*8 R
ENDSTRUCTURE
RECORD /STRUC/ REC
ISCALAR = ISCAL1(1)
PRINT 100, 'Value returned = ', ISCALAR
100 FORMAT (1X,A,I3)
PRINT *
STRING = 'This string was passed to an external module. '
CALL STR1 (STRING)
¢ If you are linking this program with C|C++ routines, you
¢ should null terminate string here, or in the C|C++ module.
¢ replaces the first non-significant character.
¢ As in C|C++, the length of the string has to be at least one
¢ character longer than the number of significant
¢ characters, so that there is a character that can be
¢ overwritten with a null. If you are linking with Pascal, it
C serves no purpose to null terminate the string. TIf the
¢ last character in the string is a significant character,
c i.e., not a space, it still has to be overwritten with a
c null.
i = len (string)
IF (STRING (i:i)y .ne. char(32)) THEN
STRING (i:i) = char(0)
ELSE
c find the last significant character in string
DO WHILE (STRING ({(i:i) .eqg. char(32))
i=1-1
END DO
c overwrite first non-significant character
STRING (i+1:i+1) = char(0)
END IF
¢ The C[C++ function strl changed the value in string. It wro
C a new string and null character. Yet, Fortran will still
c write 50 characters, including any characters after the
¢ null that strl inserted.
PRINT *, STRING
CALL STRUC1 {REC,$VAL(3))
PRINT *, 'Structure: REC.I ', REC.I
PRINT *, REC.CH', REC.CH
PRINT *, REC.R ', REC.R
END

Listing 5-2: CIC++ Routines Called by Fortran and Pascal

/* These functions are called by a main program.
this program using the -c switch, then link
with the main program. ©Note that the function names have
an underscore appended, to match the one Fortran
appends to its names.

*/

#include <stdio.h>

/* receive scalar from Fortran and return another */

int iscall_ (int *i)

{ printf("\nvValue passed = %d\n", *i);

return(*i*10);

Compile

}
/* receive string from Fortran and modify it */

NDP User's Manual.

5 Mixing Languages
\\w’/
A null
)
te

386/486 UNIX

C\‘
V2

5 Mixing Languages 55

void strl_ (char *str, int len)
{ printf("ss", str);
sprintf(str,"This string was modified by NDP C|C++.");
} :
/* receive structure from Fortran and modify it */
struct struc
{ int 1;
char *ch;
double dbl;
Yo
void strucl_ (struct struc*struc2, int i)
{ struc2->i = 1i;
struc2->ch = (char *) malloc (i);
struc2->dbl = i * 1.1;
return;}

5.3 Calling between NDP Fortran and NDP Pascal

The following example demonstrates passing parameters between NDP Fortran and NDP
Pascal. It uses the Fortran code in Listing 5-1. When passing strings, it uses the first of the
two methods mentioned. Note that a trailing underscore has been added to the lower case
function names, to match the underscore added by the Fortran compiler. The compilers also
add an underscore to the beginning of the name.

Listing 5-3: Pascal Routines Called by Fortran Main Program

{ These functions are called by a main program. Compile
this program using the -c switch, then link with the
main program and Pascal library.)

{ Receive scalar from Fortran and return another }

function iscall_ (var i : integer) : integer;

begin
writeln;
writeln('Value passed = ', i : 2);
iscalli_ := i*10;

end; {iscall_}

{ Receive string from Fortran and modify it }
type CHARSTR. = packed array [1..81] of char;
procedure strl_ (var str: CHARSTR; len: integer);

begin
write(str:len);
str ©= 'This string was modified by NDP Pascal.'

end; {strl_}
{ Receive a structure from Fortran and modify it)
type struct =
record
i : integer;
ch : ~CHARSTR;
dbl : double;
end; {struct}
function malloc (i: integer): ~CHARSTR; external;
function strucl_ (var str: struct; i: integer): integer;

begin
str.i := 1i;
str.ch = malloc (i);
str.dbl = i*1.1;

386/486 UNIX NDP User's Manual

56 5 Mixing Languages

strucl_ := i;
end; {struc_1}
char string(81], *str; 5
5.4 Calling between NDP CIC++ and NDP Pascal
Because of the similarities between C|C++ and Pascal, it is a simple matter to mix these
languages. The key point is case sensitivity. You should keep identifiers in lower case or use
the -pl switch to turn on case sensitivity when compiling your Pascal modules. Note that in
these examples, the functions were defined with a trailing underscore to support Fortran. If
Fortran support is not needed, the trailing underscore can be dropped from the definition.
Listing 5-4: Pascal Main Program
{ This program calls the C|C++ functions in Listing 5-2.
Compile this program and link it with the object file
created by Listing 5-2. }
program main (input, output);
type CHARSTR = packed array [1..81] of char;
type struct =
record
i @ integer;
ch : ~CHARSTR;
dbl : double;
end; {struct}
var 1 : integer;
var string : CHARSTR;
var len : integer;
var struc2 : struct; .
type foo = record :)
{ This trick convinces Pascal to accept the eguality \wfj
of pointers and integers by using a variant record. }
case boolean of
true: (ptr: ~CHARSTR) ;
false: (int: integer);
end;
var bar: foo; static;
{ CiC++ functions must be declared external.}
function iscall_ (var i : integer) : integer; external;
procedure strl_ (var str: CHARSTR; len: integer); external;
function strucl_ (var struc: struct; i: integer): integer; external;
begin
i 0= 1;
i = iscall_(1i);
writeln('Value returned: ',i);
writeln;
string := 'This string was passed to an external module.' ;
strl_(string, 50);
writeln(string:50);
i 0= 3;
strucl_(struc2, i);
bar.ptr := struc2.ch;
writeln('Structure: struc2.i = ', struc2.i);
writeln (' struc2.ch = ', bar.int};
writeln(' struc2.dbl = ', struc2.dbl); TN

end. K‘“}

NDP User's Manual ' . 386/486 UNIX

5 Mixing Languages 57

Listing 5-5 CIC++ Main Program

/* This program calls the Pascal functions in Listing 5-3.
Compile this program and it link with the Pascal Library
and the object file created by Listing 5-3.

*/

#include <stdio.h>

main ()

{

int i, len;
char string(81], *str;
struct struc

{ int 1i;
char *ch;
double dbl;
} struc2;
i=1;
i = iscall_{(&i); /* pass the address of i */

printf(*Value returned: %d\n", i);

str = string;

strcpy (str, "This string was passed to an external module.") ;

strl_(str, strlen(str)); :

printf{("\n%s", str);

i = 3;

strucl_(&struc2, i)

printf("Structure:\tstruc2.i=%d \n\t\tstruc2.ch=%ld\n\t\tstruc2.dbl=%f",
struc2.1i, strue2.ch, struc2.dbl);

«

5.5 Interfacing Assembly Language

NDP CIC++, Fortran, and Pascal each translates source code into the same well-defined
intermediate language that ultimately becomes object code. The resulting object module is
linked with other object modules and the runtime libraries. The core of these libraries is the
same for all three compilers.

5.5.1 Reasons for Writing Assembly
Four common reasons for writing assembly language routines are:
1. To optimize for executable speed or size.
2. To access system services, i.e., DOS and ROM BIOS.
3. For direct access to the PC's hardware.
4. To build an interface between otherwise incompatible code.
Optimizing
Optimizihg for executable speed or size sometimes requires handcrafting the code in assembly

language. It is theoretically possible to create a compiler that produces "human grade™ code,
but it is impractical because the compilation process would be too time-consuming.

One technique used to start writing an assembly language module is to let the compiler
generate a "bare bones" program skeleton (i.e., write a procedure in the target language that
uses each of the variables in the module in a trivial manner, such as an assignment. This
takes care of properly passing variables and allocating local storage). Then, flesh out this
skeleton by hand in assembly language.

386/486 UNIX NDP User's Manual

58 5 Mixing Languages

A second approach is to write the procedure or program in a high-level language, let the
compiler turn it into assembly language and then clean up the code using optimizations that
for time or safety reasons are not available to the compiler.

A third alternative is to use Microway's Intelligent Assembler. The Intelligent Assembler, an
assembly language parser built in to the compiler, can be used to build and maintain assembly
language modules under certain situations. See Section 5.5.2, page 58.

Accessing System Services

Accessing system services, both DOS and ROM BIOS, is done using software interrupts.
Calling these services used to mean using assembly language. But these days interface
routines are often provided by languages for interfacing interrupts, and the NDP family is no
exception. The ease of writing in a high-level language is offset by the drawback that
inefficiencies inevitably creep in. Again, the programmer may optimize for speed or size by
turning to assembly language.

Accessing PC Hardware

Using assembly language to access directly a PC's hardware, involves is one of the most
powerful tools available to the programmer. For example, it is not uncommon to find a 100-to-
1 speed difference between routines that write directly into video RAM and those that write to
the screen through the ROM BIOS, making direct access very attractive. Even writes directly to
the screen, thereby violating a basic principle of operating systems: device drivers should be
the only routines allowed to manipulate the hardware directly. We have provided routines
callable from high-level source code for block moving characters to the screen; they are blk_bm
and blk_mb. We also should poeint out that two facilities now available in our languages, the
mapdev function (which maps a device into the address space of your program) or, if writing in
NDP C|C++, using register aliased variables, may be a better alternative in many situations.

Another method of directly accessing the PC's hardware is by reading from and writing to ports.
Again, we have provided high-level routines to do this but we have also provided assembly
language examples to do the same thing. The examples are provided to help the programmer
understand key ideas and issues involved in directly controlling the PC's hardware using
assembly language code.

5.5.2 Using the Intelligent Assembler to Optimize Code

Microway's Intelligent Assembler is an assembly language parser that is built into the compiler.
It allows assembly code to be included in modules written in high-level languages. At parse
time, the compiler ignores the assembly section except to determine whether the line is a
pragma, a label, or a comment. At code generation, the compiler parses the lines and
compares the contents to a list of reserved words and variable names.

Using the NDP Intelligent Assembler has several advantages. The compiler handles the details
of writing NDP-compatible code, such as generating header and segment information. The
compiler also keeps track of variables, which can be referenced symbolically. Waiting until the
code generation phase makes it possible to expand variable names and labels into memory
locations because, at that point, the locations are already known. The Intelligent Assembler
also understands Weitek code and expands Weitek macros in the same way as the compiler.

The assembler code included in a module with the Intelligent Assembler is subject to the
optimizations the compiler makes. This is beneficial for 386 code, but is especially useful for
486 code, where the processor makes intelligent decisions about the 80486 code alignments.
necessary for optimal performance. The Intelligent Assembler derives its name from this
ability.

The Intelligent Assembler has limitations. It does not flag illegal syntax or addressing and is
best used on code that is known to be correct. It does not duplicate the functions of a
complete assembler. It is often quite instructive to use a complete assembler on code intended
for the Intelligent Assembler, to ferret out errors. The Intelligent Assembler is best used to

NDP User's Manual 386/486 UNIX

),

™~

-/

C

5 Mixing Languages ‘ 59

simplify the inclusion of assembly code -- by letting the compiler generate header and segment
information -- and to include assembly code that will undergo optimizations, particularly
regarding 80486 code alignments.

Pragmas to Activate Assembly Language Parsing

Two pragmas activate and deactivate assembly language parsing:
#pragma asm on

and
4pragma asm off

Code between the two pragmas is parsed as assembly language by the code generator. The
following example illustrates how these work:

char str[100]1="0Oh Annie please be kind, $';

main{()
{
char newstr(100];
strcpy (newstr,"and kiss me once or twicel!\n\rs");
#pragma asm on;
lea edx, _str
mov ah, 9
int 0x21
lea edx, _newstr
mov ah, 9
int 0x21
#pragma asm off;
}

This program uses DOS function calls to print out two strings. It illustrates the use of the
pragmas. It also brings up a point about addressing.

Dereferencing usually requires more than one line of assembly language, so it does not make
sense to support it with an assembler.

Unfortunately, many references that look straightforward are not. For example, the lea
instructions above are quite simple, but if they were mov instructions, such as the following:

mov edx, dword ptr offset _str
and
mov edx, dword ptr offset _newstr

the second one would not work. The first will work because _str is stored in a known memory
address; under a debug program, the code produced might look like this:

mov edx, 4780

_newstr, however, is on the stack, and the assembly language expansion of its reference would
have to look like this:

mov edx, ebp-64

This instruction is not legal, and the Intelligent Assembler does the best it can, and produces
the following line

mov edx, [ebp-64)
which is legal, but not what is desired.

Only simple references are allowed; where you want to load an address, consider whether the
lea instruction or the mov instruction is appropriate. '

386/486 UNIX NDP User's Manual

60 5 Mixing Languages

Assembler Directives

At present the assembler will accept three directives, "$radix," "$$frame" and "$$noret.” The o
radix directive is output to a generated assembly file as .radix x where x is either 16 or 10. =; \
Since the value given remains for the rest of the assembly file, and NDP Fortran outputs sJ
- decimal values, the programmer must remember to leave the radix in decimal for the C|C++

compiler to continue output after the assembly language area is completed. Numbers may be

given in hexadecimal by beginning them with a digit in the range of 0-9 and ending with an "h"

or, alternately, may be given in standard CIC++ format, as in "0x21," which goes to the

assembly language output file as "021h."

The second directive, "Sframe,” tells the compiler to generate a stack frame for local variables
even if it sees that it is unnecessary to do so for the purposes of the CIC++ language. The
directive is like the -ga command line switch except that it only applies to the function in
which it appears rather than globally to a module. It is important to use $$frame wherever
parameters are referenced and the stack is being manipulated. Without the "$$frame"”
directive, references to parameters are made through esp. In an assembly language output file,
the directive becomes ; # frame and is a comment to the Assembler.

The $$frame directive is used in the following code to prevent problems involving use of esp:

dosprint{str) ;
char *str;
{

#pragma asm on

S$frame

Sradix 16

push edx

push eax

mov edx, _str _—
mov ah, 9 N)
int 21 \-/)
pop eax

pop edx

Sradix 10

#pragma asm off
}

Because the $sframe directive has been used, the compiler provides dosprint with a prologue
that builds a stack frame and points ebp at it. The reference to _str is made through ebp in
the output code, and the function does as expected. Without the $$frame directive, the
compiler has no way to know that the stack is manipulated and no stack frame is built. Its
code then references _str as "[esp+4]," which would be correct if esp is never changed, but
here is wrong, because there are push instructions:

The third directive, "$$noret," tells the compiler to omit any "leave" and "ret" instructions
that otherwise would be inserted automatically at the end of the function. The purpose of this.
is to allow processing to fall through from one function to the next, a means for providing
alternative entry points or, perhaps more importantly, alternative names for the same
procedure.

A single library module can usually be used transparently by both NDP C|C++ and NDP
Pascal. NDP Fortran, however, has different enough code that it often needs alternative entry
points, and it accesses these by having postpended underscores on its symbolic names. In the
following code, the first function has no body and it does not even have a return instruction.
This means that in the .o file, it has the same address as the second function and occupies the
same space. Calls to either function will go to the same place. In the following print_it_ is ,
the Fortran entry point; print_it an entry point for CIC++ or Pascal. \J

void print_it{);
print_it_(str)

NDP User's Manual, 386/486 UNIX

5 Mixing Languages 61

char *str;
{
#pragma asm on;
$Snoret
#pragma asm off;
}
print_it(str)
char *str;
{

5.5.3 General Rules

While it is beyond the scope of this manual to teach the reader assembly language, we intend
to show the interface between programs written in each of the three NDP languages and
assembly language routines.

In writing 386/486 assembly code, keep the following conventions in mind:
1. The code segment is:
codeseg segment dword er use32 public 'code'
2. The data segment is:
dataseg segment dword rw use32 public 'data’

3. Parameters are pushed onto the stack in right-to-left order, i.e., the last named is pushed
first, then the next to the last, and so on. Thus the arguments end up on the stack in the
order in which they are named in the parameter list. (The exception to this rule is the
lengths of strings passed by Fortran; see below.)

4. Function values are returned in;:

Data type Register

integer or character EAX, AX, or AL
pointers: EAX

single precision ST(0) (80x87)
single precision FP2 (mW1167)
double precision ST(0) (80x87)
double precision FP2, FP3 (mW1167)

It is possible to write assembly language code so that the same routine could be called from
any of the NDP languages. To do this, all identifier names should be in lower case, having an
underscore at the beginning and end. Parameters, except lengths of strings passed in Fortran,
will be passed by reference and the assembly code must be written accordingly. Strings passed
from NDP Fortran and NDP Pascal should deliberately have a null byte inserted to terminate
the sequence of characters or, alternately, NDP C|C++ programs could explicitly pass the
lengths of strings as well as their addresses. Consider the following example:

Listing 5-6: 386 Assembly

i This code, when called, returns an integer value equal to

i the number of CPU clock ticks since midnight. The routine

i can be called from NDP C|C++, NDP FORTRAN, and NDP Pascal.

i Its function is completely redundant, since it

i operates by calling another function, sec_100, which is

i identical in function, but it does illustrate calling

; conventions.

i The return value will be placed in eax by sec_100, and need
; not be referenced here. FORTRAN requires that this routine
; be declared integer, or it will loock for the return value in

386/486 UNIX NDP User's Manual

62

i st{0) or ws(2) depending on coprocessor option.

name tick.s
assume cs:codeseg
assume ds:nothing
codeseg segment para er use32 public 'code

ticks proc near
-.call _sec_100
ret
align 16
ticks endp
extrn _sec_100:near

public _ticks_
codeseg ends
end

5 Mixing Languages

The following statements will call the above routine from the appropriate language.

NDP Fortran NDP CIC++
integer itime, ticks int itime = 0;
real*4 seconds float seconds;
seconds= seconds=
& ticks(itime)/100. ticks_(itime)/100;

NDP User's Manual

NDP Pascal

var itime :integer;
var seconds :float;

ticks_(itime)/100;

386/486 UNIX

6 Porting Programs

Programs that compile and operate correctly when compiled with one compiler may not operate
correctly when ported to another vendor's compiler, such as the NDP line, because of the
leeway allowed by the language specifications in implementing certain features of the language.
The problem is that many programmers, when porting a program from an IBM mainframe or
VAX minicomputer to the PC, make illegal assumptions about the underlying machine
architecture and how the compiler interacts with it. The following discussion on porting
programs to the NDP compilers describes requirements and tells how to avoid common
problems. '

6.1 Compatibility with other Compilers

The NDP compilers use the same calling conventions for all subroutines, routines, procedures,
and functions. Therefore, code from all NDP languages can freely call each other (see Chapter
5).

Implementation of the NDP compilers is virtually identical for both DOS and UNIX System V.
As a result of this and of the fact that the NDP compilers were adapted from UNIX compilers,
programs written with the NDP compilers should run without problem on a VAX or under UNIX
System V on a PC.

6.2 Word-Size Problems

Some machines are byte addressable. That is, they have addresses that refer to 8-bit bytes.
They have operations that operate on 8, 16, 32, 64 and 128-bit quantities. Other machines are
word addressable, having addresses that refer to words of a standard size varying from 16 to
64 bits. They have operations that operate on multiples of the word size. The Intel 386 is byte
addressable. '

If two different machines have different word sizes, or if one is word addressable and the other
is byte addressable, a program that operates on one machine may not operate on the other
machine for several reasons. The word size affects the range of numbers implemented by the
INTEGER data type. The word size also affects the precision and range of the REAL and DOUBLE
PRECISION data types.

The most common word-size problems are (often undetected) integer overflows and floating
point underflows, and loss of precision. The layout of bit-aligned data structures will vary with
the word size, so overlaying structures in memory makes a program difficult to port to another
compiler. Another facet of this problem occurs when using integer variables to do address
calculations: these calculations are often not portable. '

6.3 Byte-Order Problems

Since the success of the IBM 360, byte machines have been more popular than word machines.
The advantage of a byte machine is its efficient processing of character data. The general
acceptance of byte machines has led to easier program portability between machines.

There is, however, one major problem in porting between byte machines. The first successful
byte machine, the IBM 360, placed the most significant byte of a multiple-byte integer value at
the lowest address. This is known as the big endian method of data representation. Many byte
machines, such as those based on the MC68000 and Z8000, have followed the IBM convention.

The second successful byte machine, the Digital Equipment PDP-11, placed the least
significant byte of a multiple-byte integer value at the lowest address. This is known as the

64 6 Porting Programs

little endian method of data representation. Descendants of the PDP-11 such as the VAX, Intel
80x86-based PC's, Clipper, and NS32000, have followed the DEC convention. These two
groups seem to be so well entrenched that no agreement on byte ordering is possible. Since
the NDP 386/486 compilers operate on Intel 80386/80486-based machines, it is little endian.

Porting applications between machines with different byte ordering is often unreliable if the
applications being ported overlay characters and integers in memory or use character pointers
to integer variables.

6.4 Alignment Requirements

the NDP compilers always align multiple-byte data items on appropriate address multiples so
that all accesses will be legal and efficient. The maximum optimal alignment is the largest
alignment required by any data type for optimal access. It is typically the word size of the
external system bus, which is 32 bits for both the 80386 and the 80486. Chapter 4 defines the
exact alignment conventions for the NDP compilers. By following simple rules, the programmer
can prevent illegal and inefficient references.

The compiler always aligns parameters and local variables within the stack at an optimal offset
from the beginning of the frame. The compiler also rounds up the size of the frame to the
maximum optimal alignment of the processor. If the initial stack pointer is aligned to the
maximum optimal alignment of the processor, and if the program involves no explicit (or only
correct) manipulation of the stack pointer, then all stack references will be: optimal.

All' variables within the global frame are allocated at an optimal offset from the base of the
global frame. If the assembler or linker allocates the global frame with the maximum optimal
alignment of the processor, all global data references will be optimal.

Variables within a frame are optimally packed together in memory. When a data type has an
alignment requirement, the least possible unused space is left between the end of the previous
item and the next item so that the next item can be optimally aligned. In satisfying different
alignment requirements, complex data types may be allocated differently on different machines.
This will lead to the usual problems with programs that rely on memory overlays. It also will
lead to problems with programs that make implicit assumptions about the size and offset of
objects.

6.5 Floating-Point Range and Accuracy

The representation of floating-point numbers varies between machines. The range, precision,
accuracy, and base vary widely and can lead to portability problems that can be addressed only
through the addition of hardware, if at all. For example, single-precision numbers for the
80386/80486 have a 23-bit significand and an 8-bit exponent. In base 10, this insures a
range of 10-37 to 1038 with a precision of at least 6 significant digits. Double-precision
floating-point numbers have a 52-bit significand and an 11-bit exponent, with a guaranteed
range from 10-307 to 10308 with 15 significant digits.

6.6 Assembly Language Interfaces

Programs that use embedded assembly cede, or interface to external assembly code, will
require all the assembly code to be redone when the program is transported to a new
processor. It is a good idea to write as much of the lower-level systems software in a language
- like C and then optimize, by hand if necessary, the most critical code.

6.7 Expression Evaluation Order

The ANSI standard allows a processor to change the order of evaluation of operands in an
expression, with: certain restrictions. For example, if X and Z are operands of real or double-
precision data type, the processor may evaluate X*B/Z as X* (B/Z). The specific values of the

NDP User's Manual 386/486 UNIX

C

6 Porting Programs 65

operands may cause the value of the expression to vary in precision depending on the order of
evaluation. The standard does prevent a reordering of an expression when, for example,
grouping two integers and dividing would cause inappropriate integer division truncation. In
the above expression, if B and Z were integers then X*B/Z could not be evaluated as X* (B/Z).
If x=5.2, B=2, and 7=3, 5.2*2/3 will be evaluated as (5.2*2)/3=10.4/3, not as
5.2*(2/3)=5.2*0.

A more serious porting problem occurs when the operands of an expression are functions that
modify other operands in the expression, or share parameters that they modify. The ANSI
standard allows x+y to be evaluated as y+x. Assume the following program format:

i = double(a) + constantl3 (a)

Procedure double (a) sets.a = a*2 and returns the new value of a. If a was 5, a is set to 10,
and 10 is returned. Procedure constantl13(a) sets a to 13. If the compiler evaluates the
expression as x+y, the evaluation will be:

i

double(a) + constantl3(a)
double(5) + constantl3(10)
10 + 13

= 23

i}

Note that double(a) reset a to 10 before constant13 (a) was called.

If, however, the compiler, complétely following the ANSI standard, evaluated the expression as
y+x, the result would be:

i = constantl3(a) + double(a)
constantl3(5) + double(13)
13 + 26

= 39

1]

"

Note that constant13 (a) set a to: 13 before double (a) was called. When an expression can
be evaluated in different orders, the NDP compiler will evaluate it in left-to-right order.

A similar situation occurs when arguments to a procedure are themselves functions that
modify other arguments to the procedure, or arguments to other functions that are arguments
to the procedure. For example,

a=>5
call subl(double(a), constantl3(a))

If double (a) is evaluated first, a is reset to 10, and 10 is bound to the first parameter of subl.
constant13 is evaluated, a is set to 13, and 13 is bound to the second parameter of subl. The
ANSI standard allows the arguments to be evaluated in the reverse order, as well, in which
case constant13 (a) is evaluated, a is set to 13, and 13 is bound to the second parameter of
subl. double is then evaluated, but a is now 13, so it is reset to: 26, and 26 is bound to the
first parameter. A program that depends on the order in which arguments with side effects are
evaluated is non-portable..

The NDP compilers usually evaluate arguments to a procedure in left-to-right order. If a
program depends on order of evaluation, that program becomes unportable. Porting it from
one compiler to another may generate different results.

6.8 lllegal Assumptions About Optimizations

Some programs depend on the exact code that a particular compiler generates. Such programs
are particularly difficult to port to advanced optimizing compilers such as the NDP line because
optimizers make major changes in the code in order to make the program smaller or faster.
The following are some of the most common illegal assumptions about code generation upon
which some programs rely. Chapter 3 describes in detail the optimizations discussed here.

386/486 UNIX NDP User's Manual

66 6 Porting Programs

6.8.1 Implied Register Usage

Some programs rely on the exact register allocation scheme used by the compiler. Such
programs will not port without modification.

6.8.2 Memory Allocation Assumptions

NDP, AT&T, and other vendors have different ways of allocating memory. Because of these
differences, problems can arise in porting programs that depend on the memory-allocation
peculiarities of other compilers.

Some programs depend upon tae compiler allocating variables in memory in the order that
they are declared. The NDP compilers will not necessarily allocate variables in the order of
declaration.

Some programs depend upon knowing that the compiler will allocate all variables even if they
are not used. The NDP compilers may not allocate unused variables.

Some programs depend upon knowing that certain variables will be allocated in memory. The
NDP compilers will allocate certain variables to registers that UNIX and other compilers would
always allocate to memory. Programs compiled with the NDP compilers must not make
assumptions regarding the order of allocation of variables in memory, except where the
language standard specifies it.

6.8.3 -OM and -OLM Considerations

The -0M and -OLM compile-time switches (options) should be used only in programs in which

memory cannot change except under control of the compiler. Either switch tells the compiler

that memory locations cannot change asynchronously with respect to the running program.

For example, if the compiler reads or writes some memory location, three instructions later it \
must be able to assume that the same value is still in that memory location. This would not N
have to be the case if the memcry location were a memory-mapped peripheral.

This brings up a good use of assembly language -- writing device drivers -- and points to an
area where the optimizer must be used with caution, i.e., systems software, including many
parts of operating systems: device drivers, memory mapped I/O locations, shared IMEemory
environments, multiple process environments, interrupt driven routines, and UNIX-style
signals. Anyone who has worked on an operating system or developed a device driver will of
course be aware of the critical nature of specifying optimization levels.

6.9 Problems with Source-Level Debuggers

Once a variable is allocated to z register it will always stay in that register; however, since other
variables may share the register, the register may not always contain the value of the variable.
This may cause a source-level cebugger to give incorrect results. If you ask for the value of a
variable at a point at which the variable is about to be assigned into a register, the compiler
may have temporarily assigned that register to another variable. Always check results after
they are assigned or when the current value is going to be used later. Near the end of a
subroutine or function most of -he local variables will no longer be used. Thus, the chance
that the register has been reallccated is much higher. Use of the -of fr switch will alleviate
this problem; this will force the compiler to keep variables stored in MmMemeory.

6.10 Problems with Compiler Memory Size

The NDP compilers are advanced optimizing compilers. They are much better than the current .
generation of "optimizing" micrcprocessor compilers. In accordance with their greater ‘)
capability they require more memory. The NDP compilers require over one megabyte just to N’

NDP User's Manual: 386/486 UNIX

6 Porting Prograrﬁs - 67

load. Compiling requires at least two megabytes of memory; larger programs require more
memory.

The compiler's primary uses of memory are for the program, static data structures, global
declarations, parse trees, and generated machine code. Global declarations consist of the
global constant, type, variable, and subroutine or function declarations. This is a major use of
memory when large numbers of declarations are included in a compilation. Even unused
global declarations must be stored throughout the compilation. If memory size problems exist,
try to reduce the size of the include files by including just the declarations that are needed.

The NDP compilers are one-pass compilers in that they read the source program only once.
Each subroutine or function is converted into a parse tree as it is read. When the end of the
subroutine or function is reached, the optimizer is called with the parse tree as input. The
optimizer modifies the parse tree and then passes it on to the code generator.

The code generator produces an internal representation of the machine code to be output for
the subroutine or function. Another phase is then called to modify this machine code. Finally,
the optimized machine code for the subroutine or function is output. After the machine code is.
output, the memory being used for the parse tree and machine code is reclaimed for use in
compiling the next subroutine or function.

The size of the largest subroutine or function in the program determines the memory usage for
parse trees and machine code. If memory size problems exist, turn off the optimizer and
reduce the size of the largest subroutine or function. Simple subroutines or functions of fewer
than 100 lines should not cause memory size problems. Procedures of more than 1,000 lines
may require more than a megabyte of memory to compile.

386/486 UNIX NDP User's Manual,

fASCII Character Set

The following is the ASCII character set, given in ascending order of precedence, with the
decimal and hexadecimal equivalent values.

Char Dec Hex ‘ . 46 2E ~ 94 SE
/ 47 2F - 95 SF
NUL 0 00 0 48 30 ‘ 96 60
SOH 1 01 1 49 31 a 97 61
STX 2 02 2 50 32 b 98 62
ETX 303 3 51 33 c 99 63
EOT 4 04 4 52 34 d 100 64
ENQ 5 05 5 53 35 e 101 65
ACK 6 06 6 54 36 f 102 66
BEL 707 7 55 37 g 103 67
BS 8 08 8 56 38 h 104 68
HT 9 09 9 57 39 i 105 69
LF 10 oA : 58 3A i 106 6A
VT 11 0B ; 59 3B k 107 6B
133 12 ocC < 60 3C 1 108 6C
CR 13 0D = 61 3D m 109 6D
SO 14 0OE > 62 3E n 110 6E
51 15 OF ? 63 3F o 111 6F
DLE 16 10 @ 64 40 p 112 70
bcl 17 11 A 65 41 q 113 71
bcz 18 12 B 66 42 r 114 72
DC3 19 13 C 67 43 s 115 73
DC4 20 14 D 68 44 t 116 74
NAK 21 15 E 69 45 u 117 75
SYN 22 16 F 70 46 v 118 76
ETB 23 17 G 71 47 W 119 77
CAN 24 18 H 72 48 x 120 78
EM 25 19 I 73 49 y 121 79
SUB 26 1A J 74 4a z 122 7A
EsC 27 1B K 75 4B { 123 7B
Fs 28 1C L 76 4C [124 7C
GS 29 1D M 77 4D) 125 7D
RS 30 1E N 78 4E ~ 126 7E
Us 31 1F o 79 4F DEL 127 7F
SP 32 20 b 80 50
! 33 21 o} 81 51
" 34 22 R 82 52
35 23 I 83 53
S 36 24 T 84 54
% 37 25 U 85 55
& 38 26 v 86 56
' 3927 W 87 57
(40 28 X 88 58
) 41 29 v 89 59
* 42 2A z 90 SA
+ 43 2B [91 5B
, 44 2C \ 92 5C
- 45 2D]

93 5D

| Index

80387
register set 33
Active error handling 40
Alignment requirements 64
ASCII character set 69
Assembler
directives 60
$$frame (stack frame) 60
$$noret (omit return instructions) 60
$radix (radix directive) 60
routines 49, 57
Assembly
code
conventions for writing 61
language '
common routines 61
interfaces 64
parser 58, 59
rationale for 57
Biased exponent 43
Big endian 63
Binary
fraction 42
real number 43
Byte order 63
porting problems 64
Byte-addressable machines. 63
Calling
between Fortran and C 53
between Fortran and Pascal 55, 56
between: NDP ClIC++ and NDP Pascal 56
Case sensitivity 9, 51, 56
Cleanup code 22
Code
generator 67

Common Subexpression: Elimination (CSE) 8

Common subexpressions.
elimination 21
Compatibility
among NDP compilers 63
Compiler
memory size 66
NDP 49
compatibility among 49
differences among 49
runtime systems 49
one-pass 67
switches 6
Compiler driver 5
extensions 5

syntax 5
Compilers
optimizations 5
Condition code 34
defining operand class 35
Constant expression folding 20
Constant propagation 20
Cross jumping 8, 21
Cybernetic realm 40
Data registers
80387/80487 33
Weitek 38
Data types 27, 50
char 51
double-precision real 26
integer 50
single-precision real 25
Dead code
elimination 19
Dead code elimination 8
Denormal 45
Division
by infinity 40
by zero 40, 41
DO loop 8
Double real encodings 26
Double-precision real 26
Endian data representation 63
Environment variables 2
Epilog optimization 15
Errors 40
handling
active 40, 41
passive 40
Exception 40
flag 36
handler
creating 42
default 40
handling
active 41
passive 41
placing checkpoints: 41
invalid operation 40
masking 40
masks 36
NDP 42
unmasking 40
Exponents 44
Expression evaluation order 64
Extension

72

5 6
File
input type 5
Flags register 31
Floating point 25, 51
accuracy and range 64
invariant expressions 8
number 25
32-bit binary 25
64-bit binary 26
binary 42
IEEE real 44
number systems 42
parameters 51
precision 45
underflows. 63
Frame
global 64
Function
mapdev 58

General purpose registers 29

Geterrno 39
Global frame 64
Hardware access 58
Identifier names 51
by language 51
ClC++ b1
Fortran 51
global 51
Pascal 51
IEEE
754 25
854 25
number system 40, 42
reals 42

Illegal assumptions about code generation 65
and use of -OM and -OLM 66

memory allocation 66

reliance on exact register allocation 66

Implied register usage 66
Include files. 5

Infinities 46

Infinity 46

Inline multiplication and division 19

Inliner 23

Inlining 39

Integer
16-bit 50
data type 25
overflows 63

Integer types, 80x86
integer 25
long integer 25
short integer 25
signed char 25
unsigned char 25
unsigned integer 25

NDP User's Manual

unsigned long integer 25
unsigned short integer 25
Intel
numeric coprocessors. 40
Intelligent Assembler 58
Interfacing
NDP languages 49
with assembly language
routines 58
with assembly language 61
Internal
registers 28
Interrupt
software 58
Invalid operation 41, 42
exception 40
Library routine 39
Linking -
restrictions 49

Index

57

NDP Fortran modules 49

NDP Pascal modules 50

Little endian 25, 63
Live/dead analysis 21
Long integer 25
Loop:
index variable 17
invariant analysis 16
optimizations 8
rotation 16, 17
strength reduction 17
unrolling 8, 19, 22
advantages 22
costs 22
disadvantages 22
Lower level characteristics 25
Machine code '
optimized 67
Mapdev function 58
Mathematics realm 40
Memory
allocation
assumptions 66
optimizations. 8
usage 67

used by NDP Fortran compiler 67

Memory allocation 12
Mixing languages 49
output buffers 53
Multiple-byte data items
alignment 64
Naming conventions 51
NaN 41, 42, 43, 46
indefinite real number 42
NDP
compilers 49
compatibility 49

data type differences 50

386/486 UNIX

-

Index

differences 49
linking 49

naming conventions 51

output buffers 53
Nested functions 24
Normalization 43
Normals 46
Null byte 53
Numeric error 40
Numeric exception 40

denormal operand 40
handling 41
invalid operation 40
NDP Fortran 41
overflow 40
precision 40
underflow 40
within library routine 39
zero divide 40
Numeric exceptions 39
Numerics 25
Object
module 57
Optimizations 11
Optimized machine code 67
Optimizing 57
using assembly language 57
Output
buffers 53
Parameter passing 52, 53, 55
by reference 52
by value 52
Parse tree 67
Parser ,
assembly language 58
Pascal 51
Passing parameters 52, 53, 55
by reference 52
by value 52
Passing strings 52, 53
by value 52
Passing values 52
Passive error handling 40
PC hardware
accessing 58
Peephole optimization 15
Peephole optimizations
-onrepeep 9
Porting programs 63

aligning multiple-byte data items 63

memory allocation 65

to NDP Fortran from IBM mainframe 63
to the PC from VAX minicomputer 63

-OM and -OLM switches 66
Ports.

reading from and writing to. 58

Pragmas 59

386/486 UNIX

Precision
and denormals 45
Print_it_ 60
Program
checkpoints 41
development 5
speed 17
Prolog optimization 15
Protected-mode
segments 30
Push 49
Range and accuracy
floating point 64
Recursion 23
Register
80387 data registers: 33
80387 register set 33
allocation by coloring 12
caching 8
control word 36
flags 31
general purpose 29
internal 29
segment 30
status word 36
systems control 32
Weitek 38
Register coalescing 14
Runtime
organization and numerics 25
system 49
Segment
addresses 30
registers 30
selectors 30
Short integer 25
Signed char 25
Single and double real encodings 26
Single real encodings 26
Single reals 45
Single-precision real 25
rules 25
Software interrupts 58
Source-level debuggers 66
Speed optimizations 15
ST(0) 33
Stack
order 49, 61
Static address elimination 13
Status Word Register 33
Strength reduction 17
String handling 53
Strings
passing
between Fortran and C 52
Fortran to Pascal 53
Pascal to Fortran 53

73

NDP User's Manual

74

System

services

accessing DOS. 58
accessing ROM BIOS. 58

System requirements 1
True exponent 43
Underscores 60

leading 51

trailing 51
UNIXV 63
Unsigned

char 25

integer 25

long integer 25

short integer 25
Unused variables. 66
Variables

unused 66
VAX VMS

Fortran compatibility 9
Warning messages, suppress 9
Weitek

architecture 38

coprocessors 38

data registers 38

numeric coprocessors 40

process context register 38
Word-addressable machines 63
Word-size problems. 63

floating-point underflows 63

integer overflows 66

loss of precision 63
WTL Register File 38
Zero

division by 40
-2.1 6
-ansi 6, 51
-ansiconform 6
-¢ 6
-cgl
-cg2
-cg3
-cg4
-cgb
-cg6
-cg7 6
-clink 7
-cpplink 7
-Dname 7
-Dname=text 7
-f1
-2
£3
-f4
-5
16
-7

(20 2z R R 0y

ENIEN IR IS AN IR RN

NDP User's Manual

- -n4

-fdiv 7
-flink 7
g7

-ga 7
-hasm 7
-i2 7

-i4 7
-identl 7
-ident2 7
-Idir 7
-If3 50
-f3w 50
-list 7
-Iname 7
-minit 7
-no:
-nl
-n2
-n3

-nd
-né.
-n7
-n8 8
-nof77 8
-0 8
-oname 8
-off 8

-offa: 8
-offcse 8
-offh 8
-offn 8
-offp 8
-offr 8

-offs 8

-OL 8
-OLM 8, 66
-OM 8, 66
-on 8
-on2cse 8
-onetrip 8
-onlr 8
-onrc 8
-onrepeep 9
-onw 9

-p 9

-pl 51, 56
-p3 52
-plink 9
-rtl 9

-It2 9

-3 9

-rt4 9

-S 9

-u 9
-uname 9
-ur=# 9

Q0 90 0 @ 60 N N NN

Index

386/486 UNIX

Index

-v 9
-vms 9
-vinsi 9
‘W 9

-Wa,toggle 9

-Wl,toggle 9

386/486 UNIX

75

NDP User's Manual

NDP Pascal
Reference Manual

Microway®

Research Park
Box 79
Kingston ¢ Massachusetts 02364 *« USA

NDP Fortran, NDP Pascal, NDP-VMEM, NDP Link, NDP Run, and Microway are trademarks. of
Microway, Inc.

UNIX is a registered trademark of UNIX Systems Laboratories, Inc.

Intel, SX, 287, 386, 387, 486, 1486, and i860 are trademarks of Intel Corporation.
Microsoft, MS-DOS, and Windows are registered trademarks of Microsoft Corporation.
0S/2 is a trademark of IBM corporation.

Phar Lap, 3861 DOS-Extender, and 386 VMM are trademarks of Phar Lap Software, Inc.
Weitek is a trademark of Weitek Corporation.

Copyright © 1987 - 1993 Microway, Inc. February 3, 1993

Contents

PREFACE

Manual Objectives
Pascal Syntax Diagrams
A Final Request

Base Vocabulary

1.1 Identifiers

1.2 Reserved Words

1.3 Keywords

1.4 Special Symbols

1.5 Comments

1.6 Predefined Constants

1.7 Predefined Types

1.8 Predefined Variables

1.9 Predefined Functions

1.10 Predefined Procedures
1.11 Preprocessor Commands:
1.12 Constants (unsigned integer, unsigned number, unsigned constant)

Program Structure

2.1 The Structure of Programs

2.2 The Lexical Scope of Identifiers

2.3 Declaration Order

2.4 Program Modules for Separate Compilation

Pascal Declarations

3.1 Program Heading (PROGRAM)
3.2 Label Declaration (LABEL)

3.3 Constant Definition (CONST)
3.4 Type Definition (TYPE).

3.5 Variable Declaration (VAR)

3.6 External Directive (EXTERNAL);
3.7 Static Directive (STATIC)

Type Definitions

4.1 Type Definitions

4.2 Type Compatibility and Conversions
4.2.1 Identical Types
4.2.2 Compatible Types
4.2.3 Assignment Compatibility
4.2.4 Implicit Type Conversion

4.3 Enumerated Types

4.4 The Subrange Type

B b

w

NNOODDD U W

11

11

12
13
14

15

15
15
16
16
17
19
21

23

23
24
24
24
24
25
26
27

iv 1 Base Vocabulary

4.5 The SET Type 27
4.6 Predefined Scalar Types: BOOLEAN, CHAR, INTEGER, DOUBLE, REAL, FLOAT 28
4.6.1 Operations and Functions for the BOOLEAN Scalar Type 29
4.6.2 Operations and Functions on the CHAR Scalar Type 30
4.6.3 Operations and Functions on the INTEGER Scalar Type 30
4.6.4 Operations and Functions of the REAL, FLOAT, and DOUBLE Scalar Types. 32
4.7 Array Type 33
4.8 Record Types: 34
4.8.1 Accessing a Field ' 34
4.8.2 The Fixed Part 35
4.8.3 The Variant Part 35
4.8.4 Packed Records 35
4.9 Pointer Type 36
4.9.1 Operations on Pointers 37
4.10 File Type ' 37
4.10.1 Predefined File Type TEXT 38
4.11 Packed and Unpacked Types 39
Variables 41
5.1 Entire variables 41
5.2 Component Variables 41
5.2.1 Indexed Variables 41
5.2.2 Field Designators 42
5.2.3 File Referencing 43
5.3 Pointer Referencing 43
Expressions 45
6.1 Operators 46
6.2 Boolean Expressions 47
6.3 Function Call 48
6.4 Set Constructor 48
Statements : ‘ 51
7.1 Statement Summary 51
7.2 The ASSIGNMENT Statement 51
7.3 The CASE Statement 52
7.4 The COMPOUND Statement 53
7.5 The EMPTY Statement 54
7.6 The FOR Statement 55
7.7 The GOTO Statement 56
7.8 The IF Statement 57
7.9 The PROCEDURE Statement 58
7.10 The REPEAT Statement 59
7.1 The WHILE Statement 60
7.12 The WITH Statement 60
Procedures and Functions 63
8.1 Procedure and Function Declarations 63

8.2 Parameter Transmission . 64

1 Base Vocabulary

8.2.1 Value Parameters

P 8.2.2 Variable Parameters
[8.2.3 Formal Routine Parameters
N 8.3 Function Results

8.4 The FORWARD Directive:

Input and Output
9.1 Overview
9.2 File Declaration and Initialization
9.3 Input and Output Processing using GET and PUT
9.4 Buffer Variable Restrictions
9.5 Input and Output Processing with READ and WRITE

Predefined Functions and Procedures
Preprocessor Commands
Selected Bibliography

), Interface to C and Math Libraries

Overview

The Standard Pascal Library

The Math and C Libraries

Contents of the Math and C libraries
Miscellaneous Mathernatical Functions

NDP Pascal Error Messages
Overview

C.1. Compile Time Error Messages.

