SYSD/JFT®
Job and File Tailoring for CPMS®/SYSD®

Release 6.4.2

Reference Manual

Trade Secrets

Copyright

Published

Trademarks

Order No..

Comments

The materials contained in.this manual are the TRADE SECRETS of H&W Computer Systems, Inc.
Boise, Idaho.. :

No part of this publication.may be reproduced or transmitted in:any form or by any means
electronic or mechanical, induding photocopying, recording, or any information storage-and.
retrieval system; without written permission from H&W Computer Systems, Inc.

© 1998. H&W Computer Systems, Inc. All rights reserved.

January 1999

This edition, CUR:JFT0642; applies to release 6.4.2 of H&W Computer System’s SYSD/JFT (Job and
File Tailoring) option:for CPMS/SYSD and to all subsequent releases and modifications until
otherwise indicated inmnew editions or technical manual updates.

SYSD/JFT, SYSD, and CPMS are registered trademarks of H&W Computer Systems, Inc.

IBM is a registered trademark and CICS is a trademark of International Business Machines
Corporation.

Other brands or products are service marks, trademarks, or registered: trademarks of their
respective holders and should be treated as such:

CUR-JFT0642

A reader's comment form is provided at the back of this manual. If the form has been removed;.
send comments to H&W. Computer Systems, Inc. at:

P.O. Box- 46019 12438 W. Bridger Street, Suite 100

Boise, ID 83711 Boise, ID 83713
Main: - - ’ Customer Support:
(208) 377-0336 (208) 377-8436
Fax:

(208) 377-0069

World Wide Web: E-mail::

http//www.hwes.com, support@hwcs.com.

Contents

Chapter 1

Chapter 2

Chapter 3

Reference Manual

About thisManual

Manual Organization... . . .
Conventions
Text and Keyboard Conventions

Symbol Conventions e -

Related Publications .

Introduction
Components of SYSD/JFT oon v,

Panels .

Skeletons

Messages,
Storing Panels, Skeletons, and Messages . .
JET Variables

Executing JFT Panels e

Panel Sections

JATTR Section. . . G e e
Default Attribute Characters

Overriding the Default Attribute Characters

)JBODY Section. .. e

JNIT Section: ... vt oe v w
JPROCSection..o vvvv vt oy o
JEND'Section:c.o.ou..,

Variables,

System Variables
&Z .

&ZCSR. ... e
&ZDATE

N N

......................

-oomo»r.--.;‘

ifi

Contents:

Chapter 4

&ZIDATEST oo

&ZDAY .

&ZJDATE

&ZJ4DATE

GZMONTH - o oo oo
&ZSEL . oo

Profile Variables

&$DEPART . .
&$DESTID
&SNAME . .

&PUSER .., . vvv
Control Variables i v e e e e e e e e

LCURSORF .
MSG

Logic Statements . .

Syntax Rules

Assignment Statement . . e
ConcatenationRules

Examples

FILESKEL Statement « v v oo o
IFStatement s o
LINKStatementt vvvivvn
SUBSKEL Statement
TRANS Statement...

TRUNC Statement:
VER:Statemento,

VERALPHA

VERBIT e e
VERDSNAME '
VERNAMEo v

VERNB:

VERPICT

VERRANGE

L 20

. 20

e w20

.21
.21
.21
o 21
.21
21

.................................

.. 23
v 23
v 23

.23

......... O
SYSDTTL e e .
UserVariables oo vviivon oo

.. 25

.. 29

v 29

. 30
32

P S R T T T S R P R TR
............. T T S R IR T THE TR 34

. 36
. 37

................................

...............................

SYSD/JFT® ~ Releasé 6.4.2

5@#:&5&@3&’5&3@@%%

Chapter 5

Chapter 6

Appendix A

Appendix B

Appendix C

Reference Manual

Contents

Skeleton and Message Files R e .. 47

Skeleton'Files
Control Statements .. .
JBLANK ...
JEM .o
Message Files i L B2

BhEEB S

Calling CICS Programs. e e . .53

Communi'cating Between Panels and CICS Programs : :
$CMVPUT . : e i .. 55
CaihngCICSProgramsfrom SYSD/}FT e e e e .. DB
Calling the JFTADD Programvvvivvvie vt v e ee o s v 56
SYSD-like Programs e e e e e e e .. DB
Storngatam]FT-hkePrograms e e e i, B8
ConstantData e e ... B8
Local Variables PR e e .. B8
Global Variables e .. 59
JFTADD Program: e e e .. 59

CPMS/SYSD Menu System Variables61

Sample Panelsc¢c.....69

PrimaryMenu e 70
SystemUtiliiesPanel e T2
SubmitIEBCOPYPanel it uine.. 73

JFTADD Program e e e e e e s N 4

Index0.o.o... e e e e e e e e e e e e . 81

vi

SYSD/IFT® ~ Release 6.4.2

C

About this Manual

The SYSD/JFT Reference Manual explains how to create panels users can access through:
SYSD or CPMS. This manual is used by the programmer responsible for creating and
maintaining the JFT panels.

Reference Manual

vii

About this Manual

Manual Organization

The SYSD/JFT Reference Manual is organized as follows.

Chapter 1, Introduction

Briefly describes SYSD/JFT, including JFT's components; storing panels, skeletons, and:
messages; JFT’s variables; and executing JFT panels..

Chapter 2, Panel Sections

Describes the sections a panel can have and the parameters for each one.

Chapter 3, Variables

Describes the system, profile, control, and user variables you can use in the)INIT,)PROC,
and)BODY sections..

Chapter 4, Logic Statements
Describes the statements you can:use in the)INIT and)PROC sections..

Chapter 5, Skeleton and Message Files /

Explains how to use skeleton and message files.

Chapter 6, Calling CICS Programs

Explains some of the logic behind the design of the JFT panels, including communicating
between panels and CICS programs.

Appendix A, CPMS/SYSD Menu System Variables
Lists the variables available to JFT from the CPMS/SYSD menu: system.

Appendix B, Sample Panels.

Provides samples of some SYSD/JFT panels and the code that generates them..

Appendix C, JFTADD Program
Provides the complete code for the JFTADD program:.

viii SYSD/JFT® ~ Release 6.4.2

P
3
&\—/’

Conventions

About this Manual

The SYSD/JFT Reference Manual uses the following conventions..

Text and Keyboard Conventions

This Kind of text

BOLD bold

italic

Enter

Symbol Conventions

This symbol

Ca utibn>

Reference Manual

Identifies.

Commands and text you type. Uppercase bold text represents
information you must type exactly as it appears. Lowercase
text represents information you must substitute with the
appropriate text. For example, when you see variable_name in
the syntax of a logic statement, type the appropriate variable
name.

Field names, manual titles, and system messages. It is also
used: to introduce new words.

Special keys on the keyboard.you:press. The example here
represents the Enter key.

Identifies.
Instructions for performing special functions.

Additional information:that may be of value.
Tips or suggestions about using a particular feature,

Important information you need to know about a feature or
procedure.

ix

About this Manual

Related Publications

For more information, see the following publications::

H&W manuals

+ CPMS/SYSD Installation Manual
* CPMS/SYSD Reference Manual

IBM manuals

* Interactive System Productivity Facility Dialog Developer’s Guide and Reference, Version 4

Release 2 for MVS (GC34-4486)

* Interactive System Productivity Facility Dialog Management Services (GC34-4021)

* Interactive System Productivity Facility ISPF Dialog Management Guide, Version 3 for

MVS (GC34-4213)

¢ Interactive System Productivity Facility ISPF Dialog Management Guide and Reference,

Version 3 Release 5 for MVS (GC34-4266)

SYSD/JFT® ~ Release 6.4.2

Chapter 1

Introduction

SYSD/JFT (Job-and File Tailoring) is an option available for both. SYSD'and CPMS. JFT is
based on IBM's ISPF Dialog Manager Panel Display capability. Wherever possible, the
same syntax has been applied to JFT. If you are familiar with ISPE, you will see many
similarities. JFT lets you::

* Build panel images.