Index

65
65
65
66
66

71
71
71
73

74
76

79

95

99

101

101
101
101
101
102

185
185

185

197

C

A N—

N

P PREFACE

Manual Objectives

The purpose of this manual is to present a complete description of Microway's implementation
of the Pascal language. This manual describes the syntax and semantics of NDP Pascal. This
manual is a reference document and is intended for people familiar with the Pascal language.

NDP Pascal implements the ANSI/IEEE standard 770X3.97-1983, a superset of Niklaus
Wirth's Pascal. It includes several extensions from Berkeley 4.2 BSD Pascal and the British
Standards Institute (BSI) Level O, a preprocessor, separate compilation of modules, and
interfaces to our C library. '

Pascal Syntax Diagrams

This manual describes the syntax and semaritics of NDP Pascal using explanations
accompanied by syntax diagrams and programming examples. The syntax is described by
using a meta-language consisting of circles, ovals, and rectangles that are connected by
arrows. This pictorial representation of Pascal's syntax rules is called a syntax diagram. The
purpose of the syntax diagram is to give a simple, concise, and unambiguous description of the
language. An explanation follows each syntax diagram describing the meaning of any symbols
used, and restrictions not shown in the diagram.

Each syntax diagram represents one or more syntax rules in NDP Pascal. The title of the
diagram is the name of the syntax rule being defined. Arrows are used to show the entry and
exit points of the diagram, as well as the legal paths.

A circle or oval is used to surround a symbol that is part of the Pascal language. This may be a
special character, a punctuation mark, a keyword or a reserved word. A rectangle is used to
enclose the name of another syntax rule that is described somewhere else in this manual.
Finally, arrows are used to connect the circles and rectangles and establish the order in which
these symbols must follow one another.

The title of the diagram is the name of the syntax rule being defined. A Pascal construct is
formed by following the arrows around the diagram, from the beginning to the end, and
concatenating the symbols encountered along this traversal.

EXAMPLE

The following syntax diagram summarizes the definition of a Pascal program.

block

program

identifier

identifier

The items in the circles and oval represent tokens of the Pascal language, and must be entered
exactly as shown. The rectangular boxes enclose the name of syntax rules that are described in
another part of this manual. The arrows show that a Pascal program consists of the keyword
PROGRAM, followed by an identifier, optionally followed by a parenthesized list of one or more
identifiers, separated by commas. This is followed by a semicolon, a block, and finally, a period.

The purpose and meaning of the different identifiers that are possible are described in the text

following the syntax diagram. In this instance, the first identifier is the program name, while
the list of identifiers within the parentheses represent names used by the programmer to

2 Preface

indicate the program's interaction with its environment. These are traditionally the names of
files accessed by the program, but NDP Pascal places no restriction on the meaning of these
identifiers. '

A Final Request

This reference manual uses as many examples as possible so that each language element may
be quickly and easily understood. The examples consist of programs, procedures, and
functions that use a variety of Pascal constructs to solve standard problems in a natural way.
We try to avoid contrived examples, so if you have a clean, crisp program that illustrates an
important feature of Pascal, then we would appreciate hearing from you.
Additional copies of this reference manual may be obtained by contacting Microway as follows:

Microway, Inc.

Research Park

P.O. Box 79

Kingston, MA 02364

United States

PHONE: +508/746-7341

FAX: +508/746-4678

NDP Pascal Reference Manual

1 Base VocabUIary

1.1 Identifiers

L —

identifier —)———{ underscore I >
dollar sign
I‘ . . L‘
| digit ,‘
]
(e
underscore > Q/ >
dollar sign > @ >
Figure 1-1 Syntax Diagrams for Letter, Digit and Hex Digit _
letter '
digit l l : ‘ i

Figure 1-2 Syntax Diagram of an Identifier

An identifier is the name used for program constants, data types, variables, procedures, and
functions. Identifiers may begin with a letter, a dollar sign ($), or an underscore (_), and no
distinction is made between upper and lower case letters. (Identifiers may be made case
sensitive through the use of a compiler switch. See the NDP User's Manual for details.)
Identifiers may not begin with a digit or include either a question mark (?) or period (.). The
maximum length of an identifier is 132 characters and all are significant. An identifier cannot
have the same spelling as a reserved word (Section 1.2).

The use of long identifiers of up to 132 characters may conflict with the requirements of the

assembler. Refer to your assembler reference manual for details. Also, identifiers that are to be
made external must conform to the requirements of the host operating system.

4 1 Base Vocabulary

The following are valid identifiers:

SSN Sy
frequency K_’j
input_buf

sdollar

_u238

The following are invalid identifiers:

2k { cannot start with a digit}

ice cream { embedded spaces are not allowed}

which_way? { question mark is not allowed}

repeat { reserved words may not be used}
1.2 Reserved Words

The following is a list of reserved words used to define the syntax of NDP Pascal. These words
may not be defined as identifiers in a program. The reserved words must be separated from
other language constructs by a special symbol (Section 1.4), a comment, or one or more spaces.

and end nil repeat

array file not set

begin for of then

case function or to

const ~ goto otherwise type

div if packed until

do in procedure var

downto label program while

else mod record with TN

Table 1-1 NDP Pascal -- Reserved Words

1.3 Keywords

The following is a list of keywords used to define the syntax of NDP Pascal. The difference
between a reserved word and a keyword is that a reserved word may not be used as an
identifier, while a keyword may be used as an identifier. Keywords must be separated from
other language constructs by a special symbol, a comment, or one or more spaces.

NDP Pascal's keywords are as follows:

forward external static

1.4 Special Symbols
The table below summarizes the mathematical and notational symbols used by NDP Pascal.

Symbol Meaning
+ addition, set union
subtraction, set difference

* multiplication, set intersection

/ real division

~ Boolean not, set complement, one's complement on type INTEGER

[Boolean or, logical or on type INTEGER S
& Boolean and, logical and on type INTEGER, address of W L
= equality

> greater than

NDP Pascal Reference Manual

1 Base Vocabulary 5

< less than
<= less than or equal
>= greater than or equal
<> not equal, Boolean exclusive or
<< logical left shift
>> logical right shift
1= assignment operator
+= “x += y”is equivalent to “x := x + y”
-= “x -= y”is equivalent to “x := x - y”
*= “x *= y”isequivalent to “x := x * y”
/= “x /= y”is equivalent to “x := x / y”
| = “x |= y”is equivalent to “x := x | y”
&= “x &= y”is equivalent to “x := x & y”
<<= “x <<= y”isequivalent to “x := x << y”
>>= “x >>= y”is equivalent to “x := x >> y”
indicates a subrange
. period, indicates the end of a program or field specification within a record
. comma, used to separate items in a list
: colon, used as a separator in declarations, labels, and case statement
; semicolon, used to separate statements and routine parameters
single quote, used to define character constants
~ caret, pointer symbol
[left square bracket, array indexing operator
] right square bracket
(open parenthesis, function and procedure declaration and call
) close parenthesis (same as “open parenthesis”)
{ left curly bracket, open comment
} right curly bracket, close comment
(* open comment
*) close comment

Table 1-2 NDP Pascal -- Special Mathematical and Notational Symbols

1.5 Comments

Comments are set off from the program text by using either the curly braces or the open and
close comment symbols. A comment may be placed anywhere in the program text where a
blank could be used. Comments may not be nested. However, a single close comment symbol
will terminate one or more open comment symbols.

EXAMPLES
{ This is a perfectly good comment. }
(* as is thig *)

{ Comment symbols may be mixed, *}
{(* and matched. . . . }

{ Further, comments may appear on
any number of lines.

)
{ this is an {illegal} nesting of comment symbols }
{ this is also (* illegal *) }

{ however, this { is OK }

NDP Pascal Reference Manual

6 1 Base Vocabulary

function integrate{using trapezoids}(a, {lower bound}
bireal; {upper bound}
N:integer; {# intervals}

y:ireal; {result}

1.6 Predefined Constants

FALSE constant of type BOOLEAN
MAXINT maximum constant of type INTEGER: 2147483647.
TRUE constant of type BOOLEAN

1.7 Predefined Types

BOOLEAN logical data type

CHAR character data type

INTEGER integer data type

FLOAT floating point data type represented in 64 bits

REAL floating point data type represented in 32 or 64 bits
DOUBLE floating point data type represented in 64 bits
TEXT file of type CHAR

1.8 Predefined Variables

INPUT default input file
OUTPUT default output file

1.9 Predefined Functions

The following is a list of the predefined functions in NDP Pascal. A detailed description of these
functions is in Chapter 10.

ABS (x) returns the absolute value of x

ARCTAN (x) returns the arctangent of x

ARGC returns the number of command line arguments

CHR (n) returns. the ASCII character whose ordinal value is n
COS (x) returns the cosine of x

EOF (f) returns TRUE if file £ is at end of file

EOLN (f) returns TRUE if file £ is at end of line

EXP (x) returns the base of the natural log (e) raised to the power x
LN (x) returns the natural logarithm of x

ODD (n) returns TRUE if the integer n is odd

ORD (x) converts a scalar value x to an integer

PRED (x) returns the predecessor of the scalar x

ROUND (x) converts a floating point x to an integer by rounding
SIN (x) returns the sine of x

SORT (x) returns the square root of x

SOR (x) returns. the square of x

SUCC (x) returns the successor of the scalar x

TAN (x) returns the tangent of x

TRUNC (x) converts a floating point x to an integer by truncating

1.10 Predefined Procedures

The following is a list of the predefined procedures in NDP Pascal. A detailed description of
these procedures is in Chapter 10.

ARGV (1,s) copies the it command line argument into the variable s

NDP Pascal Reference Manual

1 Base Vocabulary

DISPOSE (p, tI,..

GET (f)

NEW (p,t1,...)
PACK (a,i,z)
PAGE (f)

PUT (f)

READ (f, v)
READLN (f, v)

RESET (£,
REWRITE (f,s)

sy

UNPACK (z,a,i)
WRITE (f, e)

WRITELN (f, e)

2) deallocates a dynamic variable
advances file pointer and assigns file component to buffer variable
allocates a dynamic variable
packs array a, beginning at index i, into array z
writes an ASCII form feed to file £
copies buffer variable to the end of file £
reads data from file £ into variable v

reads data from file f into variable v, then advances to end of line
on file £)

opens a file for input

opens a file for output

copies packed array z, to array a, beginning at index i
writes the value of e to file £

writes the value of e, and then an end of line to file £

1.11 Preprocessor Commands

The following is a list of commands interpreted by the preprocessor. A detailed description of
these commands is in Chapter 11.

#DEFINE n s replaces a name n with a string of characters s

$UNDEF n cancels the previous #DEFINE on the name n

#INCLUDE £ redirects compiler input to a supplementary file £

#IF e evaluates the text following this statement if expression e is nonzero or
TRUE

#IFDEF n evaluates the text following this statement if the name n is defined

#IFNDEF n evaluates the text following this statement if the name n is not defined

#ELSE evaluates the text following this statement if the result of the previous
#IF, #IFDEF, or # IFNDEF was 2€ro or FALSE

#ENDIF terminates an #IF, # IFDEF, or # IFNDEF statement

#LINE ¢ reports an error message occurring on following line as appearing in file

f on line number c

1.12 Constants (unsigned integer, unsigned number, unsigned
constant)

unsigned integer A digit >

Figure 1-3 Syntax Diagram for unsigned integer

NDP Pascal Reference Manual

1 Base Vocabulary

unsigned number

‘unsigned integer

O

digit "{ unsigned integer

B

Figure 1-4 Syntax Diagram for unsigned number

hex constant

v

y hex digit

Figure 1-5 Syntax Diagram for hex constant

unsigned constant

constant identifier

v

unsigned number

hex constant

» NIL |

|
4 \ . \ ! \' i
Not¥emsiNgE

Figure 1-6 Syntax Diagram for unsigned constant
Explanatory note on “character™:

character corresponds to the character equivalent of the decimal ASCII codes from 32 to 126
in Appendix B of the NDP User’'s Manual.

constant identifier
constant

l.,y > unsigned number
(Ot (O——

Figure 1-7 Syntax Diagram for constant

An unsigned integer is a sequence of digits. An unsigned number is an unsigned integer with
either a decimal point or a scale factor, or both. An unsigned number may end with a decimal
point, but if a number less than one is to be represented, it must begin with a digit. (Standard
Pascal requires a digit before and after a decimal point in real numbers, a restriction that is
relaxed in NDP Pascal.)

h 4

NDP Pascal Reference Manual

o

1 Base Vocabulary g

A string is a sequence of characters enclosed by quotation marks. The value of a string

constant is the sequence of characters enclosed within the quotes. For the purposes of type

compatibility, strings are divided into two groups: strings of length one, and strings of length

greater than one. A string consisting of a single character is a string of length one and is

identical to the type char. A string consisting of n characters is identical to the type definition:
packed array [1..n] of char;

When an apostrophe is to be used in a character string, it must be written twice. String
constants are case sensitive so that upper and lower case letters must be carefully
distinguished by the user. An end of line character may not appear in a character constant.
The constant NIL is a reserved word and represents a pointer constant that does not point to
anything. NIL is compatible with any type definition.
The constants TRUE and FALSE are predefined Boolean scalar constants.
EXAMPLES '
The following are valid constants:

1024 { an unsigned integer }

3.14159 { unsigned numbers }
0.57721

1.2345e4

1.2345e-8

NIL { unsigned constants ¥
"four score"

SSN

input_buf

-frequency { constants }
+2.71828

0x80000000 { hex constants ¥
0x0000FFFC

The following are invalid constants:

.12345 { leading digit is missing ¥
-NIL { a plus or minus must be followed }
+'sorry’ { by a digit or identifier }

NDP Pascal Reference Manual

2 Program Structure

2.1 The Structure of Programs

program

Figure 2-1 Syntax Diagram for Program

block
—>
N A
label declaration
J
—————p constant definition
€ J
type definition
i I
variable declaration
< |
-
|- procedure and function declaration
]
»
compound statement >

Figure 2-2 Syntax Diagram for Block

Pascal is a block structured language. This means that a Pascal program consists of a set of
nested blocks. The nesting of blocks allows the definition of one block to be entirely contained
within another block. At the outermost level, a program consists of a program heading, followed
by a single block that defines the main program. As the syntax diagram above shows, a block is
composed of the following six sections, all optional except the compound statement that
constitutes the body of the block:

OOk WD

label declaration part,
constant definition part,
type definition part,

variable declaration part,

procedure and function declaration part,
compound statement.

12 2 Program Structure

The nature and exact contents of each of these components of a block are described in the
following chapters.

Each block introduces a new local referencing environment. For example, a variable declared in
a block B, say, is accessible throughout that block unless the same variable name is redefined
within a sub-block of B. The redefinition of a variable lasts throughout the scope of the sub-
block. Details regarding the lexical, or static, scope rules for identifiers are given in the
following section. '

Variables are allocated when a procedure or function is entered, and are deallocated when the
corresponding return is made. Each invocation of a recursive routine has its own set of local
variables. This is accomplished by allocating space for local variables in the same stack-like
manner in which the recursive calls are nested. Thus, when a return statement is executed,
the variable space corresponding t> the appropriate invocation of the routine is deallocated.

2.2 The Lexical Scope of identifiers

An identifier may refer to a constant, variable, label, procedure or function name, or type
definition. The lexical scope of an identifier is the region of a program where the identifier may
be referenced. The block structure of Pascal is used to define the lexical scope rules for
identifiers. The following is a summary of the lexical scope rules for Pascal.

1. Every identifier must be defined before it is used. The two exceptions to this involve pointer
variables, and procedure and fanction calls when there is a forward reference.

2. The scope of an identifier depends upon how the identifier was declared.

a) For labels, constants, types, variables, procedures and functions, the scope is the block
in which the declaration oczurs;

b) for constants denoting the values of an enumerated type, it is the most embedded block
containing the type definition for the constant;

c) for function and procedure parameters, it is the formal parameter list and the
corresponding block;

d) for field identifiers, it is the record definition in which they occur;
e) for predefined identifiers, it is an imaginary block enclosing the program.

3. An identifier may only be used within its scope of definition, and an identifier's association
is unique within its scope. This means that an identifier cannot be defined twice within the
same scope, either with the same or with different meanings.

4. The declarations at the beginning of each block define the local referencing environment for
the block. Any reference to an identifier within the body of a block (not including any
nested subblocks) is considered a reference to the local declaration for the identifier, if one
exists.

5. By convention, when blocks ar= nested, the nesting levels are called level 0, level 1, etc.,
beginning with the main program. Identifiers in level i are in the scope of blocks declared at
levels i+1, i+2, and so on.

If an identifier is referenced within the body of a block B and no local declaration exists,
then the reference is considered to be a reference to a declaration within one of the
enclosing blocks. The enclosing blocks are searched for this declaration beginning with the
block immediately surrounding block B until the declaration is found, or the outmost block
is reached. When the outermost block is reached, the predefined environment is searched
for the identifier and, if not found, an error is reported.

6. If a block B contains a subblocx s, then any local declarations within the subblock (or
blocks that $ may contain) are not available to the outer block B. Declarations within a
subblock are invisible to the blocks surrounding it.

NDP Pascal Reference Manual

2 Program: Structure 13

7. A declaration for the same identifier may occur in many different blocks, but a declaration
in an outer block is hidden from the inner block if the inner block gives a new declaration
for the same identifier. This gap in the scope of the identifier within the outer block is called
a “hole in scope”.

EXAMPLE A

The following example illustrates the lexical scope of identifiers in a Pascal program. The
variable x declared on line 2 is global throughout most of the program. There is a hole in its
scope in procedure ¢ and function g, since x is redeclared in line 6. This means that any
reference to x in procedure c¢ and function d refers to the integer x declared on line 6, while
reference to x in the rest of the program refers to the real x declared on line 2.

The chart following the program outline summarizes the availability of identifiers in different
routines.

Program main;

var xX:real

' procedure a

- procedure c
- var x:integer

1
2
3
4 function b
5
6
7

function 4

procedure e

function £

Variables declared in may be referenced in
main main, a, b, c, 4, e, £

a a,b,c,d, e, £

b b, c,d

c c,d

d d

e e, £

f £

2.3 Declaration Order

Standard Pascal imposes a strict ordering of declarations that is relaxed in NDP Pascal to make
it easier to use. Standard Pascal requires that all labels be declared before any constants, all
constants be declared before any types, all types be declared before any variables, and all
variables be declared before any procedures or functions. NDP Pascal allows the declarations to
be in any order, and to appear more than once, provided that every symbol is defined before
any reference to it (except as allowed by standard Pascal).

Example
program orderl;

function power (a,n:integer) :integer;
{ Return a raised to the positive power n. }
var ans, 1 : integer:
begin
ans = 1;

NDP Pascal Reference Manual

14 2 Program Structure

for i := 1 ton do ans := ans * a;
power := ans R
end; ‘ b
S
type tl = array [1..10] of integer;
var yy : ti;
const x = 123;
type t2 = integer;
var zz : t2;
label 99
var a : tl;
b : t2;
i : real;
begin
end.
2.4 Program Modules for Separate Compilation
NDP-Pascal has been extended to allow multiple module program development. In NDP-Pascal,
a program consists of one or more modules, which are independently compilable units of code.
There are two types of modules in NDP-Pascal: the program module and the declarations.
module.
The program module is the module that gains initial control when the program is executed. It
contains the program declaration, the main begin-end block, and the final period. The program
module may be the entire program or only part of the program. If it is only part of the program N
then some of the procedure, function, and variables referenced in the main program must be)

declared external using the EXTERNAL directive. These external routines and variables must be
linked with the main program, and the run time library, to obtain a complete program.

A declarations module may be compiled as a unit independent of the program module. It
consists of routines and variables that are to be linked with the program module, and possibly
other declaration modules, in order to create a complete program. The declarations module
must not contain a program statement, a main begin-end block, or a final period.

Declarations modules are useful in breaking up large programs into smaller components. Data
is passed to routines through parameters and external variables. By default, the procedures,
functions, and variables declared at the top level of a declarations module and at the outermost
level of the program module are declared external to the linker. The STATIC directive can be
used to prevent identifiers from being exported to other modules.

NDP-Pascal permits declarations to be given in any order. This extension allows program and
declaration modules to be independent of the ordering of declarations within INCLUDE files.

Examples illustrating separate compilation are under the EXTERNAL directive, in Section 3.6,
and under the STATIC directive, in Sectiorn 3.7.

NDP Pascal Reference Manual:

C

3 Pascal Declarations

3.1 Program Heading (PROGRAM)
(PROGRAM H identifieJ‘—P@j—@JL@f}
(O

Figure 3-1 Syntax Diagram for Program Heading

The program heading is used to assign a name to a program and serves to document the file
names through which the program will communicate with its environment. This is a required
statement in each NDP Pascal program. The list of file names is optional, serving only for
purposes of documentation and compatibility with the Pascal Standard.

The Pascal standard requires that the predefined file identifier, INPUT, be specified in the
program heading if the program reads data from the file INPUT. Similarly, the predefined file
identifier, OUTPUT, must be specified if the program writes to the file OUTPUT. Failure to comply
causes the compiler to generate an error when the -ANSI compatibility switch is used. See the
NDP User's Manual for details.

EXAMPLES
The following are valid program statements:

program matrix;
program simulator (input, output);
program regression (factors, datal_inp, data2_inp, results);

The following are invalid program statements:

program fft {(data.raw, data.fft); { Periods are not allowed in

{ identifier names.
program abc (x,17); {
‘

program (input) ;

Constants are not allowed.
The program name is missing.

e o

3.2 Label Declaration (LABEL)

LABEL |

unsigned integer =©—>

Figure 3-2 Syntax Diagram for Label Declaration

The label declaration is used to declare a label that will be used to identify a statement. Labels
permit a statement to be referenced by a GOTO statement. A label is an unsigned number in
the range 0'to 9999. Leading zeros in a label are not significant. Labels are separated from the
statements they reference by a colon.

The scope of a label is the routine in which it is defined. Therefore, all labels accessed in a
routine must be declared within that routine.

16 3 Pascal Declarations

Assigning a label to a statement does not guarantee that the statement may be referenced by a
GOTO statement. See the rules associated with branching under the GOTO statement in Section
7.7.

EXAMPLES
label 10;
label 100, 200, 300, 301;

100 : getpat := (makepat (arg, 1, ENDSTR, pat) > 0;
301 : if (1lin[i] = COMMA) or (lin([i] = SEMICOL) then begin

3.3 Constant Definition (const)
CONST } P identifier _G* » constant i —>

expression

Figure 3-8 Syntax Diagram for Constant Definition
A constant definition is a name that is to be used as a synonym for a constant value. The type
of a constant identifier is determined by the type in the constant expression.
NDP Pascal allows the value of a constant to be the result of an expression. The expression
may contain operators, predefined functions, and the value of previously defined constants.
The definition of an expression is given in Chapter 6.

NDP Pascal accepts the syntax 0x <hex digits> or 0X <hex digits> for hexadecimal
constants.

EXAMPLES
const
ONE_K = 1024 { An integer constant }
ZERO = -273.15; { A real constant }
NA = 6.023e23; { A real constant }
U = 1.66e-27; { A real constant }
PI = 3.141592653589793; { A real constant }
COEF = 1.0 / sg@rt(2.0 * pi); { A real constant }
PTR = nil; { A pointer constant }
VALID = true; { A boolean constant }
ALL_ONES = Oxffff; { A hexadecimal constant }
MININT = 0X80000000; { A hexadecimal constant }
ANSWER = ["Y', 'y, "N, "n"]; { A set constant }
A_PALINDROME = 'Madam, I''m Adam'; { A character string constant }

3.4 Type Definition (rve=)

_"@ » identifier 4’@—"’ type _>

Figure 3-4 Syntax Diagram for Type Definition

A type is a set of values that a variable may assume. A type definition is used to both define a
data type and assign a name to that type. There are two kinds of data types: predefined and

NDP Pascal Reference Manual

3:Pascal Declarations 17

user defined. The predefined data types are part of the Pascal language and are described in
Chapter 4. User-defined data types are established using the type definition.
A type definition consists of an identifier followed by an equal sign and a type clause. Type

identifiers in the type clause must be already defined by a previous type definition. Recursive
type definitions require pointer types.

EXAMPLE 1
Type
direction = (north, south, east, west);
row = 1..66;
celumn = 1..132;

cell = record
barrier : boolean;
visited : boolean
end;

maze = array [row, column] of cell;
EXAMPLE 2
The following is a recursive type definition for a linked list of integers:

type
listType = record
contents : integer;
listType : ~listType;
end;

EXAMPLE 3

The following is an illegal type definition since the type clause is recursive and does not refer to
a pointer type:

type
matrix = array [1..n] of matrix;

3.5 Variable Declaration (var)

—>@ identifier

Figure 3-5 Syntax Diagram for Variable Declaration

type —’

A variable declaration is used to define the type of a variable. This establishes the set of values
that can be assigned to the variable.

Identifiers of the same type may be declared together by separating them with commas.
Variables are allocated when a procedure or function is entered, and are deallocated when the
corresponding return is made. When a recursive call is made to a routine, space is again
allocated for the variables declared in the routine. This space is allocated in a stack-like
manner so that when a return statement is executed, the variable space corresponding to the
appropriate invocation of the routine is deallocated.

EXAMPLE 1

var travel : direction;
var i1, j, k : integer;
X, ¥, Z : real;

NDP Pascal Reference Manual

18

var board : mazej

EXAMPLE 2
type
nameType = array [1.. of char;
char5 = array [1..5] of char;
charl0. = array [1..10} of char;
char25s = array [1.. of char;
var
phoneBook = record
lastName nameType;
firstName : nameType;
address : char25
cityState : char25s
zip chars;
phoneno. charlo;
end;
EXAMPLE 3
type
degrees = 0..360;
percent = 0..100;
var
weather : record
station : array [1..20] of char;
date integer;
time integer;
temp. record
lo : real;
hi : real;
end;
humidity : percent;
precip record
rain : real;
snow. : real;
end;
wind ¢ record
speed ¢ real;
direction : degrees;
end;
pressure : record
height : real;
direction : (up, down);
end;

end;

NDP Pascal Reference Manual

3 Pascal Declarations

3 Pascal Declarations 19

3.6 External Directive

@ identifier

(exTERNAL)

/ TYPE EXTERNAL —PG-'-—P

—PCPROCBDURE}—P‘ identifier [P parameter list =O—> block r’

EXTERNAL [

_’(FUNCTIO!Df’ identifier [~ parameter listtype identifieq

block r’

EXTERNAL

Figure 3-6 Syntax Diagram for EXTERNAL Directive

The external directive notifies the compiler that a procedure, function, or variable exists in a
separately compiled module.

A procedure or function may be declared external, and then later in the same module, the
procedure or function body may be given. If this is done, the procedure or function declaration
must not contain a parameter list or a return type. This is to simplify use of the # INCLUDE
directive, yet prevent multiple definition of symbols in the parameter list.

Declaring a variable EXTERNAL permits the sharing of data among separately compiled
modules. This is done by placing the identifier EXTERNAL followed by a semicolon directly after
the variable declaration.

EXAMPLE 1

The following example illustrates the use of the external directive with a utility function. It
consists of two files: one containing the main program and one containing the function called
by the main program. These files must be separately compiled and linked together before being

program ex00la;

{ Example to illustrate the EXTERNAL directive. }

const size = 9;

type list = array [1 .. size] of real;

function binarySearch (a:list; X:real): integer; external;
var a:list;

begin
all] := 0.; af2)] == 1.; al3] = 2;
af4] == 3.; al[5] := 5.; al6] := 8.;
al7] = 13.; a[8] := 21.; al9] := 34.;
writeln{('Index of -1 ', binarySearch(a,-1));
writeln{'Index of 0 ', binarySearch(a,0));
writeln{('Index of 7 ', binarySearch(a,7});
writeln('Index of 34 ', binarySearch{(a,34));
end. { end of ex00la }
{======================= Contents of ex001b.p =====z===z=====z=z==============)

NDP Pascal Reference Manual

20 3/ Pascal Declarations

const size = 9;

type list = array [1l..size] of real;

function binarySearch (a:list; X:real):integer; {ﬁ "
var i, lo, hi : integer; \-.r)

begin
lo := 1;
hi := size;
repeat
i := (lo + hi) div 2;
if x < a[i] then hi =1 -1
else lo = 1 + 1;

until (x = a(i]) or (lo > hiy);
if x = a[i] then

binarySearch := 1
else

binarySearch := 0;
end;

The program searches a predefined list for a series of numbers, and generates the following
output:

Index of -1 = 0

Index of 0 = 1

Index of 7 = 0

-Index of 34 = 9
EXAMPLE 2

The following example illustrates the use of the EXTERNAL and INCLUDE directives. It consists of

three files: a header file containing the declarations used by the other two files, a file containing RN
the main program, and a file containing a function called by the main program. These files N
must be separately compiled and linked together to be run.

{==================== Contents Of exooz.ph ::::::::::=========:======}
‘type
point = record
X : real;
y @ real;
end;
function slope (a, b: point) : real; external;
{:::::::::::::::::::: Contents Of eXOOZa.p ::::::::::::::::::::::::=:}

program ex002a;

#include 'ex002.ph'

var a,b: point;

begin
a.x = 1.0; a.y := 2.0;
b.x := 3.0; b.y := 4.0;
writeln('slope = ', slope(a,b));
end. { end of ex002a }

{:::::::::::::::::::: Contents Of eXOOZb.p‘::::==:::=:==========:===}

#include 'ex002.ph'
function slope; { (a,b:point) : real; }
const epsilon = 1.0e-7; ; \

begin
if (b.x - a.x) > epsilon then

NDP Pascal Reference Manual

o

3 Pascal Declarations 21

slope := (b.y - a.y) / (b.x - a.x)
else
slope := maxint;
end; { end of ex002b.p }
The program evaluates a function computing the slope of a line and prints the following result:

slope = 1.00000000000000000e+00

3.7 Static Directive (starc)

type —P@—P STATIC —*@——D

VAR, identifier

Figure 3-7 Syntax Diagram of a STATIC Directive

The static directive is used to declare static variables. Static variables are not exported to
routines that are included when the # INCLUDE directive is used. Static variables can be
thought of as being private to the module in which they are declared. Only those variables in
the outer scope of a declaration or program module may be declared STATIC.

EXAMPLE

This example illustrates the use of the STATIC and EXTERNAL directives and consists of two
files, one containing the main program and one containing the routines used by the main
program. These files must be separately compiled and linked together before being run.

FILE.A contains the main program and FILE.B contains three routines.

This program makes use of three variables: x, v, and z. Each module has its own copy of x,
while v is shared among them. This program can be understood by considering the variable
space for each file in the following manner:

FILE.A FILE.B
X &« different — 4
V- same — v

Z

After SETUP is executed, we have the assignments:

FILE.A FILE.B
x=? x=10:
y=20 y=20
z

Prior to ADDUP, we have the assignments:

FILE.A FILE.B
x=1 x=10
y=2 v=2
z=100
After execution of ADDUP, we have the assignments:
FILE.A FILE.B
x=1 x=10
y=2 y=2
z=112

Hence, the program will print the result: z = 112.

{::::::::::::::::::::: Contents Of eXOOBa.p ::::::::::::::::::::}‘

NDP Pascal Reference Manual

22 3'Pascal Declarations

program staticl (output);
procedure setup; external;
procedure addup (var ¢:integer); external;
var
X : integer; static;
Y : integer; external;
z : integer;

begin
setup;
X = 1;
Y = 2;
zZ := 100;
addup (z); ‘
writeln(' z = *, z);
end.
{===========z==z======= Contents of ex003b.p ===s======zzzz===z=z==)

procedure setup; external;
procedure addup (var g: integer); external;
var

x : integer; static;

Y @ ilnteger;

procedure setup;

‘begin
X = 10,
Yy = 20;
end;

procedure addup;
begin
g =g+ X+ Y,
end;

NDP Pascal Reference Manual

4 ‘Type Definitions

4.1 Type Definitions

P» type identifier

simple type

v

enumerated type

subrange type

type

v

simple type

pointer type

PACKED

» set type

array type

record type

file type

Figure 4-1 Syntax Diagrams for Simple Type and Type

The syntax diagrams above summarize the data types available in NDP Pascal. Each of these
types is described in detail in a section of this chapter.

The data type determines the set of values that a variable may assume. Data types are
classified as scalar, pointer, or structured. The types BOOLEAN, CHAR, INTEGER, DOUBLE, FLOAT,
REAL, enumerated and subrange types are scalar data types. This means that the values may
be placed on a linear scale and comparisons (less than, equal, greater than) made between
them. Pointer data types are used for variables that are to contain the address of other
variables, or the address of variables that will be created during program execution (dynamic
variables). Structured data types consist of aggregates of other data types. The Set, Array,
Record, and File type are structured data types.

A type declaration is used to assign a type identifier to a type definition. The type identifier may

then be used wherever a type definition is required, for example, in a variable declaration, in a
parameter list, or in another type declaration.

24 4 Type Definitions

The data type of a variable may be declared using a type identifier, or by specifying the type
definition when the variable is declared. Identifiers used as procedure or function parameters
must be declared with a predefined data type or with a type identifier.

4.2 Type Compatibility and Conversions

The data type determines the set of values that a variable may assume. NDP Pascal supports
strong typing, which means that the type of all variables must be explicitly declared. This.
allows the compiler to verify that each operation performed on a variable is appropriate for the
type associated with the variable. Strong typing requires that rules exist in order to determine
when two types are to be considered 1) identical, 2) compatible, or 3) assignment compatible.
The following three sections describe these rules.

4.2.1 ldentical Types
Two types are identical if one of the following is true:
a. The variables refer to the same type identifier;

b. The variables refer to two separate type identifiers that have themselves been declared
equal by the following type definition:

type tl = t2;

Type identity in Pascal is based upon the name of the type, not on the physical storage of the
data in question. For example, the following are not identical types:

type
r = array [1..101 of integer:
s = array [1..10) of integer;

Identical types are required in the following circumstances: \ /

1. between the actual and formal variable (VAR) parameters in a function or procedure
2. assignment between array types
3. assignment between record types

4.2.2 Compatible Types
Two types. are compatible if one of the following is true:

a. they are of the same type;

b. one is a subrange of the other or they are both subranges of the same type;
c. one type is a string literal of one character and the other is of type CHAR;

d. they are both set types and their base types are compatible.

The empty set is compatible with: any set type and the value NIL is compatible with any pointer
type. ‘
Compatible types are required in the following circumstances:

1. two values must be compatible when combined with an operator in an expression;

2. the index expression in a CASE statement must be compatible with all case constant values.

4.2.3 Assignment Compatibility

Assignment compatibility indicates when assignment between a variable and an expression is
permitted using the assignment operator. A variable and a expression are assignment
compatible if one of the following is true: \ ,)

a. the types are identical and neither is a file or a structured record type;

NDP Pascal Reference Manual

4 Type Definitions 25

b. the variable is of type FLOAT, REAL or DOUBLE and the expression is compatible with type
INTEGER;

(_/,- c. the type of the variable may be a subrange of the expression if the value to be assigned is
within the allowable subrange of the variable;
d. the variable and the expression have compatible set types and all members of the

expression are permissible members. of the variable.

Assignment compatible types are required when an actual value parameter must be

assignment compatible with the type of the corresponding formal parameter.

EXAMPLE
type

months = (jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec);

winter = jan..mar;
spring = apr..jun;
summer = jul..sep;

column = array [1..10] of real;

rOW. = column;

var
season : set of months;
vaction : set of summer;
cold ¢ winter;
warm ¢ spring;

vectorl : column;
vector2 :’row;
. vector3 : array [1..10] of real;
(_/} meeting, event : RECORD
date : integer;
time : real
END;-

This example illustrates the three gradations of type compatibility. Several type definitions and
variable declarations are given, followed by a table summarizing the compatibility of each
variable with each other. Some entries are omitted to improve readability. For example, each
variable is obviously type identical with itself, so the entry “season is identical to
season” has not been included. Similarly, the reflexive entries for compatible and assignment
compatible types have been omitted.

variable | identical to compatible with assignment compatible with
________ l i ———— - o 2o s > o ————————— " - - —
season I - vacation vacation

vacation | - season season

cold | - warm warm

warm ! - cold cold

vectorl | vector?2 vector2 vector2

vector2 [vectorl vectorl vectorl

vector3 ! - - -

meeting | © event event -

event | meeting meeting -

4.2.4 Implicit Type Conversion

NDP Pascal does type conversions on data in the following special circumstances:

~

()
\J a. in a binary operation involving an integer and a float, real, or double, the integer will be
converted to a float, real or double;

NDP Pascal Reference Manual

26 4 Type Definitions

b. when an integer is being assigned to a float, real or double variable, the integer will be
converted to a float, real or double; :

c. an integer will be converted to a float, real or double if passed by value to a parameter \)
requiring a float, real or double value.

The motivation behind type conversions is ease of use. The above restrictions prevent
information from being lost since a data type may be converted to a data type with greater
precision, but not to a type with less precision.

4.3 Enumerated Types

Enumerated type

' > s 3
R ’ identifier

Figure 4-2 Syntax Diagram for Enumerated Type

An enumerated type is a list of names that are treated as scalar values. An enumerated type is
defined by listing the values that are permitted for a variable of this type. Each value is an
identifier that is treated as a constant in its own right. Enumerated types provide a mechanism
that allows an identifier to be used as a constant symbol.

) 4

The names defined in the list are treated as constant values of the type being defined. The

lexical scope rules, described in Section 2.2, specify that these names are local to the block in
which the type denoter occurs. The lexical scope rules for enumerated types amount to the o
following:

1. A constant identifier for a type in an inner block cannot be redefined in the same block:

2. Two different enumerated types cannot have an element with the same name in the same
lexical level;

3. A constant identifier may not be accessed outside the block in which it is defined. Hence it
is not possible to read or write the values of constant identifiers. All enumerated constants
of a single type are ordered. The first item in the list is assigned the ordinal value O, the
second item in the list is assigned the value 1, and so on. The ordinal value of an
enumerated constant may be obtained using the predefined function ORD.

The predefined functions PRED and SUCC may be used to operate on expressions containing
enumerated types. By convention there is no value less than the first enumerated constant
defined in the list, and no value greater than the last constant defined in the list.
The predefined type BOOLEAN is an enumerated scalar with the definition:

type BOOLEAN = (FALSE, TRUE);
EXAMPLE

type
warnings = {advisory, gale, storm, hurricane);
occupation = (tinker, tailor, soldier, spy):
numeral = (I, II, III, IV, V, VI, VII, VIII, IX, X):

K {]
message : warning; \/)

roman : numeral;
applicant : record

var

NDP Pascal Reference Manuali

4 Type Definitions 27

name : array [1..30] of char;
field : occupation;
end;
piece : (pawn, knight, bishop, rook, queen, Xing);

4.4 The Subrange Type

Subrange type

——» CONSTANT ‘PQ——P CONSTANT [———»

Figure 4-3 Syntax Diagram for SUBRANGE Type

A subrange type is a name given to a subset of the values of an enumerated type. The values
chosen from the enumerated type must be consecutive, and the enumerated type must already
be defined.

A subrange type is defined by specifying the range of values it may assume. This is done by
specifying the minimum and maximum values, which may be the same, from the enumerated
type that may be assigned to it. Any operation allowed on a scalar type is also allowed on any
subrange of it. '

EXAMPLE

const
size = 1024;

Lype
vitamins = (A, D, E, C, thiamin, riboflavin, niacin, B6, Bl2,
calcium, phosphorus, magnesium, iron, zinc, iodine):
fat_soluble = A..E;
water_soluble = thiamin..B12;
minerals calcium..iodine;
index = 0..size-1;

It

var
day ¢ 1..31;
month : 1..12;
buffer : array [index] of integer;

4.5 The SET Type

Set type

» SET | simple type ——»

PACKED

Figure 4-4 Syntax Diagram for Set Type
The SET type is any collection of values taken from a scalar type.

The following table describes the operations and functions that may be used with variables of
type SET. In the following table, both x and y are type SET.

Symbol Usage Result Type Description
~ ~ X SET complement of set x
+ X +y SET set union of x and y

NDP Pascal Reference Manual

28 4 Type Definitions

X -y SET set difference of x and v
x * vy SET set intersection of x and'y
= X =y BOOLEAN compares for x equal to y
<> X <>y BOOLEAN compares for x not equal to'y
<= X <=y BOOLEAN tests if x is a subset of y
>= X >=y BOOLEAN tests if x is a superset of y
in x in y BOOLEAN tests for x in set v
1= X =y SET assigns the value of y to x

Sets of CHAR, BOOLEAN, and enumerated types are implemented as sets of the base type.

Sets of integers are handled specially because of the possible large memory requirements of a
set of integers. Therefore, two different sets sizes are allowed for sets of integers. The sizes are
32 and 256. By default, sets of integers are implemented as “set of 0..31". The compiler
switch, -P4, causes sets of integers to be implemented as “set of 0..255". (See the NDP
User’'s Manual for details.) Sets of size 32 are more efficient than sets of size 256.

The following table summarizes the storage requirements for the SET type.

type implemented as Compiler option
CHAR
BOOLEAN
enumeration
set of integer set of 0..31 By default
set of integer set of 0..255 -P4 compilation switch
EXAMPLE 1
The following are valid set declarations:
type
palette = (black. blue, green, red, white);
color = set of paletts;
sl = set of char;
EXAMPLE 2

The following type declaration defines a set of 256 integers and requires the -P4 runtime
option:

type
s2 = get of 0..255;

EXAMPLE 3

The following code fragment requires INTEGER sets of size 256 to work correctly, hence the -p4
compilation option must be used. This is because the base type of the set is INTEGER, and the
ordinal value of 'A' is 65, which requires a set of 256 elements:

var prefix : integer;

begin
if prefix in [ord('K"), ord('L")] then

4.6 Predefined Scalar Types: BOOLEAN, CHAR, INTEGER, DOUBLE,
REAL, FLOAT

NDP Pascal implements the following predefined scalar data types: BOOLEAN, CHAR, INTEGER,
DOUBLE, REAL, and FLOAT. INTEGER, CHAR, and BOOLEAN have the type definitions given below,
while DOUBLE, REAL and FLOAT implement IEEE 32 and 64 bit floating point format, least
significant byte at the lowest address. Type FLOAT provides 6 to 7 decimal significant digits and
type DOUBLE provide 15 to 16 decimal significant digits.

NDP Pascal Reference Manual

S

4 Type Definitions 29

A brief summary of these types is given below, while the next five sections describe the
operations allowed with each data type in detail.

\\/’ const

MAXINT = 2147483647 ; { (2%*31) -1 }
type

INTEGER = -2147483648..MAXINT;

CHAR = chr(0) .. chr(127);

BOOLEAN = (FALSE, TRUE);
The table below summarizes the predefined data types in NDP Pascal. Space is always allocated

on a 4 byte boundary. Range refers to the largest positive and negative number supported by a
data type, while precision refers to the smallest positive and negative number that can be

supported by a data type.

Type Space allocated Range Precision Compiler
Option

BOOLEAN 4 byte (8 bits)
CHAR 4 byte (8 bits)
INTEGER 4 bytes (32 bits) -2,147,483,648 to 2,147,483,647
FLOAT 4 bytes (32 bits) +3.39e38 +1.18e-38
REAL 4 bytes (32 bits) +3.39e38 +1.18e-38 -P3
REAL 8 bytes (64 bits) +1.80e308 +2.23e-308 by default
DOUBLE 8 bytes (64 bits) +1.80e308 +2.23e-308

4.6.1 Operations and Functions for the BOOLEAN Scalar Type

The following table describes the operations and functions that may be used with variables of
type BOOLEAN. In the following table, x and y are both type BOOLEAN.

b Symbol

Usage Result Type Description

~ ~ X BOOLEAN returns complement of x

= X =y BOOLEAN compares for x equal to y

< X<y BOOLEAN compares for x less than y

<= X <= y BOOLEAN compares for x less than or equal to y

> X >y BOOLEAN compares for x greater than y

>= X >= y BOOLEAN compares for x greater than or equal to y

<> X <>y BOOLEAN compares for x not equal to y

| x|y BOOLEAN returns TRUE if either x or y are true

& X &y BOOLEAN returns TRUE if both x and y are true

r= X 1=y BOOLEAN assigns the value of y to x

ORD ORD (x) INTEGER returns O if x is false, and 1 if x is true.
Function values for negation:

- result -

FALSE TRUE

TRUE FALSE

Function values for orD:

ORD resuit
FALSE 0
TRUE 1

Function values for binary BOOLEAN operators:

;o FALSE FALSE TRUE TRUE

L/? op op op op Logical
op FALSE TRUE FALSE TRUE Name
= TRUE FALSE FALSE TRUE equivalence

NDP Pascal Reference Manual-

30 4 Type Definitions

< FALSE TRUE FALSE FALSE

<= TRUE TRUE FALSE TRUE implication
> FALSE FALSE TRUE . FALSE

>= TRUE FALSE TRUE TRUE

<> FALSE TRUE TRUE FALSE exclusive or
[FALSE TRUE TRUE TRUE inclusive or
& FALSE FALSE FALSE TRUE and

The type BOOLEAN is defined as an enumerated scalar whose values are TRUE and FALSE. This
is equivalent to the definition

type
BOOLEAN = (FALSE, TRUE);

Boolean variables will occupy four bytes of memory and will be aligned on a four byte
boundary.