+ Prompt and validate user input.

+ Process information from the user by applying it to a skeleton file.
¢+ Submit JCL to the internal reader or save it to an output file.

This chapter describes:

+ JFT's components

+ Storing panels, skeletons, and messages
+ JFT's variables

Executing JFT panels

-

Reference Manual

Chapter 1 ~ Introduction

Components of SYSD/JFT

JFT applications are built using three different components:: panels, skeletons, and.
messages. This section describes each component.

Panels

Panels drive all processing in JFT. Typically panels are either menus that lead to other JET
panels or input/output panels that let the user submit jobs (JCL) or update files. Bach JFT
user has a.default panel that is executed when he or she selects Option 8, Job/File
Tailoring, from CPMS/SYSD’s main menu. The default panel is defined on Option 0.3,
Job/File Tailoring Parameters. This means you can:build custom JFT panels for different
groups and have them go directly to the panel for their specific use. For example, you can
have payroll users go directly to the payroll JFT panel and developers go directly to a.
system utilities JFT panel.

The panel defines and assigns all variables, defines the panel layout, accepts and edits
input from the panel, and performs any output. When developing panels, you control the
panel’s display attributes by defining fields as input, output, or text and by defining the
fields as highlighted or normal. The panel’s)ATTR section defines these attributes. The
panel’s JBODY section.defines the way the panel looks whenia user accesses it. The
panel’s)INIT section defines and initializes variables. The panel’s)PROC section does all

“the processing each time the user presses Enter or a PFnikey. The panel’s)PROC section.
also defines all editing for data entered and controls other processing like displaying
another panel, writing to a file, or submitting a job to the system.

Skeletons

Skeleton libraries contain members that define the JCL for submitting a job-or the record:
and file layout for updating a file. You use the FILESKEL and SUBSKEL commands in the
)PROC section to access skeleton libraries. JFT processes these two commands by
scanning the JFT skeleton file concatenation for the member name you specify on:the
command. JFT uses the first library that has a member name that matches. Your SYSD*
administrator defines the library concatenation.

JFT automatically passes variables from the panel to the skeleton member. JFT substitutes
the data the user enters on the panel in the skeleton before it writes the skeleton to-a file
or the internal reader. For example; you may have a batch job that uses a date parameter
to extract data from.a master file. You:can set up the JFT panel to ask the user to enter the
date, pass that date to the skeleton member for substitutionin the PARM parameter of the
EXEC JCL statement, and submit the job..

2 ' ' SYSD/JFT® ~ Release 6.4.2

Chapter T ~ Introduction

K_/ Messages

Message libraries contain members that define the customized messages JFT uses to
override the generic default messages provided. For example, if the user enters an invalid
date, you can have JFT display a customized message that gives the user more specific
information about what is wrong with the date: You define these messages and then issue
them from the JFT panel..

You can:also put JET variables in your customized messages. JFT replaces the variable

name with the variable’s assigned value before displaying the message on the user’s
terminal..

Reference Manual 3

Chapter 1 ~ Introduction

Storing Panels, Skeletons, and Messages

Panels, skeletons, and messages are stored in:partitioned datasets (PDSs). You must store
each panel and skeleton in a:separate FDS member. You can store several messages ina
single PDS member. ‘

Your SYSDradministrator can concatenate panel, skeleton, and message PDSs and:have
JFT search them using a top down approach. JFT searches the first file specified in the
concatenation, followed by the second file, and so on until it either reaches the end of the
concatenation list or finds a matching member name. Your CPMS/SYSD administrator
determines the order JFT searches the libraries..

Your SYSD'administrator may have set up the system:so users can specify the panel,
skeleton, and message concatenations. This is done by defining the user profile dataset
variables in:the JFT dataset concatenations. If the variables are defined, the user canv
‘specify the dataset names JFT uses to search for panels, messages, and skeletons on
Option 0.3, Job/File Tailoring Parameters. This lets the user or programmer dynamically
change the dataset names..

4 SYSD/JFT® ~ Release 6.4.2

Chapter 1 ~ Introduction

b JFT Variables

JET lets you define your own variables in the panel’s)BODY,)INIT, and)PROC sections..
You can also use the system; user profile, and control variables described in Chapter 3,
Variables. You can.use any of these variables in the panels, skeletons, or messages.. You
can also pass JFT variables to CICS programs.

Reference Manual

Chapter 1 ~ Introduction

Executing JFT Panels | O

Once you have saved a panel in:a PDS member, JFT can try to execute it. You'do not have
to compile it first. JFT reports any errors back to you when you execute the panel. You can
- edit the PDS member, correct the errors, and test the panel again.

To execute a JFT panel, the user must select Option 8, Job/File Tailoring, from the
CPMS/SYSD'main menu..Once in.JFT, the user can-execute JET panels in one of three
ways:

¢ Specify the panel as the default panel name on: Option 0.3, Job/File Tailoring
Parameters. This panel is automatically displayed when the user selects Option 8.

¢ Use the PANEL statement in one panel to call another panel. See the &ZSEL system.
variable on page 21 for more information about calling a panel.. .

*+ Type EXEC panel_name in the Input field in JFT and press Enter. To use this option,
the Execute Any Panel field on Option 0.3, Job/File Tailoring Parameters, must be set
to Y (Yes). '

» @ The EXEC command is very helpful because you:do not have to update the

/ default panel or test menus before you execute the new. panels as you are
‘ developing them..

6 i SYSD/IFT® ~ Release 6.4.2

C

Chapter 2

Panel Sections

A SYSD/JFT panel can have up to five different sections. They are:
¢+)ATTR - Defines the attribute characters used in the JBODY section. These attribute
characters define if fields are input, output, or text. They also define the intensity of
the characters when JET displays the panel: bright, normal, or dark:
¢+)BODY - Defines the panel’s appearance.

¢)INIT - Contains the logic statements JFT executes the first time a user accesses the
panel.

*)PROC ~ Contains the logic statements JFT executes each time a user accesses the
panel except the first time.

¢+)END'-Marks the end of the panel.
Option 0.3, Job/File Tailoring Parameters, on the CPMS/SYSD main menu lets you specify
which panel is displayed when the user first accesses the JET option. The default is the
SYSDOS panel..

This chapter describes each panel section:and its parameters.

Reference Manual

Chapter 2 ~ Panel Sections

JATTR Section

The)ATTR section defines the characters that represent attribute bytes. You use these
attribute characters in the)BODY section to define the panel’s appearance. If you are only
going to use the default attribute characters, you can omit the)JATTR statement altogether..
The format of the attribute statement is:

char TYPE(TEXT|INPUT |OUTPUT) INTENS(’LON]HIGHINGNJ

{Note ‘: ~ You cannot continue statements in the)ATTR section.

This parameter

char

TYPE

INTENS

Specifies.

The 1-byte character that represents the attribute byte. This is
a special character that is not displayed on the panel when the
user accesses it. However, the attribute character does take up
a physical space on the panel when JFT displays it..

The type of field this attribute byte generates.
Specify To define o,
TEXT A protected text field where JFT displays

static information like menu options or
field descriptions. This type of field cannot

contain.variables..

INPUT Anunprotected field where users can type
data..

OUTPUT A protected field where JFT displays the

values of variables from within JET.

The intensity of the field whenJFT displays the panel.

Specify To define:
LOW A normal intensity field..
HIGH A high intensity field.

SYSD/JFT® ~ Release 6.4.2

Specify

. NON

For example, if you specify:

Chapter 2 ~ Panel Sections.

To: define

A field that is not displayed on:the panel.
For example, you may want to define a:
field where the user types a password and
not have the characters displayed as the
user types them:.