The result of the operators <, <=, > and >= may be obtained by using the fact that ORD (FALSE)
= 0 and ORD(TRUE) = 1.

4.6.2 Operations and Functions on the cuar Scalar Type

The following table describes the operations and functions that may be used with variables of
type CHAR. In the following table, both x and y are of type CHAR.

Symbbl Usage Result Type Description

= X =y BOOLEAN compares for x equal to'y

< X <y BOOLE2ZN compares for x less than y

<= X <=y BOCLEAN compares for x less than or equal to y

> X >y BOOLEAN compares for x greater than y

>= X >=y BOOLEAN compares for x greater than or equal to y

<> X <>y BOOLEAN compares for x not equal to v

1= X 1=y CHAR assigns the value of y to x

ORD ORD (x) ' INTEGER returns the ASCII code for the symbol x

PRED PRED (x) CHAR returns the character preceding x in the ASCII
collating sequence

succ succ (x) CHAR returns the character following x in the ASCII

collating sequence
The type CHAR is a scalar type corresponding to the values in the ASCII character set.

Variables of type CHAR occupy one byte of memory and are allocated in four byte increments on
a four byte boundary.

4.6.3 Operations and Functions on the intecer Scalar Type

The following table describes the operations and functions that may be used with variables of
type INTEGER. In the following table, both x and y are of type INTEGER.

Symbol Usage Result Type Description
+ + X INTEGER returns the operand
+ X+ ¥y INTEGER returns the sum of the operands
- - X INTEGER returns the negated operand
- X -y INTEGER returns the difference of the operands
* X *y INTEGER returns the product of the operands
x/y © INTEGER converts operands to REAL, returns real quotient.

NDP Pascal Reference Manual

4 Type Definitions . 31

DIV x DIV y INTEGER returns the integer quotient of the operands
MOD x MOD y INTEGER returns the integer modulus of the operands
= X =y BOOLEAN compares for x equal to y
< X<y BOOLEAN compares for x less than y
<= X <=y BOOLEAN compares for x less than or equal to y
> x>y BOOLEAN compares for x greater than y
>= X >= ¥y BOOLEAN compares for x greater than or equal to y
<> X <>y BOOLEAN compares for x not equal to y

= X 1=y INTEGER assigns the value of y to x
& & x INTEGER returns. the address of the operand
& X &y INTEGER returns the bitwise logical sum
~ ~ X INTEGER returns. the one's complement of x
| x|y INTEGER returns the bitwise logical or
<< X << y INTEGER x is shifted left by y bits
>> X > y INTEGER x is shifted right by y bits
+= X += y INTEGER equivalent to “x := x + "
-= X -=y INTEGER equivalent to “x := x - y”
*z X *= y INTEGER equivalent to “x = x * y”

= X /=y INTEGER equivalent to “x := x / y”
I X l=y INTEGER equivalent to “x := x | ¥
&= X &= Yy INTEGER equivalent to “x = x & y"
<<= X <<= y INTEGER equivalent to “x := x << y”
>>= X >>= ¥ INTEGER equivalent to “x 1= x >> ¥
oDD oDD (x) BOCLEAN tests for odd x
CHR CHR (x) CHAR returns the ASCII character whose ASCII value is x
ABS ABS (x) INTEGER returns the absolute value of x
SQR SOR (x) INTEGER returns the square of x
PRED PRED (x) INTEGER returns the integer x-1
succ succ (x) INTEGER returns the integer x+1

The type INTEGER is a subset of the whole numbers that may be represented in 32 bits. The
INTEGER type equivalent to the definition:

const
MAXINT = 2147483647; { (2**31)-1 }

type
integer = -2147483648. .MAXINT;

Integer variables will occupy 4 bytes of memory, and will be aligned on a 4 byte boundary.
EXAMPLE (ex004.p)

This example illustrates bit operations that are possible with NDP Pascal extensions. The
function getbits in the program below is from Kernighan and Ritchie's book on C.

program getbitil (output) ;
function getbits(x, p., n: integer): integer;

begin
getbits := (x >> {(p+l-n)) & ~(~0 << n)
end;

var i,x: integer;

begin
x := Oxf0fo;
for i := 0 to 15 do

NDP Pascal Reference Manual

32 4 Type Definitions

writeln('getbits (OxfOf,',i:3,', 4)=', getbits(x,i,4) :3)
end.

This program generates the following output:

getbits (0xf0f0o, 0, 4) = 0
getbits (0xf0f0, 1, 4) = O
getbits (0xf0fo, 2, 4) = 0
getbits (0xf0f0, 3, 4y = 0
getbits (0xfo0f0, 4, 4y = 8
getbits (0xf0f0, 5, 4) = 12
getbits (0xf0fo, 6, 4) = 14
getbits (0xf0f0, 7, 4) = 15
getbits (0xfo0fo, 8, 4) = 7

getbits (0xf0fo, 9, 4) = 3
getbits (0xfofo, 10, 4y = 1
getbits (0xf0f0, 11, 4) = 0
getbits (0xf0f0, 12, 4) = 8
getbits (O0xf0fo, 13, 4) = 12
getbits (0xf0f0, 14, 4) = 14
getbits (0xf0f0, 15, 4) = 15

4.6.4 Operations and Functions of the REAL, FLOAT, and DOUBLE Scalar Types.

The following table describes the operations and functions that may be used with variables of
type REAL, FLOAT and DOUBLE. In the following table, both x and y are of the same type that
may be one of REAL, FLOAT, or DOUBLE. We use the abbreviation R for REAL, F for FLOAT, and D
for DOUBLE.

Symbol Usage Result Type Description
+ + X R, F, D returns the operand
+ X+ y R, F, D returns the sum of the operands
-y R, F, D returns the operand negated
- X -y R, F, D returns the difference of the operands
* X * y R, F, D returns the product of the operands
/ x/y R, F, D returns the quotient of the operands:
= X =y BOOLEAN compares for x equal to y
< X<y BOOLEAN compares for x less than y
<= X <=y BOOLEAN compares for x less than or equal to y
> x>y BOOLEAN compares for x greater than y
>= X >=y BOOLEAN compares for x greater than or equal to y
<> X <>y BOOLEAN compares for x not equal to y
1= X 1= y R, F, D assigns the value of y to x
+= X += ¥ R, F, D equivalent to “x := x + y”
-= X -= y R, F, D equivalent to “x := x - ¥
*= X *= y R, F, D equivalent to “x := x * y”
/= x /=y R, F,. D equivalent to “x := x / ¥"
ABS ABS (x) R, F, D returns the absolute value of x
SOR SOR (X) R, F, D returns the square of x
SORT SQRT (X) R, F, D returns the square root of x
LN LN (x) R, F, D returns the natural logarithm of x
EXP EXP (X) R, F, D returns the natural log base raised to the x power
SIN SIN (X) R, F, D returns the sine of x (in radians)
cos COS (X) R, F, D returns the cosine of (x in radians)
ARCTAN ARCTAN (x) R, F, D returns (in radians)the inverse tangent of x
TRUNC TRUNC (x) INTEGER returns the operand truncated to an integer
ROUND ROUND (X) INTEGER returns the operand rounded to an integer

NDP’PascaI» Reference Manual

C

4 Type Definitions 33

The type DOUBLE, REAL, and FLOAT are used to represent IEEE 32 and 64 bit floating point
data.

4.7 Array Type

Array type C :
P aRray "—H B > simple type >] , type [—P»

PACKED

Figure 4-5 Syntax Diagram for Array Type

The array type is used to define a collection of homogeneous elements. This collection takes the
form of a subscripted list where each subscript in the list corresponds to one element of the
array. The index type is restricted to integer, character subranges, or enumerated types. The
component type may be any simple or structured type.

The size of an array corresponds to the number of distinct values that the index may assuine.
This value is fixed in the type definition and cannot vary during program execution. Note that
since the size of an array is part of its definition, two array types are identical only if their
corresponding index types have the same cardinality.

The reserved word PACKED indicates that the compiler is to compress data storage to minimize
the number of unused bytes between array elements. NDP Pascal always aligns each element
of an array on the boundary appropriate to the component type, so the word PACKED has no
effect. However, elements of packed arrays may not be passed as VAR parameters to
procedures or functions.

Arrays defined with more than one index are called multi-dimensional arrays. A multi-
dimensional array is equivalent to an array of arrays. For example, the array definition

array [r, s, t] of someType;
is a synonym for
array [(r] of array [s] of array [t] of someType;

Array indexing is accomplished by the use of subscripts. A subscript is any expression of a
type that is assignment compatible with the index type of the array, and that evaluates to one
of the values of the index. The index may be any scalar except REAL, FLOAT, or DOUBLE. Note
that while Pascal syntax allows the use of INTEGER as an index type, this would result in any
array too large to be implemented, so this usage is flagged as a compile time error.

Arrays may be assigned to an array variable of the same type. The predefined procedures PACK
and UNPACK assign elements of one array to another, while converting between packed and
unpacked array types. These routines are described in Chapter 10.

EXAMPLE 1

const

type
decision = (ves, no, maybe);
occurrence = 0..maxint;
tl = array [-127..128] of real;
t2 = array [decision] of boolean;
t3 = array [char] of occurrence;

NDP Pascal Reference Manual

34 4 Type Definitions

t4
t5

array [0.. 1023, boolean] of integer;
array [integer] of char;

type {)
complex =

= record re,im: real end;
vector = array [1..n] of complex;

matrix = array [1..m] cf vector;
EXAMPLE 2
type
prefix = (deka, hecto;, kilo, megas, giga, tera, peta, exa);
var
multiple : array ([prefix] of real;

subscript : prefix;

begin
multiple [deka] := 10;
multiple [hecto] := 100;
multiple [kilo] = 1000;

for subscript := megas to exa do
multiple [subscrip] := multiple [pred(subscript)] * 1000;

4.8 Record Types

record type

 PACKED

field list

.. / .) N
{ RECORDf'P field list ——F(END)—P)

. identifier @*"’ type
_’L CASE | P identifier type identifier case list

Figure 4-6 Syntax Diagram for RECORD Type

The RECORD type is used to define a collection of heterogeneous components. The components,
which are called records, consist of elements that may be of different types. The elements
within a record are called fields.

4.8.1 Accessing a Field

The scope of identifiers used in a record is the RECORD type. Hence, the field names must be S
unique throughout the record, including the variant part if one is present. This allows any field \J
in a record to be accessed by using the name of the field.

NDP Pascal Reference Manual

4 Type Definitions *

4.8.2 The Fixed Part

A RECORD type is a template for a data structure consisting of two parts: the fixed part and the
variant part. The fixed part is composed of fields that will occur in every variable of the RECORD
type. The variant part is composed of fields which may or may not be present in every variable
of the RECORD type. The fixed part of a RECORD type, if present, must always precede the variant
part. .

4.8.3 The Variant Part

The variant part of a RECORD type allows the structure to depend upon the type of data stored
in a particular variable of the record. An instance of a variant record may only assume one
variant at a time. The different record variants are discriminated by using a tag field.

The tag field is a scalar value that indicates the structure of a RECORD type, i.e., it shows which
variant is active. The tag field may be defined in one of three ways:

1. The tag field is an identifier within the fixed part of the RECORD type. References to the tag
field have the form:

X : integer;

case X: of;

2. The tag field is an identifier defined within a case statement marking the beginning of the
variant part of the RECORD type.

case X : integer of

3. The tag field is not present but is implied by the presence of a type identifier within the case
statement marking the beginning of the variant part of the record. For example:

case tl1 of

4.8.4 Packed Records

The fields in a record are assigned offsets sequentially by padding where necessary to achieve
the required boundary alignment. NDP Pascal allows a packed record to be passed to a
procedure or function, although this is prohibited by standard Pascal.

EXAMPLE 1
This example illustrates fixed RECORD types:

const
teaml = 'Boston Red Sox Y
namel = 'Fenway Park

type
grass = (artificial, natural);

home_run = record

left ¢ real;

center : real;

right : real;
end;

stadium = record

team ¢ array [1..30) of char;
name ¢ array [1..30] of char;
surface : grass;

capacity : integer;

NDP Pascal Reference Manual

36 4 Type Definitions

distance : home_run;

end;.
var
park : stadium;
begin
park.team = teaml;
park.name = namel;
park.surface := natural;
park.capacity = 33583
park.distance.lf = 315;
park.distance.center := 420;
park.distance.rf = 302
EXAMPLE 2
This example illustrates a variant record. The tag field is the type identifier, TIME:
type
time = (daytime, evening)

rating = record
case time of
daytime : (drama : integer;
quiz : integer;
other : integer);

evening : (informational : integer;
general_drama : integer;

susp_nmyster : integer;
sitcom_comedy : integer;
feature_film : integer):
end;
4.9 Pointer Type
Pointer type C
EE— > type identifier ¥

Figure 4-7 Syntax Diagram for Pointer Type

The pointer type is denoted by the caret symbol (*) or by the “commercial at” symbol (e). Either
symbol may be used depending upon availability on the keyboard and programmer's
preference.

A pointer is a variable that contains a memory address. Pointers are used in Pascal to reference
variables that are created during program execution. Variables created in such a manner are
called dynarnic variables. Dynamic variables are allocated and deallocated by the predefined
procedures NEW and DISPOSE, which are described in Chapter 10.

The pointer type is designed to point to a variable that will be created by the function NEW. The
function NEW allocates space for a variable of a specified type, and returns a pointer to its
memory location.

NDP Pascal Reference Manuall

4 Type Definitions 37

Pointers are not interchangeable and are constrained to point to the type for which they were
declared. The pointer declaration indicates the type to which the pointer variable may refer.
The dynamic variable created by NEW will point to the same type as its argument.

Pascal provides the named constant NIL to refer to the empty pointer. NIL is the value of a
pointer that has not been assigned a value, and is compatible with every pointer type.

4.9.1 Operations on Pointers

Pointer types may be tested for equality or inequality as the table below shows. Listed are the
operators allowed on pointer variables.

Symbol Usage Resulttype Description

= X =y BOOLEAN Compares for x equal to y. Tests if x and y point to
the same data item.

<> X <>y BOOLEAN Compares for x not equal to y. Tests if x and y
point to different data items.

Pointers cannot be used to access individual elements of an array, string, or as an array
subscript.

EXAMPLE
This example illustrates recursive data types using pointers:
type '

cell = record
element : real;
next_cell : “~cell;
end;

node = record
element : real;
leftchild, rightchild : “node;

end;
var
dictionary : array [0..1023] of “~cell; { A linked 1list }
tree : “node; { A 2-3 tree }

4.10 File Type

file type

 FILE | | type —»

- PACKED |

Figure 4-8 Syntax Diagram for File Type

The file type is used to provide for data persistence after a program has ended. The file type
defines a collection of records where each record is of the same type. All input and output in
Pascal requires use of the file type.

Variables of the file type reference records from the file with pointers called buffer variables or
file pointers. The declaration of a file variable £ with type T includes the implicit declaration of

NDP Pascal Reference Manual

38 4 Type Definitions

a buffer variable of type T. The buffer variable is denoted £~ and references the host operating
system's input and output buffers.

Files are accessed through the following predefined functions and procedures. See Chapter 10
for details of these routines.

Function Description
EOF (f) returns TRUE if file f is at end of file

Procedure Description

GET (f) advances buffer variable £~ to the next component of input file £
PUT (f) advances buffer variable £~ to the next component of output file 7
READ (f, V) reads data from file 7 into variable v end of line on file .

RESET (f, s) opens a file for input
REWRITE (f, s) opens a file for output
WRITE (f, e) write the value of e to file £

The following restrictions apply to the file type:

1. the file type must be passed by VAR to a procedure or function;
2. afile may not be contained within another file.

Note that while it is legal to pack a file type, this has no effect on the file's storage
requirements.

4.10.1 Predefined File Type TEXT

Pascal provides the predefined file type TEXT. A file of type TEXT is called a textfile and is used
to store data in character format. Textfiles contain markers used to delimit the character data
into lines, which improves readability if the file is viewed in printed form. Textfiles imply that
the internal representation of the data will be converted to and from character format when the
file is accessed. For example, when a program writes a real number to a textfile, the WRITE:
procedure first converts the number to its character equivalent, which is then transferred to
the file. Similarly, a READ operation converts the character data into the form appropriate to the
receiving variable’s type.

There are two predefined textfiles, INPUT and OUTPUT, which have the following definition:
VAR INPUT, OUTPUT : TEXT;

The INPUT and OUTPUT files are used as defaults by the predefined I/O functions and
procedures. When the file name is omitted from one of the predefined input or output routines,
then the file INPUT or OUTPUT is assumed.

A textfile is a special case of a file. The predefined procedures and functions that operate on
files operate on textfiles in the same way with the following single exception. The GET procedure
returns a space (or blank) character when the end of line marker is encountered in a textfile.
Additional routines are defined in Pascal to operate on textfiles and deal specifically with the
end of line marker. See Chapter 10 for details on these routines.

Function Description

EOLN (f) returns TRUE if textfile £ is at the end of line

Procedure Description

PAGE (f) writes an ASCII form feed to textfile £

READLN (f) read data from textfile £ into variable v, then advances to end of line on £

WRITELN (f,e) writes the value of e followed by an end of line marker to textfile £
EXAMPLE

type
long_name = array (1..1024] of char;
short_name = array [1..32] of char;

NDP Pascal Reference Manual

4 Type Definitions 39

books = file of record

title ¢ long_name;:

author : short_name;

publish : short_name;

date : integer;

inPrint : boolean;

ISBN ¢ array [1..13) of char;
price 1 real;

end;

production = file of record
oalts, peas, beans, barley : float;
end;

4.11 Packed and Unpacked Types

The purpose of the packed data type is to cause the compiler to store data in as compact a
form as possible. The idea of packed and unpacked data types stems from the two ways in
which data, particularly character data, can be stored on computers.

For example, an array of characters can be stored in consecutive words in memory. In
unpacked format one character is stored at each memory address while in packed format as
many characters as possible are stored at each address. This dichotomy is an issue in
computers lacking byte addressing where accessing a character in a packed array requires a
sequence of shifting and masking instructions. The CDC 6600, upon which Niklaus Wirth
implemented an early version of Pascal, was of this type.

The existence of these two formats had a small influence in the design of the Pascal language,
notably in rules regarding the passing of packed types as parameters to procedures or
functions. As mentioned in the appropriate sections, these rules have remained in NDP Pascal
in order to conform with the standard. Packing is a property of data in Pascal that is reflected
in the data declaration or type definition. Every data or type definition may be prefixed with the
keyword PACKED. As such, packing is considered in the rules for type compatibility. A packed
type is not the same as its unpacked counterpart. Hence a packed type may not be assigned to
an unpacked type, either in an assignment statement, or through parameter transmission.

The predefined procedures PACK and UNPACK are used to convert unpacked data to packed
form, and vice versa. Data cannot be packed by using a type definition of the form:

type
T = someType;
packedT = PACKED T;

While packing is a characteristic of a type definition, knowledge of the internal details of a
packed structure is considered a violation of data abstraction. For example, it should not be
necessary for a program to know the internal representation of a packed array of reals in order
to work correctly. This also would have a severe impact on the portability of programs. This
situation arises when a procedure or function has a variable parameter.

The one situation where knowledge of the representation of a packed structure would be
required in a program has been explicitly ruled out in Pascal to prevent any violation of data
abstraction or independence. The rule is that a component of a packed structure cannot be
passed as a variable parameter to a procedure or function. The following is an example of this:

program simple (output);
{ This program illustrates passing a packed actual parameter }
{ to a variable formal parameter, . . . which is illegal. }

NDP Pascal Reference Manual

40 4 Type Definitions

procedure add (var i: integer);
begin
i =1+ 1;
end; '
var

a: packed record
i,j+ integer;

end;
begin
a,i == 5;
add (a,i);
end.

Notice, however, that a component of a packed structure can be passed to a VALUE parameter.
This is because data in the calling routine does not get updated, so knowledge of the internal
representation of a packed structure is not necessary. Since the predefined procedures and
functions in NDP Pascal are all VALUE parameters, the actual parameters to these routines may
be components of packed structures.

NDP Pascal Reference Manual

C

5 Variables

Identifiers denoting variables may refer to:

1) the entire variable,
2) a component of the variable, or
3) a variable referenced by a pointer.

In each case, the variable’s type shows how it may be referenced.

5.1 Entire variables

When a variable's name is used, it refers to the entire variable. Array, record and set variables
may be treated as units in this manner.

EXAMPLE
type
palette = (black, blue, green, red, white);
color = get of palette;
nametyp = array [(1..30] of char;
occupation = (tinker, tallor, soldier, spy);

applicant = record
surname : nametyp;
field ¢ occupation;
available : boolean;

end;

var

namel, name2 : nametyp;

huel, hue2 : color;

apprenticel, apprentice2 : applicant;
begin

name2 := namel;

hue2 = huel

apprenticeZ := apprenticel;

5.2 Component Variables

A component variable is used to access an element of an array, record, or file. The variable's
type indicates the syntax to be used to specify the component. An array element is accessed by
an indexed variable, a record component is accessed by a field designator, and a record in a file
is accessed by the file's buffer variable or file pointer.

5.2.1 Indexed Variables

A component of an array is selected by specifying an index for the component. The index must
appear enclosed in square brackets after the array name. The index is any expression that is
assignment compatible with the index type specified in the array declaration.

42 5 Variables

Multi-dimensional arrays may be referenced in one of two ways:

1. By separating each index with a comma, and placing this list within one set of square
brackets, or

2. listing each index one after another, each index enclosed in its own set of brackets.

For example, a[1i,j,k] may be written in the formal[i] [§](k].

EXAMPLE 1
type
prefix = (deka, hecto, kilo, megas, giga, tera, peta, exz);
var
multiple : array [prefix] of real;

subscript : prefix;

begin
multiple [deka] = 10;
multiple ([hecto] := 100;

multiple [kilo] := 1000;
for subscript := megas to exa do
multiple [subscript] := multiple [pred9subscript)] * 1000;

EXAMPLE 2

var
a : array [(1l..n] of real;
d : real;

begin

d:=a [1,1] * a[2,2] - al1,2] * a(2,1];

5.2.2 Field Designators

A field of a record is denoted by the record variable followed by the field name separated by a
period.

EXAMPLE
const
teamY = 'New York Yankees Y
name¥Y = 'Yankee Stadium Y
type

grass = (artificial, naturalo;
home_run = record

left ¢ real;

center : real;

right : real;
end;,

30 = packed array [1..30] of char;
stadium = record

team @ 830;
name : 830;
surface : grass;

capacity : integer;
distance : home_run;
end;

NDP Pascal Reference Manual

5 Variables 43

procedure copy30 (var d:s30; s:830);
{ Utility routine to copy source s to destination d. }
var irinteger;

begin for i:= 1 to 30 do dli]:=s[i] end;

var
park : stadium;

begin

copy30 (park.team, teamV);
copy30 (park.name, nameY);
park.surface := natural;
park.capacity := 57545;
park.distance.left :=312.0;
park.distance.center:=410.0;
park.distance.right :=310.0;

5.2.3 File Referencing

There are two ways. to access data within a file. One way is to use the file's buffer variable and
the predefined GET and PUT procedures to access the host operating system's file buffer. The
other way is to use the predefined procedures, READ, READLN, WRITE, and WRITELN. This section
briefly describes how to access a file with the predefined GET and PUT procedures.

Variables of the file type reference records from the file with pointers called buffer variables or
file pointers. The declaration:

var £ file of T

declares the file variable £ with type T and includes the implicit declaration of a buffer variable
of type 7. The buffer variable is denoted £~.

The buffer variable points to the current record in the file, and is accessed using the notation
£~. The buffer variable may be used as an ordinary Pascal variable in an assignment statement
or passed as a parameter to a procedure or function. For example, if item? is a variable of type
T, then the current record of file £ is accessed with the assignment statement:

itemT := f~;

The predefined procedures GET and PUT use the buffer variable to read and write to files. The
PUT procedure takes data pointed to by the buffer variable and appends it to the file. The GET
procedure advances the current file position to the next component and copies the value of the
component to the buffer variable.

5.3 Pointer Referencing

The NEW procedure returns a pointer to a newly created variable. This pointer must be stored in
a pointer variable. Either the pointer variable, or the dynamic variable to which it points, may
be referenced. The pointer variable is accessed using its name, and the dynamic variable is
accessed by appending an up arrow (") to the pointer variable. For example, with the following
declarations:

type

t = {some type definition}
var

p. gq: "t

then execution of the statement

NEW (p};

NDP Pascal Reference Manual:

44 5 Variables

allocates a dynamic variable of type t, and assigns its address to p. The pointer variable pt is
bound to a dynamic variable of type ¢, anid pt* denotes the dynamic variable. o

EXAMPLE 1 \')

The following two uses of pointer variables are illegal and would result in a type mismatch
compilation error.

type tl = integer;
var p, g : ~“tl;

begin

new (q);

g™ = 123 { g points to the integer 123 }

P o= g { p now points to what g points to, }
{ p and g both point to the same item }

p~ = 456 { g points to the integer 456 }

P o= g™y { what p points to is replaced by what g points to, }
{ so 456 is replaced by 123. ¥

EXAMPLE 2

type tl = integer;
var p, g @ “tl;

begin
new. {(qj;
P :=qg%; { type mismatch, p is a pointer type and @~ is an integer }
PN = q; { type mismatch, q is a pointer type and p~ is an integer }

NDP Pascal Reference Manual

@ | Expressions

simple expression

term

term

expression

———P simple expression,

v

55

simple expression

Figure 6-1 Syntax Diagrams for Factor and Term

46 6 Expressions

factor
unsigned constant —»>
P variable
. . ces ;/-\ > . \
function identifier r\\i}} expression.) S
;'/’ \ . ! \
V<:E:>"’ expression. | o)
, Y
m P factor
/4 \.
. O f)
I ; >O—-> ;
expression L) expression
i 4 \
o "<\ 2 ’\‘L
term
—» factor

- factor

N
»>

Figure 6-2 Syntax Diagrams for Simple Expression and Expression

6.1 Operators

Expressions permit the evaluation of mathematical formulas. using constants, variables, and
operators. The operators in Pascal are divided into four groups according to their evaluation
precedence:

1) the not operator,

2) the multiplying operators,
3) the adding operators,

4) the relational operators,

where (1) has the highest priority or precedence and (4) the lowest. An expression is evaluated
by performing the operators with the highest precedence first, then those with the next highest
precedence, and so on. When operators of equal precedence occur together, they are evaluated
from the left to the right. Parentheses may be used to alter the evaluation order since
expressions within parentheses are evaluated first.

The Pascal standard states that no assumptions may be made regarding the order in which
operands are evaluated within an expression, other than the above precedence rules. Hence
programs that rely on a left to right, or right to left, evaluation order of the operands in an
expression are illegal.

Note that some logical operators are at the same level of precedence as arithmetic operators.
For example, boolean “and” has the same precedence as arithmetic multiplications, and
boolean “or” has the same precedence with arithmetic addition. This is distinetly unlike the
precedence levels defined in other programming languages.

The following tables list the four groups of operators, in decreasing order of precedence.

NDP Pascal Reference Manual

6 Expressions 47

The Not Operator

~ boolean not

~ one's complement
~ set complement

Multiplying Operators
*

multiplication
* set intersection
/ real division
div integer division
mod integer remainder
& boolean and
& logical and
<< logical left shift
>> logical right shift
Adding operators

+ addition or unary plus

+ set union

- subtraction or unary negation
- set difference

| boolean or

I logical or

The Relational operators
= compares equal

<> compares not equal
< compares less than
<= compares < or =

<= set subset

> compares greater
>= compares > Or =
>= set superset

in set membership

6.2 Boolean Expressions

This section presents two points of caution regarding the evaluation of Boolean expressions.
The first is that the Boolean operators have a higher precedence than the relational operators,
and second, that optimizations performed during the evaluation of Boolean expressions may
preclude some parts of the expression from being evaluated.

The order of evaluation of expressions involving BOOLEAN and RELATIONAL terms may not be
intuitive. Since “or” has a higher precedence than “=”, the following expression:

X=yoru=yv
will be evaluated as

(X=(yoru) =v
and not as

(X = y) or {(u=v

The evaluation of Boolean expressions is optimized to avoid evaluating an operand if the result
can be determined without doing so. For example, in the expression

X = yor z

NDP Pascal Reference Manual

48 6 Expressions

if y is true, there is no need to evaluate z. When an expression involves functions, that function
may not be evaluated. For instance, in the expression

X = y or f(z)

if y is true, there is no need to evaluate £(z). It is dangerous to rely on side effects from
functions in expressions since these functions may not be evaluated.

6.3 Function Call

A function returns a value at that point in an expression where it was invoked. The parameters
in the function call must match the number and type of the parameters in the function
declaration. The actual parameters must be assignment compatible with the formal
parameters.

A field of a packed record or an element of a packed array cannot be passed as a VAR
parameters. to a function.

EXAMPLES

Y :
t

A*sin (w*t + phase * sin (f*t));
sgqrt { (sgrt(r) - 1) / (sqQrt(r) + 1));

6.4 Set Constructor

Set constructor

4 - . 4 \. . N d
e » expression R expression.]

Figure 6-3 Syntax Diagram for Set Constructor
A set constructor is one or more elements of a set enclosed in square brackets.
Each element in a set constructor is either an expression, or a pair of expressions separated by
two dots. All expressions must be of the same type and in the base type of the set. The pair of
expressions represent the lower and upper bounds of a range of elements in the base type. An
element of a set cannot be a set.

If the value of the first expression is greater than the value of the second expression, then
lexpression. .expression] denotes the empty set.

If the base type is INTEGER, then the largest set contains 32 elements by default, or 256
elements if the appropriate compiler switch is used. For more information on NDP Pascal's
compiler switches, refer to the NDP User Manual.

EXAMPLES

const
etc = ‘et cetera'y

type
months = set of (jan, feb, mar, apr, may, jun,
jul, aug, sep, oct, nov, dec);

var
vacation : months;

NDP Pascal Reference Manuali

C

6 Expressions

P, g : boolean;
a, b, ¢, s ¢ real;

L +

[factors |
e

365

a

etc

(Jun..aug, jan)

(b*b - 4.0 * a * ¢)

s@rt (s * (s-a) * (s-b) * (s-c))
not g

not (p and q)

a + b mod ¢

{not. p) and (not q)

a*a

sgrt{(b*b - 4.0*a*c)) / (a+a)
[Jan..aug] * [jun..dec]

R +

| simple expressions |

L T +

(p and Q) or (not p and not gq)
a*a + b*b-

b + sqrt ((b*b - 4.0*a*c)) / (a+a)

e N +
| expressions |
i +
b*b => 4.0 * a * ¢

p =g

vacation in [jun..aug, jan]

49

NDP Pascal Reference Manual

C

7 Statements

7.1 Statement Summary

statement label) .) —>

» assignment statement

case statement

compound statement

enpty statement

for statement

goto statement

if statement

k\‘-/) > procedure call

repeat statement | —

while statement

with statement

Figure 7-1 Syntax Diagram for Statement
The above syntax diagram summarizes the statements available in NDP Pascal. Each statement
is described in detail in a section of this chapter.

7.2 The ASSIGNMENT Statement

Assignment statement

variable

expression —

P function identifier

Figure 7-2 Syntax Diagram for Assignment Statement

The assignment statement assigns the value of an expression to a variable or to a function
N identifier. The variable or identifier, and the expression, must be assignment compatible. Type
C\/ compatibility is described in Section 4.2,

The assignment statement permits entire arrays or records to be assigned.

52 7 Statements

EXAMPLES
centigrade := (fahrenheit - 32.0) / 1.8;
E =m * Cc*Cj
done = abs (x~y) < epsilon;

7.3 The CASE Statement

case list
constant ‘>\j)“_> statement

\ 4

case statement

_’(CASE:)/—’ expression OF | case list J"@THBRV@—’ statement

Figure 7-3 Syntax Diagrams for CASE List and CASE Statement

statementThe case statement provides a multiple branch capability based upon the result of an
expression. The case statement consists of an expression followed by a list of statements. The
expression is called the selector, and must evaluate to any scalar type except REAL. The list of
statements is prefixed by one or more values of the selector type, separated by commas. These
values are called the case labels.

NDP Pascal evaluates the selector and then transfers control to the statement with the
corresponding case label, or to the OTHERWISE clause if it is present and no case labels match
the value of the selector.

The case labels may appear in any order, but they may only be listed once in a single case
statement. If no case label equals the value of the expression, and the otherwise clause is not
present, then the statement following the case statement is executed.

EXAMPLE 1

type
gsolid = (cylinder, sphere, prism, cone);

var
shape : solid

case shape of

cylinder = I := mass * (r*r) / 2.0;
sphere I = 2.0 * mass * (r*r) / 5.0;
prism I = (a*a + b*b) / 12.0;
cone I #= 3.0 * mass * (r*r) / 10.0;
end;
EXAMPLE 2
var

age @ integer

case age of

NDP Pascal Reference Manuali

C

7 Statements 53

1 ¢ infant;
) 2 ¢ toddler;
¢ } 3,4,5 : preschool;
k\,/ 6..11 : elementary;
12,13,14 : juniorHigh;
15..18 ¢ highSchool;

otherwise

begin getUp; work; sleep end
end;

7.4 The COMPOUND Statement

COMPOUND Statement

BEGIN statement

Figure 7-4 Syntax Diagram for COMPOUND Statement

A 4

end

The COMPOUND statement groups several statements into a single statement. The reserved
words “begin” and “end” are used to bracket a series of statements that are to be executed
sequentially. The statements within the compound statement are separated by semicolons.

The body of a Pascal program, procedure, or function consists of a single compound statement.

(\/ EXAMPLE 1

begin t:=alil]l; alil:=b[j]; b[j]:=t end;
EXAMPLE 2

const
m = {some integer constant}
n = {some integer constant})

var
a : array [1..m+1] of integer;
b : array [1..n+1] of integer
¢ @ array [1l..m+n] of integer;
i, J, k : integer;

begin
{ this fragment merges the two sorted arrays a and b into ¢ }
i:=1; J:=1;
a[m+1l] := maxint; bln+l] := maxint;
for k := 1 to m+n do

if alil < alj)
then begin clk]:=a[i]); i:=i+1 end
else begin c[k]:=b[j]; j:=j+1 end;

NDP Pasca] ‘Reference Manual

54 7 Statements

7.5 The EMPTY Statement

EMPTY statement A

C

Figure 7-5 Syntax Diagram for EMPTY Statement

The EMPTY statement is a statement that does not do anything, It consists of no symbols and
has no effect on the execution of a program. The EMPTY statement serves mainly as a
convenience in many programming situations. The following are typical uses of the EMPTY
statement:

1) as a place holder for a label,
2) toallow the existence of extra semicolons in a program,
3) to simplify the coding of certain IF constructs.

The blank spaces in the following examples are the statement separators. The EMPTY statement
has zero length.

EXAMPLE 1
The EMPTY statement allows control to be transferred to the end of a compound statement.

begin
goto 99;

99: {empty statement}
end;

EXAMPLE 2

The EMPTY statement following the assignment “c: =3" allows the semicolon to be used where -\)
not necessary. This provides coding symmetry and eases modification.

begin
a = 1;
b = 2;
Cc 1= 3
end;

EXAMPLE 3

The following IF statement can be rewritten in a form that avoids negative logic using the
EMPTY statement. The statement:

if not el then si1
else
if e2 then s2;

may be rewritten as the following:

if el then
if e2 then s2
else
{ empty statement }
else
sl;

NDP Pascal Reference Manual:

C

(‘ —_
7

7 Statements 55

7.6 The FOR Statement
FOR statement R
DOWNTO)
varizble expression expression [T
o s

L . > statement | »

Figure 7-6 Syntax Diagram of FOR Statement

The FOR statement repeatedly executes a statement while a progression of values is assigned to
a variable, called the control variable of the FOR statement.

The initial and final values of the control variable are determined once, when the FOR statement
begins execution.

The FOR statement has two forms: one where the control variable increases in value and one
where it decreases in value. These forms are distinguished by the reserved words To and
DOWNTO. For example, the control variable named cv increases in the form:

for cv := init to final do stmt;
and decreases in the form:
for ¢v := init downto final do stmt;
Here are the rules governing control variables in FOR statements;

1. The control variable must be a scalar type, and be assignment compatible with the initial
and final expressions.

2. The control variable must be the entire variable, not an element of a structure, subscripted,
field qualified or referenced through a pointer. The control variable can be a value
parameter in a function or subroutine, but cannot be a variable (VAR) parameter.

3. The control variable must be within the scope of the FOR statement.
4. The control variable may not be altered in the body of the FOR statement.

5. The value of the control variable is considered undefined after the FOR statement.
Programs should not depend upon the final value of any FOR statement control variable.

The control variable serves as a counter, and is incremented with the succ function or
decremented with the PRED function at the end of each FOR iteration. The progression of values
assigned to the control variable begins with the value of the first expression, and ends with the
value of the second expression.

Execution of the FOR statement proceeds by evaluating the two component expressions and
then initializing the control variable. The value of the control variable is tested before the
execution of the component statement. If the control variable is increasing in value, then the
component statement is executed if the control variable is less than or equal to its final value.
If the control variable is decreasing in value, then the component statement is executed if the
control variable is greater than or equal to its final value.

control variable FOR terminates when
increasing (T0) control variable > final value
decreasing (DOWNTO) control variable < final value

The component statement will not be executed at all if the initial value is greater than the final
value in the ascending case, or if the initial value is less than the final value in the descending
case.

NDP Pascal Reference Manual

56 7 Statements

EXAMPLE 1

This example evaluates an n-th degree polynomial contained in the array poly using Horner's O
method. The constant term is in element 0, and the coefficient of the n-th term is in element n. A4

var
pely : array [0..n] of real;
i : integer;

begin

y = poly [nl;
for i := n-1 downto 0 do y := x*y + poly [i]l

EXAMPLE 2
This code fragment forms the product of two n-th degree polynomials.

var
pl, p2, product : array [0..n] of real;
i, j : integer;

begin
for 1:=0 to 2*(n-1) do product [i] := 0;
for i:=0 to n-1 do
for j:=0 to n~1 do

product [i+J] := product [i+j] + pl[il*p2(3j];
EXAMPLE 3
The following use of a variable parameter as a control variable in a FOR statement is illegal. -
procedure setup (var i:integerl ch:char); K”)
var list : array [1..10] of char;
begin
for i := 1 to 10 do list[i] := ch;
end;
7.7 The GOTO Statement

GOTO statement

. GOTO > unsigned integerT—p

Figure 7-7 Syntax Diagram for GOTO Statement

The GOTO statement transfers control to the target label. The label must be declared within the
routine that contains the GOTO. Since the scope of a label is the routine in which it is declared,
it is not possible to jump into or out of a procedure or function.

There are several technical restrictions on the use of the GOTO statement that are roughly
equivalent to saying that jumping into a structured statement is not allowed. Specifically, the
following use of the GOTO is illegal:

1. Jumping into a compound statement from outside of the statement.
2. Jumping into a FOR, REPEAT, or WHILE loop from outside of one of these loops.
3. Jumping into a WITH statement.

4. Jumping into an IF statement, or jumping between the THEN and ELSE portions of the IF
statement.

NDP Pascal Reference Manual

7 Statements 57

5. Jumping into a CASE statement, or between the alternatives of a CASE statement.
EXAMPLE

This example illustrates the use of the GOTO statement and may be rewritten without the GoTo
statement by using another variable as a flag.

const
n = 10;
type
tl = array [1..n] of integer;
function common (a, b: tl) : boolean;
{ Returns true if the arrays a and b have an element in common. }
label 99;

var i, Jj : integer;
result : boolean;

begin
result := false;
for i := 1 ton do
for j = 1 to n do
if ali]l = b[j) then begin
result := true;
goto 99
end;
99: common := result;
end;

7.8 The IF Statement

IF statement

expressions ——‘PEI‘HEN}—’ statement ELSE | statement [——P

Figure 7-8 Syntax Diagram for IF Statement

The IF statement allows one of two possible statements to be executed depending upon the
result of a Boolean expression. The IF statement consists of a THEN clause, optionally followed
by an ELSE clause. Note that there is no semicolon between the first statement and the
keyword ELSE.

If the Boolean expression evaluates to TRUE, then the statement in the THEN clause is executed,
and the ELSE clause is skipped if it is present.

If the Boolean expression evaluates to FALSE, then the statement in the ELSE clause is
executed and the THEN clause is skipped.

When two IF statements are nested and there is only one ELSE clause, then the ELSE clause
goes to the most recent unmatched IF (scanning textually backwards from the ELSE).

For example, the statement:
if el then sl if e2 then s2 else s3;
is evaluated as

if el then
begin
if e2 then s2
else

NDP Pascal Reference Manual

58 7 Statements

s3
end ; . hY
and not as \J
if el then begin if e2 then s2 end
else
s3;

EXAMPLE
d := b*b - 4.0*a*c;

if abs(d) < epsilon then begin

xl.r := -b / 2.0*a;
X2.r := xl.r
end
else if d > 0 then begin
Xl.r := (-b + sqgrt(d)) / 2.0*a;
X2.r := {-b. - sqrt{d)) / 2.0*a
end
else begin
x1l.r := b / 2.0*a
x1.1i := sqgrt(-4d);
X2.r := X1.r;
x2.1 1= -x1.1
end;
7.9 The PROCEDURE Statement)
Procedure call m

—P procedure. identifier ' (‘ expression >®—V

®» procedure identifier

Figure 7-9 Syntax Diagram for Procedure Call Statement

The PROCEDURE statement causes the named routine to be executed and control returned to the
statement following the call. The arguments supplied by the calling routine are called the
actual parameters, while the parameters in the procedure declaration are called the formal
parameters. The number of actual parameters must equal the number of formal parameters. If
present, actual parameters are substituted for the formal parameters in the order in which
they occur. The first actual parameter is matched with the first formal parameter, and so on.
The actual parameters must be assignment compatible with the corresponding formal
parameters.

The order in which the actual parameters are evaluated and associated with its corresponding
formal parameter is not defined.

Formal parameters that have been declared as VAR require a variable identifier to: appear in the
corresponding actual. Hence, expressions or constants cannot be passed to VAR parameters.

Fields of a packed record cannot be passed to a VAR parameter. \)

An expression or constant can be used whenever the formal parameter is passed by value.

NDP Pascal Reference Manual

7 Statements 59

EXAMPLE

;oo procedure qguicksort (1, r: integer);
Q5,J var i: integer;
begin
if r > 1 then begin
i := partition (1, x);
quicksort (1, i-1);
quicksort (i+l, r);
end;
end; ’

7.10 The REPEAT Statement

REPEAT statement

~ REPEAT : statement > UNTIL expression [—»

Figure 7-10 Syntax Diagram for REPEAT Statement

The REPEAT statement repeatedly executes a series of statements until a Boolean control
expression becomes TRUE. The statements that constitute the loop are bracketed by the reserve
words REPEAT and UNTIL. The Boolean control expression is evaluated at the end of the loop,

;oo and so the loop executes at least once.
L\.,/’ Notice that the REPEAT statement encloses a list of statements in a manner similar to the
COMPOUND statement.
EXAMPLE
const
n = 10;
var

a : array [1..n) of integer;

procedure selectk (k:integer);
{ Select the k-th smallest item out of an array of N items. }

{ The global array a is rearranged so that af[l],. . .,a[k] are less than }
{ or equal to alk]) and alk+1l], . . .,aln] are greater than or equal to afk].}
var

left, right, i, j, s, t : integer;

begin _
left := 1; right := n;
while right > left do begin
s:=alright]; i:=left-1; j:=right;
repeat
repeat i:=i+1 until afi)] >= s;
repeat j:=3j-1 until alj] <= s;
t:=alil; alil:=aljl; aljl:=t;
oo until j<=i;
&/} aljl:=ali]; alil:=a(right]; alright]:=t;
if i>=k then right:=i-1;
if i<=k then left :=i+l1;

NDP Pascal Reference Manual

60 7 Statements

end;
end; f{selectk}

7.11 The WHILE Statement \J)

WHILE statement
@—‘V statement [—P

variable

Figure 7-11 Syntax Diagram for WHILE Statement
The WHILE statement repeatedly executes a statement until a Boolean expression becomes
false. Since the Boolean expression is evaluated at the beginning of each loop, the statement
will be executed zero or more times.
EXAMPLE

const
n = { some integer constant }
sentinel = 0x80000000;

var
a @ array [0..n] of integer:;

procedure insertionSort;
{ Sort the elements of array a }

var i, j, s : integer; ’\.,)

begin
al[0] := sentinel;
for 1 := 2 to n do begin
s := al[il;
joi= iy
while a[j-1]) > s do begin
aljl := alj-11;
j o= j-1
end;
aljl := s
end;
end;

7.12 The WITH Statement

WITH statement

(WITH] k variable @——P statement [———P

Figure 7-12 Syntax Diagram for WITH Statement \)

NDP Pascal Reference Manual

7 Statements 61

The WITH statement is used to simplify references to individual fields of a record variable. The
WITH statement increases the scope of a statement so that the field names of a record variable
may be used directly.

Nested WITH statements are abbreviated by separating the record variables by commas
following a single WITH.

EXAMPLE 1
This is the example from Section 4.8.4 redone using the WITH statement.

with park do begin

tLeam := teamyY
name := nameY;
surface := natural;

capacity := 57545;
with distance do begin

left. :=312;
center:=410;
right :=310;
end;

EXAMPLE 2
The following code fragment illustrates nested WITH statements.

with park, distance do
begin
left :=312;
center:=410;
right :=310;
end;

NDP Pascal Reference Manual

8 Procedures and Functions

8.1 Procedure and Function Declarations

PROCEDURE
d Y - .
_ PROCEDURE | identifier P parameter_list ‘ block
FORWARD
EXTERNAL
FUNCTION.
(FUNC'I‘ION > identifier parameter_list type identifier block 7

FORWARD

EXTERNAL

Parameter List

~~ T N .l
P idencifier %Q—b‘cype identifier =®JL->
FUNCTION. [4——@1———

var, _‘4_

PROCEDURE identifier

]

0

Figure 8-1 Syntax Diagrams: Procedure, Function and Parameter List

Procedures and functions are subprograms that are contained within a program and may be
nested within one another. Procedures can be thought of as adding statements to a language,
while functions increase the ability to manipulate data in expressions. A procedure is begun or
invoked by using a procedure statement. A function is invoked by referencing it in an
expression within a statement. Procedures and functions return data to the calling routine,
either by variable (VAR) parameters, or through data common to both the caller and callee.
Functions also return a value to the caller.

The format of a procedure or function consists of a heading, declarations, and a body. This
format is identical to that of a program except for the heading. The heading specifies a unique:
identifier used to name the routine and contains a list of objects called the formal parameter
list. The declaration section is optional and consists of definitions that are to be local to this
routine. The body consists of a single compound statement: begin..end. It is the body of the
procedure or function that gets executed when the routine is invoked.

64 8 Procedures and Functions

Explicit type names must be used when declaring identifiers in a procedure or function

heading. This includes value, variable, and function parameters. Either a predefined type or a :
used defined type may be used for this purpose. For example, the following procedure 7
declaration is illegal: ‘\/)

procedure sum (x: array|[l..5] of real);
and must be replaced with the following:

type
a5 = array [1..5] of real;
procedure sum (X: ab5);

A function declaration has the same form as a procedure declaration, except that the heading
gives the type of value returned by the function. A function may return any scalar value or
pointer type. There must be at least one assignment statement that assigns a value to the
function identifier within the body of the function.

Procedure and function names must be declared before their use. The unique name in the
procedure or function heading is used to invoke the subprogram. The scope of a procedure or
function identifier is the block in which the routine is declared. The syntax of a block is given
in Section 2.1. The use of the EXTERNAL directive is described in Section 3.6, and the FORWARD
directive is described in Section 8.4.

In this reference manual, the word routine will be used to refer to either a procedure or a
function.

8.2 Parameter Transmission

The formal parameter list contains a fixed number of data objects containing the name and

data type of each parameter. When a procedure or function is invoked, the arguments in the TN
procedure or function call are substituted for the formal parameters. The arguments in the J\«“’”
procedure or function call are called the actual parameters, and are substituted in the order in

which they occur for the formal parameters, or formals. The number of actuals must equal the

number of formals, and be assignment compatible with them.

The formal parameter list may contain three types of parameters:

1. value parameter,
2. variable or reference parameter, and
3. procedure or function.

Transmission by value is assumed by default, while transmission by variable is indicated by
prefixing each designated parameter with the keyword VAR. Procedures or functions passed as
parameters are called formal procedures or formal functions. Notice that functions may return
results through variable parameters.

The undesirable side effects due to aliasing can occur in two forms during parameter
transmission. The first occurs when the name of an identifier is used more than once as an
actual variable parameter. For example, in the following code fragment, x becomes an alias for
both s and t:

procedure p (VAR s,t: real);
begin
{ body of p }
end;
begin

p (X, X)) A\

NDP Pascal Reference Manual,

J—

8 Procedures and Functions 65

The second instance of aliasing occurring in parameter transmission is a global identifier being
used as an actual variable parameter. For example, in the following code fragment, the global
variable y becomes an alias for the parameter v:

VAR
y: real;

procedure g (VAR v: real);
begin _

{ body of q }
end; ‘

begin

q (y):

8.2.1 Value Parameters

A value parameter is a formal parameter that is a local variable in the procedure or function
and is used to transmit data to the called routine. The corresponding actual parameter
determines the initial value of a value parameter when the procedure or function is invoked. A
pass-by-value parameter may be manipulated as an ordinary variable in the procedure or
function, but any modification to it is not reflected back to the calling routine.

A value parameter may be a constant, a variable, or an expression of any type except the file
type. The actual value parameter must be assignment compatible with its correspending formal
value parameter.

8.2.2 Variable Parameters

A variable parameter is a formal parameter that is prefixed by the reserve word VAR in the
routine heading, and is used to transmit and receive data from the called routine. A variable
parameter may be initialized in the calling routine, and may be manipulated as an ordinary
variable within the procedure or function. Any change made to a variable parameter is reflected
in the actual parameter in the calling routine. Hence, variable parameters permit results to be
passed back to the calling routine.

Only variables may be passed as variable parameters. Constants, expressions, elements of a
packed array, and fields of a packed record may not be passed as variable parameters. A
variable parameter must be the same type as its corresponding formal parameter.

8.2.3 Formal Routine Parameters

A formal routine parameter is a procedure or function that is passed as a parameter to another
procedure or function. Within the called routine, the formal parameter may be used as any
other procedure or function. A formal routine parameter must include the complete procedure
or function heading, including the number and type of parameters required by the routine.
This is required so that the compiler can verify that any call of the routine using the formal
parameter name is correct. The actual parameter expression consists of the procedure or
function heading,

Non-local variables used by a formal routine parameter are those in effect at the time the
formal procedure or function is passed as a parameter, not those in effect when it is activated.

Predefined functions and procedures may not be passed as actual parameters.

NDP Pascal Reference Manual

66 8 Procedures and Functions

8.3 Function Results

resultsA function returns a value that must be either a pointer or a scalar type. The function
assigns a value to the function name before leaving the function. This value must be
assignment compatible with the type of the function and is returned to the calling expression
at the place where the function was invoked.

If the function name occurs on the right hand side of an expression within the function, then it
is interpreted as a recursive call.

8.4 The FORWARD Directive

The purpose of the FORWARD directive is to allow a procedure or function name to be used
before it is defined. This is necessary when two routines call each other at the same level of
nesting. Such routines are said to be mutually recursive.

The FORWARD directive informs the compiler that the routine heading just given will be
separated from its declarations and body. That is, the declarations and body will be declared
somewhere forward in the program.

When used, the FORWARD directive simply follows the procedure or function heading, When
time comes to supply the body of the routine, the heading is repeated without the parameter
list (otherwise the formal parameters would be declared twice and flagged as an error). When
the body of a function, which has been declared forward, is provided, then both the parameter
list and return type are omitted.

EXAMPLE 1

The following example illustrates how to pass a function as a parameter to a procedure. The
program calculates the area under two different curves, a simple step function, and the cosine
function, and prints the following result:

Area under step function from 0 to 2 is 1.00166666666666737e+00
Area under cosine curve from O to pi/2 is 1.0000000002113842e+00

program formal;

procedure integrate (function f(x:real): real;
a,b: real;

n: integer;
var area: real);

var w, sum: real;
i: integer;

begin
w := (b-a) / n;
sum := 0.0;
for i := 1 ton do
sum = sum + w * (f£(a+(i-1)*w) + 4.0*f(a-w/2+i*w) + fla+i*w))/6.0;
area := sum; ‘
end;

function unitStep (x:real):real;
begin
unitsStep := 1.0 + trunc(x);
end;

function cosine (t:real):real;
begin

cosine := cosi{t);

end;

NDP Pascal Reference Manual

C

8 Procedures and Functions

var
result : real;

begin

integrate(unitStep, 0.0, 1.0, 100, result);

writeln('Area under step function from 0 to 2 ig °
integrate(cosine, 0.0, 3.1415927/2, 100, result);
writeln('Area under cosine curve from O to pi/2 is

end.

EXAMPLE 2 (ex005.p)

67

result);

. resulty;

The following program illustrates some of the intricacies in parameter transmission, and is
from the book Programming Languages: Design and Implementation, by Terrance W. Pratt,
Prentice-Hall, Inc., second edition, 1984.

In this example, the global variable x is passed as a VAR parameter to procedure g, which has a

local variable with the same name. This results in a hole in scope for the global x. In addition,

the function f is passed as a parameter, and has the side effect of changing the global variable

x. To understand this program, the reader should be familiar with the lexical scope of
identifiers as described in Section 2.2, and how environments are passed with formal
parameters, described in Section 8.2.3. That is, the value of x that will be used within the
function £ will be the value that x had when £ was used as an actual parameter.

program formall;

var x: integer;

procedure g(var 1i: integer; function r(j:integér):integer);

var X: integer;

begin
X := 4;
i = r(iy;
end;

procedure p;
var 1: integer;

function f(k: integer):

begin

begin
i = 7;
g(x, £);
end;

begin
X = 7;
P
writeln('x= ',x:3);
end.

The program produces the following output:

X = 9

integer;

Line numbers are printed with the program so that the program statements can be referred to

in: the following discussion.
Example (ex006.p)

An execution trace of this program is presented by way of explanation.

NDP Pascal Reference Manual

68 8 Procedures and Functions

Line
Trace Remarks
22 x =7

23 p

18 i=2

19 g (x, f) x=7and i=2in f's environment

3 g (i=7, f with x=7 and i=2)

6 x =4 this x is local to g because of the hole in scope:
7 i £(7)

12 first formal is k=7

fl

14 x 7 + 7 xisfrom line 19, k is from line 12
= 14

X
15 f =2 + 7 1iisfromline 19, k is from line 12
b

=9
8 i=29 i is a VAR parameter so value 9 passed to actual in calling routine on line
19 setting x =9
16 x = 9 x is global to procedure p

24 print x = 9
EXAMPLE 3 (ex007.p)
The following example illustrates mutual recursion and the FORWARD directive. This program

checks the syntax of a simple expression against the following simplified grammar for
expressions: :

<expression> := <term> | <term> + <expression>
<term> := <factor> | <factor> <term>
<factor> 1= <expression> | letter | <factor>

An expression consists of a term, or a term followed by a plus symbol, followed by an
expression. A term consists of a factor, or a factor followed by a term. A factor consists of an
expression, a letter, or a factor. Variables are restricted to a single letter in this example.

Since the grammar is recursive, that is, an expression is defined in terms of an expression,
etc., then the expression can be recognized, or parsed, by using recursive procedures. Further,
since the components of grammar are defined in terms of one another, then the procedures
implementing this grammar will be mutually recursive. The program presented below
implements this grammar. The expression has been hard coded into the example to simplify
input. The following output is produced by the program:

{{a+b) * (c+d)) +f <<is a valid expressions>
program parse;

type
c20 = array([1..20] of char;

procedure expression(s:c20; var t:integer; var error:boolean); forward;
procedure term(s:c20; var t:integer; var error:boolean); forward;

procedure getlnput(var s:¢20; var t:integer; var error:boolean):;
var
i: integer;

NDP Pascal Reference Manual

8 Procedures and Functions

begin

L s[1] == ' (s

() sf2) = ' (';

N— s3] = *ta";
s[4] = '+
s[5] := 'b';
s[6] == "),
s{7] = 'w';
s8] wu= '(";
s[9] = 'c';
s[10] := '"+';
s[11] := *d‘;
s[12] = ")';
s[13] = ") ',
s[14] = '"+';
s[15] := 'f';
£ = 1;
error := false;
for i := 1 to 15 do

write (sf[i]);

end;

69

procedure factor(s:c20; var t:integer; var error:boolean);

begin
if s[t] = "(" then begin
£ =t + 1;
expression{(s, t, error);
if s[t] = '}' then
(/ ‘ L=t + 1
N else
error := true
end
else
if ¢(t] in ["a'..'z'] then
L =t + 1
else
error := true;
if s[t] = **' then
t =t + 1,

end;

procedure expression;

begin
term(s, t, error);
if sf{t] = '+' then begin
L s= t + 1;
expression{s, t, error);
end;
end;

procedure term;
begin
factor(s,t,error);
if (s[t] = “(*) or (s{t] in
term(s,t,error);
end;

var
s: ¢20;

[*a*..'z"]) then

NDP Pascaf Reference Manual

70

t: integer;
error: boolean;

begin
getInput (s,t,error);
expression{(s, t, error);
if error then

writeln(" <<is an illegal expression>>')
else

writeln(' <<is a valid expression>>");
end.

NDP Pascal Reference Manual

8 Procedures and Functions

9 ilnput and Output

9.1 Overview

Afile is a sequence of identical objects, each object consisting of any simple or structured type,
except the file type. The goal of the Pascal file system is to provide an abstraction of a
peripheral input/output device which embodies the idea of a sequence of arbitrary length and
upon which operations on this sequence are natural and familiar. Of the many devices
commonly attached to computer systems, the magnetic tape unit is generally chosen to act as a
model since it is simple yet general enough to describe the operations commonly performed on
sequential files. This model of the Pascal file system is briefly mentioned to provide some
intuition behind the characteristics and limitations of Pascal's files. The Pascal file system is an
implementation of sequential files on disk. As such, it inherits the advantages and
disadvantages. of magnetic tape files.

The only operations allowed on a file are sequential reading and sequential writing. Random
access is not possible. Since all operations are sequential, the word sequential is usually
omitted when referring to Pascal files.

Assignment and comparison of files are not possible using the assignment or comparison
operators. Both of these operations must be done component by component. The only way to
extend a file is to copy it to another file, and then add the additional records to the new file. No
operator is provided to concatenate two files or selectively to update a single component in a
file. These operations, like assignment and comparison, require that a program be written to do
the required task.

A file is created by writing records to it in the sequence in which it is desired to save the
records. A file is accessed by reading the records in the sequence in which they were written
from the beginning until the desired record is found, or until the end of file is reached. It is not
possible to mix the reading and writing operations on a file without first issuing a command to
close and open the file (RESET or REWRITE), and then starting from the beginning of the file.

The Pascal file system maintains a pointer to the current position in the file. This pointer is
automatically advanced by reading or writing to the file. The component of the file to which the
file pointer points is called the buffer variable. That is, the buffer variable corresponds to the
current record in the file. The buffer variable is the name of the current component in the file
and is referenced as am ordinary variable.

9.2 File Declaration and Initialization
A file type has the following syntax:

where type may not directly or indirectly refer to a file.

A file variable is a variable of the file type and is declared like any other variable:

VAR. file variable 0 file type

The file variable is a pointer that keeps track of two pieces of information: the file name and the
current location in the file. The file variable is sometimes called the file pointer for this reason,
although it is declared as an ordinary variable. A physical file on disk is associated with the file
variable by using the RESET or REWRITE procedures.

72 9 Input and Output

The predefined procedures RESET and REWRITE initialize a file variable and optionally assign it
to a physical disk file. RESET initializes. the file variable for reading an existing file, and
REWRITE initializes a file variable for writing to an existing (or nonexisting) file. In both cases,
the file pointer is positioned to the beginning of the file. Note that the contents of an existing
file are lost if the file is opened using REWRITE. This is true even if the file is not written to and
the program successfully terminates. :

The second argument to RESET and REWRITE, the file name, is generally omitted on subsequent
calls unless the file variable is being assigned to a different disk file. Additional calls are made
to RESET and REWRITE for two reasons: in order to change the direction of file access, that is,
input to output or output to input, or simply to reposition the file pointer to the beginning. For
example, consider the code fragment:

rewrite (temp, "scratch.dat');

reset (temp);

The first statement assigns the file variable temp to the physical disk file scratch.dat. If
scratch.dat exists, then it is opened, otherwise it is created. In either case, scratch.dat is
opened for writing to its first component. The second statement closes and then opens
scratch.dat for reading, beginning with its first component. The file, scratch.dat, now
exists, even though it may be empty.

The declaration of a file variable causes the implicit declaration of a buffer for use when
accessing the file. This buffer is called the file buffer, or buffer variable. The file buffer holds
one item of the file's base type and is the only portion of the file that is directly accessible. The
file variable is a pointer to the current component in the file, and the file buffer contains the
value of this component.

The file variable is sometimes compared to a sliding window through which the file can be seen.
The file is scanned by moving the window across the file. The position of the window
corresponds to the file pointer, and by looking into the window the contents of the file can be
seen.

The file buffer, which is implicitly declared in a file declaration, is treated like any other
variable. It is referenced by appending a pointer (*) to the file variable. The general syntax is:

buffer variable

—P file variable —’G_"

For example, consider the following code fragment:

type
dailyRec = record
day : integer;
temp: real;
end;

var
weather: file of dailyRec;
rewrite (weather, "climate.dat');

The call to REWRITE associates the physical file named climate.dat with the file variable,
weather. The assignment statements,

weather™.day := 21;
weather~.temp:= 34.5;

set the value of the buffer variable to a record whose day field is 21, and whose temperature
field is 34.5.

NDP Pascal Reference Manual

C

9 Input and Output 73

9.3 Input and Output Processing using cer and rur

The fundamental I/O routines in Pascal are GET and PUT. GET increments the current file
pointer to the next component and copies this component to the buffer variable. If the file
pointer was already positioned at the last component in the file, then the value of the function
EOF becomes TRUE and the value of the buffer variable is undefined. PUT appends the value of
the buffer variable to the end of the file.

Reading is accomplished by accessing the buffer variable. This is usually followed by a call to
GET to advance the file pointer in preparation for the next read. The following statements
illustrate this:

component := f~;
get (f);

The call to GET follows the assignment statement because of the way buffer variables are
initialized by the RESET procedure. RESET sets the file pointer to the beginning of the file and
copies the first component into the buffer variable. Thus the buffer variable already contains
the contents of the first component of the file when it is used for the first time by the program.

The above sequence of Pascal statements also works when the file being read is connected to
an interactive device, such as the user's terminal. Notice that this requires a slight modification
to the file initialization process since the first component of the file is not available. If RESET
were to demand input when called, then programs would have to distinguish between
interactive and non-interactive files, otherwise the user would be required to reply before the
program had a chance to print any prompts. To avoid this problem, the Pascal standard allows
RESET to delay reading the first component of the file until it is actually used by the program.
This allows the treatment of interactive and non-interactive files to be uniform and allows the
I/0 commands to operate as usual. The technique of delaying a request for data until it is
needed is called lazy evaluation and is transparent to the programmer.

Writing is done by assigning a value to the buffer variable and using PUT to add the component
to the end of the file. The following statements illustrate this:

£~ := component;
put (£);

PUT appends the contents of the file buffer to the file and increments the file pointer so that the
added item becomes the current component. Technically, the contents of the buffer variable are
no longer defined after being moved to the file. Since the file variable now points to the last
component in the file, the function EOF is TRUE.

EXAMPLE 9.1 (ex008.p)

This example illustrates the use of the GET and PUT procedures to make an identical copy of a
file. Buffer variables are used to access the data in the source and destination files. This
permits the components of the file to be moved from the source to the destination very
efficiently and without the use of a temporary variable to hold the current component. The
program can be made to copy any file type by changing the value of fileType in the type
declaration.

program copyl (output) ;

type
fileType = file of char;

procedure copy(var src, des: fileType);
begin
while not (eof(src)) do begin
deg”™ := src”y
put (des) ;
get (src);

i NDP Pascal Reference Manual

74 ‘ 9 Input and Output

end;
end;

var \ J
inp, out: fileType; .

begin
writeln('copyl started');
reset (inp, 'ex008.inp') ;
rewrite(out, "ex008.out") ;
copy (inp,out) ;
writeln('copyl finished');
end.

9.4 Buffer Variable Restrictions

The Pascal standard does not allow the buffer variable to be accessed while the file variable is
in a position to be altered. This rule is designed to prevent data from being unintentionally
modified and is consistent with Pascal's concern for data security. The three situations in
which it is possible to violate this rule are given below and they are rather obscure. This rule is
not enforced by NDP Pascal. The following describes the three situations in which aliasing is
possible with the buffer and file variables:

1. The buffer variable is used as an actual variable parameter to a routine that modifies the
corresponding buffer variable;

2. The buffer variable is used in the left-hand side of an assignment statement whose
expression on the right-hand side contains a function that modifies the position of the file;

3. The buffer variable is used in a WITH clause, where the component statement modifies the ‘
position of the file. C

EXAMPLE 1 ~

This example illustrates the behavior of a program that alters the value of a file variable while a
reference exists to the corresponding buffer variable (as in case 1, above). This is not an
example to emulate and is only presented to hint at the difficulties in debugging a program
when this is done.

Two versions of the same program are given to accomplish the same task: one using PUT and
the other using WRITE. The first program uses PUT and is easy to understand. The second uses
WRITE and is more difficult. Both programs generate the same output as shown below:

The initial buffer variable is a
The final buffer variable is 3

Program 1 (ex009.p)
program bvla{output) ;

var
out: file of char;

procedure write3(var c: char);
begin

c = ‘z';

out™ := "1'; put{out);

out™ = '2'; put{out);

out™ := '3'; put{out);

end; -
begin ~’

rewrite(out, 'ex009.out');

NDP Pascal Reference Manual

9'Input and Output 75

out”™ := ‘'a‘';

writeln({'The initial buffer wvariable is ", out”™);
write3 (out™);

writeln('The finial buffer variable is ', out®);
end.

Program 2 (exO10.p)

program bvlb(output);
var
out: file of char;

procedure write3(var c:char);
begin
c = Yz',
write(out,"1%);
write(out,'2"');
write(out,'3");

end;
begin
rewrite(out, "ex010.out');
out™ := ‘*a';
writeln('The initial buffer variable is *, out”);

write3 {out™);
writeln('The finial buffer variable is ', out™):
end.

EXAMPLE 2 (ex011.p)

This example illustrates the behavior of a program that alters the value of a file variable while a
reference exists to the corresponding buffer variable (as in case 3, above). Again, this is not an
example to emulate. This program produces the following output:

The initial buffer variable is 1 2 3
The final buffer variable is 101 102 103

program bv2{output) ;
type
rec. = record
a,b,c : integer;
end;

var
buf: file of rec;
data: rec;

begin
rewrite{(buf, 'ex0ll.out");
buf~.a := 1; data.a := 101;
buf~.b := 2; data.b := 102;

buf~.c = 3; data.c = 103;
writeln{'The initial buffer variable is “, bui~.a:4, buf~.b:4, buf~.c:4});
with buf~ do begin

a := 10; Db := 11; ¢ := 12;

write(buf, data);

end;
writeln(*The final buffer variable.is ', buf~.a:4, buf~.b:4, buf~.c:4);
end.

NDP Pascal Reference Manual

76 9 Input and Output

9.5 Input and Output Processing with READ and WRITE

The procedures READ and WRITE are simply abbreviations for the sequence of commands
needed to do input and output with GET and PUT. Both READ and WRITE take an argument that
is identical in type to the file's type. Since GET and PUT work with any file type, so do READ and
WRITE.

The predefined procedure READ(f, component) is equivalent to the compound statement:

begin
component := f~;
get (f)
end;
The statement READ(f, vI, . . ., vn) is equivalent to the following sequence of individual
reads:
read (f, vl1); read(f, v2); . . . ; read (f, vn);

Similarly, the predefined procedure WRITE(f, component) is equivalent to the compound
statement:

begin
£~ := component;
put (f)
end;
The statement WRITE (f, v1, . . ., vn) isequivalent to the following sequence of
individual writes:
write (£, vl); write(f, v2); . . .; write (f, vn);
EXAMPLE 9.4 (ex012.p)

This example illustrates the use of the READ and WRITE procedures in making an identical copy
of a file, and is very similar to Example 9.1. The program here is less efficient than example 9.1
because of the need to store the source file buffer variable into the variable ch, and then to
move ch into the destination file buffer variable. The penalty for these extra copies increase
with a more complicated type.

program copy?2 (output) ;

type
fileType = file of char;

procedure copy(var src, des: fileType);
var
ch: char;

begin
while not (eof(src)) do begin
read{src,ch);
write(des,ch) ;
end;
end;

var
inp, out: fileType:

begin
writeln('ex012 started');
reset {inp, ‘'‘ex012.inp');
rewrite(out, ‘'ex0l2.out');
copy (inp. out);

NDP Pascal Reference Manual

C

\/J

9 Input and Output 77

writeln('ex012 finished');
end.

EXAMPLE 9.5 (ex013.p)

The program in this example merges two files of integers into a third. The integers in the two
input files are assumed to be in ascending order. This example illustrates several different
ways in which buffer variables may be used. Buffer variables are used to avoid declaring
temporary variables when accessing the input files and provide lookahead when comparing the
current file components. Notice that GET is used to access the two input files, while WRITE is
used to transfer data to the output file.

program mergel (output) ;

type
integerFile = file of integer;

procedure merge{var inputl, input2, result: integerFile);
begin '
reset (inputl); reset (input2); rewrite(result);
while not (eof(inputl) or eof (input2)) do
if inputl”™ < input2” then begin
write(result, inputl?®);
get (inputl)
end
else begin
write(result, input2”);
get (input2)
end;
while not eof (inputl) do begin
write(result, inputl”®);
get {inputl);
end;

while not eof(input2) do begin
write(result, input2™);
get (input2) ;
end;

end;

var
filel, file2, file3: integerFile;
i: integer;

begin
writeln(‘begin ex013.p"');
regset (filel, 'ex013a.inp');
reset(file2, 'ex013b.inp');
rewrite(file3, 'ex0l3.out');
merge(filel, file2, file3);

reset (file3);

while not eof(file3) do begin
read(file3, 1)
writeln(i);
end;

writeln('ex013 finished'):

end.

NDP Pascal Reference Manual

C

‘Procedures

The following is an alphabetic list of the predefined functions and procedures in NDP Pascal.

ABS (x)
returns the absolute value of x
Definition:

1 O Predefined Functions and

function abs

(¢ integer) : integer;
function abs ¢(

(

(

¢ real) : real;
: double) : double;
¢ float) : float;

function abs
function abs

MO R

where
1 is an expression of type integer,
r is an expression of type real,
dis an expression of type double,
f is an expression of type float.

The ABS function returns an integer, real, double or float value depending upon the type of its.
parameter. The result is the absolute value of the input parameter.

ARCTAN (x)

returns the arctangent of x

Definition '
function arctan
function arctan

function arctan
function arctan

: integer): double;
: real) : double;
+ double) : double;
¢+ float) : double;

MoQ N

where

1 is an expression of type integer,
r is an expression of type real,

d is an expression of type double,
f is an expression of type float.

The ARCTAN function converts the input parameter to a temporary 64-bit floating point number
and returns the arctangent of this value. The input parameter is assumed to be expressed in
radians.

ARGC

returns the number of command line arguments.
Definition
function argc : integer;

The ARGC function has no arguments and returns an integer equal to the number of command
line arguments specified when the program was run. The number of command line arguments.

80 10 Predefined Functions and Procedures

includes the command name, so ARGC is at least one. An example is included after the ARGV
function.

ARGV(i, s) -

copies the ith command line argument into the variable s
Definition
CONST n=12 {for example}

TYPE str=packed array [1..n] of char
procedure argv (I:integer; VAR s:Str);

where

1 is an integer in the range 1 to the number of command line arguments (which
corresponds to the value of the ARGC).

s is a character array that will receive the ith command line argument.

The ARGV (1, s) function copies the ith command line argument into the variable s. The ith
command line argument is truncated if the receiving variable is not large enough to store all its
characters.

EXAMPLE (ex020.p)
program argl (output);

var i: integer;
arglist: packed array [1..8] of char;

begin
writeln('argc = ',argc:2); ; :
for i := 0 to arge - 1 do begin N’
argv{i,arglist);
writeln(*arg ',i:2,' = ', arglist);
end;
end.

The above program illustrates the use of the ARGC and ARGV functions. In this program, the
loop index is zero origined so that the first command line argument will be accessed when the
loop index is 1, and so on: When the example is executed without any arguments on the
command line, the following output is generated. That is, the command:

386 Loader: ndprun argl

860 Loader: run860 argl
produces the following output:

argc = 1

arg 0 = argl

When the example is executed with several command line arguments, the following output is
generated. That is, the command:

386 Loader: ndprun argl this is a test abcdefghijkl 11 22
860 Loader: run860 argl this is a test abcdefghijkl 11 22

produces the following output (notice that the fifth argument is truncated):

arge = 8

arg 0 = argl O
arg 1 = this i\ /
arg 2 = is

arg 3 = a

NDP Pascal Reference Manuall

10 Predefined Functions and Procedures 8t

arg 4 = test

arg 5 = abcdefgh
arg 6 = 11

arg 7 = 22

CHR (n)
returns the ASCII character whose ordinal value is n
Definition
function chr (i : integer) : char;
where i is an integer expression.

The CHR function returns the ASCII character whose ordinal value is equal to the result of the
integer expression i.

This function is the inverse of the ORD function. That is, ORD(CHR(1i)) = i,ifi =0to 127.

COS (x)

returns the cosine of x

Definition
function cos ¢ integer) : double;
function cos ¢ real) + double;

function cos
function cos

: double) @ double;
¢+ float) : double;

MyoQ R

where

i is an expression of type integer,

r is an expression of type real,

d is an expression: of type double,

f is an expression of type float.
The Cos function converts the input parameter to a temporary 64-bit floating point number
and returns the cosine of this value. The input parameter is assumed to be expressed in
radians.
EXAMPLE (ex036.p)

program cosl(output};

function cos(d: double): double; external;

const
pli = 3.14159265358979323846;

var
i: integer;
x: double;

begin
x = 0.0,
for i := 1 to 5 do begin
writeln{('x = ', x, ' cos((x) = ', cos(X));
X 1= X + pi/4.0;
end;
end.

NDP Pascal Reference Manual

82 10 Predefined Functions and Procedures

This program generates the following output:

= 0.00000000000000000e+00 cos (x)
= 7.85398163397448286e-01 cos (x)
1.57079632679489657e+-01 cos(x)
= 2.35619449019234486e+00 cos{x)
= 3.14159265358979311e+00 cos(x)

DISPOSE (p)

deallocates a dynamic variable

1.00000000000000000+00
7.07106781186547462e-01 .
0.00000000000000000+00 p—
-7.07106781186547550e-01
-1.00000000000000000e+00

wonouon

E T T T
1

Definition

procedure dispose (var p : pointer);

procedure dispose (var p, ti, t2, . . .: scalar);
where

pis a pointer variable with base type T,

t1, t2, ... are scalar constants representing the tag fields if the base type T is a variant
record.

DISPOSE releases storage assigned to a dynamic variable and sets the pointer to NIL.

EOF (f)
returns TRUE if file f is at end of file
Definition

function eof (f : filetype) : boolean: .
function eof : boolean; ;

where f is a variable of a file type.

EOF is a boolean function that returns TRUE if the file is positioned at the end of file. On a file
opened for input, this occurs when an attempt is made to read past the last record in the file.
On a file opened for output, this function always returns TRUE.

EOLN (f)

returns TRUE if file f is at end of line
Definition
function (£ : TEXT) : BOOLEAN;
function eoln : BOOLEAN;
where f is a TEXT file opened to input. If £ is omitted then the file INPUT is used.
The EOLN function returns TRUE if file f is positicned at an end of line character, and FALSE
otherwise. Notice that EOLN is applicable only to TEXT files.

If EOLN (f) is true, then the file variable £~ has the value of a blank, i.e., £~ does not return
the end of line character. The blank is not in the file but will appear as if it were. This
generally does not matter to most applications. If the physical layout of the data in a file is
significant, then the programmer must be sensitive to the EOLN condition.

NDP Pascal Reference Manual

10 Predefined Functions and Procedures. 83

EXP (x)

returns the base of the natural log (e) raised to the power x

Definition
function exp
function exp

function exp
function exp

¢ integer): double;
¢ real) ¢ double;
¢ double) : double;
¢ float ¥y : double;

QR ke

where

1 is an expression of type INTEGER,
r is an expression of type REAL,

d is arn expression of type DOUBLE,
f is anr expression of type FLOAT.

The EXP function converts the input parameter to a temporary 64-bit floating point number,
and returns the base of the natural logarithms, e, raised to this power. If the return value is
too large to be represented, the global variable errno will be set to ERANGE.

GET (f)
advances file pointer to the next component of file f
Definition

procedure get (f : filetype);
where f is a file variable.

GET positions. the file pointer of a file to the next component in the file, then assigns the value
of this component to the associated buffer variable.

If the predicate EOF (£) is FALSE before the execution of GET (), then GET advances the current
file position to the next component and assigns the value of this component to the buffer
variable £~. If no next component exists, then EOF () is set to TRUE, and the value of £~ is not
defined. An error occurs if EOF(f) is TRUE before execution of GET ().

The file £ must be opened for input.

LN (x)

returns the natural logarithm of x

Definition
function In (I : integer): double;
function In (r : real) = double;
function In (d : double): double;
function 1In (£ : float }: dQouble;

where

1 is an expression of type INTEGER,
r is an expression of type REAL,

d is an expression of type DOUBLE,
£ is an expression of type FLOAT.

The LN function converts the input parameter to a temporary 64-bit floating point number and
returns the natural logarithm of this value.

NDP Pascal Reference Manual

84 : 10 Predefined Functions and Procedures

NEW

allocates a dynamic variable \.
Definition N’

procedure NEW (var p : pointer);
procedure NEW (var p : pointer; tl, t2, . . .: scalar);
where

pis a pointer variable with base type T,

t1, t2,. .. are scalar constants representing the tag fields if the base type T is a variant
record.

The NEW procedure allocates a dynamic variable and initializes the pointer to point to the
variable. The first form of the NEW procedure allocates an amount of storage that is necessary to
represent a value of the type to which the pointer refers. If the type contains a variant record,
then the amount of space allocated corresponds to what will be needed by the largest variant of
the record.

The second form of the NEW procedure allocates space for a particular instance of a variant
record. This requires specifying the tag field for each sub-variant in the record in the tag field
list in the procedure call. With this information, the NEW procedure will allocate the exact
amount of space needed for this record variant.

ODD (n)
returns TRUE if the integer n is odd
Definition
function odd (i : integer) : boolean: \\J
where i is an expression of type INTEGER.
The ODD function returns TRUE if the input parameter i is odd, and FALSE if it is even.

ORD (x)
converts a scalar value x to an integer
Definition
function ord (x : scalar_type)} : integer;
where x is a character, boolean, enumerated or SUBRANGE type.

The ORD function returns an integer value that corresponds to the scalar x. If xis of type CHAR,
then ORD returns the corresponding value of x in the ASCII character set. If x is an enumerated
type, then ORD returns the position in the enumeration, beginning at zero. Since type BOOLEAN
is defined as BOOLEAN = (FALSE, TRUE), we have ORD(FALSE) = 0 and ORD(TRUE) = 1.If xis
a subrange type, then ORD returns the value of the integer despite the relative location of the
integer within the subrange.

PACK (a, i, 2)
packs array a, beginning at index i, into array z
Definition

procedure pack (a: packed_array_type ; j'\ J
i integer;
var z: unpacked_array_type);

NDP Pascal Reference Manual

10 Predefined Functions and Procedures 85

where

a is the source unpacked array,

1 is an expression that is compatible with the index type of a,

z is the destination packed array.
PACK copies elements from the unpacked array a to the packed array z, beginning with the i-th
element of a. The element types of the two arrays must be identical. There must be enough
elements in the z array to receive the elements copied from a.
Note that PACK is defined for one-dimensional arrays only.

PACK is equivalent to the following definition:

type
tl = array [m..n] of T;
t2 = packed array [u..v] of T;
procedure pack (a : til;
i : integer;
var z : t2)i
var j, k:integer;
begin
k == 1
for j := u to v do begin
z [31 == a [k];
k :=k + 1;
end;
end;

PAGE (f)
writes an ASCI| form feed to file f
Definition
procedure page (var f : TEXT);
where £ is a TEXT file open for output. If £ is omitted, then file OUTPUT is used.

This procedure writes a form feed character to file £. This is control-L at present, or ord (12).
When the file is printed, this causes a page eject.

returns the predecessor value of the scalar x
Definition
function pred (x : scalar_type) : scalar_type;

where x is an expression formed from one of the following types: BOOLEAN, CHARACTER,
INTEGER, ENUMERATED or SUBRANGE.

The PRED function returns the predecessor value of the parameter expression. The first element
in an enumeration list does not have a predecessor. The PRED of an integer is the integer minus
one. The PRED of a REAL argument is not allowed and results in an error.

NDP Pascal Reference Manual

86 10 Predeéfined Functions and Procedures

PUT (f)

advances the file pointer to the next component of the file f
Definition
procedure put (f : filetype);
where £ is a file variable.
PUT copies the value of the buffer variable to the end of the specified file.

If the predicate EOF (£) is TRUE before the execution of PUT (£), then PUT appends the buffer
variable £~ to the file £, EOF (f) remains TRUE, and the value of £~ becomes undefined. An
error occurs if EOF (£) is FALSE before execution of PUT (£).

The file £ must be opened for output.

READ and READLN (for TEXT files only)

Definition

procedure read (f : text; vList : see_below Y
brocedure readln (f : text; vList : see_below)i
procedure readln (f : text);

where

f is an optional text file to be used for input, file INPUT is assumed if this parameter is
omitted.

vList is a list of variables, separated by commas, of any combination of the following types:
INTEGER, CHAR, DOUBLE, REAL, FLOAT.

The READ procedure reads character data from the text file £ and converts it to match the data
type of each parameter.

The READLN procedure reads and converts data in the same manner as READ if any variables
are present. READLN then positions the file pointer to the beginning of the next line.

CHAR data is read by reading the next character in the file. The READ procedure will return
chr (10) for the end of line character.

INTEGER data is read by skipping leading blanks, processing the optional sign and converting
all digits up to the first non-numeric character. An end of line will terminate an INTEGER.

DOUBLE, FLOAT and REAL data is read by skipping leading blanks, processing the optional sign,
and converting all characters (digits, decimal point, sign, e or E} up to the first non-numeric
character that falls outside the syntax of a DOUBLE, FLOAT or REAL number. An end of line will
terminate a DOUBLE, FLOAT or REAL number.

READ and READLN will accept numbers up to a line boundary, i.e., a number cannot be placed
on two separate lines.

READ and READLN will not convert BOOLEAN or hexadecimal formatted integers..
Errors will cause the global variable errno to be set appropriately.

READ for non-TEXT files

Definition

type ft : file of ¢t
procedure read (f : ft; var v : £);

NDP Pascal Reference Manual

C

10 Predefined Functions and Procedures 87

where

£ is a file variable,
v is a variable whose type is the base type of the file £.

The READ procedure reads one file component from file £ and assigns this element to the
variable v.

Errors will cause the global variable errno to be set appropriately.
READ (f, v) is equivalent to the following:
begin v:= £~; get(f) end;

RESET (f, s)

opens a file for input
Definition

procedure reset (£ : filetype; s : string);:
where

f is a variable of a file type,
s:is a variable or quoted string, This parameter is optional.

RESET initializes the file pointer to the first component of the file and prepares the file for input.
This procedure is equivalent to the following;

1. closing the file if it is open,

2. rewinding the file,

3. opening the file for input,

4. getting the first component of the file.

The second argument to the RESET procedure is the name of the file to be opened. This may be
specified as a string constant, that is, a file name embedded in single quotes, or as a variable.
If the second argument is a variable, then the file name must be terminated by the value
chr(0).

RESET positions the file to the beginning and so is equivalent to rewinding the file. If the
specified file f is not empty, then RESET assigns the buffer variable £~ to the value of the first
component of the file, and sets EOF (£f) to FALSE. If the file £ is empty or does not exist, then £~
is undefined, and EOF () is set to TRUE.

Except for the predefined file INPUT, RESET must be used on every file before using GET, READ,
or READLN to obtain data from the file.

For interactive files, advancing the file pointer and assigning the buffer variable is deferred by a
technique called lazy evaluation. Without lazy evaluation, the execution of the RESET procedure
will cause the program to wait for input to become available, as step 4 above shows. This
makes it difficult for a program to display messages or prompts before requesting input. Lazy
evaluation allows physical input to be deferred until the input is actually needed by access to a
buffer variable. This permits a program to handle interactive terminal input in a natural way.

In Standard Pascal and NDP Pascal, there is no procedure for closing a file. Files are closed
automatically when program execution terminates.

REWRITE (f, s)

opens a file for output
Definition

procedure rewrite (f : filetype; s : string);

NDP Pascal Reference Manual

88 10 Predefined Functions and Procedures

where

f is a variable of the file type,
s is a variable or quoted string. This parameter is optional.

REWRITE positions the file pointer to the beginning of the file and prepares the file for output.
This procedure is equivalent to the following;

1. closing the file if it is open,
2. rewinding the file,
3. opening the file for output.

The second argument to the RENRITE procedure is the name of the file to be opened. This may
be specified as a string constant, that is, a file name embedded in single quotes or as a
variable. If the second argument is a variable, then the file name must end with the value

chr (0). If this parameter is omitted, a file name with the prefix “PASRT” is created, and
associated with the file variable f.

REWRITE positions a file to the beginning in preparation for writing to it, and so any existing
data in the file is lost. EOF'(£) is set to TRUE, and the buffer variable £~ is undefined.

Except for the predefined file OUTPUT, REWRITE must be used on every file before using pPUT,
WRITE, or WRITELN to transfer data to the file.

In Standard Pascal and NDP Pascal, there is no procedure for closing a file. Files are closed
automatically when program execution terminates.

ROUND (x)

converts a floating point x to- an integer by rounding
Definition
function round (d : double) : integer;

function round (£ : float) : integer;
function round (r : real) : integer;

where:
d is an expression of type DOUBLE,
f is an expression of type FLOAT,
r is an expression: of type REAL.
The ROUND function converts a DOUBLE, FLOAT or REAL expression to an INTEGER by rounding,.

Positive values less than 0.5 are rounded down to the next integer. The following table
illustrates the ROUND function:

round (1.0) = 1 round (-1.0) = -1.0
round (1.1) = 1 round (-1.1) = -1.0
round (1.2 = 1 round (-1.2) = -1.0
round (1.3) = 1 round (-1.3) = -1.0
round (1.4) = 1 round (-1.4) = -1.0
round (1.5) = 2 round (-1.5) = -2.0
round (1.6) = 2 round (-1.6) = -2.0
round (1.7) = 2 round (-1.7) = -2.0
round (1.8) = 2 round (-1.8) = -2.0
round (1.9} = 2 round (-1.9) = -2.0
round (2.0) = 2 round (-2.0) = -2.0

The ROUND function is equliva;lent to the following:

if d > 0.0 then round := TRUNC (d+0.5)
else round := TRUNC (d-0.5);

NDP Pascal Reference Manual

10 Predefined Functions and Procedures

SIN (x)

returns the sine of x

Definition

function
function
function
function

where

sin
sin
sin
sin

—~ o~~~

HoQ N

integer)

¢ real)
: double)

float)

¢ double;
: double;
: double;
: double;

i is an expression of type INTEGER,
r is an expression of type REAL,
d is an expression of type DOUBLE,
f is an expression of type FLOAT.

89

The SIN function converts the input parameter to a temporary 64-bit floating point number,
and returns the sine of this value. The input parameter is assumed to be expressed in radians.
If the argument is large, some loss of significance in the result may occur, and the global
variable errno is set to: ERANGE.