JATTR
- TYPE(CINPUT). INTENS(LOW)
& TYPE(OUTPUT) INTENS(HIGH)

A field defined in the JBODY section with a not sign () is an input field the user can type
data in. JFT displays the field at normal intensity. A field defined in the }BODY section
with an "at sign” (@) is an output field JFT dlsplays variables in. JFT displays the contents

of the field as highlighted text.

/. Default Attribute Characters

\&_//

The following are the predefined attribute character defaults:

% TYPE(TEXT) INTENS(HIGHY
+ TYPE(TEXT). INTENS(LOW)
. TYPECINPUT) INTENS(HIGH)

Overriding the Default Attribute Characters

To override the default attribute characters, specify the DEFAULT(characters) keyword,.
where characters are the new attribute characters, on the)ATTR statement..

Reference Manual

To only override one default attribute character, you must specify all three attribute
.characters even though only one changes. For example, to change the default percent

sign (%) to a.pound sign (#), specify:

JATTR DEFAULT(#+_)

If you donot need to change the default attribute characters, do not specify the DEFAULT

keyword on the JATTR statement.

Chapter 2 ~ Panel Sections

)BODY Section | | '»

The)BODY section defines how a panel looks when JFT displays it. The following syntax
rules apply to the)BODY section::

+

The first three lines of the panel are fixed. The first line contains the panel title, time,
and partition ID: The second line contains the Input field where the user enters
commands and the Scroll field where the user defines the type of scrolling
performed. The third line is where JFT displays the long system messages..

The)BODY section defines lines 4 through 24 on the panel. A panel cannot have
more than 21 lines. (MOD2 support only)

If there is a blank line in the)BODY section, JFT displays a blank line on the panel. If
you.do not use all 21 lines, you do not have to add blank lines at the end of the
YBODY section..

Each line must begin with an attribute character, but the attribute character does not
have tobe in column1..

The attribute character defines the beginning of a field on the panel. The next

attribute character or the end of the line defines the end of the field. The length of

the field is the number of bytes between the attribute characters or between the i

beginning attribute character and the end of the line. ,,/l
s

If the field is defined as TYPE(TEXT), JFT displays all the characters in the field on

the panel.

If the field is defined as either TYPE(INPUT) or TYPE(OUTPUT), you must specify a
variable name following the attribute character. A variable name that follows a
TYPE(INPUT) or TYPE(OUTPUT) attribute must not include the ampersand (&); an'
ampersand is implied..

Comments are not allowed in the)BODY section.

Example

JATTR
- TYPE(DUTPUT) INTENS(HIGH)
JBODY

%Enter Values to SUBMIT a Job:%

#%Your Job: Name will be:-JOBN.
YEND

%Jobname:_ JOBN. %.

10

SYSD/JFT® ~ Release 6.4.2

Chapter 2 ~ Panel Sections

This example generates the following panel:

(9104158 ~emmencmmeme e panel title ==---nmemmeommeaneeae . /N
INPUT ===> SCROLL: CSR.

Enter Values to SUBMIT a Job:
Jobname::

Your Job Name will be:

This panel has:

¢ A protected text field beginning in.column 2 of row 5 that dxsplays Enter Values to
SUBMIT a Job: in: highlighted characters.

+ A protected text field beginning in column 10 of row 7 that displays Jobname: in:
highlighted text..

+ An 8-byte input field beginning in column 19 of row 7. The user types the job name
in this field. JFT assigns the value the user types in this input field to the I@BN
variable.

+ A protected:text field beginning in column 2 of row 9 that displays Your Job Name will
be: in highlighted text.

+ A 55-byte output field beginning in column 25 of row 9. There is no ending attribute

character so the end of the output field is the end of the line. JFT displays the value
of the JOBN variable in this field..

Reference Manual . 11

Chapter 2 ~ Panel Sections

JINIT Section

The)INIT section is optional. It defines the logic JFT only executes the first time a user
accesses the panel. When returning to a previous panel, JFT executes the)INIT section for
the previous panel because JFT considers it a first-time access. There are no-parameters on
the)INIT statement.. ‘

The most common use of the)INIT section is to declare and initialize variables. This is
useful when you set default values for the user. You can also include logic statements in.
the)INIT section to conditionally set variable values. See Chapter 4, Logic Statements, for
more information about the statements you can use in the)INIT section.

Example

YATTR

-~ TYPE(OUTPUT). INTENS(HIGH):

YBODY

%#Enter Values to SUBMIT a Job:%
%Jobname:_ JOBN %

%#Your Job Name will be:~JOBN.

YINIT

.SYSDTTL = 'JFT EXAMPLE!'
&JOBN = JFTJOB

YEND

12 ' ‘ SYSD/JFT® ~ Release 6.4.2

Chapter 2 ~ Panel Sections:

This example generates the following panel:

9204258 ~nmesmmomammmeaneaeaaaas JFT EXAMPLE -=-=--=mommemmoeaneeanas SVARS
INPUT = SCROLL: CSR.

Enter Values to SUBMIT a Job:
Jobname:: JFTJOB.

Your Job Name will be: JFTJOB..

Reference Manual

Note what the)INIT section has done:

+ The .SYSDTTL control variable defines the panel title as JFT Example JET centers the

title on the first line of the panel.

+ The]obname field: now contains the default value assigned to the &IOBN vanable in.

the)INIT section..

+ JFT also displays the value of the &JOBN variable in'the Your Job Name will be: field..

The user can change the &JOBN variable by typing a new job-name in the Jobname field..

When the user presses Enter, JFT changes the value displayed in the Your Job Name will be:

field to the value the user typed..

13

Chapter 2 ~ Panel Sections

JPROC Section

The)PROC section is optional. It defines the logic JET executes e\iery'tim’e a user accesses
the panel except the first time. There are no parameters on the)PROC statement.

The)PROC section is where you do most of the programming in JFT You can assign:
values to variables, test conditions, execute other panels, submit JCL to the operating
system, or write records to files. An advanced feature of JFT lets you link to a CICS
programand perform additional processing. This is done using the LINK statement.

See Chapter 4, Logic Statements, for more information about the statements you can use
in the)PROC section..

Example

JATTR
-~ TYPE(OUTPUTY INTENS(HIGH),
YBODY

%Enter Values to SUBMIT a Job:%
#%#Jobname: JOBN %

%Your Job Name will be:-VALJOBN

YINIT
.SYSDTTL = 'JFT EXAMPLE!
&JOBN. = JFTJOB

YPROC
&VALJOBN = '*ERROR*! /*Assume Job: Name invalid*/
VER (&JOBN,NAME): " J*Check that Job Name is a valid: member name*/
IF (.MSG = &Z) /*1f no Error messages*/
&VALJOBN. = &JOBN. /*Move Job Name to a valid field*/
SUBSKEL (&JOBN)
JEND

Note what the YPROC section does::

+ The)PROC section starts with an assignment statement that assigns the value
ERROR to the &VALJOBN variable.

¢+ The)PROC section shows how youcan add comments that explain what each:
statement is doing. All text following the /* is a comment.

+ The VER (&JOBN,NAME) statement checks to make sure the job name the user
enters is a valid member name. The VER statement lets you easily validate common:

field formats, including:

« non-blank:(must be entered)

14 : SYSD/JFT® ~ Release 6.4.2

Chapter 2 ~ Panel Sections

» alphabetic

s numeric

» hexadecimal

» PICTURE

o member name
+ dataset name
e range

o list

+ The next statement is an IF structure: JET checks the .MSG control variable to see if
an:error was found. The &Z system variable tests the .MSG variable to see if it is
empty or contains null values. So the IF statement says that if the .MSG control
variable is empty, no errors were found.

If the IF statement is false, which means the member name is invalid, JFT executes
the statement beginning in.the column that is less than or equal to the IF statement
column. In this case; JFT executes the JEND statement..

If the IF statement is true, which. means the member name is valid, JFT executes the
line right after the IF statement. In this case, JFT executes the assignment statement,
which assigns the value of the &JOBN variable to the &VALJOBN variable..