EXAMPLE (ex074.p)

program sinl (output);

function sin(f:

const

double) : double;

pi = 3.14159265358979323846;

var

i: integer;
x: double;

begin
X = 0.0;
for i:= 1 to 5 do begin
writeln{(' x ="', x, *
X 1= X + pi/4.0;
end;
end.

external;

sin(x) = ', sin(x));

This program generates the following output:

= 0.00000000000000000e+00

KoxoX X X
fl
(R RSN

SQRT (x)

returns the square root of x

Definition

function
function
function
function

sqrt
sqrt
sqrt
sqrt

QR

.85398163397448286e-01
.57079632679489657e+00
.35619449019234486e+00
.14159265358979311e+00

integer
¢ real

¢ double
float

— e e

sin(x) = 0
sin(x) = 7
sin(x) =1
sintx) = 7
sin{x) = 0
: double;
¢ double;
: double;,
. double;;

.00000000000000000e+00
.07106781186547550e-01
.00000000000000000e+00
.07106781186547462e-01
.00000000000000000e+00

NDP Pascal Reference Manual

90 10 Predefined Functions and Procedures

where
1 is an expression of type INTEGER,
r is an expression of type REAL,
d is an expression of type DOUBLE,
f is an expression of type FLOAT.
The SORT function converts the input parameter to a temporary 64-bit floating point number,

and returns the square root of this value. If the argument is negative, the global variable
errno is set to EDOM, and the function returns 0.

SQR (x)

returns the square of x

Definition
function sqr (i : integer) : integer;
function sgr (r : real } : real;
function sgr (d : double) : double;
function sqr { f : float)y = float;

where:

i1is an expression of type integer,
r is an expression of type real,

d is an expression of type double,
£ is an expression of type float.

The SOR function returns either an INTEGER, REAL, DOUBLE or FLOAT value depending upon the
type of its parameter. The result is the value of the square of the input parameter.

SUCC (x)

returns the successor of the scalar x
Definition
function succ (x : scalar_type) : scalar_type

where x is an expression formed from one of the following types: char, boolean, integer,
enumerated or subrange type.

The succ function returns the successor value of the parameter expression. The last item in an
enumerated list has no successor. The SUCC of an INTEGER is equivalent to adding one. SuccC of
a REAL argument is not allowed and results in an error.

TRUNC (x)

converts a floating point x to an integer by truncating

Definition
function trunc (d : double) : integer;
function trunc (£ = float) : integer;
function trunc (r : real) ¢ integer;
where

d is an expression of type DOUBLE,
f is an expression of type FLOAT,
r is an expression of type REAL.

NDP Pascal Reference Manual

C

10 Predefined Functions and Procedures 91

The TRUNC function converts a DOUBLE, FLOAT or REAL expression to an INTEGER by truncating,
The following table gives some values of this function.

trunc (1.0) =1 trunc (-1.0) = -1.06
trunc (1.1) = 1 trunc (-1.1) = -1.0
trunc (1.2) =1 trunc (-1.2) = -1.0
trunc (1.3) = 1 trunc (-1.3) = -1.0
trunc (1.4) =1 trunc (-1.4) = ~-1.0
trunc (1.5) =1 trunc (-1.5) = -1.0
trunc (1.6) = 1 trunc (-1.6) = -1.0
trunc (1.7) = 1 trunc (-1.7) = -1.0
trunc (1.8) = 1 trunc (-1.8) = -1.0
trunc (1.9) = 1 trunc (-1.9) = -1.0
trunc (2.0) = 2 trunc (-2.0) = -2.0

UNPACK (z, a, i)

copies packed array z, to array a, beginning at index i
Definition:

procedure unpack (z : packed_array_type;
var a = unpacked_array._type;
I : integer); ’

where:

z is the source packed array,

a is the destination unpacked array, _

1 is an expression that is compatible with the index type of z.
UNPACK copies elements from the packed array z, to the unpacked afray a, beginning with the
i-th element of z. The element types of the two arrays must be identical. There must be enough
elements in the a array to receive the elements copied from z.
Note that UNPACK is defined for one-dimensional arrays only.

UNPACK is equivalent to the following definition:

type

tl = array [(m..n] of T;

t2 = packed array [u..v] of T;
procedure unpack (zZ : t2;

var a @ tl;
i @ integer);
var j,k:integer;

begin
k = 1i;
for j := u to v do begin
a [kl := 2z [J1s
k := k + 1;
end;
end;

NDP Pascal Reference Manual

92 10 Predefined Functions and Procedures

WRITE and WRITELN ¢or text files.

Definition

procedure write (f : text; exp : see_below);
procedure WRITELN (f : text; exp : see_below);
procedure WRITELN (f : text);

where
f is an optional TEXT file opened for output, if omitted then file OUTPUT is assumed.

exp is a list of expressions, separated by commas, of any combination of the following
types: BOOLEAN, CHAR, INTEGER, DOUBLE, FLOAT, and REAL.

The WRITE procedure writes character data to the text file £. Each expression in exp is
evaluated and converted to character data.

The WRITELN procedure writes data in the same manner as WRITE if any variables are present.
WRITELN then writes an end of line marker to file £. Note that WRITELN is only applicable to
TEXT files.

Errors will cause the global variable errno to be set appropriately.
Formatting capability is provided for the data generated by the WRITE and WRITELN procedures.

The WRITE and WRITELN procedure allows the length of the output to be controlled by
specifying additional options following the expression. The options take the form

exp @+ width : fraction
where

exp is the parameter to the WRITE or WRITELN procedure as described above,
widthis an expression that must evaluate to an integer,
fraction is an expression that must evaluate to an integer.

width indicates the length of the field into which the result of the expression exp will be
placed. The data is placed left-justified in the case of type BOOLEAN and CHARACTER, and right-
justified in the case of type INTEGER, DOUBLE, FLOAT and REAL.

fraction is only applicable to type DOUBLE, FLOAT and REAL, and indicates the number of
digits to be printed after the decimal point (within the bounds of the width parameter).

The following table indicates the field widths used by default:

type field width
BOOLEAN 6

CHAR 1
character string actual size
INTEGER 12

DOUBLE 24

FLOAT 14

REAL 14 or 24

Except for CHAR and character string data, each data type is printed with a leading space. This
space is included in the field width given in the above table.

BOOLEAN data is printed as either “TRUE" or “TRUE” right-justified in a field of 6 characters.

Numeric data is right-justified in a field whose size is given in the above table. The sign is
printed as a space for positive numbers, and the minus sign is used for negative numbers. The
data type DOUBLE, FLOAT and REAL are printed in scientific notation by default, i.e., a number
in the form

1.12345678e+12

NDP Pascal Reference Manual

10 Predefined Functions and Procedures. 93

where the number of digits after the decimal point is 8 for FLOAT, 17 for DOUBLE, and 8 or 17
for REAL, depending upon the compiler options.

Writing cHAR data

The value of width indicates the length of the field in which the character is to be placed. If
width is not specified, a value of 1 is used. The character data is right justified, i.e., it is
padded on the left with blanks.

In the following examples, b represents a blank space in the output result.

write statement output
writeln ('x" : 1); b'd
writeln ("x" : 2); bx

writeln ("x' : 3); bbx
writeln ('"x" : 4); bbbx

Writing BooLEAN data

The value of width indicates the length of the field in which the boolean data is to be placed. If
width is not specified, a value of 6 is used. The data is right justified.

In the following examples, b represents a blank space in the output result.

write statement output
writeln (true : 3); true
writeln (true + 4); true
writeln (true : 5); btrue
writeln (true : 6); bbtrue

Writing INTEGER data

The value of width indicates the length of the field in which the INTEGER data is to be placed.
The data is converted to character format and placed right-justified into this field. I the length
of the field is shorter than necessary, then the field is extended as needed. In the following
examples, b represents a blank space in the output result.

write statement output
writeln (123.: 1); 123
writeln (123 : 2); 123
writeln (123 : 3); 123
writeln (123 : 4); 0123
writeln (123 : 5); bbl123

Writing DOUBLE, FLOAT, and REAL data

WRITE and WRITELN allow a parameter expression to be formatted by an option placed after the:
expression. This has the form:

exp: width: fraction

The value of width indicates the length of the field in which the data is to be placed. The value
of ndigits indicates the number of digits to be printed after the decimal point. The number
will be formatted in scientific notation unless the parameter ndigits is included. When
ndigits is specified, then the number is printed in fixed format.

When a number is printed in scientific notation, the width of the print field is extended if it is
insufficient to contain the entire number. This is not the case for numbers printed in fixed
format. When a number is printed in fixed format, the number is truncated if the width of the
print field will not hold the number. Caveat programmer.

In the following examples, b represents a blank space in the output result.

write statement output
writeln (-1.23456e-10 : 8); b-1.2e-10
writeln (-1.23456e-10 : 9); b-1.23e-10

NDP Pascal Reference Manual

94 10 Predefined Functions and Procedures

writeln (-1.23456e-10 :10); b-1.235e-10

; writeln (-1.23456e-10 :11); b-1.2346e~10

f writeln (-1.23456e-10 :12); b-1.23456e-10

| writeln (-1.23456e-10 :13); b-1.234560e-10

! writeln (-1.23456e-10 :14); b-1.2345600e-10

| writeln (-1.23456e-10 : 8 : 2); bbb-0.00

1 writeln (-1.23456e-10 : 9 : 2); bbbb-0.00

@ writeln (-1.23456e-10 :10 : 2); bbbbb-0.00
writeln (-1.234%6e-10 :11 : 2); bbbbbb-0.00
writeln (-1.23456e-10 :12 : 2); bbbbbbb-0.00
writeln (-1.23456e-10 :13 : 2): bbbbbbbb-0.00
writeln (-1.23456e-10 :14 : 2); bbbbbbbbb-0.00
writeln (-1.23456e-10 :22 :12); bbbbbbb-0.000000000123
writeln (-1.23456e-10 :22 :13); bbbbbb-0.0000000001235
writeln (-1.23456e-10 :22 :14); bbbbb-0.00000000012346
writeln (-1.23456e-10 :22 :15); bbbb-0.000000000123456
writeln (-1.23456e-10 :22 :16); bbb-0.0000000001234560
writeln (-1.23456e-10 :22 :17); bb-0.00000000012345600
writeln (-1.23456e-10 :22 :18); b-0.000000000123456000

Writing string data

The value of width indicates the length of the field in which the string is to be placed. The
string will be right-justified in the field. If the length of the field is shorter than necessary, the
string will be truncated on the right.

In the following examples, b represents a blank space in the output result.

write statement output
writeln ('xyz':1); X
writeln ('xyz':2); Xy
writeln ('xyz"':3); XYz
writeln ('xyz':4); bxyz
writeln ('xyz":5); bbxyz

WRITE to non-TEXT files
Definition

procedure write (£ : ft; exp : t);

where

f is a file variable,
exp is an expression that evaluates to type t.

Procedure WRITE writes the value of the expression exp to the file f.
WRITE (f, exp) is equivalent to the following:

begin £~ := exp; PUT (f) end

NDP Pascal Reference Manual

1 1 Preprocessor Commands

The following is a list of commands interpreted by the preprocessor.

#DEFINE

replace a name with a string of characters
Syntax

#DEFINE n s
#DEFINE n{(nl, n2, . . .)} s

where

n is the macro name,
nl, n2, ... are the formal parameters of the macro,
s is the text that is to be substituted for the name: n.

The #DEFINE directive is a macro definition. The first form is used to replace an identifier n
with an arbitrary sequence of characters s. The second form allows arguments. to be
substituted into the replacement text.

The macro name is an identifier with the same syntax as a variable, while the string s is
arbitrary. No spaces are allowed between the macro name and the open parenthesis. The scope
of the macro name is from its point of definition to the end of the file being compiled. A
definition may use previous definitions. Substitutions are only made for identifiers, and do not
take place within strings. For example, if Ver is a defined name, then there is no substitution
in VERSION, or in the string 'Ver'.

Strings can be declared for the preprocessor by using the -D option on the compiler driver.

#UNDEF

cancels previous #DEFINE
Syntax
#UNDEF n
where n is the name of the symbol to be undefined.

The #UNDEF directive removes the name n, which was previously defined with the #DEFINE
directive, from the preprocessor symbol table.

#INCLUDE

redirects compiler input to a supplementary file
Syntax
#INCLUDE £

where f is the name of the file to be included. This must be a complete file name in single
quotes.

The #INCLUDE command directs the compiler to begin reading its input from the file . The file
that is included is placed immediately after the current line. When the end of the file is
reached, the compiler will resume reading from the file containing the last INCLUDE command.
INCLUDE statements may be nested 16 levels deep.

96 11 Preprocessor Commands

#1F

alter preprocessor control flow based upon result of expression

Syntax : ' "
#IF e

where e is a constant expression.

The #IF directive evaluates a constant integer expression. If the result is nonzero, then the
lines following the #IF are evaluated until an ELSE or #ENDIF directive occurs. If the result is
zero, then the lines following the #IF directive are skipped until an #ELSE occurs, and the lines
within the #ELSE clause are evaluated. :

#IFDEF

alter preprocessor control flow based upon presence of a symbol
Syntax

#IFDEF n
where n is an identifier name.

The #IFDEF directive determines if the name n is currently defined with a #DEFINE statement.
If the name is defined, then the lines following the #IFDEF are evaluated until an $ELSE or
#ENDIF directive occurs. If the name is not defined, then the lines following the # IFDEF
directive are skipped until an 4ELSE occurs, and the lines within the $ELSE clause, if present,
are evaluated.

#IFNDEF

alter preprocessor control flow based upon the absence of a symbol N~
Syntax

#IFNDEF n
where n is an identifier name.

The #IFNDEF directive determines if the name n is currently NOT defined with a 4DEFINE
statement. This is the opposite of the # IFDEF directive, and works in the same way.

#ELSE

alternative clause for #1F, #{FDEF or #IFNDEF directive.
Syntax
#ELSE

This directive is an optional clause in an #IF, #IFDEF, or # IFNDEF construct. The text following
the #ELSE directive is evaluated if the result of the previous #IF, # IFDEF, or # IFNDEF was zero
or FALSE.

#ENDIF

terminator for an #IF, #IFDEF, or #lFNDEF statement
Syntax

#ENDIF N ,/;

The #ENDIF directive is used to end an #IF, # IFDEF and # IFNDEF statement.

NDP Pascal Reference Manual

11 Preprocessor Commands. . 97

#LINE

b set line number and file name for error messages
Syntax

#LINE ¢
#LINE ¢ £

where

c is an integer that will be reported as a line number,
f is an identifier that will be reported as a file name.

The #LINE directive renumbers the lines in the input file to simplify of error reporting, The lines
are numbered sequentially beginning with the line following the #LINE directive, and starting
with the value c. Any syntax errors reported by the compiler occurring after a #LINE directive,
use the re-sequenced line number.

The second form of the #LINE directive renames the source file besides renumbering the lines
as described above. Any syntax errors reported by the compiler occurring after a $LINE ¢ £
directive, use the re-sequenced line number and the renamed source file name.

EXAMPLE 1 (ex021.p)

program prel0;
#define swapl(a, b) t := a; a := b; b = t;
#define swap3{a, b, ¢) swap(a,b); swap(b,c);

var
t, X, Y, 2: integer;

begin

\\'/, X = 1;

swap (X, Y}

writeln('x = ', X:2, 'y = ', y:2);

X = 1; v 1= 2; z 1= 3;

swap3 (X, Y. 2);

writeln('x = ', x:2, 'y = ', y:2, 'z = ', 2:2);

end.

The above program uses the #DEFINE directive to create two simple macros. The program
produces the following output:

XxX=2 y=1
Xx=2 y=3 z=1

EXAMPLE 2

program prell;
{ example of preprocessor directive }
begin
#line 1234
errorl;
errora;
end.

The above program illustrates the $LINE directive. Since the routines errorl and error2 are
not defined, the compiler will print the following error message when compiling this program:

"prell.p", line 1234: Undefined symbol: errorl
Q;_/; "prell.p*, line 1234: Undefined symbol: error2

NDP Pascal Reference Manual

98 11 Preprocessor Commands.

EXAMPLE 3

The following program fragment illustrates the use of the $DEFINE directive to set a debugging
flag, and to establish parameters in a data type.

program prel2;

{ #define example }
#define DEBUGGING 1
#define STACKSIZE 100
#define ELEMENT_TYPE real

type
stack = record
top : integer;
elements : array [1..STACKSIZE] of ELEMENT_TYPE
end;

procedure pop (var s:stack; var e:ELEMENT_TYPE);

begin
if s.top > STACKSIZE then
writeln (‘'stack is empty')
else begin
e 1= s.elements [s.top];
s.top := s.top +1;
¥ifdef DEBUGGING
writeln (‘'pop stack');

writeln (' stack index =', g.top-1);
writeln (' stack contents =', e);
#endif
end;,
end;

NDP Pascal Reference Manual

A Selected Bibliography

American National Standards Committee, IEEE Standard Pascal Computer Programming
Language, 1983, The Institute of Electrical and Electronic Engineers, Inc.

This book contains the ANSI/IEEE Pascal standard, 770X3.97-1983, which is implemented
by Microway.

Cooper, Doug, and Michael Clancy, Oh! Pascal!, second edition, W.W. Norton & Company, 1985

An excellent introductory textbook for learning Pascal. Each feature of the language is
illustrated with realistic examples, along with sound software engineering principles. The
book contains 16 chapters, a glossary, and answers to selected exercises.

Grogono, Peter, Programming in Pascal, second edition, Addison-Wesley, 1984

Another excellent textbook for learning Pascal. While this book is smaller than the one by
Cooper and Clancy, the lucid explanations. of the language elements rival that of any text
on any computer language. The book contains 10 chapters, many appendices, and an
annotated bibliography. Regrettably, the random number generator presented in this book
does not have a full period, yet has appeared in many other Pascal books. See the article
“Random Number Generators: Good Ones are Hard to Find” by Park and Miller CACM, Vol
31, Num 10, Oct., 1988 for a correction.

Jensen, Kathleen, and Niklaus Wirth, Pascal User Manual and Report, third edition, Springer-
Verlag, 1985.

The second edition of this book was used as the definition of the Pascal language until the
British' and American standards were finalized. The third edition was revised by Andrew
Mickel and James Miner who have greatly improved the text, examples, index, and
typography.

Ledgard, Henry, The American Pascal Standard: With Annotations, Springer-Verlag, 1984.

This book contains the same text as the ANSI/IEEE standard but with notes in the
margins. These notes contain explanations for the terse prose used in the standard and,
often, the problem that motivated the rule under discussion.

Wood, Derick, Paradigms and Programming with Pascal, Computer Science Press, 1984

An excellent book that methodically develops solutions to many classical programming
problems. Many of the algorithms receive mathematical analysis so that the performance of
the resulting program can be understood.

| B Interface to C and Math Libraries

Overview

Three different libraries are included with NDP Pascal: the Pascal standard library, the math
library, and the C library. Each library comes in a different version depending upon its
contents and the coprocessor with which it is intended to be run.

The compiler driver automatically requests that the linker include the correct version of each
library depending upon the options provided. The following gives a brief description of the
libraries. See the NDP User’s Manual for more details on the use of the compiler driver.

The Standard Pascal Library

The routines in the standard library are built into the Pascal language and are documented in
Chapter 10. No special provision need be taken in order to use the routines in the Pascal
library in a program:.

The Math and C Libraries

The routines in these libraries are used by the compiler and several of them may be called from
a Pascal program. In order to use a routine in the Math or C libraries, the Pascal program must
contain the function definition that is given in the decumentation for each routine described in
this appendix.

Contents of the Math and C libraries

The following is a summary of the contents of the math and C libraries that are available to the
NDP Pascal programmer. The remainder of this appendix contains a complete description of
each routine.

General string, file, and 1/O routines

access determine file accessibility

atof ASCII to floating point conversion

atoi ASCII to integer conversion

becmp byte string compare

bcopy copy sequence of bytes

bufcpy copy sequence of bytes

bzero byte string zero

clearn clear bytes in memory

date return date in ASCII format

dosdat return date from DOS or UNIX

dostim return time from DOS. or UNIX

ffs find first set bit

filln fill n bytes of memory with a specific character
getenv get environment variable

idate return: date in integer format

index index of a character in a string

mapdev map physical memory to program’s data segment
modf split a 64-bit number into integer and fractional parts
sec_100_ return hundredths. of a second since midnight

secnds_ return number of seconds from an origin

102 B Interface to C and Math Libraries

sprintf print formatted output to a string
sscanf read formatted input from a string
system shell to DOS

time return time in ASCII format
timedate_ return date and time in integer format

Bessel Functions
First Kind Second Kind Description

30 VAU Order O
31 vl Order 1
jn yn Order n

Trigonometric Functions

Double Precision Single Precision Description

acos racos arc cosine

asin rasin arc sine

atan ratan arc tangent

atan2 ratan2 arc tangent of a quotient
cos rcos cosine

cosh rcosh hyperbolic cosine
sin rsin sine

sinh rsinh hyperbolic sine
tan rtan tangent

tanh rtanh hyperbolic tangent

Miscellaneous Mathematical Functions

cabs absolute value of a complex number
ceil ceiling function

erf error function

erfc complementary error function
floor floor function

fmod floating point modulo

gamma log gamma function

hypot hypotenuse of a right triangle
ldexp load exponent
logl0 base 10 logarithm

pow x raised to the power y
srand seed random number generator
rand random integer

access

check file accessibility.
Definition

type cp = ~char;
function access (path: cp; mode: integer): integer;

where

path is a pointer to a null terminated character string containing the complete path and file
name,

mode indicates the type of access desired and is the logical OR of the following values:

NDP Pascal Reference Manual’

B Interface to C and Math Libraries 103

0: check for existence of file
2: check if file can be written to
4: check if file is readable.

The access (path,mode) function checks the accessibility of the file named path in the
manner specified by mode. access returns 0 if all the specified operations are available. If any
of the specified operations are not possible, then access returns -1 and the global variable
errno is set appropriately.

EXAMPLE (ex022.p)
program accessl (output) ;
type cp = “char;
function access(path: c¢p; mode: integer): integer; external;

var
fn: packed array[l..10] of char;

begin
fn := 'acc.dat’;
fn(8] := chr(0):
writeln(*file name = *, fn);
writeln('mode O access indicator = ', access(&fn[l], 0)});
writeln('mode 2 access indicator = *, access(&fn[l], 2)):
writeln('mode 4 access indicator = *, access(&fn(l], 4));
end.

This program generates the following output when the file acc.dat is present in the directory
in which access is run:

file name =acc.dat

mode O access indicator = 0
mode 2 access indicator = 0
mode 4 access indicator = 0

This program generates the following output when the file acc.dat is NOT present in the
directory in which access. is run:

file name =acc.dat

mode 0 access indicator = -1
mode 2 access indicator = -1
mode 4 access indicator = -1

acos

Arc cosine
Definition

function acos (d: double): double;
where d is an expression of type DOUBLE.

The acos (d) function returns the principal value of the arc cosine of d. acos takes an
argument in the range -1 to 1, and returns a result in the range O to pi, expressed in radians.
If the input argument is outside of -1 to 1, then acos returns 0, and the global variable errno
is set to EDOM.

EXAMPLE (ex023.p)
program acosl (output) ;

function acos{d: double): double; external;

NDP Pascal Reference Manual

104 B Interface to: C and Math Libraries

begin
writeln('acos (0) = ', acos(0.0));
writeln('acos (-1) = *, acos(-1.0));
writeln('acos (1) = ', acos(1.0));
writeln('acos (2) = ', acos(2.0));
writeln(‘acos (-3) = ', acos(-3.0));
end.

This program generates the following output:

acos (0) = 1.57079632679489657e+00
acos (-1) = 3.14159265358979311e+00
acos (1) = 0.00000000000000000e+00
acos (2) = 0.00000000000000000e+00.
acos (-3) = 0.00000000000000000e+00

acosf

Single precision arc cosine
Definition

function acosf (f: float): float;
where £ is an expression of type FLOAT.

The acosf (f) function returns the principal value of the arc cosine of f. acosf takes an
argument in the range -1 to 1, and returns a result in the range O to pi, expressed in radians.
If the input argument is outside of -1 to 1, then acosf returns 0, and the global variable errno
is set to EDOM.

acosh

Inverse hyperbolic cosine
Definition

function acosh (d: double): double;
where d is an expression of type DOUBLE.

The acosh(d) function returns the value of the inverse hyperbolic cosine of d.

asin
Arc sine
Definition
function asin (d: double): double;
where d is an expression of type DOUBLE.

The asin(d) function returns the principal value of the arc sine of d. asin takes an argument
in the range -1 to 1, and returns a result in the range -pi/2 to pi/2, expressed in radians. If the
input argument is outside of -1 to 1, then asin returns @, and the global variable errno is set
to EDOM.

EXAMPLE (ex024.p)
program asinl{output);

function asin{(d: double): double; external;

NDP Pascal Reference Manual,

B Interface to C and Math Libraries 105

begin
writeln('asin (0) = ', asin(0.0));
writeln('asin (-1) = ', asin(-1.0));
writeln('asin (1) = *, asin(1.0));
writeln(‘asin (2) = “, asin(2.0));
writeln('asin (-3) = ', asin(-3.0));
end.

This program generates the following output:

asin (0) = 0.00000000000000000e+00
asin (-1) = -1.57079632679489657e+00
asin (1) = 1.57079632679489657e+00
asin (2) = 0.00000000000000000e+00.
asin (-3) = 0.00000000000000000e+00

asinf

Single precision arc sine
Definition

function asinf (f: float): float;
where f is an expression of type FLOAT.

The asinf (f) function returns the principal value of the arc sine of £. asinf takes an
argument in the range -1 to 1, and returns a result in the range -pi/2 to pi/2, expressed in
radians. If the input argument is outside of -1 to 1, then asinf returns 0, and the global
variable errno is set to EDOM.

asinh

Inverse hyperbolic sine
Definition

function asinh (d: double): double;
where d is an expression of type DOUBLE.

The asinh(d) function returns the value of the inverse hyperbolic sine of d.

atan

arc tangent
Definition

function atan (d: double): double;
where d is an expression of type DOUBLE.

The atan (d) function returns the principal value of the arc tangent of d. atan returns a result
in the range -pi to pi, expressed in radians.

EXAMPLE (ex025.p)
program atanil (output) ;

function atan(d: double): double; external;

begin
writeln(*atan (0) = ', atan{(0.0));
writeln("atan (-1) = ', atan(-1.0)):

NDP Pascal Reference Manual

106

writeln('atan (1) = ', atan(1.0));
writeln(‘atan (2) = ', atan{2.0));
writeln(‘atan (-3) = ', atan(=3.0));
end.

This program generates the following output:

atan (¢ 0) = 0.00000000000000000e+00.
atan (-1) = -7.85398163397448286e-01
atan { 1) = 7.85398163397448286e-01
atan (2) = 1.10714871779409042e+00
atan (-3) = -1.24904577239825442e+00

atan2

arc tangent of a quotient
Definition

function atan2 (d1,d2: double): double;
var errno: integer;

where

dl is an expression of type DOUBLE,

B Interface to C and Math Libraries

dz is an expression of type DOUBLE, which has a nonzero value.

The atan2 (d1,d2) function returns the principal value of the arc tangent of d1/d2. atan2

returns a value between -pi and pi, expressed in radians. The signs of both arguments are used
to determine the quadrant of the result. If the second argument is zero, then atan2 returns O

and the global variable errno is set to EDOM (which is represented by a zeroj.

The atan2 function is used to avoid computation with large numbers that might overflow. It
permits the expression of large tangent values as the quotient of two double precision

numbers.
EXAMPLE (ex026.p)
program atan2 (output) ;

function atan2(dl,d2: double): double; external;

begin
writeln('atan2 (0,1) = ', atan2(0.0,1.0));
writeln('atan2 (-1,1) = ', atan2(-1.0,1.0));
writeln("atan2 (1,1) = ', atan2(1.0,1.0));
writeln('atan2 (20,0.1) = ', atan2(20.0,0.1));
end.

This program generated the following output:

atan2 (0.1) 0.00000000000000000e+00

atan2 (-1.1) -7.85398163397448286e-01
atanz (1.1) 7.85398163397448286e-01
atan2 (20,0.1) = 1.56579636846093819e+00

atan2f

Single precision arc tangent of a quotient
Definition

function atan2f (f1,f2: float): float;
var errno: integer;

NDP Pascal Reference Manuali

/ A

@

B Interface to C and Math Libraries - 107

where

f1 is an expression of type FLOAT,
£2 is an expression of type FLOAT, which has a nonzero value.

The atan2f (£1, £2) function returns the principal value of the arc tangent of £1/f2. atan2f
returns a value between -pi and pi, expressed in radians. The signs of both arguments are used
to determine the quadrant of the result. If the second argument is zero, then atan2f returns O
and the global variable errno is set to EDOM (which is represented by a zero).

The atan2f function is used to avoid computation with large numbers that might overflow. It
permits the expression of large tangent values as the quotient of two single precision numbers.

atanf

Single precision arc tangent
Definition

function atanf (f: float): float;
where f is an expression of type FLOAT.

The atanf () function returns the principal value of the arc tangent of . atanf returns a
result in the range -pi to pi, expressed in radians.

atanh

Inverse hyperbolic tangent
Definition

function atanh (d: double): double;
where d is an expression of type DOUBLE.

The atanh(d) function returns the value of the inverse hyperbolic tangent of d.

atof

ASCI! to floating point conversion
Definition

type cp = “char;
function atof (str: cp): float;

where str is a pointer to a null terminated string.

The atof (str) function converts the null terminated string pointed to by str to a double-
precision floating point value. atof starts at the beginning of the string and converts each
character in turn. Conversion stops when the character is not recognizable as part of a floating
point number. atof returns the value converted, even if the end of the string has not been
reached.

EXAMPLE (ex027.p)
program atof {(output);

type
cp = “char;

function atof(arr: cp): float; external;

var
a: packed array [1..28] of char;

NDP Pascal Reference Manual

108 B Interface to C and Math Libraries

begin
a := "12345e-17';
all0] := chr(oy;
writeln('The string 12345e-17 has the value ", atof(&alll));
end.

This program generates the following output:

The string 12345e-17 has the value 1.2345000e-13

atoi

ASCII to integer conversion
Definition
type c¢p = “char;
function atoi(str: c¢p): integer;
where str is a pointer to a null terminated string.

The atoi (str) function converts the null terminated string pointed to by str into an integer
value. atoi does not recognize decimal points or exponents. It stops converting the input string
when it encounters a character that is.not recognizable as part of an integer.

EXAMPLE (ex028.p)
program atoil (output) ;

type
cp = “char;

function atoi (arr: cp): integer; external;

var
a: packed array [1..10] of char;

begin
ar= '123456789"';
all0] := chr(o);

writeln('character array = ', a);

writeln('Number beginning at column 5 = “,atoi(&a[51}));
writeln{'Number beginning at column 2 = ",atoi(&al2])).
writeln{'Number beginning at column 1 = ",atoi{&all]l})).
end.

This program generates the following output:

character array = 123456789

Number beginning at column 5 = 56789
Number beginning at column 2 = 23456789
Number beginning at column 1 = 123456789

atol

ASCII to long integer conversion
Definition

type c¢p = “char;
finction atol(str: cp): integer;

where str is a pointer to a null terminated string.

NDP Pascal Reference Manual’

B Interface to C and Math Libraries. 109

The atol (str) function converts the null terminated string pointed to by str into an integer
value. atol does not recognize decimal points or exponents. It stops: converting the input string
when it encounters a character that is not recognizable as part of an integer. In NDP Pascal,
this function is identical to atoi since integers are 4-byte by default.

byte string compare
Definition
type ¢p = “char;
function becmp (al,a2:cp, n:integer): integer;
where ‘
al and a2 are pointers to an array of characters,
n is an integer less than the length of the arrays at a1 and az.

The bemp (a1, a2, n) function compares the first n characters beginning at a1 (call these
characters 1ist1) with the first n characters beginning at a2 (call these characters 1ist2) and
returns one of the following values indicating their relationship:

if 1istl < list2 then return a negative number

if 1istl = 1ist2 thenreturn zero

if 1istl > 1ist2 then return a positive number
EXAMPLE (ex029.p)

program bcmpl (output) ;

const
¢l = 'economy';
c2 = ‘ecology'.
c3 = ‘eclipse';
cd = 'eclogue’;
type

cp = “~char;
s10 = packed array [1..10] of char;

function bemp(a,b:cp; nrinteger): integer; external;

procedure bcompare(a,b:sl0; n:integer);

begin
writeln('comparison on first ', n:2,' characters = ',bcmp(&a{l],&b{1],n):3);
end;

begin
writeln('string 1
writeln('string 2 =
bcompare{cl, <2, 3);
becompare(cl, c2, 4);
7

".cl)ys
v,c2)

bcompare(cl, c2,
writeln('string 3 ',.C3)
writeln{'string 4 = ‘,cd);
bcompare (¢3, ¢4, 3);
bcompare(c3, c4, 4);
bcompare (c3, c4, 5);

end.

NDP Pascal Reference Manual

110 B Interface to C and Math Libraries

This example generates the following output:

gstring 1 =economy e
string 2 =ecology N

comparison on first 3 characters = 0
comparison on first 4 characters = -2
comparison on first 7 characters = -2

string 3 =eclipse
string 4 =eclogue
comparison on first 3 characters = 0
comparison on first 4 characters = 6
comparison on first 7 characters = 6

bcopy
copy sequence of bytes
Definition

type c¢p = “char
function bcopy (al,a2: cp; n: integer): integer:;

where:

al and a2 are pointers to an array of characters,
n is an integer less than the length of the arrays at a1 and a2.

The beopy (al,a2,n) function copies n bytes from the address pointed to by al to the address
pointed to by aZ2.

Caution: It is the programmer's responsibility to ensure that the receiving buffer is large P
enough for what is written to it. If it is not large enough, adjacent buffers may be overwritten. \)
Also, no: check is made to determine if the source and destination buffers are overlapping.

EXAMPLE (ex030.p)
program bcopyl (output);

type
cp = “char;

function bcopy(src, des: cp; n:integer): integer; external;

var
a, b: packed array [1..10) of char;

begin
a ‘abcdefghiij';
b 11234567890 ;
writeln('initial string 1 = ", a);
writeln('initial string 2 Y, by
becopy (&a (2], &b[3]1, 4);
writeln;
writeln('altered string 2 = ', b);
end.

i}

This program generates the following output:

initial string 1 = abcdefghij
initial string 2 = 1234567890
altered string 2 = 12bcde7890 P

NDP Pascal Reference Manual

B Interface to C and Math Libraries. 117

copy sequence of bytes
Definition
type cp = ~char;
function bufcpy (al,a2: cp; n: integer): integer;
where
al and a2 are pointers to an array of characters,
n is an integer less than the length of the arrays at a1 and a2.
The bufcpy (al,a2,n) function copies n bytes from the address pointed to by a2 to the
address pointed to by al.

Caution: It is the programmer's responsibility to ensure that the receiving buffer is large
enough for what is written to it. If it is not large enough, adjacent buffers may be overwritten.
Also, no check is made to determine if the source and destination buffers are overlapping.

EXAMPLE (ex031.p)

program bufcpyl (output) ;

type
cp: = “char;

function bufcpy(des, src:cp; n:integer): integer; external;

var
a,

o'

: packed array [1..10] of char;

begin
a := ‘'abcdefghiij’;
b 11234567890 ;
writeln('initial string 1 = ', a);
writeln('initial string 2 = ', b):
bufcpy (&b[2],&a[3],4);
writeln;
writeln('altered string 2 = ', b);
end.

il

This program generates the following output:

initial string 1 = abcdefghij
initial string 2 = 1234567890
altered string 2 = lcdef67890

bzero
byte string zero
Definition

type c¢cp = “char;
function bzero (al:cp; n:integer): integer;

where

al is a pointer to an array of characters, _
n is an integer less than the length of the array at al.

The bzero (al,n) function stores binary zeros in the n bytes pointed to by al.

Caution: It is the programmer's responsibility to ensure that the receiving buffer is large
enough for what is written to it. If it is not large enough, adjacent buffers may be overwritten.

NDP Pascal Reference Manual

112

EXAMPLE (ex032.p)
program bzerl (output) ;

type
cp = “char;

function bzero{al:cp; n:integer): integer; external;

type

pa = packed array [1..10] of char;
var

al: pa;

f: file of pa;
i: integer;

begin

al := 'abcdefghij*;
writeln('initial array = ', al);
bzero(&al([2], 4);
write(* final array = ');
for i := 1 to 10 do

write (al(il)s
rewrite(f, 'bzer0l.dat');
£~ = al;
put (f);
writeln;
end.

B Interface to C and Math. Libraries

This program generates the following output and writes the contents of the final array to the

file named BZERO1 . DAT:

initial array = abcdefghij
final array = a fghij

Notice that NDP Pascal prints the binary zeros in the array al as blanks. The following
hexadecimal dump of the file BZERO1 . DAT verifies that a1 contains the binary zeros at the

correct locations:
0000: 61 00 00 00 00 66 67 68-69 6a

cabs

absolute value of a complex number.
Definition

function cabs (dl, d2: double): double;
where d1 and d2 are expressions of type DOUBLE.

a....fghij

The cabs (d1, d2) function returns the absolute value of the complex number (d1, d2).

EXAMPLE (ex033.p)

program cabsl (output) ;

function cabs{(dl,d2: double): double; external;

begin
writeln('cabs(1l,1y = ', cabs(1.0, 1.0));
writeln('cabs(3,-4) = ', cabs{ 3.0, -4.0));
writeln(‘'cabs(-3,4) = ", cabs{ -3.0, 4.0));

NDP Pascal Reference Manual

»,

B Interface to C and Math Libraries.

writeln('cabs(-6,-8) = ', cabs(-6.0, -8.0));
end.

This program generates the following output:

cabs(1, 1) 1.41421356237309515e+00

cabs(3,-4) = 5.00000000000000000e+00
cabs (-3, 4) = 5.00000000000000000e+00
cabs (-6,-8) = 1.00000000000000000e+01

calloc

Definition

procedure calloc{nmemb, size: integer);
where:

nmemb- is the number of items to be stored;
size is the size of each item.

113

calloc allocates a bleck of zero filled memory large enough to hold the number of items
specified in the first argument of a size specified in the second argument.

ceil
ceiling
Definition
function ceil (d: double): double

where d is an expression of type DOUBLE.

The ceil (d) function returns a 64-bit floating point result representing the smallest integer

that is greater than or equal to d.
EXAMPLE (ex034.p)
program ceill(output);
function ceil(d: double): double; external;

var
i: integer:;
x: double;

begin
X = 1.0,;,
for i := 1 to 10 do begin
writeln('x = ', x:5:1, ' cell(x) = ', ceil(x) :6:2);
X = X + 0.1;
end;:
end.

This program generates the following output:

X =1.0 ceil(x) = 1.00
x = 1.1 ceil(x}) = 2.00
x =1.2 ceil(x) = 2.00
x = 1.3 cell(x) = 2.00
x = 1.4 ceil(x) = 2.00
x = 1.5 ceil(x) = 2.00

NDP Pascal Reference Manual

114 B Interface to C and Math Libraries

X =1.6 ceill{(x) = 2.00

X = 1.7 ceil(x) = 2.00 o

X = 1.8 ceil{x) = 2.00
{

X =1.9 ceil(x) = 2.00 \-a)

clearn

clear n bytes of memory
Definition

type c¢p = “~char;
function clearn (n: integer; al: cp): integer;

where

n is an integer expression less than the length of the array at a1,
al is a pointer to an array of characters.

The clearn(n, al) function stores binary zeros in the n bytes pointed to by ai.

Caution: It is the programmer's responsibility to ensure that the receiving buffer is large
enough for what is written to it. If it is not large enough, adjacent buffers may be overwritten.

EXAMPLE (ex035.p)
program clearnl (output) ;

type
cp = “~char;

function clearn(n: integer; al:cp): integer; external:

type o
pa = packed array [1..10] of char; \ >

var
al: pa;
f: file of pa;
i: integer;

begin
al := ‘'abcdefghiij’;
writeln(*initial array = ',al);
clearn(4, &all[2]);
write(" final array = “);
for i:= 1 to 10 do

write (alfi]);

rewrite(f, 'clearnl.dat");
£~ = aly
put (£f);
writeln;
end.

This program generates the following output and writes the contents of the final array to the
file named CLEARN1 .DAT:

initial array abcdefghisj
final array = a fghij

Notice that NDP Pascal prints the binary zeros in the array al as blanks. The following
hexadecimal dump of the file CLEARN1 . DAT verifies that al contains the binary zeros at the 70
correct locations: \)

0000: 61 00 00 00 00 66 67 68-69 6A a....fghij

NDP Pascal Reference Manual,

B Interface to C and Math Libraries. 115

clock
Show CPU time
Definition
function clock: integer;
This function returns as an unsigned integer the number of clock ticks the CPU has spent on
the current process.
clrndpex

Clear the exception bits in the NDP status word.

~ Definition

procedure clrndpex;

clrndpex_ clears the exception bits of the status word of the active NDP. Nothing else in the
coprocessor is affected. This function is available for the DOS, 0S/2, and Windows 386/486
compilers.

cosf
Single precision cosine
Definition
function cos (f : float) : float;
where is an expression of type float.

The cosf function converts the input parameter to a temporary 64-bit floating point number
and returns the cosine of this value. The input parameter is assumed to be expressed in
radians. This function differs from cos in that it returns a £loat rather than a double.

cosh
Hyperbolic cosine
Definition
function cosh (d: double): double;
where d is an expression of type DOUBLE.

The cosh (d) function returns the hyperbolic cosine of d. If d is too large, infinity is returned
and the global variable errno is: set to: ERANGE.

EXAMPLE (ex037.p)
program coshl {output) ;
function cosh(d: double): double; external;

const
pl = 3.14159265358979323846;

var
i: integer;
X: double;

begin
x = 0.0;

for i := 1 to 5 do begin

NDP Pascal Reference Manual

116 B Interface to C and Math Libraries

writeln('x = ', x, ' cosh(x) = ', cosh(x));
X 1= X + pi/4.0;
end;

end.

This program generates the following output:

= 0.00000000000000000+00 cosh(s) = 1.00000000000000000e+00

.85398163397448286e-01 cosh(s) 1.32460908925200593e+00.
.57079632679489657e+00 cosh(s) 2.50917847865805618e+00
.35619449019234486e+00 cosh(s) 5.32275214951995857e+00
.14159265358979311e+00 cosh(s) 1.15919532755215169e+01

coshf

Single precision hyperbolic cosine
Definition

fnon

fl

MoW oM XX
non
WP

function coshf (f: float): float;
where £ is an expression of type FLOAT.

The coshf (f) function returns the hyperbolic cosine of £. If £ is too large, infinity is returned
and the global variable errno is set to ERANGE.

date

return date in ASCII format
Definition
type s9 = packed array [1..9] of char;
procedure date_ (VAR date: s9); external;
where date is an array of at least nine characters.

The date_ procedure returns a nine character ASCII string denoting the current date known to
DOS, in the format dd-mmm-yy.

EXAMPLE (ex038.p)
program datel (output};

type
s9 = packed array [1..9] of char;

procedure date_ (var date: s9); external;

var
today: s9;

begin
date_{(today) ;
writeln('Today''s date is ', today)
end.

This program generates the following output:

Today's date is 08-MAY-89

NDP Pascal Reference Manual

W

B Interface to C aimd ‘Math Libraries

|
1
difftime
Difference between two calendar times

Definition ;

function dﬁfftime(ti‘mel, time(: integer): double;

where timel and time0 represent the stopping and starting times to be measured.

difftime returns the difference between its two arguments as a double.

|
dosdat

return date fir?m: DOS
Definition }
procedure ‘:losdat (VAR month, day, year, dayofw: integer); external;

where month, day, year, and dayofw must be integer variables.

117

The dosdat procedure returns four integers that correspond to the date maintained by DOS.
The return parameters have the following range of values (dayofw is an abbreviation for day of

week):
month : 1 to 12
day : 1 to 31
dayofw : 1 to 7
EXAMPLE (ex0:39.p)

program date (output);
procedure dosdat(var month, day, year, dayofw: integer); external;

var
month, day, year, dayofw: integer;

begin
dosdat (month, day, year, dayofw);
writeln|('month = ', month:4);
writeln((‘day = ', day:4});
writeln('vear = ', year:4);
writeln|(‘dayofw = ', dayofw:4);
end.

This program %cnerates the following output:

month = |4
day = ;24
year =19§9
dayofw = i 1
\
|

dostim
return time from DOS

Definition

procedure dostim (VAR hours, minutes, seconds, hundredths: integer); external;

where hours, minutes, seconds, and hundredths must be integer variables.

NDP Pascal Reference Manual

118 B Interface to C and Math Libraries

The dost im procedure returns four integers that correspond to the time of day maintained by
DOS. This is a 24-hour clock, so the return parameters have the following range of values:

hours : 0 to 23

minutes : 0 to 59

seconds : 0 to 59

hundredths : 0 to 99
EXAMPLE (ex040.p)

program time (output);
procedure dostim(var hours, minutes, seconds, hundredths: integer); external;

var
hours, minutes, seconds, hundredths: integer;

begin
dostim(hours, minutes, seconds, hundredths):
writeln(‘'hours = ', hours);
writeln(‘minutes = ', minutes) ;
writeln('seconds = ', seconds);
writeln('hundredths =", hundredths);
end.

This program generates the following output:

hours = 14
minutes = 58
seconds = 55
hundredths = 84

ecvi

Floating point to ASCIl conversion
Definition

type
$9 = packed array [1..9] of char;

function ecvt(value: double; ndig, decpt, var sign: integer): s9
where

value represents the floating-point value to be converted;

ndig is the number of digits to which the number is to be rounded;

decpt is the decimal point position relative to the first character of the returned string, If
decpt is zero the decimal point is immediately to the left of the first character of the
returned string. If decpt is positive, the decimal point is to the left of the character
numbered decpt (the first character being numbered zero). If decpt is negative, leading
zeros have been suppressed and the decimal point is decpt characters to the left of the first
character of the string,

sign is set on return to nonzero if the value is negative and zero otherwise.

ecvt returns an ASCII string equivalent to the first argument in $e format. Leading zeros may
be suppressed.

NDP Pascal Reference Manual

B Interface to C and Math Libraries 119

erf

error function
\\/) Definition
function erf (d: double): double;
where d is an expression of type DOUBLE.

The erf (d) function returns the error function of d. For large arguments, erfc, the
complementary error function, should be used to maintain accuracy.

EXAMPLE (ex041.p)
program erfl (output);
function erf (d: double): double; external;

var
X: double;
i: integer;

begin
x := 0.0;
for i := 1 to 6 do begin
writeln(' x = ', x:5:2, ' erf(x) = ', erf(x));
X = X + 0.2;
end;
end.

This program generates the following output:

o X = 0.00 erf(x) = 0.00000000000000000e+00
k\«/ x = 0.20 erf(x) = 2.22702589210478451e~01
X = 0.40 erf(x) = 4.28392355046668436e-01
X = 0.60 erf(x) = 6.03856090847926019%e-01
X = 0.80 erf(x) = 7.42100964707660362e-01
X = 1.00 erf(x) = 8.42700792949714914e-01

erfc

complementary error function
Definition
function erfc (d: double): double;
where d is an expression of type DOUBLE.
The erfc(d) function returns the complementary error function of d.
EXAMPLE (ex042.p)
program erfcl (output);
function erfc (d: double): double; external;

var
x: double;
i: integer;

begin
/ \ x = 0.0;
\&_,/ for 1 := 1 to 6 do begin
writeln(' x = ', x:5:2, ' erfc(x) = ', erfc(x));
X =X+ 0.2;

NDP Pascal Reference Manual

120 B Interface to C and Math Libraries

end;
end.

This program generates the following output:

X = 0.00 erfc(x) = 1.00000000000000000e+00
X = 0.20 erfe(x) = 7.77297410789521411e-01
x = 0.40 erfc(x) = 5.71607644953331470e-01
X = 0.60 erfc(x) = 3.96143909152074024e-01
X = 0.80 erfc(x) = 2.57899035292339548e-01
x = 1.00. erfc(x) = 1.57299207050285108e-01

_efrrno

Returns value of errmo
Definition
function _errno: integer;

The global variable errno is set in many functions to indicate what sort of error occurred.
—errno returns the value of errno so a program can respond appropriately to errors.

execl

Executes a file

Definition

type ¢p = “char;

function execl(path, argl, . . . char_zero: cp): integer;
where

path is the pointer to the path name for the new file to be executed;

argl. .. is the pointer to the first argument. After the last argument, include a character
(0) to let the function know there are no more arguments.

This function executes a file and does not return. On failure, the function returns -1 and the
global variable errno is set appropriately. This function is identical to execl under UNIX.

execle

Executes a file

Definition

type ¢p = ~char;

function execle(path, argl, . . ., argn, char_zero: cp): integer;
where

path is the pointer to the path name for the new file to be executed:
argl. .. is the pointer to the first argument to be passed to the new file.

argn is the pointer to an array of pointers to the environment strings. After the last
argument, include a character (0) to let the function know there are no more arguments.

This function executes. a file and does not return. On failure, the function returns -1 and the
global variable errno is set appropriately. This funetion is identical to execle under UNIX.

NDP Pascal Reference Manual

B Interface to C and Math Libraries 121

execyv
Executes a file
Definition

type cp = “char;
function execv(path, arg: cp): integer;

where .

path is the pointer to the path name for the new file to be executed:
arg is a pointer to an array of arguments to be passed to the new file.

This function executes a file and does not return. On failure, the function returns -1 and the
global variable errno is set appropriately. This function is identical to execv under UNIX.

=
exit
Terminate program.
Definition
procedure exit(status: integer);
where status is the return value to the parent process.

exit ends the program, flushing all buffers and returning its integer argument to the parent
process.

fabs

Double precision absolute value.
Definition:

function fabs (d : double) : double;
where d is an expression of type double,

The FABS function returns a double. The result is the absolute value of the input parameter. If
the argument is out of range, the global variable errno will be set to EDOM. If the return value
is out of range, errno will be set to ERANGE.

_fevt

Convert F format to string
Definition:

type cp= “char;
function _fcvt(value: double; number_of_digits, decimal_point, var sign:
integer): cp; '

where
value is the value to be converted;
number_of_digits is the number of digits to which value is to be rounded;

decimal_point specifies the decimal point position relative to the first character of the
returned string. If decimal_point is zero the decimal point is immediately to the left of the
first character of the returned string. If decimal_point is positive, the decimal point is to
the left of the character numbered decimal_point (the first character being numbered
zero). If decimal_point is negative, leading zeros have been suppressed and the decimal
point is decimal_point characters to the left of the first character of the string.

NDP Pascal Reference Manual

122 B Interface to C and Math. Libraries

sign is set to nonzero-if the value is negative; otherwise it is set to zero.

—fevt returns a pointer to a string containing the first argument in fixed point (2£) format. P
Leading zeros may be suppressed. v)

ffs

find first set bit
Definition

function ffs (i: integer): integer;
where i is an expression of type INTEGER.

The f£fs (1) function returns the place of the first bit in i that is set, counting the least
significant bit as 1.

EXAMPLE (ex043.p)
program ffsl (output);
function ffs({i: integer): integer; external;

var
i,Jj: integer;

begin
i = 1;
for 7 := 1 to 16 do begin
writeln(¢(' i = *, i:6, ffs(i) =+, ffs(i):6);
i =2 * i
end; \\,3
end. \~,/
This program generates the following output:
i= 1 ffs(i)y = 1
i= 2 ffs(iy = 2
i= 4 ffs(iy = 3
i= 8 ffs(i) = 4
i= 16 ffs(i) = 5
i= 32 ffs(i) = 6
i= 64 ffs(i) = 7
i = 128 ffs(i) = 8
1= 256 ffs(i) = 9
i= 512 ffs(i) = 10
i = 1024 ffs(i) = 11
I = 2048 ffs(i) = 12
i = 4096 ffs(i) = 13
i = 8192 ffs(i)y = 14
1 = 16384 ffs(i) = 15
1 = 32768 ffs(i) = 16

filln

fill n bytes of memory with a specific character
Definition

type cp = ~char; \,')
ch:

function filln (n: integer; al: cp: char) : integer;

NDP Pascal Reference Manual

B Interface to C and Math: Libraries.

where

123

n is an integer less than the length of the array at a1,

al is a pointer to an array of characters,
ch is the fill character.

The £illn(n,al, ch) function fills n bytes of memory pointed to by al with the character ch.

Caution: It is the programmer's. responsibility to ensure that the receiving buffer is large
enough for what is written to it. If it is not large enough, adjacent buffers may be overwritten.

EXAMPLE (ex044.p)
program fillnl (output);

type
cp = ~char;

function filln(n:integer; des: cp; ch=:

var

a: packed array [1..10] of char;

begin
a = ‘'abcdefghij‘;
writeln('intial array = ',a);
filln{4, &al2]1,'-'):
writeln(' final array = ', a);
end..

This program generates the following output:

initial array
final array

floor

floor
Definition

abcdefghij
a----fghij

i

function floor (d: double): double;

where d is an expression of type DOUBLE.

char) » integer; external;

The floor (d) function returns a 64-bit value that represents the largest integer that is less

than or equal to d.
EXAMPLE (ex045.p)
program floor (output) ;

function floor(d:double): double;

var
i: integer;
x: double;

begin
X = 1.0;
for i:= 1 to 11 do begin
writeln(' x = ", x:5:1, '
x 1= x + 0.1;
end;
end.

floor(s)y = ',

external;

floor(x) :6:2)

NDP Pascal Reference Manual

124 Binterface to C and Math Libraries

This program returns the following output:

X = 1.0 floor(x) = 1.00 S
x = 1.1 floor(x) 1.00 N
x = 1.2 floor(x) 1.00
X = 1.3 floor{x) = 1.00
X = 1.4 floor(x) = 1.00
X = 1.5 floor(x) = 1.00
x = 1.6 floor(x) = 1.00
x = 1.7 floor(x) = 1.00
Xx = 1.8 floor(x) = 1.00
x = 1.9 floor(x) = 1.00
X = 2.0 floor(x) = 2.00
floating point modulo
Definition
function fmod (dl, d2: double): double;
where dI and 42 are expressions of type DOUBLE.
The fmod (d1, d2) function returns the floating point remainder of its arguments, such that 41
= 2z + n * d2, where n is the largest integer value for which the equation can be true for a
non-negative n. If the input value is out of range, the global variable errno will be set to EDOM.
EXAMPLE (ex046.p)
program fmodl (output); N
function fmod(dl, d2: double): double; external; N /
var
X, y: double;
i: integer;
begin
X = 16.5;
y = 1.5;
for i := 1 to 16 do begin
writeln('x = *, x:5:1, y = ", y:5:1, " fmod(x,y) = ', fmod(x,y) :6:2);
Y =y + 1; '
end;
end.
This program generates the following output:
X =16.5 y = 1.5 fmod(x, y)= 0.00
X =16.5 y = 2.5 fmod(x, y)= 1.50
X =16.5 y = 3.5 fmod(x, y)= 2.50
X =16.5 y = 4.5 fmod(x, y)= 3.00
X =16.5 y = 5.5 fmod(x, y)= 0.00
X =16.5 y = 6.5 fmod(x, y)= 3.50
X =16.5 y = 7.5 fmod(x, y)= 1.50
X =16.5 y = 8.5 fmod(x, y)= 8.00
x =16.5 y = 9.5 fmod(x, y)= 7.00
X =16.5 y = 10.5 fmod(x, y)= 6.00 ‘ N
X = 16.5 y = 11.5 fmed(xX, y)= 5.00 :]
X = 16.5 y = 12.5 fmod(x, y}= 4.00 S~
X =16.5 y = 13.5 fmod(x, y)= 3.00

NDP Pascal Reference Manual

B Interface to C and Math Libraries. 125

X = 16.5 y = 14.5 fmod(x, y)= 2.00
. X = 16.5 vy 15.5 fmod(x, y)= 1.00
&\—/) x = 16.5 y = 16.5 fmod{x, y)= 0.00

frexp

exponent and mantissa of a floating-point number
Definition

function frexp (d: double, VAR exptr: integer): double;

This double precision function returns the mantissa of the first argument (double) and places
its exponent into the second argument (integer). If the return value is out of range, the global
variable errno will be set to ERANGE.

exponent and mantissa of single-precision float
Definition
function frexpf (f: float, VAR exptr: integer): float;

This single precision function of frexp returns the mantissa of the first argument and places
its exponent into the second argument. If the return value is out of range, the global variable
errno will be set to ERANGE.

gamma

[log gamma function
Definition

function gamma (d: double): double
where d is an expression of type DOUBLE.

The gamma (d) function returns the natural logarithm of the absolute value of the gamma
function of d. The sign of the gamma function of d is returned in signgam. If the input value is
out of bounds, the global variable errno will be set to EDOM.

EXAMPLE (ex047.p)
program gammal {(output) ;
function gamma(d: double): double; external;

var
signgam: integer; external;
i: integer;
x: double;

begin
X := 1.0;
for i := 1 to 5 do begin
writeln(' x = ', x, ' gamma(x) = ", gamma(x));
x = x * 10;
end;
end.

/ N\

K_/,f This program generates the following output:

X = 1.00000000000000000e+00 gamma (x) 0..00000000000000000e+00
X = 1.00000000000000000e+01 gamma{x) = 1.28018274800814673e+01

NDP Pascal Reference Manual

126 B Interface to C and Math Libraries

X = 1.00000000000000000e+02 gamma(x) = 3.59134205369575341e+02
X = 1.00000000000000000e+03 gamma(x) = 5.90522042320918081e+03
X = 1.00000000000000000e+04 gamma(x) = 8.20997174964423612e+04

gcvt

convert floating-point to G format string
Definition

type c¢p: = “char
function gevt (d: double, ndig: integer, buf: cp): cp

This function takes three arguments, d (double), ndig (integer), and buf (character pointer). It
converts the first argument to a properly rounded ASCII string placed both in the third
argument and returned by the function. If possible it generates number_of_digits digits after
the decimal point in $f format, otherwise in $e format.

get date
Definition
procedure getdat (VAR month, date, year, dayofweek: integer)

This procedure changes its four integer arguments to return the month, date, year, and day of
week.

getenv .
get environment variable \’
Definition

type c¢p = ~char;
function getenv (str:cp): cp:

where str is a pointer to a null terminated character string,

The getenv(str) function returns a pointer to the environment variable pointed to by str.
The user should remember that DOS converts environment variables to uppercase and should
allow for case matching. If no entry is found, then a null pointer is returned.

EXAMPLE (ex048.p)

program getenvl {(output);

type
cp = “~char;
s70 = packed array [1..70] of char;
s70p = "s70;

function getenv(str:cp): s70p; external;

var
str: packed array [1..10] of char;
p: s70p;
i: integer;

begin SN
str := 'PATH'; _,)
str[5] := chr(o):
p := getenv(&strl]):

NDP Pascal Reference Manual

B Interface to C and Math Libraries 127

writeln('path = ', p™);
str := 'PROMPT';
str(7] := chr(o);
p := getenv(&str[l]);
write('prompt = ');
i :=1;
while}p“{i] <> chr(0) do begin
write(p™[i]);
i =1+ 1
end;
writeln;
end.

This example illustrates two different techniques to access the result pointed to by the getenv
function. This program generates the following output:
DOS:

path = C:;C:\;;C:\D0S;C:\PHAR;C:\EPSILON;C: \BATCH;C :\NORTON;C:\MSC\BIN
prompt = py

UNIX:
path = .:/ndp/bin/sysv_0:/usr/bin:/bin:
prompt =

ttim
get time
Definition
procedure gettim(VAR hour, minute, second, hsec: integer);

This procedure changes its four integer arguments to return the hour, minute, second, and
hundredth of a second.

hypotenuse of a right triangle
Definition
function hypot (dl,d2: double): double;

The hypot (d1,d2) function returns the length of the hypotenuse of a right triangle with sides
of length 41 and d2.

EXAMPLE (ex049.p)
program hypotl (output);
function hypot(dl, d2: double): double; external;

begin
writeln(*hypot (3,4)
writeln{"hypot(5,6)

', hypot (3.0, 4.0)};
", hypot (5.0, 6.0));

writeln(*hypot(6,8) = ", hypot(6.0, 8.0});
writeln(‘hypot(7,9) = *, hypot (7.0, 9.0)});
end.

This program generates the following output:

hypot (3, 4) = 5.00000000000000000e+00
hypot (5, 6) = 7.81024967590665400e+00

NDP Pascal Reference Manual

128 B Interface to C and Math Libraries

hypot (6, 8) 1.00000000000000000e+01
hypot (6, 9) = 1.14017542509913792e+01

idate

return date in integer format

C

Definition
procedure idate_ (VAR month, day, year: integer); external;
where month, day, and year are integer variables.

The idate_ procedure returns the current date known to DOS or UNIX in three integer
variables. Each value returned contained at most two digits.

EXAMPLE (ex050.p)
program idatel (output);
procedure idate_ (var month, day, year: integer); external;

var
month, day, year: integer;

begin
idate_(month, day, year);
writeln(" month = ', month);
writeln(* day = ', day);
writeln(" year = ', year);
end.

This program generates the following output: SN
month = 5 ‘\-')
day = 8
year = 89

index
index of a character in a string
Definition

type c¢cp = “char;
function index (str:cp; ch:char) :cp;

where

str is a pointer to a null terminated character string,
ch is the character to:match.

The index (str, ch) function returns a pointer to the first instance of the character ch in the
string pointed to by str. If ch is not found, then index returns a null pointer.

EXAMPLE (ex051.p)
program indexl (output) ;

type
cp = “~char;
s10 = packed array [(1..10] of char;

sl0p = ~s10;
N

function index(str:cp; ch:char): slOp; external;

NDP Pascal Reference Manual

C

B Interface to C and Math Libraries 129

var
str: s10;
p: sl1l0p;

begin
str := "invisible';
str[10] := chr(0);
p := index(&str(1l, 'v');
writeln('The initial string = invisible');
writeln('The substring beginning with v = ', ™)
p := index (&str[l], 'w");
writeln('The substring beginning with w = ', p™);
end.

This program generates the following output:

The initial string = invisible
The substring beginning with v = visible
The substring beginning with w {null)

H *

Int

Generate a software interrupt
Definition

il

type dwordregs = packed record eax, ebx,ecx, edx,esi,edi,eflag: integer; end;

type segregs = record es,cs,ss,ds: short; end;

type regslé = record ax,bx,cx,dx,si,di,cflag: short; end;

procedure int386(Iinterrupt: integer; var inregs, outregs: dwordregs);
external;

procedure int386x(Interrupt: integer; var inregs, outregs: dwordregs; var
sregs: segregs); external;

function int86(interrupt: integer; var inregs, outregs: regslé): integer;
external;

function int86x(interrupt: integer; var inregs, outregs: regslé; var sregs:
segregs): integer; external;

function intdos(var inregs, outregs: regslé): integer; external;

function intdosx(var inregs, outregs: regslé; var sregs: Segregs): integer;
external;

where
interrupt is the number of the interrupt desired;
inregs records how the registers should be set just before the interrupt;
outregs is set on return to the contents of the registers just after the interrupt;

sregs records how the segment registers should be set just before the interrupt, and is set
on return to the contents of the segment registers just after the interrupt.

These functions generate software interrupts. interrupt is the number of the interrupt to
generate (in intdos and intdosx, the interrupt generated is always 21h). inregs is a pointer
to a structure containing the values to be placed in the registers before the interrupt is issued.
outregs is a pointer to a structure that, on return, will contain the values of the registers
immediately following the interrupt.

int386x, int86x, and intdosx also require the argument sregs, which points to a structure
containing the segment register values to be set before the interrupt (the user can set bs and
Es). Onreturn, this structure will contain the segment register values immediately following
the interrupt.

NDP Pascal Reference Manual

130 B Interface to:C and Math Libraries

int386 and int386x differ from the others in that they expect 32-bit register structures, while
the others expect packed 16-bit register structures like Microsoft C.

To use these functions, you must understand the details of the interrupt you wish: to execute. \)
Failure to adhere to the guidelines of the system documentation will produce unpredictable
results. Consult a technical manual for further details.

The functions return the value left in the eax register by the interrupt service routine. The
procedures have no return value.

isalnum

Is a character alphanumeric?
Definition
function isalnum (c: integer): boolean;

This boolean function ascertains whether its character argument, represented as an integer
(i.e., 65 for A, etc.), is alphanumeric.

Is a character alphabetic?
Definition
function isalpha (c: integer): boolean;

This boolean function ascertains whether its character argument, represented as an integer
(i.e., 65 for A, etc.), is alphabetic.

iscntrl —
Is a character a control character?
Definition

function iscntrl (c: integer): boolean;

This boolean function ascertains whether its character argument, represented as an integer
(i.e., 65 for A, etc.), is a control character.

isdigit
Is a character a digit?
Definition
function isdigit (c¢: integer): boolean;

This boolean function ascertains whether its character argument, represented as an integer
(i.e., 65 for A, etc.), is a digit. Note that isdigit (9) returns false, while isdigit (ord('9'))
returns true.

Isgraph
Is a character graphical?
Definition

! .
function isgraph (c¢: integer): boolean; _//

NDP Pascal Reference Manual

B Interface to C and Math Libraries 131

This boolean function ascertains whether its character argument, represented as an integer
(i.e.. 65 for A, etc.), is a graphics character (letter, numeral, or punctuation).

Is the argument infinity?
Definition
function isinf (d: double): boolean;

This boolean function ascertains whether its argument (double) is infinity.

islower
- |s a character a lowercase letter?
Definition
function islower (c: integer): boolean;

This boolean function ascertains whether its character argument, represented as an integer
(i.e., 65 for A, etc.), is a lower case letter.

isnan

Is the argument Not A Number?
Definition
function isnan (d: double): boolean;

This boolean function ascertains whether its argument (double) is a NAN (not a number).

isprint
Is a character printable?
Definition
function isprint (c¢: integer): boolean;

This boolean function ascertains whether its character argument, represented as an integer
(i.e., 65 for A, etc.), is a printable character.

Is a character a punctuation. mark?
Definition
function ispunct (c: integer): boolean;

This boolean function ascertains whether its character argument, represented as an integer
(i.e., 65 for A, etc.), is a punctuation mark.

Isspace
Is a character a space?
Definition

function isspace (¢: integer): boolean;

NDP Pascal Reference Manual

132 B:Interface to C and Math Libraries

This boolean function ascertains whether its character argument, represented as an integer
(i.e., 85 for A, etc.), is a space.

]
Is a character upper case?
Definition
function isupper (c: integer): boolean;

This boolean function ascertains whether its character argument, represented as an integer
(i.e., 65 for A, etc.), is an upper case letter.

isdigit
Is a character a hexadecimal digit?
Definition

function isdigit (c¢: integer): boolean;

This boolean function ascertains whether its character argument, represented as an integer
(i.e., 65 for A, etc.), is a hexadecimal digit.

.
0
]Bessel function of the first kind, order 0.
Definition
function jO (d: double): double;
where d is an expression of type DOUBLE.

The j0 (d) function returns the Bessel function of the first kind, order 0, of d. This corresponds
to J,(d) in the usual notation. If the input argument is out of range, the global variable errno
will be set to EDOM.

EXAMPLE (ex052.p)
program jOa (output);
function jO({ d: double): double; external;

var
x: double;
i: integer;

begin
X = 0.0;
for i := 1 to 7 do begin
writeln(" x = ", X:6:2, ' JO(x) = ', jO(x):20:14);
X = X + 2.5
end;
end.

This program generates the following output:

x = 0.00 jO(x) = 1.00000000000000
X = 2.50 J0(x) = -0.04838377646820
x = 5.00 JjO(x}) = -0.17759677131434
x = 7.50 jOo(x) = 0.26633965788038
x = 10.00 JO(x) = =-0.24593576445135

NDP Pascal Reference Manual

B Interface to C and' Math Libraries 133

1]
"

b 4 12.500 jO(x)
X = 15.00 3F0(x)

Bessel function of the first kind, order 1.
Definition

0.14688405470042
-0.01422447282678

function j1 (d: double): double;
where d is an expression of type DOUBLE.

The j1(d) function returns the Bessel function of the first kind, order 1, of d. This corresponds
to J, (d) in the usual notation. If the input argument is out of range, the global variable errno
will be set to EDOM.

EXAMPLE (ex053.p)
program jla (output);
function j1{ d: double): double; external;

var
x: double;
i: integer;

begin
X = 0.0;
for i = 1 to 7 do begin
writeln(' x = ', x:6:2, ' J1(x) = ", j1l(x):20:14);
X 1= X + 2.5;
end;
end.

This program generates the following output:.

X = 0.00 Jil(x) = 0.00000000000000
X = 2.50 Jjl(x) = 0.49709410246427
X = 5.00 Jjl(x) = -0.32757913759147
X = 7.50 Jjl(x) = 0.13524842757971
X = 10.00 Jjl(x) = 0.04347274616886
X = 12.50 jl(x) = -0.16548380461476
X = 15.00 Jjl(x) = 0.20510403861352

n
lBessel' function of the first kind, order i.
Definition
function jn (i: integer; d: double): double;
where

i is an expression of type INTEGER,
d is an expression of type DOUBLE.

The jn (i, d) function returns the Bessel function of the first kind, order i, of 4. This
corresponds to J,(1i,d) in the usual notation. If the input argument is out of range, the global
variable errno will be set to EDOM.

EXAMPLE (ex054.p)

program. jnl (output) ;

NDP Pascal Reference Manual

134 B Interface to C and Math Libraries

function jn(i: integer; d:double): double; external;

var

x: double; g_’j
i,j: integer;
begin
for i := 1 to 3 do begin
X = 2.50;
for j := 1 to 3 do begin
writeln('i = ', 1:2, " x = ', x:6:2, ' jn(i,x) = ', jn(i,x):20:14);
X 1= X + 2.5
end;
writeln;
end;
end.

This program generates the following output:

i=1 x= 2.50 jn(i,x) = 0.49709410246427
i=1 %= 5.00 jn{i,x) = -0.32757913759147
i=1 %= 7.50 Jjn(i,x) = 0.13524842757971
i=2 x= 2.5 jn(i,x) = 0.44605905843962
i=2 x= 5.00 jn(i,x) = 0.04656511627775
i=2 x= 7.5 Jn(i,x) = -0.23027341052579
i=3 x= 2.5 Jjn(i,x) = 0.21660039103911
i=3 x= 5.00 Jjn(i,x) = 0.36483123061367
i=3 x= 7.50 jn(i,x) = -0.25806091319346

labs

returns the long absolute value
Definition:

function labs (i : integer) : integer;
where i is an expression of type integer.

The labs function takes and returns an integer. The result is the absolute value of the input
parameter.

Idexp
load exponent
Definition
function ldexp (d: double; i: integer): double;
where

d is an expression of type DOUBLE,
1 is an expression of type INTEGER.

The 1dexp (d, i) function calculates the value of d*2:. If the input value is out of range, the
global variable errno will be set to EDOM. On overflow errno is set to ERANGE.

EXAMPLE (ex055.p)

program ldexpl (output) ; if j

function ldexp(d:double; i:integer): double; external;

NDP Pascal Reference Manual

B Interface to C and Math Libraries

var
i+ integer;

begin
writeln(" I ldexp(2,i) 1ldexp(3,i)");
writeln{(' - =—-ss-oeeoe oo ")

for i := 1 to 5 do

135

writeln(i:4, ldexp(2.0,1):12:6, ldexp(3.0,1i):12:6);

end.
This program generates the following output:

i ldexp(2,1) ldexp(3,1i)
4.000000. 6.000000
8.000000 12.000000
000000 24.000000
32.000000 48.000000
64.000000 96.000000

Idexpf

load single precision exponent
Definition

[I S P
=
o

function ldexpf (f: float; I: integer): float;
where

f is an expression of type FLOAT,
1 is an expression of type INTEGER.

The ldexpf (£, i) function calculates the value of £*2:
is set to ERANGE. errno is not set for domain errors.

returns the double precision: natural logarithm:
Definition
function log (d : double): double;

where d is an expression of type double.

. On overflow the global variable errno

The LOG function converts the input parameter to a temporary 64-bit floating point number
and returns the natural logarithm of this value. If the argument is not positive, the return
value is zero and the global variable errno is set to EDOM.

log10

base 10 logarithm:
Definition
function logl0 (d: double): double;

where d is an expression of type DOUBLE.

The 1og10 (d) funclion returns the base 10 logarithm of d. If d is not positive, the return value

is 0 and the global variable errno is set to EDOM.

NDP Pascal Reference Manual

136 B Interface to C and Math Libraries

EXAMPLE (ex056.p)
program loglOa(output);

function loglO(d: double): double; external;

’

var
x: double;
i: integer;
begin
X := 1.1;
for 1 := 1 to 5 do begin
writeln(' x = ', x:14, ' 1logl0(x) = ',logl0(x):16);
X = X * 100.0;
end;
end.

This program generates the following output:

X = 1.1000000e+00 loglO(x) = 4.139268516e-02
X = 1.1000000e+02 1o0gl0(x) = 2.041392685e+00
X = 1.10000000+04 loglO(x) = 4.041392685e+00
X = 1.10000000+06 loglO(x}) = 6.041392685e+00
X = 1.10000000408 1loglO(x) = 8.041392685e+00

log10f

base 10 logarithm
Definition

function logl0f (f: float): float;
where f is an expression of type FLOAT.

The 1logl0f (£) function returns the base 10 logarithm of £. If f is not positive, the return
value is 0 and the global variable errno is set to EDOM.

logf
returns the single precision natural logarithm
Definition

function logf (£ : float): float;
where £ is an expression of type float.

The LOGF function converts the input parameter to a temporary 64-bit floating point number
and returns the natural logarithm of this value. If the argument is not positive, the return
value is zero and the global variable errno is set to EDOM.

mapdevV ©os ony)

map physical memory to program's data segment

Definition
type
n = user_specified;
sn = array [0..n] of char;
sp = ~sn;

function mapdev (address, nBytes: integer): Sp; external;

NDP Pascal Reference Manual,

C

B Interface to C and Math Libraries: 137

where
nis an integer representing the upper dimension of the zero origined array type sn.

sn is a type definition for an array of characters. The size of this array is specified by the
parameter n. Note that this array definition is zero origined.

spis a pointer type to an array of characters.

address is the physical address of the device.

nBytes is the size of the device in bytes.
The mapdev (address, nBtyes) function returns a pointer to a physical device that can be used
by the program. The device is mapped into virtual memory and does not occupy any usable
memory. The value returned is not related to the physical address in any obvious way. The

program treats the device as an array of characters and accesses physical locations in the
device by reading or writing to the character array.

mapdev returns a null pointer to indicate an error. However, a non-null value does not
guarantee that the mapped device or memory is present. Therefore, testing for presence of the
device is recommended if there is any doubt.

EXAMPLE (ex057.p)

program mapdevl {output);
{ Interface to mapdev function in C library. }

const
monochrome = 0xb0000;
normal = 0x07;
under = 0x01;
reverse = 0x70;
type
m2048 = array [0..2047] of record data, attr: char; end;
m2048p = “mz048;

function mapdev (address, nbytes: integer): m2048p; external;
procedure box (mem:m2048p; sym: char; attr, srow, scol, erow, ecol: integer};
{ Fil1ll in region of screen from start_row to end_row, start_col to end_col
with the character sym.
Legal values: srow and erow from 0 to 23, scol and ecol from 0 to 79.
I3
var row, col, i:integer;

begin
for col := scol to ecol do
for row := srow to erow do begin

i ¢= row * 80 + col;
mem”~([i] .data = sym;
mem”~[1] .attr := chr(attr);
end;

end;

procedure clearmem (mem: m2048p);
{ Erase the screen by filling it with blanks. }
var i: integer;
begin
for i:= 0 to 79*25 do begin

men™{i].data := ' ';

mem” (i} .attr := chr (normal);

end;
end;

NDP Pascal Reference Manual:

138 B Interface to C and Math Libraries

var
videomem: m2048p;

begin (l 3

videomem := mapdev (monochrome, 4096);

clearmem (videomen) ;

box (videomem, ‘'a', normal , 4, 0, 4+2, 0+4) ;.

box (videomem, 'b', under , 4, 10, 4+3, 10+6);

box (videomem, 'c', reverse, 4, 23, 4+4, 23+8);
end.

This example uses the mapdev function to access video memory directly on a machine equipped
with a monochrome adapter. The program clears the screen and then generates the following
output:

(normal) ' (underlined) (inverse)
aaaaa bbbbbbb cceeeeece.
aaaaa bbbbbbb ccceeceece
aaaaa bbbbbbb ceceeeceee
bbbbbbb cCceeeecee
ceceeceecee

memchr

Locate a character in an object
Definition

type c¢p = “char;
function memchr(s: cp; ¢, n: integer): cp;

where , \'/
s is a pointer to the block of memory to be searched;
c is an integer representation of the character to be sought;
n is the length of the memory block.

menchr finds the first occurrence of a character in a block of memory. It returns a pointer to
the character if found and NIL otherwise.

memcmp

Compare two memory buffers
Definition

type ¢p: “~char;

function memcmp(sl1, s2: cp; n: integer);
where

s1 and s2 are pointers to the blocks of memory to be compared;
n is the number of bytes to be compared.

memcmp compares two blocks of memory pointed to by its first and second arguments. The
number of bytes to be compared is given in its third argument. If the first block is lexically
prior to the second, the function returns a negative integer. If the block are the same, the
function returns zero. If the second funection is lexically prior to the first argument, the
function returns a positive integer.

NDP Pascal Reference Manual

B Interface to C and Math. Libraries 139

memcpy

Copy characters from one buffer to another
Definition

type c¢p' = “char;
function memcpy(sl, s2: cp; n: integer): cp;

where

s1 and s2 are pointers to the destination and source buffers, respectively;
n is the number of bytes to be copied.

memcpy copies the number of bytes specified in its third argument from the buffer pointed to by
its second argument to the buffer pointed to by its first argument. The return value is a
pointer to: the first buffer.

memmove

Copy characters from one buffer to another, checking for overlap
Definition

type ¢p = “char;
function memmove(sl, s2: cp; n: integer): cp;

where

s1 and s2 are pointers to the destination and source buffers, respectively;
n is an expression of type INTEGER representing the number of bytes to be copied.

memmove is the same as memcpy except that it transfers bytes in reverse order as a result of
which the move will be correct even if the two buffers overlap.

memset

Filllan: object with a character
Definition

type ¢p = “char;
function memset(s: cp; ¢, n: integer): cp;

where

s points to the memory to: be filled;
c represents the character with which the memory is to: be filled;
n is the number of bytes to: fill.

memset sets the number of bytes specified in its third argument of the block of memory pointed
to by its first argument to the value stored in its second argument. The return value is the -
same as the first argument.

mktemp

Make temporary name
Definition

type ¢p = “char;
function mktemp({str: cp): cp;

where str is the prefix of the name to be made.

NDP Pascal Reference Manual

140 B:Interface to C and Math Libraries

mktemp returns a unique file name for use as a temporary file. It takes a string argument that
contains the desired file name prefix and six extra characters for internal use.

mktime

Convert broken-down time to calendar time

Definition
type tm = record sec,min,hour,mday,mon,year,wday,yday,isdst: integer; end;
function mktime(timeptr: tm): integer

where

sec is seconds in the minute (0~59),

min is minutes in the hour (0-59),

hour is hour of the day (0-23),

mday is day of the month (1-31),

mon is months since January (0-11}),

year is years since 1990,

wday is days since Sunday (0-6),

yday is days since January 1 (0-365),

isdst is whether it is Daylight Savings Time.

mktime returns an unsigned integer that can be used in other timing functions.

modf

split a 64-bit number into integer and fractional parts
Definition

type dp = ~doubley

function modf (d: double; dptr: dp): double;
where

d is the 64-bit value that will be decomposed,

dptr is a pointer to the integral part of d returned by modf.
The modf (d, dptr) function splits the value 4 into its integer and fractional parts, each of
which has the same sign as d. The fractional part is returned in the modf function name. The
integral part is stored in the object pointed to by dptr.

EXAMPLE (ex058.p)
program modfl (output) ;

type
dp = ~double;

function modf(walue: double; iptr: dp): double; external;

var
x: double;
integral: dp;
fractional: double;

begin
X 1= -123.4567;
new{integral) ;
fractional := modf(x, integral);
writeln('x = %, x:14:6);
writeln("integral part of x = ', integral~:14:6);

NDP Pascal Reference Manual

®

B Interface to C and Math Libraries. 141

writeln(“fractional part of x = ', fractional:14:6);
end.

This program generates the following output:

X = -123.456700
integral part of x = -123.000000:
fractional part of x = -0.456700

perror

Print error message
Definition

type c¢cp = “~char;
procedure perror{s: cp);

where s is the beginning of the text to be printed.

perror sends to the standard error device its string argument followed by a colon and the text
associated with the current setting of the global variable errno.

pow
X raised to the power y
Definition
function pow (dl,d2: double): double;
where dI and d2 are expressions of type DOUBLE.

The pow (d1,d2) function returns the value of 47 raised to the power d2. If the return value is
out of range, the global variable errno will be set to ERANGE. If at least one of the arguments is
out of range, errno will be set to EDOM. In the case of undefined results, pow returns 0 but
errno is not set.

EXAMPLE (ex059.p)
program powl (output) ;
function pow(dl, d2: double): double; external;

var
i: integer;

begin
writeln¢! i 2%%] 3xxivy;
writeln(' - -—-- ----')
for i := 1 to 10 do
writeln(i,pow(2.0,1):9:1,pow(3.0,1):9:1);
end.

This program generates the following output:

i 2**] 3**]
1 2.0 3.0
2 4.0 9.0
3 8.0 27.0
4 16.0 81.0
5 32.0 . 243.0
6 64.0 729.0
7 128.0 2187.0

caw

NDP Pascal Reference Manual

142 Binterface to C and Math Libraries

8 256.0 6561.0
9 512.0 19683.0
100 1024.0 59049.0

powf
X raised to the power y
Definition
function powf (f1,f2: float): float;
where £1 and £2 are expressions of type FLOAT.

The powf (£1, £2) function returns the value of £1 raised to the power £2. If at least one of the
arguments is out of range, the global variable errno will be set to EDOM. If the return value is
out of range, errno is not set. In the case of undefined results, powf returns 0 but errno is
not set.

racos

single precision arc cosine
Definition
function racos (f: float): float;
where £ is an expression of type FLOAT whose value is between -1 and 1.

The racos (f) function returns the principal value of the arc cosine of £. acos takes an
argument in the range -1 to 1 and returns a result in the range O to pi, expressed in radians. If
the input argument is outside of -1 to 1, then racos returns 0.

EXAMPLE (ex060.p)
program racosl(output);

function racos(f:float):
float; external;

begin
writeln(*racos (0) = ', racos(0.0));
writeln('racos (-1) = ', racos(-1.0));
writeln('racos (1) = ', racos{(1.0));
writeln('racos (2) = ', racos{(2.0));
writeln('racos {(-3) = ', racos(-3.0));
end.

This program generates the following output:

racos (0) = 1.5707964e+00
racos (-1) 3.1415927e+00
racos {(1) 0..0000000e+00
racos { 2) 0.0000000e+00
racos (-3) 0.0000000e+00

raise

Send a signal
Definition

function raise(sig: integer): integer;

where sig is an expression of type INTEGER.

NDP Pascal Reference Manual,

C

B Interface to C and Math: Libraries

raise is used in conjunction with a prior call to the UNIX function signal and will return -1 if

143

the argument is out of range. If the argument is one of the following, it will call _exit:

SIGABRT STIGHUP SIGQUIT
SIGALRM SIGILL SIGSEGV
SIGBUS SIGINT SIGSYS

SIGEMT SIGKILL SIGTERM
SIGFPE SIGPIPE SIGTRAP

If the argument is one of the following, it will return zero:

SIGCHLD SIGPROF SIGTTIN
SIGCONT SIGSTOP SIGTTOU
SIGIO SIGTSTP SIGUSR1

rand
random integer
Definition

function rand: integer;

SIGURG
SIGVTALRM
SIGXCPU
SIGXFSZ

SIGUSRZ
SIGWINCH

The rand function returns a pseudo-random integer between 0 and 2147483647 (MAX-INT).

The rand function seeds itself unless the srand function is used.
EXAMPLE (ex061.p)

program randl (output) ;

function rand: integer; external;

var
i: integer:;

begin
for i:=1 to 5 do
writeln(randy;
end.

This program generates random output.

rasin
single precision arc sine
Definition

function rasin (f: float): float;

where f is an expression of type FLOAT whose value is between -1 and 1.

The rasin(f) function returns the principal value of the arc cosine of f. rasin takes an

argument in the range -1 to 1 and returns a result in the range O to pi, expressed in radians. If

the input argument is outside of -1 to 1, then rasin returns 0.
EXAMPLE (ex062.p)
program rasinl {output);

function rasin(f: float): float; external;

begin
writeln('rasin{(0) = ', rasin(0.0});
writeln('rasin(-1) = ', rasin(-1.0));
writeln{('rasin(l) = ', rasin(1.0});

NDP Pascal Reference Manual

144 B Interface to C and Math Libraries

writeln(‘rasin(2) = ', rasin(2.0));
writeln(‘rasin(-3) = ', rasin(-3.0));
end.

This program generates the following output:

rasin (O)
rasin (-1)
rasin (1)
rasin (2)
rasin (-3)

ratan

single precision arc tangent
Definition

0.0000000e+00
-1.5707964e+00.
1.5707964e+00
0.0000000e+00.
0.0000000e+00

function ratan (f: float): float;
where f is an expression of type FLOAT whose value is between -1 and 1.

The ratan(f) function returns the principal value of the arc tangent of f. ratan takes an
argument in the range -1 to 1 and returns a result in the range O to pi, expressed in radians. If
the input argument is outside of -1 to 1, then ratan returns 0.

EXAMPLE (ex063.p)
program ratanl (output) ;

function ratan(f: float): float; external;

begin
writeln(‘ratan(0) = ', ratan(0.0));
writeln("ratan{(-1) = ', ratan(-1.0));

writeln('ratan(l) ', ratan(l.0));
writeln(‘'ratan(2) ', ratan(2.0)};
writeln('ratan(-3) = ', ratan(-3.0));
end.

This program generates the following output:

0..0000000e+00
-7.8539824e-01
7.8539824e-01
1.1071488e-01
-1.2490458e+00

ratan (0)
ratan {(-1)
ratan (1)
ratan {(2)
ratan (-3)

ratan2

single precision arc tangent of a quotient
Definition

1}

function ratan2 (f1,f2: float): float;

where £1 is an expression of type FLOAT, and £2 is an expression of type FLOAT that has a
nonzero value.

The atan2 (f1, £2) function returns the principal value of the arc tangent of £f1/f2. atan2
returns a value between -pi and pi, expressed in radians. The signs of both arguments are used
to determine the quadrant of the result. If the second argument is zero, then atan2 returns O
and the global variable errno is set to EDOM (which is represented by a zero).

NDP Pascal Reference Manual

B Interface to C and Math Libraries

EXAMPLE (ex064.p)
¢ ”\l program ratanx(output);
)
k\—// function ratan2(f, g: float): float; external;
begin

writeln('ratan2 (0,1) = ', ratan2(0.0, 1.0));
writeln('ratan2 (-1,1) = ', ratan2(-1.0, 1.0));
writeln(‘'ratan2 (1,1) = “, ratan2(1.0, 1.0));
writeln{('ratan2 (20,0.1) = ', ratan2(20.0, 0.1));
end.

This program generates the following output:

ratan2 (0,1) 0..0000000e+00
ratan2 (-1,1) -7.8539824e-01
ratan2 (1,1) = 7.8539824e-01
ratan2 (20,0.1) = 1.5657964e+00

FCoSs

single precision cosine
Definition

function rcos (f: float): float;

where f is an expression of type FLOAT.

145

The rcos (f) function returns the cosine of £, where f is expressed in radians.

o EXAMPLE (ex065.p)
k~f/ program rcosl{output) ;
function rcos(f: float): float; external;

const
pi = 3.14159265358979323846;

var
i: integer;
x: float;
begin
x = 0.0;
for i:= 1 to 5 do begin
writeln(' x = ', X, " rcos(x) = ', rcos(x));
X := X + pi/4.0;
end;
end.

This program generates the following output:

X = 0.0000000e+00 rcos(x) = 1.0000000e+00
X = 7.8539819e-01 rcos(xX) = 7.0710683e-01
X = 1.5707964e+00 rcos(x) = 0.0000000e+00.
X = 2.3561945e+00 1rcos(x) = -7.0710683e-01
X = 3.1415927e+00 rcos(x) = -1.0000000e+00

NDP Pascal Reference Manual

146 B Interface to C and Math Libraries

rcosh

single precision hyperbolic cosine
Definition
function rcosh (f: float): float;
where £ is an expression of type FLOAT.
The rcosh(f) function returns the hyperbolic cosine of £.
EXAMPLE (ex066.p)
program rcoshl (output) ;
function rcosh(f: flbat): float; external;

const
Pi = 3.14159265358979323846;

var
i: integer;
x: float;
begin
X := 0.0;
for i:= 1 to 5 do begin
writeln(* x = ', x, ' rcosh(x) = ', rcosh(x));
X 1= X + pi/4.0;
end;
end.

This program generates the following output:

X = 0.0000000e+00 rcosh(x) = 1.0000000e+00
X = 7.8539819e-01 rcosh{x) = 1.3246090e+00
X = 1.5707964e+00 rcosh(x) = 2.5091784e+00:
X = 2.3561945e+00 rcosh{x) = 5.3227520e+00
X = 3.1415927e+00 rcosh(x) = 1.1591953e+01

remove

Delete a file
Definition

type cp = ~char;
function (filename: c¢p): integer;

where £ilename is the name of the file to be deleted.

remove deletes the file named in its string argument. It returns O if successful and -1
otherwise. In the case of failure, the global variable errno will be set either to ENOENT,
indicating the file could not be found, or to EACCESS, indicating the file could not be deleted.
Under UNIX the function calls unlink, the return value is that of unlink.

rename
Rename a file
Definition

type cp = “char;
function rename(old, new: cp): integer;

NDP Pascal Reference Manual’

B Interface to C and Math Libraries 147

where old is the original name of the file, and new is its new name.