+ Assume the operator enters JETEXMPL as the job name. If the entered name is valid,.
the SUBSKEL statement tells JFT to submit the skeleton JCL. member identified by
the JOBN variable. JET does this by looking for a member in the JFT skeleton library
concatenation called JETEXMPL. If JFT finds a matching member, it substitutes any
variables found and then submits the JCL to the operating system. The following is
an example of what the panel looks like after a user enters a.valid job name of
JETEXMPL:

INPUT ===>

Jobs have been submitted.)
Enter Values to SUBMIT a JOB

Jobname: JFTEXMPL

Your Job Name will be: JFTEXMPL

Reference Manual

15

Chapter 2 ~ Panel Sections

16

If JFT does not find a matching member in any skeleton library, it displays the following

error message:: .)
9:064:58. -ommmeermeremei e JFT EXAMPLE vw-vvvvvmrmmmsuocmonunce. [&VAD)
INPUT ===> ‘ SCROLL: CSR

SKELETON. member name Invalid or does not exist.
Enter Values to SUBMIT a JOB::

Jobname:: JFTJOB

Your Job Name will be: JFTJOB

If the user entered an invalid job name, like ******** JET displays the following panel:

INPUT ===> .
Enter up to 8 Alphanumeric Characters (Ist must be alpha).
Enter Values to SUBMIT a JOB:

Jobname:' e dede ok e de ek

Your Job Name will be: *ERROR*

9204158 === mmmmemeean e JFT EXAMPLE «vr-----=--mmocoooommmoes Qs

SCROLL:. CSR

SYSD/JFT® ~ Release 6.4.2

Chapter 2 ~ Panel Sections

JEND Section

The)END section defines the end of the panel. JET ignores anything following the JEND:
statement. There are no parameters on the)END statement.

Reference Manual 17

18

SYSD/JFT®. ~ Release 6.4.2

Chapter 3

Variables

This chapter describes the variables you can use in the)INIT,)PROC, and)BODY sections..
There are four types of variables::

¢ System variables provide information from the system, like the date, time, and data.
entered in the Input field.

+ Profile variables provide access to the information stored in the CPMS/SYSD user
file. You can get information from the file, like the user ID'or default printer, and use
itin JET processing.

+ Control variables let you change the message and cursor position during processing,
(\—/ You typically use these variables to override the defaults for these functions. You can'

also use a control variable to define the panel title. .

+ " User variables store values during JFT execution. You define these variables and can
change them during processing.

Reference Manual 19

Chapter 3 ~ Variables

System Variables

System variables provide information from:the system, like the date, time, and data
entered in the Input field. System variables begin with the letter Z. You can also update
the &ZSEL variable to control JET processing.

&Z

The &Z system variable contains a null or blank string. You can use the &Z variable to
initialize another variable or use it in an IF statement to do a comparison:.

&ZCMD

The &ZCMD system variable contains the characters the user typed in the Input field..

&ZCSR

The &ZCSRsystem variable contains the cursor position of the Input field in rrcce format,
where rr is the row and ccc is the column.

&ZDATE

The &ZDATE system variable contains the 8-character date in yy/mm/dd format.

&ZDATESTD

The &ZDATESTD system variable contains the 8-digit date in yyyymmdd format.

&ZDAY

The &ZDAY system variable contains the 2-digit day of the month in dd format.

&ZJDATE

The &ZJDATE system variable contains the 6-character Julian date in yy.ddd format.

20 SYSD/JFT® ~ Release 6.4.2

Chapter 3 ~ Variables

&ZJ4DATE

The &ZJ4DATE system variable contains the 8-character Julian date inyyyy.ddd format.

&ZMONTH

The &ZMONTH system variable contains the 2-digit month in.mmformat.