This integer function renames the file named in its first string argument to the name given in
its second string argument. It returns O if successful and -1 otherwise. In the case of failure,
the global variable errno will be set either to ENOENT, indicating the file could not be found, or
EACCESS, indicating the file could not be renamed.

rexp

single-precision: exponential function
Definition
function rexp (f: float): float;

where £ is a single-precision float. rexp returns et.

rfrexp

compute single-precision exponent and mantissa
Definition

function rfrexp (f: float, VAR exptr: integer): float;
where

f is a single-precision float.
exptr contains, on return, the exponent part of £.

The return value is the mantissa of £. This is a single precision version of frexp.

rindex

reverse search for character in string
Definition’

type cp = “~char;

function rindex (str:cp; ch:char): cp;

- where

str is a pointer to a null terminated string to be searched,
ch is the character being searched for.

The rindex(str, ch) function returns a pointer to the location of the character ch in the null
terminated string pointed to by str, or a null poeinter if no match occurs.
EXAMPLE (ex067.p)

program rindexl (output);

type
cp = “char;
s40 = packed array [1..40]) of char;
s40p = ~s40;

function rindex(str:cp; ch:char): s40p; external;

var
str: s40;
ptr: s40p;

procedure printstring{c:char) ;
begin

NDP Pascal Reference Manual

148 B Interface to C and Math Libraries.

writeln('the last substring beginning with ',c,' = "LpErty
if ptr = nil then
writeln('(',c,' is not present)'});

end;

begin
str := 'A little learning is a dangerous thing.';
str[407 := chr(o);
writeln('The initial string = ',str);-
writeln;
ptr := rindex(&str[1], '1"); printstring('l');
ptr := rindex(&str(l], 'd'); printstring('d');
ptr := rindex(&str{l], 't'); printstring('t');
ptr := rindex(&str[l], 'x'); printstring('x");
end. :

This program generates the following output:

The initial string = A little learning is a dangerous thing.

The last substring beginning with 1 learning is a dangerous thing.
The last substring beginning with d dangerous thing.
The last substring beginning with t thing.
The last substring beginning with x {(null)
(x is not present)

ridexp

single-precision multiplication by a power of two
Definition

It

1t

1

function rldexp (f: float, exp: integer): float;
where

f is a single-precision float.
exp is an integer.

The return value is £ * 2e. This is a single precision version of 1dexp. The global vanable
errno is not set for domain errors for thls function.

rlog

single-precision natural logarithm:
Definition

function rlog (f: float): float;
where £ is a single-precision float.

rlog returns In(f). It is a single precision version of 1n.

rlog10
single-precision common logarithm
Definition

function rlogl0 (f: float): float;
where £ is a single-precision float.

rlogl0 returns the common (base 10) logarithm of f. It is a single precision version of 1og10.

NDP Pascal Reference Manual

B Interface to C and Math Libraries 149

rpow
single-precision power function
Definition

function rpow (f: float): float;
where f is a single-precision float.

This is a single precision version of pow. If the return value is out of range, the global variable
errno is not set.

-
rsin
single precision sine
Definition
function rsin (f: float): float;
where f is an expression of type FLOAT.
The rsin (£) function returns the sine of £, where £ is expressed in radians.
EXAMPLE (ex068.p)
program rsini (output);
function rsin(f: float): float; external;

const .
pi = 3.14159265358979323846;

var
i: integer;
x: float;
begin
X := 0.0;
for i:= 1 to 5 do begin
writeln{(' x = ', X, ' rsin{x) = ', rsin(x));
X = x + pi/4.0;
end;
end.

This program generates the following output:

X = 0.0000000e+00 rsin(x) = 0.0000000e+00
X = 7.8539819e-01 rsin(x) = 7.0710683e-01
X = 1.5707964e+00 rsin(x) = 1.0000000e+00
X = 2.3561945e+00 rsin(x) = 7.0710683e-~01
X = 3.1415927e+00 rsin(x) = 0.0000000e+00

rsinh

single precision hyperbolic sine Definition
function rsinh (f: float): float;
where £ is an expression of type FLOAT.
The rsinh(f) function returns the hyperbolic sine of f.
EXAMPLE (ex069.p)

program rsinhl (output);

NDP Pascal Reference Manual

150 B Interface to C and Math Libraries

function rsinh(f: float): float; external;

const
pi = 3.14159265358979323846;

var
i: integer;
x: float;
begin
X := 0.0;
for i:= 1 to 5 do begin
writeln(' x = ", x, ' rsinh(x) = ', rsinh(x));
X 1= X + pi/4.0;
end;
end.

This program generates the following output:

X = 0.0000000e+00 rsinh(x) = 0.0000000e+00
X = 7.8539819e-01 rsinh(x) = 8.6867094e-01
x = 1.5707964e+00 rsinh(x) = 2.3012989e+00.
X = 2.3561945e+00 rsinh{x) = 5.2279720e+00
X = 3.1415927e+00 rsinh{(x) = 1.1548738e+01

rsqrt
single-precision square root
Definition

function rsqrt (f: float): float;
where £ is a single-precision float.

This is a single precision version of sqrt.

rtan

single precision tangent Definition
function rtan (f: float): float;
where f is an expression of type FLOAT.

The rtan (f) function returns the principal value of the arc tangent of f. rtan returns a result
in the range -pi to pi, expressed in radians. If the result is out of range, the global variable
errno will be set to ERANGE. errno is not set if the input argument is out of range.

EXAMPLE (ex070.p)
program rtanl (output) ;
function rtan(f: float): float; external;

const
pil = 3.1415926535897932384¢6;

var
i+ integer;
x: float;

begin
X = 0.0;
for i:= 1 to 5 do begin

NDP Pascal Reference Manual

B Interface to C and Math Libraries

writeln(' x = ', x, ' rtan(x) = ', rtan(x));
X 1= X + pi/4.0;
end;

end.

This program generates the following output:

X = 0.0000000e+00 rtan(x) = 0.0000000e+00
X = 7.8539819e-01 rtan(x) = 9.9999988e-01
x = 1.5707964e+00 rtan(x) = -2.2877332e+07
X = 2.3561945e+00. rtan(x) = -1.0000001e+00
X = 3.1415927e+00. rtan(x) = 8.7422784e-08

rtanh

single precision hyperbolic tangent
Definition
function rtanh (f: float): float;
where f is an expression of type FLOAT.
The rtanh(f) function returns the hyperbolic tangent of £.
EXAMPLE (ex071.p)
program rtanhl (output) ;
function rtanh(f: float): float; external;

const
pi = 3.14159265358979323846;

var
i: integer;
x: float;
begin
X = 0.0;
for i:= 1 to 5 do begin
writeln(' x = ', x, " rtanh(x) = ', rtanh(x));
X 1= X + pi/4.0;
end;
end.

This program generates the following output:

= 0.0000000e+00 rtanh(x) =
.8539819e~01 rtanh(x) =
.5707964e+00 rtanh(x) =
.3561945e+00 rtanh(x) =
.1415927e+00 rtanh{x) =

SeC_1 00__ (DOS only)

return hundredths of a second since midnight
Definition

.0000000e+00
.5579420e-01
.1715235e-01
.8219335e-01
.9627209e-01

XoXoX XX
i n

W N

O Y VW OO

function sec_100_ : integer; external;

151

The sec_100_ function returns the number of hundredths of a second since the previous

midnight. This function has no arguments.

NDP Pascal Reference Manual

152 B Interface to C and Math: Libraries

EXAMPLE (ex072.p)
program secl00 (output) ;
function sec_100_: integer; external;

var
hsecs: integer;

begin
hsecs := sec_100_;
writeln("The number of hundredths of a second since midnight =',hsecs);
end.

This program generates the following output:

The number of hundredths of a second since midnight =

sechds

return number of seconds from an origin
Definition

function secnds_ (VAR lastTime: integer): integer; external;
where lastTime is a variable of type INTEGER.

The secnds_ function returns the numbers of seconds since the previous midnight, less the
value of lastTime. A day's worth of seconds are added to the result if the calculated value is
less that the value of lastTime.

EXAMPLE (ex073.p)
program secndsl (output);
function seecnds_ (var lasttime: integer): integer; external;

var
ten_am, ten_pm, thistime, lasttime: integer;

begin
lasttime := 03
thistime := secnds_(lasttime);
writeln('Seconds since midnight = ', thistime);
ten_am := 10 * 60 * 60; { seconds since 10 AM)
ten_pm := 22 * 60 * 60; { seconds since 10 PM }
writeln('Seconds since yesterday at 10 am = ', secnds_ (ten_am));
writeln('Seconds since yesterday at 10 pm = ', secnds__(ten_pm)) ;
end.

This program generates the following output:

Seconds since midnight =
Seconds since yesterday at 10 am
Seconds since yesterday at 10 pm

setndpsw

set ndp status word
Definition

procedure (sw: integer);

NDP Pascal Reference Manual:

C

B Interface to C and Math: Libraries

where swis an integer.

153

This procedure takes an integer as its argument, and sets the NDP Status Word, simulating

exceptions.

sinf
single-precision sine
Definition
function sinf (f: float): float;
where £ is.a singl‘e\;—precision float.

This is a single precision version of sin.

inh
hyperbolic sine
Definition
function sinh (d: double): double;

where dis an expression of type DOUBLE.

The sinh(d) function returns the hyperbolic sine of 4. If the result is too large, the global
variable errno is set to ERANGE and the function returns HUGE_VAL.

EXAMPLE (ex075.p)

program sinhl (output) ;

function sinh(f: double): double; external;

const
pl = 3.14159265358979323846;

var
i: integer;
x: double;

begin
x = 0.0;
for i:= 1 to 5 do begin
writeln(' x = ', %, ' sinh(x)
X = X + pi/4.0;
end;
end.

This program generates the following output:

= 0.00000000000000000e+00
7.85398163397448286e-01
1.57079632679489657e+00
2.35619449019234486e+00
3.14159265358979311e+00

sinhf

single-precision hyperbolic sine

sinh(x)
sinh (x})
sinh(x)
sinh (x)

EI I]
0

Definition

function sinhf (f: float): float;

sinh (x)

1l

', sinh(x)).:

0...00:000000000000000e+00
8.68670961486009747e-01
2.30129890230729427e+00
5.22797192467780292e+00
1.15487393572577464e+01

NDP Pascal Reference Manual

154 B Interface to C and Math Libraries

where £ is a single-precision float..

This is a single precision version of sinh.

sprintf
print formatted output to a string
Definition

type ¢cp = “char;

function sprintf (str, fmt: cp;
arg: {variable length argument list, see text}): integer; °

where.

str is a pointer to a string that is to receive the character data from the argument list arg,
fmt is a pointer to a null terminated string containing formatting instructions,
arg is a variable length argument list representing the data to be transferred to string str.

The sprintf (str, fmt, arg) function reads the data in the variable length argument list arg,
converts it according to the format specification in fmt and writes the result as a null
terminated string to the array str. sprintf returns the number of items written to the output
string str, not counting the terminating null.

A description of the syntax of the descriptors in the format specification is best left to a book on
the C programming language, for example, The C Programming Language by Brian Kernighan
and Dennis Ritchie, published by Prentice Hall, 1988. The explanation given here will
necessarily be concise, and not do justice to the full power of this function.

How the sprintf function works

The format string, fmt, indicates how the data in the argument list is to be interpreted and
formatted when copied to the output string str. The format string may contain text and
format specifiers. A format specifier is a character sequence that begins with a percent sign (%)
and ends with a single character abbreviation (listed below) for the type of conversion to do. A
format specifier is required for each item in the argument list. Any text within the format
string is copied to the output string without any format conversion.

The sprintf function proceeds in the following manner. The format string is read from left to
right. Any text within the format string is immediately copied to the output string. When a
format specifier is encountered (identified by the leading percent sign), the next item from the
argument list is read and copied to the output string while doing the conversion required by
the format specifier. The sprintf function then continues with where it left off in the format
string. Each format specifier causes the next item in the argument list to be formatted and
copied to the output string. This process stops when the end of the format string is
encountered.

As a simple example, the format string “The answer is %f” will copy the text “The answer
is " to the output string, then read one number of type double from the argument list, convert
it to an ASCII string, and copy the ASCII representation of the number to the output string.

Declaring the sprint £ function

The following shows the declaration of the sprintf function when n different data items are to
be formatted and copied to the output string (pointed to by) str. The format string, fmt, must
contain n format specifiers compatible with the corresponding data types t1 through tn.

type
cp = “~char;
tl = ..
L2 = ..
tn = ..

NDP Pascal Reference Manual

B Interface to C and Math Libraries 158

function sprintf (str,fmt:cp; dl:tl; 42:t2; . . .; dn:tn): integer;

The format Specifiers

The format specifier begins with the percent sign, and ends with the format character. The
format conversion may be modified by placing additional characters between the percent sign
and the format specifier. These modifiers provide additional control over the conversion
process. If present, they must be placed between the percent sign and the format conversion
character in the following order:

1. Flags

+

space

Left justifies the data item in the field.

Forces a plus or minus sign before any numeric data. By default, the plus sign
is omitted for positive values, and the minus sign is placed before negative
values.

Places one space before positive values, and the minus sign before negative

values. By default, the space is omitted for positive values.

The actual result depends upon the conversion character. For o, the first digit

will be zero; for x or X, the string “0x” or “0X™ will be prefixed to a nonzero value.
For e, E, £, g, and G, a decimal point will be placed in the result. For g and G,
trailing zeros will not be removed.

Specifies that the padding characters to be used with numeric data is a zero.
The default padding character is a space.

2. Minimum field width

The converted value will occupy a field in the output string at least this wide, and wider if
necessary. The converted value is padded on the left (or right if the - flag is present) to fill
up the field width. The 0 flag controls the padding character.

3. Period

A period is used to separate the minimum field width from the precision. This is only
necessary if the precision modifier will be used.

4. Precision

For s, this is the number of characters to place in the output string; for e, E, or f, this is
the number of digits after the decimal point; for g or G, this is the number of significant
digits; for integers, this has the samme meaning as the minimum field width.

The following table is. a list of format identifiers, or conversion characters:

4,i,0.u.x,X Formats data stored in integer form. d and i converts the data into decimal

e,BE

form; o converts the data into octal form; u converts. the data into an unsigned
number; x and X convert the data into hexadecimal form, x uses lowercase
hexadecimal characters while X uses uppercase hexadecimal characters.

Formats data stored in floating point form. Data is converted into scientific
notation, for example, 1.2F34e+56. One digit is always placed before the
decimal point. The precision specifies the number of digits: after the decimal
point, the default is 6. The decimal point is not printed if the precision is zero.
The case of the letter e in the exponent matches the case of the format specifier.
The exponent contains at least two digits, and then as many digits as necessary.

Formats data stored in floating point form. Data is converted into decimal
notation, for example 12.34.

NDP Pascal Reference Manual

156 B:Interface to C and Math: Libraries

g.6 Causes the e or E format to be used if the exponent of the data item is less than
-4, or greater than the precision. Otherwise f format is used. Trailing zeros are
not copied to the output string, and a decimal point is used only if it is followed

by a digit.
c Copies a single character to the output string.
s Copies a string of characters until the null terminator (chr (0)) is found, or until

the number of characters copied equals the precision.
% Copies a percent sign to the output string.
EXAMPLE 1 (ex076.p)

program sprintfl(output);

type
cp = “char;

function sprintf(des, fmt: cp; d:double): integer; external;

var
des, fmt: packed array [1..40] of char;
i, n: integer;
d: double;

begin
fmt := 'The answer is %f' ;
fmt(17] := chr(0);
d := -123.456;
n := sprintf (&des(1l], &fmt[1], 4d);
writeln('Format string = ', fmt:20);
writeln('Number of characters transferred = ', n:4);
write{'The destination string = ');
for i := 1 to n do
write{des[i]);
writeln;
end.

This example creates a null terminated string that contains the message “The answer is”
followed by the value of a variable. The function sprintf obtains this result by copying two
strings to the destination array. The first string is the text “The answer is ". The second
string is the ASCII representation of the value stored in a variable of type DOUBLE (so the format
specifier is f). This example generates the following output:

Format string = The answer is %f
Number of characters transferred = 25
The destination string = The answer is -123.456000

EXAMPLE 2 (ex077.p)
program sprintf2(output);

type

cp = “char;
function sprintf (des, fmt: cp; i1, 12, i3: integer): integer; external;
var

des, fmt: packed array [(1..100) of char;
i, n, x: integer;

begin
fmE. := 'x (in decimal) = %d, (in hex) = %x, (in octal) %0';
fmt[52] := chr(o);

NDP Pascal Reference Manual

B Interface to C and Math Libraries 157

X = 0x7f££0000;
n = sprintf(s&des(1], &fmtl1], %X, X, X);
writeln('Source data = ', x);
writeln('Format string = ', fmt:52);
writeln('"Number of characters transferred = ',n:4);
writeln;
writeln('Destination string = ');
for i := 1 to n do

write{des[i]);
writeln;
end.

This example converts a number into its decimal, octal and hexadecimal equivalents, and
copies these values into a character array. Brief titles also placed into the array to identify the
numbers when printed. This example illustrates the 4, x and o format specifiers and generates
the following output:

Source data = 2147418112
Format string = x (in decimal) = %4, (in hex) = %x, (in octal) = %0

Number of characters transferred = 74
Destination string = x (in decimal) = 2147418112, (in hex) = 7£££0000, (in octal) =
17777600000

sqrtf
single-precision square root
Definition

function sqgrtf (f: float): float;
where f is a single-precision float.

This is a single precision version of sqrt.

srand

seed random number generator
Definition
function srand (i: integer): integer;
where i is the value of the seed.
The srand function initializes the random number generator used by rand.
EXAMPLE (ex078.p)
program. srandl (output) ;

function rand: integer; external;
function srand{i: integer): integer; external;

var
j. seed: integer;

begin
seed := 1009;
srand(seed);
writeln(‘'seed = ',seed);
for j:= 1 to 5 do
writeln(rand);
writeln;

NDP Pascal Reference Manual

158 ' B Interface to C and Math: Libraries

seed := 155921;

srand{seed) ;

writeln(‘'seed = ', seed); {

for j:= 1 to 5 do \‘-’/
writeln(rand) ;

writeln;

end.

This program generates the following output: (This will vary from machine to machine.)

seed = 1009
16152143
1084389312
48409366
515415905
681807129

seed = 155921
313258710
551196409
263068568
1703377437
1715819866

sscanf

read formatted input from a string
Definition
type ¢p = “char;

function sscanf (str, fmt: cp; N
arg: {variable length argument list, see text}): integer;

where
str is a pointer to a null terminated string containing the character data to be read,
fmt is a pointer to a null terminated s'tringncontainmg formatting instructions,

arg is a variable length argument list; each argument is a pointer to an item that is to
receive the converted data from str.

The sscanf (str, fmt,arg) function reads formatted input from the string str, converts it
according to the format specification in fmt and writes the results to the data items pointed to
by the argument list arg. sscanf returns the number of arguments that were converted and
assigned. The return value does not include input characters that were read but not assigned.
The sscanf function is nearly the reverse of the sprintf function and works in a similar
manner. Note that although many of the abbreviations used for the format conversions are
identical to those used by the sprintf function, they often have slightly different meanings.

A description of the syntax of the descriptors in the format specification is best left to a book on
the C programming language, for example, The C Programming Language by Brian Kernighan
and Dennis Ritchie, published by Prentice Hall, 1988. The explanation given here will
necessarily be concise, and not do justice to the full power of this function.

How the sscanf function works

The format string, fmt, indicates how the character data in the source string is to be converted.

Note that the argument list contains pointers to the variables that are to receive the results of Y
this conversion. The format string contains text and format specifiers. A format specifier is a N

character sequence that begins with a percent sign () and ends with a single character
abbreviation (listed below) for the type of conversion to do. A format specifier is required for

NDP Pascal Reference Manual

B Interface to C and Math: Libraries 159

each argument in the destination argument list. Characters other than a format specifier or a

space must match the characters found in the input string. A space causes leading spaces to
be skipped.

The sscanf function maintains two pointers to its current location in the format and source
strings. Both pointers initially point to the beginning of these strings. The pointers are
advanced until the end of the format string is reached, the end of the argument list is reached,
or a conflict occurs. The data in the format string is processed as follows:

1. A space causes sscanf to skip over any spaces in the source string.

2. Text in the format string is compared against data in the source string. If the character
data is identical then it is skipped, otherwise sscanf terminates.

3. A format specifier causes sscanf to convert the appropriate number of characters from the
source string to the specified representation, and place the result at the location indicated
by the corresponding argument.

Any format specifier may be preceded by a maximum field width or an assignment suppression
character. The field width is a decimal digit that specifies the maximum number of characters
to read from the source string for this particular format specifier. The assignment suppression
character is an asterisk (*) that causes a field in the source string to be read but not assigned
to any variable in the argument list. The item in the input string is simply skipped. For
example, $*s, or $*i.

As a simple example, the format string “The answer is %f” will read and skip over the
characters “The answer is” in the source string, then skip over any blanks until a number is
found. This number will be converted and stored in the location pointed to by the
corresponding argument.
Declaring the sscanf function
The following shows the declaration of the sscanf function when n different values are to be
converted from the input string, str, and stored in the locations pointed to by the variables. d1
through dn. The format string, fmt, must contain n format specifiers compatible with the
corresponding data types to which t1 through tn point.
type
cp = “char;
tEl = ~ {some type}
t2 = ~ {some type}
tn = ~ {some type}
function sscanf (src,fmt:cp; di:tl; d2:t2; . . .; dn:tn): integer;
The Format Specifiers
A format specifier begins with the percent sign, and ends with the format character. It may be
modified by the maximum field width or assignment suppression flag.
The following table is a list of format identifiers, or conversion characters:
d,u © Converts a decimal integer. The corresponding data argument must be a
' pointer to: an integer.
i Converts a decimal integer with an optional prefix. 0x or 0X denote a
hexadecimal constant; 0 denotes an octal constant. The corresponding
data argument must be a pointer to an integer.

o Converts an octal integer with or without a leading 0. The cmrrespondmga
data argument must be a pointer to an integer.

X, X Converts a hexadecimal integer with or without a leading 0x or 0X. The
corresponding data argument must be a pointer to an integer.

NDP Pascal Reference Manual

160 B Interface to C and Math Libraries

e, E, £,9.G Converts a floating point constant. The input is an optional sign, a
string of numbers with an optional decimal point, and an optional
exponent field containing an e or E followed by a possibly signed integer.

s Reads a string of characters until a space is encountered. A null
character (chr (0)) is appended to the end of the string. The

corresponding data argument must be a pointer to an array of type char.

c Reads a character; does not skip over spaces or a null terminator. The
corresponding data argument for $c must be a pointer to type char, for
$wc, where w is the field width, the data argument must be a pointer to
an array of type char. ‘

n Writes the number of characters read so far by sscanf to the
corresponding argument, which must be a pointer to type INTEGER. No
characters are read from the input string with this specifier.

[char.string] Matches the character string within the square brackets to the longest
sequence of identical characters from the input string. The matching
characters are copied to an array of type char and end with the null
character, chr (0). The corresponding data argument must be a pointer
to this array. For example, [xyz] will match with the three strings x, xy
or xyz.

[*char.string] Matches any characters not in the character string within the square

brackets to the longest sequence of characters from the input string. The

matching characters are copied to an array of type char and are
terminated with the null character, chr (0). The corresponding data
argument must be a pointer to this array. For example [*xyz] will
match with any sequence of characters except x, xy or xyz.

% Reads past a percent sign in the input string without making any
assignment.

EXAMPLE 1 (ex079.p)

program,sscanflcoutppt);

type
cp = “~char;
fp = ~float;

function sscanf(src,fmt: cp; des: fp): integer; external;

var
src, fmt: packed array [1..40] of char;
des: float;
n: integer;

begin
src := 'The answer is -123.456"';
src[23] := chr{oy;
fmt := 'The answer is %f';
fmt (17] := chr(o);
n := sscanf (&srcll], &fmt[l], &des);
writeln('Source string is = ', src:25);
writeln('Format string is = ',fmt:19);
writeln(‘number of items transferred = ', n:4);
writeln('Destination = ', des);
end.

NDP Pascal Reference Manual

P

B Interface to C and Math Libraries 161

This example illustrates how a number may be obtained from a character string and converted
into a numeric format. The characters preceding the number are discarded, and the number is
copied into a variable of type FLOAT. This example produces the following output:

Source string is = The answer is -123.456
Format string is = The answer is %f
Number of items transferred = 1
Destination = -1.2345600e+02
EXAMPLE 2 (ex080.p)

program sscanf2 (output) ;
type

cp = “char;

ip = "~integer;

function sscanf (src, fmt: cp;
sign: cp; dl:ip; ch:cp; d2:ip): integer; external;

var
src, fmt: packed array [1..20] of char;
sign, dot: char;
di, d2, n: integer:

begin
src := '-123.456"';
fmt 1= "%$1ls%uslsu';
fmt[11] := chr(o);
writeln('Source string = ', src:10);
writeln('Format string = ', fmt:10);
n := sscanf(&src(l], &fmt[1], &sign, &d1, &dot, &42);
writeln('Number of items transferred = ', n:4);
writeln(' sign = ', sign);
writeln(' integer part = ', dl:4);
writeln(' decimal point = ', dot);
writeln('fractional part = ', dl:4);
end.

This example converts a string representing a decimal number into pieces that represent the
sign, integer and fractional parts of the number. This example generates the following output:

Source string = -123.456
Format string %1ls3uzls3u
Number of items transferred = 4
sign = -
integer part = 123
decimal point =
fractional part = 456

strcat

concatenate two str imgs

Definition:

type cp = “char;
function strcat (strl,str2: cp): cp;

where strl and str2 are pointers to null terminated strings.

NDP Pascal Reference Manual

162 B Interface to C and Math Libraries

The strcat (stril,str2) function copies the null terminated string, stri, onto the end of the
null terminated string, str2. The first character of str1 replaces the null terminating str2. No
test is made for overflowing str2. strcat returns a pointer to the concatenated string.

EXAMPLE (ex081.p)
program strcatl (output) ;

type
¢p = “char;

function strcat(strl, str2: cp): cp; external;

var
s, t: packed array [1..75] of char;
p: cp;
i: integer;

begin
g := 'Go in and out the window as';
s(28) := chr(0);
t := " you have done before.';

£{23] := chr(0);
p := strcat(&s(l], &t[1]);

writeln('"string 1 = ', s:27);
writeln('String 2 = ', t:22);
writeln;

write('Combined strings = ');

for i:= 1 to 75 do
write(s[i]);

writeln;

end.

This program generates the following output:

String 1 = Go in and out the window as
String 2 = you have done before.

strchr

index of a character in a string
Definition

type c¢p = “char;
function strchr (str:cp; ch:char): cp;

where

stris a pointer to the null terminated character string to be searched,
ch is the character to match.

The strchr (str, ch) function returns a pointer to the first instance of the character ch in the
string pointed to by s¢tr. If ch is not found, then strchr returns a null pointer.

EXAMPLE (ex082.p)
program. strchril (output) ;

type
cp = “~char;
s40 = packed array [1..40] of char;
s40p = "s40;

function strchr(str:cp; ch:char): s40p; external;

NDP Pascal Reference Manual

e

B Interface to C and Math: Libraries 163

var
str: s40;

K\—) ptr: s40p;

procedure printstring(c:char);
begin
writeln('The last substring beginning with ',c,' = tLptrty;
if ptr = nil then
writeln('(",c,' is not present)");

end;

begin
str := 'A little learning is a dangerous thing.';
str{40] := chr(0);
writeln('The initial string = *,str);
writeln;
ptr := strchr(&str{l], *1"); printstring('l');
ptr := strchr(&str(l), *d'); printstring(*d‘');
ptr := strchr(&stril]l, 't'); printstring("t');
ptr := strchr(&str(l], 'x"); printstring('x');
end.

This program generates the following output:

The initial string = A little learning is a dangerous thing.

The last substring beginning with 1 = little learning is a dangerous thing.

The last substring beginning with d dangerous thing.

The last substring beginning with t ttle learning is a dangerous thing.

The last substring beginning with x (null)
S (x is not present)

stremp

string compare
Definition

type c¢p = “char;
function strcmp (strl,str2: cp): integer;

where strl and str2 are pointers to null terminated strings.

The strcmp (strl, str2) function compares two null terminated strings and returns one of
the following values indicating their relationship:

if str1 < str2 then return a negative number
if strl1 = str2 thenreturn zero
if strl > str2 then return a positive number

EXAMPLE (ex083.p)

program strcmp{output) ;

const
sl = "economy';
s2 = ‘ecology';
s3 = ‘eclipse';
s4 = ‘eclogue’;
e y type
K_// cp = ~“char;

s10 = packed array [1..10] of char;

NDP Pascal Reference Manual

164 B Interface to C and Math Libraries

function strcmp(strl,str2:cp; n:integer): integer; external;

procedure compare(a,b:s10; n:integer); N
begin K_’j
aln+1] chr(0) ;
bn+1l] := chr(o);
writeln('Comparison on first *, n:2,' characters = v, strcmp(&alll.,.&b(1],n));
end;

begin
writeln('String
writeln('string
compare(sl, s2, 3);
compare(sl, s2, 4);
compare(sl, s2, 20);
writeln(*'String 3 = ',s3);
writeln('String 4 = *,s4);
compare(s3, s4, 3);
compare(s3, s4, 4);
compare(s3, s4, 20);
end.

=
|

'.8l);
'.82);

L]
{

This program generates the following output:

String 1 = economy
String 2 = ecology

Comparison on first 3 characters = 0

Comparison on first 4 characters = 2

Comparison on first 20 characters = 2

String 3 = eclipse g' }
String 4 = eclogue

Comparison on first 3 characters = 0

Comparison on first 4 characters = -6

Comparison on first 20 characters = -6

strcoll

compare two strings based on a program's locale
Definition

type cp = “char;
function strecoll (strl: cp, str2: cp): integer;

where strl and str2 are pointers to null terminated strings.

In the present implementation, this function behaves identically to strcmp.

strcpy

string copy
Definition

type c¢p = “char;
function strepy (strl,str2: cp): integer;

where stril and str2 are pointers to null terminated strings.

The strepy function copies the null terminated string str2 to the address pointed to by stri, \.J
up to an including the null terminating str2.

NDP Pascal Reference Manual

B Interface to C and Math Libraries. 165

Caution: It is the programmer's responsibility to ensure that the receiving buffer is large
enough for what is written to it. If it is not large enough, adjacent buffers may be overwritten.

EXAMPLE (ex084.p)
program strcpyl (output) ;

type
cp = “char;

function strcpy (des, src: cp): integer; external;

const
a = 'The gardener planted the flower in fresh potting soil."';
b = *The search continues for new subatomic particles.';

var

des, src: packed array [1..100] of char;
i: integer;

begin
sSYrc := a;
src[55])] := chr(0);
des := b;
des[50] := chr(o0);
writeln('String 1 = *, a);
writeln('sString 2 = ', b);
writeln;
strepy (&des[26], &src[36]});
write('Altered string 2 = ");
i = 1;

while (des[i] <> chr(0) do begin
write(des([i]);
i:=1+1
end;
writeln;
end.
This program generates the following output:

String 1 = The gardener planted the flower in fresh potting soil.
String 2 = The search continues for new subatomic particles.
Altered string 2 = The search continues for fresh potting soil.

strcspn

compute the length of the initial portion of a string consisting of characters that do not
occur in a second string

Definition

type ¢p = “~char;
function strcspn (strl: cp, str2: cp): integer;

where stril and str2 are null terminated strings.

strcspn returns the number of consecutive characters in its first string argument that are not
found in its second string argument.

NDP Pascal Reference Manual -

166 B Interface to C and Math Libraries

strerror

convert an error number into an appropriate message
Definition

type c¢cp = “char;
function strerror (errnum: integer): cp;

where errnumis an integer error number.

strerror returns the error text associated with its argument as found in the array of strings
sys_errlist. If the argument is out of range, the string returned says simply that no further
information is available.

strftime

Convert broken-down time to string
Definition
type cp = “char;
type tm = record sec,min,hour,mday,mon,year,wday,yday,isdst: integer; end;
function strftime(var S: cp; maxsize: integer; Format: cp; timeptr: tm):
integer;
where
sec is seconds in the minute (0-59),
min is minutes in the hour (0-59),
hour is hour of the day (0-23),
mday is day of the month: (1-31),
mon is months since January (0-11),
year is years since 1990,
wday is days since Sunday (0-6),
yday is days since January 1 (0-365),
isdst is whether it is Daylight Savings Time,
S is the string into which the information is to be placed,
maxsize is the maximum number of characters to be placed into s,

Format is the format controlling what is to go into S, consisting of zero or more conversion
specifiers and ordinary multibyte characters. A conversion specifier consists of a %
character followed by a character that determines its behavior. All ordinary multibyte
characters, including the terminating null character, are copied unchanged into s. Each
conversion specifier is replaced by appropriate characters, as determined by the LC_TIME
category of the current locale and by the values contained in the structure pointed to by
timeptr.

strftime places characters into the array pointed to by S as controlled by Format. The return
value is the length of s. Following is a list of conversion specifiers allowed.

%a abbreviated weekday name
%A full weekday name
$b abbreviated month name

$B full month name

NDP Pascal Reference Manual

C

B Interface to C and Math: Libraries 167

$c date and time

%d day of the month as a decimal number (01 - 31)

%$H hour (24-hour clock) as a decimal number (00 - 23)
%I hour (12-hour clock) as a decimal number (01 - 12)
%j day of the year as a decimal number (001 - 366)
$m month as a decimal number (01 - 12)

$M minute as a decimal number (00 - 59)

$p AM/PM designation

%S second as a decimal number (00 - 61)

%U Week number of the year as a decimal number (00-53), where first Sunday is the first
day of week 01

gw weekday as a decimal number (0-6) where Sunday is 0'
$x date

%X time

%y year without century as a decimal number (00 - 99)

%Y year with century.

strindex
index of a substring within a string
Definition
type c¢p = “char;
function strindex (strl,str2: cp): integer;
where strl and str2 are pointers to null terminated strings.

The strindex (strl,str2) function finds the first occurrence of string str2 (not including
the terminating null character) in the string stri. It returns a pointer to the located string in
stri, or -1 if no match occurs.

EXAMPLE (ex085.p)
program strindex{output);

type
cp = “char;

function strindex(str, sub: cp): integer; external;

const
sl = '"Twinkle, twinkle little star, how I wonder what you are.‘';
g2 = "Twin';
s3 = 'ink‘';
s4 = ‘hat’';
s5 = "xxx';
var

str, sub: packed array (1..60] of char;

begin
sty := sl;
str[57] := chr(0);
sub := s2;

NDP Pascal Reference Manual

168 B Interface to C and Math Libraries

str(5] := chr(o);

writeln('String = ', sl1);

writeln;

writeln('The irndex of substring ', s2,' = ', strindex(&str(l],&subfl]):3);
sub := s3;

str[4] := chr(o0);

writeln('"The index of substring ', s3,' = ', strindex(&str(i],&sub[1]):3):
sub := s4;

str{4] := chr(0);

writeln(‘'The index of substring *, s4," = ', strindex(&str(l],&subl1]):3);
sub := s5;

str[4] := chr(0);

writeln('The index of substring *, s5," = ', strindex(&str(l],&sub{1]):3);
end.

This program generates the following output:

Index 1 2 3 4 5 6
012345678901234567890123456789012345678901234567890123456789%
String = Twinkle, twinkle little star, how I wonder what you are.

The index of substring Twin = 0
The index of substring ink = 2
The index of substring hat = 44
The index of substring xxx = -1

strlen
string length
Definition
type c¢p = “char;
function strlen (str:cp): integer;
where str is a pointer to a null terminated string,
The strlen (str) function returns the length of the string pointed to by str. The terminating
null character is not counted when determining the length.
EXAMPLE (ex086.p)

program strlenl (output);

type
cp = “~char;

function strcat(strl, str2: cp): cp; external;
function strlen(str:cp): integer; external;

var
strl, str2: packed array([l1..100] of char;
i, len: integer;

p: Cp;

begin
strl := 'At the end of a row';
strl1{20] := chr(0);
str2 := " I stepped on the toe';
str2(22] := chr(0);
p := strcat(&strl(1l], &str2{l]);
str2 := " of an unemployed hoe.';

str2([23] := chr(0);

NDP Pascal Reference Manual

B Interface to C and Math Libraries 169

P u= strcat(&strl[l], &str2[1]);
. iw= 1
K_// while stri{l] <> chr(0) do begin
write(strl(i]);
I a=1 4+ 1;
end;
writeln;
writeln;
len := strlen(&stri[1]);

writeln('The number of characters in this string is ', len:3});
end.

This program generates the following output:

At the end of a row I stepped on the toe of an unemployed hoe.
The number of characters in this string is 62

strncat

string concatenate with maximum length
Definition

type c¢p = “char;
function strncat (strl,str2:cp; n:integer): cp;

where

strl and str2 are pointers to null terminated strings,
n is an integer less than the length of the strings at stri or str2.

v The strncat (strl,str2) function copies the null terminated string, str1, onto the end of
the null terminated string, str2, until n characters are copied or a null is encountered in stri.
The first character of stri replaces the null terminating str2. If the terminating null character
in stri is found before n characters are copied, then the null is added to str2 and no other
characters are written. If n characters are written before a terminating null is found, then
strncat places a terminating null onto str2. strncat returns a pointer to the concatenated
string.
EXAMPLE (ex087.p)

program strncatl (output) ;

type
cp = “~char;

function strncat(des, src: cp; n:integer): cp; external;

var
a, b, c: packed array[1l..80] of char;
p: cp;
i: integer;

procedure printc;
begin
i = 1;
while c[i] <> chr(0) do begin
write (c[il};
i =1+ 1;

N end;
(/ writeln;

end;

NDP Pascal Reference Manual

170 B Interface to C and Math Libraries

begin
a := 'Where never is heard a discouraging word ';
al42] == chr(o);
b := '"and the skies are not cloudy all day.";

b[38] := chr(0);

writeln('String 1 = ',a:42);

writeln('String 2 = ',b:42);

writeln;

P := strncat(&c(l], &all], 20);

write('First 20 characters from string 1 = '};
printc;

p := strncat(&c{l], &a[21], 100);
write("Remaining characters from string 1 = '};
printc;

p := strncat{&c([1l], &b([1], 50);

writeln;

writeln(*String 1 concatenated with string 2 = ')
printec;

end.

This program generates the following output:

String 1 = Where never is heard a discouraging word

String 2 = and the skies are not cloudy all day.

First 20 characters from string 1 = Where never is heard

Remaining characters from string 1 = Where never is heard a discouraging word
String 1 concatenated with string 2 =

Where never is heard a discouraging word and the skies are not cloudy all day.

string compare with maximum length
Definition

type cp = “~char;

function strncmp (strl,str2:cp; n: integer): integer;
where

strl and str2 are pointers to null terminated strings,

n is an integer specifying the maximum number of characters to compare.
The stremp (strl, str2) function compares the first n characters of two null terminated
strings and returns one of the following values indicating their relationship:

if strl < str2 then return a negative number

if strl = str2 then return zero

if strl > str2 then return a positive number

The comparison stops if a null is encountered before n characters, since that marks the end of
the string.

EXAMPLE (ex088.p)
program strncmp (output) ;
const
sl = ‘economy';
s2 = ‘ecology‘;
s3 = 'eclipse';
s4 = ‘eclogue’;

NDP Pascal Reference Manual

()

B Interface to C and Math Libraries 171

type
cp = “char;
10 = packed array [1..10] of char;

function strnemp(strl,str2:cp; n:integer): integer; external;

procedure compare(a,b:sl0; n:integer);

begin
aln+l] := chr(o);
b[n+l] = chr(o);
writeln('Comparison on first ', n:2," characters = ", strncmp(&a[1],&b[1],n));
end;

begin
writeln('String 1 = ',sl);
writeln('String 2 = ',s2);
compare(sl, s2, 3);
compare(sl, s2, 4);
compare(sl, s2, 20);
writeln('String 3 = ',s3);
writeln('String 4 = ',s4);

compare(s3, s4, 3);
compare(s3, s4, 4);
compare(s3, s4, 20});
end.

This program generates the following output:

String 1 = economy
String 2 = ecology

Comparison on first 3 characters = 0
Comparison on first ¢ characters = 2
Comparison on first 20 characters = 2

String 3 = eclipse
String 4 = eclogue

Comparison on first 3 characters = 0
Comparison on.first 4 characters = -6
Comparison on first 20 characters = -6

strncpy
string copy with: maximum length
Definition

type c¢p = “char;
function strncpy (strl,str2:cp; n:integer): cp;

where

strl and str2 are pointers to null terminated strings,
n is the maximum number of characters to copy.

The strncpy (stri,str2,n) function copies up to n characters from the string str2 to the
string stri. The copy involves the following two situations:

1. if a null character is encountered in str2 before n characters have been copied, then strl
is filled with nulls until n characters have written.

2. If str2 is longer than n characters, then a null character is not copied to strl. strnecpy
returns a pointer to the resulting string.

NDP Pascal Reference Manual

172 _ B Interface to C and Math Libraries

Caution: It is the programmer's responsibility to ensure that the receiving buffer is large
enough for what is written to it. If it is not large enough, adjacent buffers may be overwritten.

EXAMPLE (ex089.p)

program strncpyl (output);
{ Interface to strncpy function in ¢ library)

type ¢cp = ~char;
function strncpy (des,src :cp; nrinteger): cp; external;

var
des,sl,s2: packed array [1..100] of char;
i: integer;
p: cp;

begin
si "Say not of a thing which cannot be understood'; sl1([46]:=chr(0);
82 := 'that in the end it will be understood.'; . $2([39] :=chr(0);
writeln ('String 1 ',81:45) ;
writeln ('String 2 = ',s2:30);
writeln;
P := strncpy (&des(1], &s1[1], 25);
p := strncpy (&des[26]), &s2[20], 50);

write ('Final string = '); i::=1;
while (des[i] <> chr(0)) do begin write(des[i]); i:= i+1 end;
writeln;
end.

This program generates the following output:

String 1 = Say not of a thing which cannot be understood
String 2 = that in the end it will be understood.
Final String = Say not of a thing which will be understood.

strpbrk

Find first occurrence of any character from a given string in another string
Definition

type c¢p = “char;
function (s1, s2: cp): cp;

where

s1 is the string being searched;
s2 is a list of characters being sought.

strpbrk returns the location in s1 of the first character that appears in s2. If no character
from s2 appears in s, NIL is returned.

strrchr
reverse index of a character in a string
Definition

type c¢p = “char;
function strrchr (str:cp:; ch:char): cp;

NDP Pascal Reference Manual

BInterface to C and Math Libraries 173

where

stris a pointer to the null terminated string to be searched,
ch is the character to match.

The strrchr (str, ch) function returns a pointer to the last instance of the character ch in the
string pointed to by str. If ch is not found, then strrchr returns a null pointer.

EXAMPLE (ex090.p)
' program strrchrl(output);

type
¢p = “char;
s40 = packed array [1..40] of char;
s40p = ~s40;

function strrchr{str:cp; ch:char): s40p; external:

var
str: s40;
ptr: s40p;

procedure printstring(c:char);
begin
writeln('The last substring beginning with ',c," = *,ptr~);
if ptr = nil then
writeln('(',c,' is not present)');

end;
begin
str := "A little learning is a dangerous thing.';
str(40] := chr(0);
writeln('The initial string = ',str);
writeln;

ptr := strrchr(&str(l], 'l'); printstring('l');
ptr := strrchr(&str(l], *d'); printstring(*d');
ptr := strrchr(astr([1l], 't'); printstring(‘t');
ptr := strrchr(&str(l], "x"); printstring('x'y;
end.

This program generates the following output:

The initial string = A little learning is a dangerous thing

The last substring beginning with 1 = learning is a dangerous thing.
The last substring beginning with & dangerous thing.
The last substring beginning with ¢ thing.
The last substring beginning with x (nully
(X is not present)

strrindex
reverse index of a substring within a string
Definition

type cp = “char;
function strrindex (strl,str2: cp): integer;

where strl and str2 are pointers to null terminated strings.

NDP Pascal Reference Manual

174 B Interface to C and Math Libraries

The strrindex (stril,str2) function finds the last occurrence of string str2 (not including
the terminating null character) in the string stri. It returns a pointer to the located string in
strl, or -1 if no match occurs.

EXAMPLE (ex091.p)
program strrindex(output) ;

type
cp = “~char;

function strrindex(str, sub: cp): integer; external;

const
sl = "Twinkle, twinkle little star, how I wonder what you are.';
s2 = '"Twin';
§3 = ‘'ink';
s4 = ‘hat';
s5 = "xxx';
var

str, sub: packed array [1..60] of char;

begin
str := s1;
str(57] := chr(0);
sub := s2;
str(5] := chr(0);
writeln('String = ", sl1);
writeln;
writeln(‘'The index of substring ', s2,' = ', strrindex(&str(1],&sub[1]):3);
sub := 83;
str{4] := chr(0);
writeln('The index of substring ', s3,' = ', strrindex(&str(1],&sub{1]):3);
sub := g4;
stri4] := chr(o);
writeln('The index of substring ‘', s4,' = ', strrindex(&str[1],&sub[1]):3):
sub := g5;
str{4] := chr{(o0);
writeln('The index of substring ', s5,' = ', strrindex(&str([1],&sub[1]):3);
end.

This programs generates the following output:

Index : 1 2 3 4 5 3
012345678901234567890123456789012345678901234567890123456789

String = Twinkle, twinkle little star, how I wonder what you are.
The index of substring Twin = 0

The index of substring ink = 11
The index of substring hat = 44
The index of substring xxx = -1

strsave
Save a copy of a string
Definition

type c¢cp = “char;
function strsave(str: cpy: cp:

where str is the string to be copied.

NDP Pascal Reference Manual

B Interface to C and Math Libraries 175

strsave returns a pointer to a new copy of its string argument..

strspn

Compute the length of the initial match between two strings
Definition

type cp = “char;
function strspn{sl, s2: cp): integer;

where s1 and s2 are the two strings being compared.

strspn returns the number of consecutive characters in its first string argument that are also
in its second string argument.

strstr
Locate a string within another string
Definition

type cp = “char;
function strstr(sl, s2: cp): cp;

where

s1 is the string being searched;
s2 is the string being sought.

strstr returns a pointer to the first occurrence of s2 in si1. If s2 isn't found in s, NIL is
returned.

strtod

Interpret a string representation of a double value
Definition

type cp' = “~char;
function strtod(nptr: cp; var endptr: cp): double;

where nptr is an expression representing a pointer to a char.

The return value of strtod is a double representing the contents of nptr. If endptr is not
already set to NIL, it is set on return to point to the first character of nptr that cannot be
interpreted. If the number is too large to store as a double, the constant HUGE_VAL is returned
and the global variable errno is set to ERANGE. If the number is too small to store as a double,
zero is returned and errno is set to ERANGE.

strtok

Tokenize a string
Definition

type c¢p = “char;
function strtok(var sl: cp; s2: cp): cp;

where

s1 is a pointer to a char;
s2 is an expression representing a pointer to a char.

NDP Pascal Reference Manual

176 B Interface to C and Math Libraries

strtok returns the portion of s1 that precedes the first instance of a character appearing also
in s2. If the strings have no characters in common, NIL is returned. If NIL is passed as the
first argument, the next token of the original string is returned.

strtol

Interpret a string representation of a long integer value
Definition

type c¢p = “~char;
function strtol(nptr: cp; var endptr: cp; base: integer): integer;

where

nptr is an expression representing a pointer to a char;
endptr is a pointer to a char;
base is an expression representing an integer.

strtol converts nptr into a long value, assuming the base specified in base. endptr is set on
return to the end of the converted string. '

strtoul

Interpret a string representation of an unsigned long integer value.
Definition

type cp = “char;

function strtoul(nptr: cp; var endptr: cp; base: integer): integer;
where

nptr is an expression representing a pointer to a char;

endptr is a pointer to a char;

base is an expression representing an integer.
strtoul converts nptr into an unsigned long value, assuming the base specified in base.
Leading spaces and zeros are permitted, and if the base is 16 the number may be preceded by
the sequence 0x or 0X. If the base is zero the form is expected to be that of a standard integer,
i.e., 0x or 0X for hexadecimal, leading O for octal, and leading nonzero digit for decimal. If
endptr is not NIL, it will return a pointer to the portion of the string that could not be
interpreted. The string to be interpreted may contain a sign, which is applied to the result
before converting it to unsigned. If the number is too large to be expressed by an unsigned
long integer, the return value is ULONG_MAX and the global variable errno is set to ERANGE.

strxfrm

Transform a string into another based upon the program's locale
Definition

type c¢p = “char;

function strxfrm (strl,str2:cp; n:integer): cp;
where

strl and str2 are pointers to null terminated strings,
n is the maximum number of characters to copy.

NDP Pascal Reference Manual

B Interface to C and Math Libraries 177

The strxfrm (strl,str2,n) function copies up to n characters from the string str2 to the
string strl. The copy involves the following two situations:

1) if a null character is encountered in str2 before n characters have been copied, then stri
is filled with nulls until n characters have written.

2) If str2 is longer than n characters, then a null character is not copied to stri. strxfrm
returns a pointer to the resulting string,.

Caution: It is the programmer's responsibility to ensure that the receiving buffer is large
enough for what is written to it. If it is not large enough, adjacent buffers may be overwritten.

In this implementation, this function is identical to strncpy.

swab
swap bytes
Definition
type c¢p = “char;
function swab (strl,str2:cp; n:integer): integer;
where

strl and str2 are pointers to null terminated strings, .
n is an integer representing the maximum number of characters to copy.

The swab (strl,str2,n) function copies n bytes in pairs from str1 to str2, reversing the
pairs in the process. If n is odd, then it is rounded down..

EXAMPLE (ex092.p)
program swab2 (output);

type
cp = “char;

function swab{(src, des: cp; n:integer): integer; external;

var
src, des: packed array [1..20] of char;

begin
src := '12345678badcfehgji’;
src(l19] := chr(0);
writeln('Initial string = ', src);
writeln;
swab(&srcfll, &des[1]1, 18);
writeln(" Swab once = ', des);
src := des;
swab{&src[l), &des([1], 18);
writeln(" Swab twice = ', des);
end.

This program generates the following output:

Initial string = 12345678adcfehgji
Swab once = 21436587abcdefghi]j
Swab twice = 12345678abciehgji

NDP Pascal Reference Manual

178 B: Interface to C and Math Libraries

system pos ony)
shell to DOS Definition N

type <c¢p = “char; . S~
function system (c: cp): integer; external;

where c is a pointer to a null terminated character string.

The system(c) function shells to DOS and executes the command contained in the null
terminated character string pointed to by c. The normal return value of system is zero; a non-
zero return value indicates failure.

The system function works by loading a copy of COMMAND.COM into memory and passing it c,
the pointer to the command to be executed. Both internal and external DOS commands may be
executed. In order for the system function to work correctly, sufficient memory must be
available for loading COMMAND .COM and any program it might load. There are several ways to
accomplish this using the Phar Lap DOS extender, RUN386. For example, the following
command will load and run the compiled program fn.exp, leaving the maximum conventional
memory available for loading COMMAND . COM:

run386 -maxreal ffffh fn.exp
EXAMPLE (ex093.p)

The program in this example uses the system function to execute three DOS commands.
These commands 1) get a directory of the current drive and redirect the listing to a file, named
dirlst; 2) print the file dirlst on the screen; 3) echo a message on the terminal.

program. systeml (output) ;

type
cp = “~char; ' N

function system(c: cp): integer; external;

var
cmd: packed array([1..20] of char;
begin
cmd := 'dir > dirlst';
cnd[20] := chr(0);
if (system (&cmd[1]) <> 0) then
writeln(cmd, “failed!‘);

cmd := 'type dirlsc '

cmd([20] := chr(0);

if (system (&cmd[1l]) <> 0) then
writeln{cmd, “failed!");

cmd := "echo -- all done.';
cmd{20] := chr(o);
if (eystem (&cmd([1]) <> 0) then
writeln{cmd, "failed!'):
end.
This program was executed with the command:
run386 -maxreal ffffh systeml
and generated the following output:

Volume in drive D is DISK2_VOL1
Directory of D:\PAS\SYSTEM

C

NDP Pascal Reference Manual

B Interface to C and Math: Libraries

179

<DIR> 5-12-89 3:08p
. . <DIR> 5-12-89 3:08p
SYSTEM DOC 1920 5-12-89 2:45p
SYSTEM1 P 548 5-12-89 3:30p
SYSTEM1 MAP 9212 5-12-89 3:31p
SYSTEM1 EXP 22807 5-12-89 3:31p
ZSYSTEM1 TXT 0 5-12-89 3:31p
DIRLST 0 5-12-89 3:31p
8 File(s) 44498944 bytes free
-- all done.
tan
tangent
Definition

function tan (d: double): double;

where d is an expression of type DOUBLE.

The tan (d) function returns the value of the tangent of d. If the input argument is out of
range, the global variable errno is set to EDOM.

EXAMPLE (ex094.p)

program tanl (output) ;

function tan(d: double): double; external;

const
pi = 3.14159265358979323846;

var
i: integer;
x: double;
begin
x := 0.0;
for i:= 1 to 5 do begin
writeln(' x = ', X, ' tan(x) =
X 1= X + pi/4.0;
end;
end.

This program generates the following output:

X = 0.00000000000000000e+00 tan(x) =
X = 7.85398163397448286e-01 tan(x) =
x = 1.57079632679489657e+00. tan(x) =
X = 2.35619449019234486e+00 tan(x) =
X = 3.14159265358979311e+00 tan(x) =

Compute single-precision tangent
Definition
function (f: float): float;

where f is an expression of type FLOAT.

',otan(xy);

0.00000000000000000e+00
1.00000000000000000e+00:
-1.70000000000000149e+308
-1.00000000000000000e+00
0.00000000000000000e+00

NDP Pascal Reference Manual

180 B Interface to C and Math Libraries

The tanf (£) function returns the value of the tangent of £. If the result is out of range, the
global variable errno will be set to ERANGE. errno is not set if the input argument is out of
range.

tanh

hyperbolic tangent
Definition
function tanh (d: double): double;
where d is an expression of type DOUBLE.
The tanh (d) function returns the hyperbolic tangent of 4.
EXAMPLE (ex095.p)
program tanhl (output) i
function tanh(f: double): double; external;

const
pl = 3.14159265358979323846;

var
i: integer;
x: double;
begin
X := 0.0;
for i:= 1 to 5 do begin
writeln(' x = ', X, ' tanh(x) = ', tanh(x));
X := X + pi/4.0;
end;
end.

This program generates the following output:

= 0.00000000000000000e+00 tanh(x) =
.85398163397448286e-01 tanh(x) =
.57079632679489657e+00 tanh(x) =
.35619449019234486e+00 tanh(x) =
.14159265358979311e+00 tanh(x) =

tanhf

Compute single-precision hyperbolic tangent
Definition

.00000000000000000e+00
.55794202632672541e-01
. 17152335667274345e-01
.82193380007238656e-01
.96272076220750153e-01

KoM oMK XK
]

[l
W e
O YW W N O

function tanhf (f: float): float;
where f is an expression of type FLOAT.

The tanhf (f) function returns the hyperbolic tangent of £.

time__ (posoniy)
return the current time in ASCII format
Definition

type S8 = packed array [(1..8] of char;

procedure time_ (VAR timeStr: s8); external;

NDP Pascal Reference Manual

B:Interface to C and Math Libraries 181

where timeStr is an array variable of type CHAR containing at least eight elements.

The time_ function returns the current time, known to DOS, as an eight character ASCII string
in the form hh:mm: ss.

EXAMPLE (ex096.p)
program timel (output);

type
s8 = packed array [1..8] of char;

procedure time_(var timeStr: s8); external;

var
now: s8;

begin
time_ (now) ;
writeln('The time is ', now);
end.

This program generates the following output:

The time is 14:40:40

timedate

return date and time in integer format
Definition

procedure timedate_(VAR year,month,day,hour,.minute, second,mcsec: integer);
external;

where year, month, day, hour, minute, second, and mcsec are variables of type INTEGER.
The timedate_ procedure returns the current date and time as these items are known to DOS.
Remember, the DOS time granularity is approximately 5 hundredths of a second.
EXAMPLE (ex097.p)
program timdat (output);
procedure timedate_
(var year, month, day, hour, minute, second, mcsec: integer); external;

var
year, month, day, hour, minute, second, mcsec: integer;

begin
timedate_(year, month, day, hour, minute, second, mcsec);
writeln('year = ', year);
writeln('month = ', month);
writeln('day = ', day)i
writeln('hour = ", hour);
writeln(‘minute = ', minute);
writeln('second = ', second);
writeln('mcsec = ', mcsec);
end.

This program generates the following output:

year = 89
month = 4
day = 8

NDP Pascal Reference Manual

182 ‘ B Interface to C and Math Libraries

hour = 14
ninute = 34
second = 40
mcsec = 750000

tmpnam

Create a file name
Definition

type c¢p = ~char;
function tmpnam(s: c¢cp): cp;

where s is an expression representing a: pointer to a char.

tmpnam creates a file in the /tmp directory (UNIX) or current working directory (DOS, 0S/2,
Windows) beginning with: X_ and a character and ending with a five digit number that does not
have the same name as an existing file. If s is not NIL, the return value is s. If s is NIL, the
return value is a pointer to a string containing the new file name.

tolower

Convert character to lower case
Definition

function tolower(c: integer): integer;
where ¢ is an expression of type INTEGER.

tolower returns the lower case equivalent of its character argument.

toupper

Convert character to upper case
Definition

type cp = ~char;
function toupper(c: integer): integer;

where c is an expression of type INTEGER.

toupper returns the upper case equivalent of its character argument.

yO0
Bessel function of the second kind, order O.
Definition
function y0 (d: double): double;
where d is an expression of type DOUBLE.

The v0 (d) function returns the Bessel function of the second kind, order 0, of & This.
corresponds to Y, (d) in the usual notation. If the input argument is out of range, the global
variable errno will be set to: EDOM.

EXAMPLE (ex098.p)
program yOa (outpu‘t:) ;,'

function y0 {(d: double): double; external;

NDP Pascal Reference Manual

B Interface to C and Math Libraries. 183

var
. x: double;

k_/j i+ integer;

begin
x = 0.0
for i := 1 to 7 do begin
writeln(' x = ', X:6:2, " yO(x) = ', y0(x):20:14);
X 1= X + 2.5;
end;
end.

This program generates the following output:

X = 0.00 yo(x) = 0..00000000000000
X = 2.50 yOo(x) = 0.49807035961523
x = 5.00 yO0(x) = -0.30851762524903
x = 7.50 y0{x) = 0.11731328614821
x = 10.00 yO(x) = 0.05567116728360
x = 12.50 yO0(x) = -0.17121430684467
x = 15.00 yO0({x) = 0.20546429603892

yi
Bessel function of the second kind, order 1.
Definition
function y1 (d: double): double;
(\./, where d is an expression of type DOUBLE.

The y1 (d) function returns the Bessel function of the second kind. order 1, of 4. This
corresponds to Y, (d) in the usual notation. If the input argument is out of range, the global
variable errno will be set to EDOM.

EXAMPLE (ex098.p)
program yla(output);
function y1 {(d: double): double; external;

var
x: double;
i: integer;

begin
X = 0.0;
for 1 := 1 to 7 do begin
writeln(® x = ', X:6:2, " yl(x) = ', y1(x):20:14);
X 1= X + 2.5;
end;
end.

This program generates the following output:

X = 0.00 yl{x) = 0.00000000000000
X = 2.50 yl{x} = 0.14591813796679
x = 5.00 yl(x) = 0.14786314339123
PR x = 7.50 yl(x) = -0.25912851048611
(_,j x = 10.00 yl{xi = 0.24901542420695
x = 12.50 yl(x} = -0.15383825653750
x = 15.00 yl{x) = 0.02107362803687

NDP Pascal Reference Manual

184 B Interface to C and Math Libraries

yn
Bessel function of the second kind, order i.
Definition

function yn (iI: integer; d: double): double;
where |

1is an expression of type INTEGER,
dis an expression of type DOUBLE.

The yn (1, d) function returns the Bessel function of the second kind, order i, of 4. This
corresponds to Y, (1, d) in the usual notation. If the input argument is out of range, the global
variable errno will be set to EDOM.

EXAMPLE (ex100.p)
program yna (output) ;
function yn(i: integer; d:double): double; external;

var
x: double;
i, j+ integer;

begin
for 1 := 1 to 3 do begin
X := 2.50;
for j := 1 to 3 do begin
writeln(" i = *, i:2, ' x = ', x:6:2, ' yn(i,x) = ", yn(i,x):20:14};
X = X + 2.50;
end;
writeln;
end;
end.

This program generates the following output:

i=1 x= 2.50 yn(i,x) = 0.14591813796679
i=1 x= 5.00 yn(i,x} = 0.14786314339123
i=1 x= 7.50 yn(i,x) = -0.25912851048611
i=2 x= 2.50 yn(i,x) = =-0.38133584924180
i=2 x= 5.00 yn(i,x) = 0.36766288260552
i=2 x= 7.50 yn(i,x) = =0.18641422227784
i=3 x= 2.50 yn(i,x) = =-0.75605549675367
i=3 x= 5.00 yn(i,x) = 0.14626716269319
i=3 x= 7.50 yn(i,x) = 0.15970759193793

NDP Pascal Reference Manual

\.4\/‘3

C NDP Pascal Error Messages

Overview

Section C.1 of this appendix contains a listing and explanation of the compile time error
messages. Section C.2 contains a listing and explanation of the execution time error messages.
Other listings of errors may be found in Appendix A of the NDP User's Manual and the NDP
Tools Manual.

C.1. Compile Time Error Messages

1 Selector must be constant

This occurs when the selector in a variant record is not a constant. The variant record may be
defined in either a type definition or a variable declaration. This error is sometimes caused by
misspelling a previously defined enumerated constant.

2 Tag field must be a scalar type

This occurs in a type definition or variable declaration that makes use of a variant record with
a tag field. The constant or variable used in the tag field must be a scalar. It may not be an
array, record, set, pointer, or file type.

3 Initial value for tag must be constant

This occurs when the predefined procedure NEW is called to allocate space for a dynamic
variable with a variant record. The value for the tag field must be a constant.

4 Statement expected: function call illegal

A function call appears where a statement is expected.

5 Ordinal type expected

The indexes of an array type must be of type ordinal. This error occurs when an array is being
declared without indexes, or the indexes are not ordinal values.

6 Type not defined

A type identified is being used that has not yet been defined. This is probably caused by
omitting the type definition, placing the type definition in the wrong place, or a spelling
mistake.

7 Scalar value expected

The upper and lower limits of a subrange type must be scalar values.

186 C NDP Pascal Error Messages

8 Incompatible scalar values

The upper and lower limits of a subrange type were specified as scalar values, but not of the !

same base type. NI

9 Labels must be in the range 0..9999
Labels must be integer values in the range 0 to 9999.

10 lllegal use of a procedure as a function

11 Multiple definition of identifier:
An identifier may only be defined once. This is probably a spelling mistake.

12 Ordinal type required in case statement

The expression used as the selector in a case statement must be of ordinal type.

21 Must be a record

Avariable is being used as if it were part of a record. The variable is not a record, hence, it may
not be qualified with a field name.

26 lllegal variable or expression

This message has a variety of causes and probably results from a typing mistake. : \
An invalid type in a type definition. For example: N
type tl = nil; or type t2 = ;
An unrecognizable operator in an expression. For example:
t=* or x = :

Providing an incorrect type to a predefined function. For example, using mod(r,r) for real
r.

27 This object has no defined size

29 Operand must be a variable

The dyadic operators taken from the C language, +=, -=, etc., may not be used in an expression
together with the a351gnment operator.

30 REAL operand not allowed here

A variable of type REAL is being used in an expression in which the real type is not allowed. For
example, using the integer divide operator, div, with real arguments.

31 Cannot take the address of this object

The address of (&) operator is being incorrectly used. This usually occurs when the address of ;
operator is used on an entire array, instead of an array element. For example, if x is an array, N
then &x[10] is legal, while &x is not.

NDP Pascal Reference Manual

C NDP Pascal Error Messages 187

33 Type mismatch

The variable or constant being referenced is not of the expected type. This message has a

variety of causes d proba ly results, from a typing mistake. .

" Lew ;93’*?5 ie Tb‘rem;t‘ AL o %a«f pafoanetef” Unbess 17 a Lol ates fgpﬁ:
o & bgpes *f”ﬁf W Phe SaMe Lut, ares “ipelcase & dhe ther i a&wpf“ﬁgka
35 Can only index arrays

Square brackets are used to designate array subscripts. Check to see that the identifier is an
array. If the identifier is a procedure or function, then parentheses must be used to delimit the
argument list.

36 This is not a variable

The identifier being referenced is not a variable. This occurs when an identifier is declared in
two different ways: as a constant in a CONST declaration, and later as a field identifier within a
record definition. This conflict in usage is reported when the qualified variable name is used on
the left hand side of an assignment statement.

37 lllegal operation

The operator symbol is not recognized or is being incorrectly used. This is usually a typing
mistake, for example, using ** for *, or using // for /.

Using an operator on a data type for which the operator is not defined also produces this
message. For example, using the integer divide function, div, to divide two real numbers.

38 This is a binary file

(The compiler is reading a binary file. Check that the ﬁle name and extension on the compiler
comimand line is correct.

40 This must be a procedure or function

Attempt to use an identifier as a procedure or function. This error may result from enclosing
array subscripts with parentheses instead of square brackets [and].

This error also may occur in a procedure or function call when a formal parameter is a
procedure or function, and the actual parameter is a constant variable, or expressmn
= was be st @%’wﬁ‘&*&ﬂﬁ ol pPascad :\;MJNE Freseds ar Fave, cakd

41 A procedure may not return a value

A procedure name may not occur on the left side of an assignment statement.

42 No return type specified for function

The heading of a function definition does not contain a return type.

43 Unpacked variable required for actual parameter

Actual variable parameters used in function or procedure calls must be unpacked. This issue is
discussed in Sectiort 4.11.

Using a constant or a type identifier as an actual vanable parameter also produces this error.

) ¢ . g _,
v A can Fass @ f‘”ﬁzﬁ&m‘ o o Fecersl as o e o

un fess 4% a. Perniey {“or @Mﬂﬁﬁ)l

NDP Pascal Reference Manual

188 _ C NDP Pascal Error Messages

44 Not enough arguments given

The number of arguments in a procedure or function call is less that the number of parameters O
declared in the procedure or function definition. _,»)

45 New requires a pointer variable

The argument to the predefined procedure NEW requires a variable whose type is a pointer.

46 Argv requires a string variable

The second argument to the predefined procedure ARGV must be a string, that is, a packed
array [1..n] of char.

47 Pointer type undefined

48 Scalar value required

A variable whose type is a scalar is required by the syntax. For example, the lower and upper
values in the definition of a subrange type must be scalar values.

49 Program ends before end of file

The end of the input file has been encountered without finding the final period in a program, or
final semicolon in a separately compiled module.

This message often occurs when a syntax error is encountered and the parser is unable to o
recogmze the xl}ext statement being scanned because of the prevmus error. ')

SEot|
50 Record variable expected

A variable whose type is a record is required by the syntax. For example, the WITH statement
requires a record variable.

51 Type expected

A type identifier is required; an anonymous type is not allowed. For example, ch: “packed
array [1..5] of char; is not legal since a type name must follow the pointer.

52 No assignment to return variable in function

The function name is not assigned a value within the body of the function.

53 Dispose requires a pointer value
The argument to the predefined procedure DISPOSE requires a variable whose type is a pointer.

54 Cannot write this type of expression

The predefined procedures WRITE and WRITELN can only print expressions of type BOOLEAN,
CHAR, INTEGER, DOUBLE, FLOAT, and REAL.

NDP Pascal Reference Manual

C NDP Pascal Error Messages 189

55 Cannot read into this type of variable

The predefined procedures READ and READLN can only read data of type BOOLEAN, CHAR,
INTEGER, DOUBLE, FLOAT, and REAL.

56 Text file expected
The predefined procedures READLN and WRITELN require a text file.

57 Text variable expected

The predefined function EOLN and PAGE require an actual parameter that is of type TEXTFILE.

58 File expected
A variable of FILE type was expected.

59 Set constructor elements must be ordinal values

60 Unexpected end of file

The end of the input file has been encountered before the end of the program has been
reached. This is probably because of a mismatched BEGIN/END pair, or a semicolon
prematurely terminating an IF statement.

61 Type illegal in expression

A type identifier may not be used in an expression. An expression may only contain constants,
variables, functions calls, and operators.

62 Procedure call illegal in expression

This occurs when a procedure name is used in an expression as if it were a function.

64 Built in operation may not be an actual parameter

A predefined Pascal routine may be used as an actual parameter. To get around this, create
another function that simply returns the required value of the predefined Pascal routine. See
Example 1 in Section 8.4 for an example using the cos function.

65 Subrange type expected

A subrange type identifier is required. For example, the definition of an array required the use
of a subrange type.

66 Packed array variable expected

The predefined procedures PACK and UNPACK require a packed actual argument.
67 Array component types incompatible

The array parameters to the predefined UNPACK procedure are not compatible. This error only
occurs when the -ansi compile time switch is used.

NDP Pascal Reference Manual

190 C NDP Pascal Error Messages

68 Unpacked array variable expected
The predefined procedures PACK and UNPACK require an unpacked actual argument.

69 Duplicate case

There is a duplicate constant value in the alternatives of a case statement.

71 Cannot open file: <filename>
The file indicated by <filename> cannot be found.

72 expected: <symbo11> got: <symboi2>

The scanner expected to see <symboll>. Instead <symbol2> was encountered.

74 File name too long

The file name specified is greater than 131 characters.

R g ¢ Al s,

78 Too many -l options

A maximum of sixteen -I options are allowed to the compiler.

79 lllegal option: <string>

The option specified by <string> is not recognized by the compiler.

80 Type name expected

A formal parameter in a procedure or function is missing a type identifier, or the identifier
provided is not a type identifier.

82 File of file not allowed
A file may not be made up of files.

83 Input or output not defined

The file identifiers INPUT or OUTPUT do not occur in the program heading and the program
contains a READ or WRITE statement. This only occurs if the -ansi compiler option is used.

85 Low bound must be less than high bound

The bounds in a subrange type must be given with the lower bound first. This error also can
be caused by entering an integer constant larger than MAXINT, which causes the value to be
stored as a negative number.

86 Null string

The null string is not allowed in standard Pascal. This error only occurs if the -ansi compiler
option is used. '

NDP Pascal Reference Manual,

C NDP Pascal Error Messages 191

87 A number may not be followed by a letter

An integer constant contains a letter. This only occurs when the -ansi compiler option is used.

88 File may not be assigned to

A file variable may not be used on the left hand side of an assignment statement.

89 File comparison not legal

Two file variables may not be used in an expression. File comparison must be done on a
component by component basis.

90 Subrange not legal in record tag/case

In standard Pascal, a subrange may not be used as the constant selector in a case statement.
This occurs in two situations: in a variant record definition or in a CASE statement. Get around
this restriction by explicitly listing each constant in the subrange. This error only occurs when
the -ansi compiler option is used.

91 Tag field used as var parameter

Standard Pascal does not allow the tag field of a variant record to be passed as a variable
parameter to a procedure or function. This error only occurs when the -ansi compiler option is
used.

92 lllegal type for comparison

Standard Pascal does not allow comparison between the types specified. For example,
comparison between two record structures is considered illegal and must be done on a
component by compoenent basis. This error only occurs when the -ansi compiler option is
used.

93 Argument to round or trunc must be real
The input argument to the predefined functions ROUND and TRUNC must be of type REAL.

94 Nil may not be in constant

Standard Pascal does not permit a constant to be defined with the value of NIL. This error only
occurs if the -ansi compiler option is used.

95 Expression not legal in constant
Standard Pascal does not permit an expression to be used in a constant definition. This error

only occurs if the -ansi compiler option is used.

96 For index may not be var parameter

The index of a FOR loop may not be passed as a variable parameter to a procedure or function.

97 Assignment to FOR loop index inside loop
The index of a FOR loop may not be altered with: the body of the loop.

NDP Pascal Reference Manual

192 C NDP Pascal Error Messages

98 Not all tag cases specified in variant record

The list of case selector constants is not exhaustive for the type specified in the selector SN
expression. This only occurs when the -ansi option is used, and typically occurs in the form 1\
“case integer of”, sinece not all integers are listed.

99 May not dispose of a value parameter

Standard Pascal does not allow a parameter that is passed by value to be an argument in the
dispose procedure. This only occurs if the -ansi compiler option is used.

100 Goto out of scope

The target of a GOTO statement is not within the current scope. A GOTO statement cannot
transfer control into a structured statement, or into or out of a procedure or function. Further
details are in Section 7.7.

101 Label already defined
Duplicate definition of a label.

102 Local variable required

The index of a FOR loop must be an entire variable. It may not be an element of an array,
record, or pointer to an integer.

103 Statement expected

The Pascal syntax requires a statement here. This message occurs in a variety of ways, mostly N
caused by typing mistakes. For example, typing the assignment operator without the colon,
e.g., = instead of :=. =negtcd dowrncnts
s oy @ oAk $ a0 N .
Extn povig Cofnyy Py 'ig’f’_l?ﬁ &F ¢at ,{?%gﬁ“’i o6

e

104 Case expression not constant

The selector in a case expression is not a constant expression.

105 Label not declared
A label was found that was not declared.

106 Label expected
A label is expected in the GOTO statement.

107 Variable expected

The Pascal syntax requires a variable here. This can be caused by using a constant identifier
on the left hand side of an assignment statement, or qualifying a variable with an undefined
field name (i.e., rec.x := 7; where the field x does not exist in the record rec).

108 Structured type expected

A structured type is expected after the keyword pack in a type declaration. ! J

NDP Pascal Reference Manual

C NDP Pascal Error Messages 193

109 Function return must be scalat/pointer
A function can only return a scalar or a pointer value. It cannot return a structured data type.
TRwAetiens TCamsh Febuln fedetds { oun éturn {zs,nm-@r o Peosd é}“? 24& W want te
! M&Q o a ﬁfﬁg‘,,\a
110 Digit required after decimal point Fices

Standard Pascal requires that numeric constants have a digit after the decimal point. This only
occurs when the -ansi compiler option is used.

111 Cannot index string constants
String constants can only be accessed in their entirety. They may not be indexed like arrays.

112 Cannot dereference a function call

A function that returns a pointer cannot be dereferenced in an expression.

113 Multiple forward declarations

Only one forward declaration is allowed for any procedure or function identifier.

114 Second parameter required

The second argument is missing in a call to the predefined READ or WRITE procedure.

115 Only equality and inequality allowed on pointers

Arithmetic may not be done on pointers.

116 FOR loop variable assigned in procedure

Standard Pascal does not permit the loop index to be altered in a function or procedure. The
instance detected here occurs when the loop index is altered in the function or procedure since
it is global to the routine. This only occurs if the -ansi compiler option is used.

117 Value out of bounds

An assignment is being made to a subrange variable that is outside of the subrange type. This
only occurs if the -ansi compiler option is used.

118 Array size undefined

This occurs when the size of the array passed as the second argument to the predefined ARGV
procedure is undefined.

119 Set too large for representation

The default number of elements in a set is 32. This may be extended to 256 by using the -p4
compiler option.

120 Packed variable may not be passed by reference

A packed variable may not be passed as a variable actual parameter. See the discussion of
packed and unpacked types in Section 4.11. This error only occurs when the -ansi compiler
option is used.

NDP Pascal Reference Manual:

194 C NDP Pascal Error Messages

121 Variable expected

This occurs when a type identifier is used on the left hand side of an assignment statement.

122 External declaration only allowed at top level

Only identifiers declared th the outermost level of a program or separately compiled module
may be declared external. :

123 Type size exceeds implementation limit

The length of a type is zero (the null string is illegal), or the size of a constant exceeds the value
allowed for an integer, real, or floating constant.

130 Internal Compiler Error <number>

This is generated when an internal consistency check within the compiler has'failed‘. Please
send this message, program source code and other pertinent material to Microway.

- ahe £K *o wakt guge PIVY I VIR A el are = f,wé?.;?g{}ﬁ@i cote s '}%”L}Jjj
= Lhe K e mm’ﬁ“‘fz"}"ew@mve\ Prsead (i,s,,m} ASE K '
171 Ran out of string space

There are too many characters in the identifier names and character strings to store in the
string table. Space for this table is dynamically allocated, with a maximum of roughly one-half
megabyte. Get around this restriction by breaking the program into smaller routines and
compiling them separately.

173 End of line found in string

A character string is missing its terminating apostrophe. —

176 Include nested too deeply
INCLUDE files may be nested 16 levels deep.

177 lllegal character

A character was encountered that is not valid in the context in which it occurred. For example,
a =1\ 2;

180 End of file found in IF

An IF statement has not been terminated with a semicolon. This has caused the remaining
portion of the program to be read in as a comment.

181 Preprocessor expression must be constant

Preprocessor expressions must evaluate to a constant.

182 Unmatched #endif
A preprocessor #IF, $ IFDEF, # IFNDEF does not have a matching #ENDIF.

183 Too many parameters for a macro —/

The maximum number of parameters to a macro is 64.

NDP Pascal Reference Manual'

C NDP Pascal Error Messages 195

184 lllegal preprocessor command

The identifier following the # symbol is not recognized as a preprocessor command.

185 End of file found in comment

A comment has not been terminated with its matching symbol. This has caused the remaining
portion of the program to be read in as a comment.

186 #defines nested too deeply

Macros can be nested to a maximum level of 32.

188 Wrong number of params in macro call

The number of arguments in a macro call does not correspond to the number of parameters in
the macro definition.

191 Warning: Cannot take the address of this object

It is not possible to take the address of a numeric constant, a type identifier, or an array name.
To get the address of an array, take the address of the array indexed by its lower bound.

200 redeclaration of: <name>

Standard Pascal requires that the identifiers in the program heading be unique. This is caused
by a duplicate name, probably a file name, in the program statement. This error only occurs
when the -ansi-compiler option is used.

201 Label not deﬁned: <labels

The label specified by <label> has been declared but not defined in the program, or not used
with a statement. Note that the label does not have to appear as the target of a GOTO statement
for this error to occur.

202 Type not declared <¢t>

The type specified by <t> has been used in a forward declaration but not been declared.

203 Used before defined in scope <t>

The identifier specified by <t> has been previously defined in an outer scope level, (so: that it is
global to some routines), and then used and redefined in another scope level. This is equivalent
to having an identifier with two different meanings in the same scope level, which is not
allowed in Pascal.
This also occurs in the definition of a pointer type where the type being pointed to is separated
from the type being defined. For example:

type ptr = ~t;

procedure p;

begin

end; {p}

type t = {type definition}

NDP Pascal Reference Manual

196 C NDP Pascal Error Messages

204 Parameter not declared: <p->

The parameter specified by <p> was used in the program statement and not declared in the
body of the program. This error only occurs when the -ansi compiler option is used.

205 Parameter is not a variable: <p>

The parameter specified by <p> was used in a program statement, then later declared as.
something other than a variable, for example, a type. This error only occurs when the -ansi
compiler option is used.

206 Forward procedure not defined: <p»

A body procedure or function that was declared forward was not found. This error only occurs
when the -ansi compiler option is used.
209 No such field in this record: <z>

A record name is being qualified Wmh an identifier that has not been declared to be part of this
record.

211 Undefined symbol: <s>

The identifier specified by <s> has not been previously declared.

212 Undefined type: <t»>

The specified type identifier was used that was not previously defined. This message normally

occurs in the parameter list of a procedure or function.

217 Duplicate field: <z>

The specified field names occur more than once in a record definition.

NDP Pascal Reference Manual

| | Index

#DEFINE 95

#ELSE 96

#ENDIF 96

#IF 96

#IFDEF 96

#IFNDEF 96

#INCLUDE 95

#LINE 97

#UNDEF 95

_ermo 120

ABS 79

Access 102

Acos 103

Acosf 104

Acosh 104

Actual parameter 64

Aliasing 64, 74

ARGC: 79

ARGV 80

Array
multi-dimensional’ 42

Array, component 33

Array, index 33

Array Type 33

Arrays, multi-dimensional 33

Asin 104

Asinf 105

Asinh 105

Assignment compatible 48, 51, 55, 58

Atan 105
Atan2 106
Atan2f 106
Atanf 107
Atanh 107
Atof 107
Atoi 108
Atol 108
Bemp 109
Beopy 110
Block 11
BOOLEAN Scalar Type 29
Bufcpy 111
Buffer variable 71, 83, 86
Buffer variables
variable 37
Bzero 111
C library functions
_errno 120
acecess 102

acos 103
acosf 104
acosh: 104
asin 104
asinf 105
asinh 105
atan 105
atan2 106
atan2f 106
atanf 107
atanh 107
atof 107
atoi 108
atol 108
bemp 109
beopy 110
bufepy 111
bzero 111
cabs. 112
calloc 113
ceil 113
clearn 114
clock 115
clrndpex 115
cosf 115
cosh 115
coshf 116
date_ 116
difftime 117
dosdat 117
dostim 117
ecvt 118
erf 119
erfe 119
execl 120
execle 120
execv 121
exit 121
fabs 121
fevt 121
ffs 122
filln 122
floor 123
fmod 124
frexp 125
frexpf 125
gamma 125
gevt 126
getdat 126
getenv 126
gettim 127

hypot 127
idate_ 128
index 128
isalnum 130
isalpha 130
iscntrl 130
isdigit 130, 132
isgraph 130
isinf 131
islower 131
isman 131
isprint 131
ispunct 131
isspace 131
isupper 132
jO 132

jl 138

jn 133
ldexp 134
Idexpf 135
log 135
loglO 135
log10f 136
logf 136
mapdev 136
memechr 138
mememp: 138
memepy 139
memmove 139
memset 139
mktemp 139
mktime 140
modf 140
perror 141
pow 141
powf 142
racos 142
raise 142
rand 143
rasin 143
ratan 144
ratan2 144
rcos 145
rcosh 146
remove 146
rename 146
rexp 147
rfrexp 147
rindex 147
ridexp 148
rlog 148
rlogl0 148
rpow 149
rsin 149
rsinh 149
rsqrt 150
rtan 150

rtanh 151
sec_100_ 151
secnds_ 152
sinf 158
sinh 153
sinhf 153
sprintf 154
sqrtf 157
srand 157
sscanf 158
strcat 161
strchr 162
stremp: 163
strcoll 164
strepy 164
strespn 165
strerror 166
strftime 166
strindex 167
strlen: 168
strncat 169
strnemp 170
strnepy 171
strpbrk 172
strrchr 172
strrindex 173
strsave 174
strspn 175
strstr 175
strtod 175
strtok 175
strtol 176
strtoul 176
strxfrm 176
swab 177
system 178
tan 179
tanf 179
tanh 180
tanhf 180
time_ 180
timedate_ 181
tmpnam 182
tolower 182
toupper 182
yO 182
yl 183
yn 184

Cabs 112

Calloc 113

Case selector 52

Ceil 113

CHAR 30

CHR 81

Clearn 114

Clock 115

Clrndpex 115

Compile time error messages 185

Constant 26
Control variable 55
COSs 81
Cosf 115
Cosh 115
Coshf 116
Data type 23
Date_ 116
Declaration order 14
Difftime 117
DISPOSE: 82
DOS Interrupts.
INT 21h 129
Dosdat 117
Dostim 117
Dynamic variable 84
Dynamic variables 36
Ecvt 118
End of line 86
Entire variable 55
EOF 82, 83, 86
EOLN 82
Equal precedence 46
Erf 119, 123
Erfc 119, 123
Errmo 120, 141
Evaluation order 46
Execl 120
Execle 120
Execv 121
Exit 121
EXP 83
Expressions
boolean expressions 47
Fabs 121
Fevt 121
Ffs 122, 123
File 71
File pointer 83, 86, 87, 88
pointer 37
File variable 82
Filln 122, 123
Floor 123
Fmod 124
Formal function 64
Formal parameter 64
Formal procedure 64
Formal routine 65
FORWARD' 66
Frexp 125
Frexpf 125
Function 63
Function call 48
Function,results 66
Functions

side effects 48
Gamma 125
Gevt 126
GET 43, 73, 83
Getdat 126
Getenv 126
Gettim 127
Heading, function 63
Heading, procedure 63
Hole in scope 13, 67
Hypot 127
Idate_ 128
If statement 54
Index 128
INPUT 15
INTEGER 30
Isalnum 130
Isalpha: 130
Isentrl 130
Isdigit 130, 132
Isgraph 130
Isinf 131
Islower 131
Isnan 131
Isprint 131
Ispunct 131
Isspace 131
Isupper 132
JO 132
J1 133
Jn 133
Label 54, 56
Labs. 134
Lazy evaluation 73, 87
Ldexp 134
Ldexpf 135
LN 83
Log 135
LoglO 135
LoglOf 136
Logf 136
Macro 95
Mapdev 136
MAXINT 31
Memchr 138
Mememp: 138
Memepy 139
Memmove 139
Memset 139
Mktemp 139
Mktime 140
Modf 140
Mutually recursive 66
NDP status word 115
NEW 43, 84
NIL 37
ODD 84

Operator 46
Operators
boolean operators 47
relational operators 47
Optimizations. 47
ORD 84
OUTPUT 15
PACK 33, 84
PACKED 33
records 35
Packed array 85, 91
PAGE 85
Parameter, actual 58
Parameter, formal 58
Parameter list 64
Parameter transmission 64
Parameters 48
Parenthesis 46
Pass by reference 65
Pass by value 65
Pass by variable 65
Perror 141
Pointer 23, 43
Pointer data type 23
Pointers
file 43
Pow 141
Powf 142
Precedence 46
Precision 29
PRED 55, 85
Procedure 63
Procedure call 58
PUT 43, 73, 86
Racos 142
Raise 142
Rand 143, 149
Range 29
Rasin 143, 149
Ratan 144, 149
Ratan2 144, 149
Rcos 145, 149
Rcosh 146, 149
READ 76, 86
READLN 86
Record 34, 35
Remove 146
Rename 146
RESET 72, 87
REWRITE 72, 87
Rexp 147
Rfrexp 147
Rindex 147
Rldexp 148
Rlog 148
Rlogl® 148
ROUND 88

Routine 64

Rpow 149

Rsin 149

Rsinh 149

Rsgrt 150

Rtan 150

Rtanh 151

Scalar 26

Scalar data type 23

Sec_100_ 151

Secnds_ 152

Selector, case 52

Set
set constructor 48

Setndpsw 152

SIN 89

Sinf 153

Sinh 153

Sinhf 153

Sprintf 154

S@R 90

S@RT 89

Sqrtf 157

Sscanf 158

Statement
assignment 51
case statement 52
compound statement 53
empty statement 54
for statement 55
goto statement 56
if statement 57
repeat statement 59
while statement 60
WITH statement 61

Statement, procedure 63

STATIC 14

Strcat 161

Strchr 162

Stremp 163

Strcoll 164

Strepy 164

Strespn 165

Strerror 166

Strftime 166

Strindex 167

String 9

Sirlen: 168

Strncat 169

Strnemp 170
Strnepy 171
Strong typing 24
Strpbrk 172
Strrchr 172

Strrindex 173
.Strsave 174

Strspn: 175

Strstr 175
Strted 175
Strtok 175
Strtol 176
Strtoul 176
Structured data type 23
Strxfrm 176
Subprogram 63
SuUcc 55, 90
Swab: 177
System 178
Tag field 35
Tan 179
Tanf 179
Tanh 180
Tanhf 180
Textfile 38
Time_ 180
Timedate_ 181
Tmpnam 182
Tolower 182
Toupper 182
TRUNC 90
Type
Assignment compatibility 24
compatibility and conversions 24
compatible 24
enumerated 26
file 37
identical 24
implicit type conversion 25
pack
unpack 39
pointer 36
record 34
set 27
subrange 27
text 38
Type identifier 23
UNPACK 33, 91
Unpacked array 85, 91
Value parameters 65
Variable 42
buffer 43
component 41
control variable 55
data type 24
entire 41
file referencing 43
indexed 41
Variable, control 55
Variable parameter 65
Variant record 84
WRITE 76, 92, 94
WRITELN 92
YO 182
Y1l 183

Yn 184

	Cover
	Release Notes
	NDP 386|486 UNIX User's Manual
	1. Set Up
	2. Using the Compiler
	3. Optimizations
	4. Runtime Organization and Numerics
	5. Mixing Languages
	6. Porting Programs
	ASCII Character Set
	Index

	NDP Pascal Reference Manual
	Contents
	Preface
	1. Base Vocabulary
	2. Program Structure
	3. Pascal Definitions
	4. Type Definitions
	5. Variables
	6. Expressions
	7. Statements
	8. Procedures and Functions
	9. Input and Output
	10. Predefined Functions and Procedures
	11. Preprocessor Commands
	A. Selected Bibliography
	B. Interface to C and Math Libraries
	C. NDP Pascal Error Messages
	Index