&ZSEL

You can use the assignment statement to set the &ZSEL system variable. If you set &ZSEL
in'the)PROC section, SYSD/JFT invokes a. new. panel when it is done processmg the
JPROC section. The syntax of the &ZSEL variable is:

&ZSEL = PANEL(panel_name)

For example:

&ZSEL = TRANS(TRUNC(&ZCMD,1),1,'PANEL(TESTP1)',2, 'PANEL(TESTP2)')

This example shows how: you can use logic statements on the right side of an.assignment
statement. If the user selects Option 1, JFT assigns PANEL(TESTP1) to &ZSEL. JFT sends
the user to another panel from a menu panel that contains two options..

'&ZSTDYEAR

The &ZSTDYEAR system variable contains the 4-digit current year in yyyy format..

&ZTIME

The &ZTIME system variable contains the 5-character time in hhimmiformat.

&ZYEAR

The &ZYEAR system variable contains the 2-digit year in.yy format..

Reference Manual ' 21

Chapter 3 ~ Variables

Profile Variables

Profile variables let you:access the information stored in the CPMS/SYSD user file. You.
can get information, like the user ID'and default printer, and use it in JFT processing,
Profile variables begin with a dollar sign ($). The following are some of the most
commonly used profile variables. See Appendix A, CPMS/SYSD ' Menu System Variables,
for a list of additional profile variables.

&$DEPART

The &$DEPART profile variable contains the user’s 1- to 29-character department name.

&$DESTID

The &$DESTID profile variable contains the output destination ID from Option 0.1,
JES/List Parameter Destinations. The length of this variable is 10. You can use the
&$DESTID profile variable to substitute a destination ID'in the JCL output parameter..

&$NAME

The &$NAME profile variable contains the user’s 1- to 29-character name.

&$TITLE

The &S$TITLE profile variable contains the user’s 1- to 29-character title..

&$USER

The &$USER: profile variable contains the user’s 1- to 11-character user ID:

22 SYSD/JFT® ~ Release 6.4.2

Chapter 3 ~ Variables

Control Variables

Control variables let you change the message and cursor position during processing. You
typically use these variables to override the defaults for these functions. You canalso use
control variables to define the panel title and set the .TRAIL variable with the remainder
of a TRUNC function. Control variables begin with a period: ().

.CURSOR

You can set the .CURSOR control variable to a variable_name without the ampersand. (&).
This positions the cursor in the field associated with variable._name: You can also use
CURSOR to set the cursor to the field on a VER statement that fails its test,

If the cursor position has been previously set, . CURSOR does not set the
cursor position: To reset the cursor position, you must use the .CURSORF
control variable..

For example, if you specify:

.CURSOR = FNAME

JFT positions the cursor in the FNAME field when it displays the panel. The default
position is the Input field..

.CURSORF

The .CURSOREF control variable provides the same functions as the .CURSOR control
variable except .CURSORF overrides any previous positioning of the cursor. Be careful
when you use'.CURSOREF to set the cursor position so you:do not accidentally override a.
cursor position.

.CURSORF = FNAME

MSG
You can set the .MSG control variable to any message ID: JFT displays the long message

associated with the message ID: You can also use .MSG to display a specific message [D
when a VER statement fails its test.

Note | If the message ID'has been previously set, .MSG does not reset the message
| ID: To reset the message ID, you must use the .MSGF control variable.

Reference Manual ~ 23

Chapter 3 ~ Variables:

.MSGF

SYSDTTL

.TRAIL

24

For example, if you specify::

.MSG = MSGOO1

JET displays the text associated with MSGOO1..

The .MSGF control variable provides the same functions as the .MSG control vari
_ except MSGF overrides any previous setting of the message ID: Be careful when
MSGF to set the message ID'so you do not accidentally override a message.

iable
you use

.MSGF = MSGOO1

The .SYSDTTL control variable defines the panel title. You use the assignment statement

to set the .SYSDTTL control variable. For example, if you specify:

.SYSDTTL = JFT Main Menu

JFT centers JFT Main Menu on the first line of the panel..

JFT sets the value of the .TRAIL control variable as a result of a TRUNC statemen
.TRAIL variable contains the characters left over from the last TRUNC statement
performed.

For example, if you specify:

t. The

&TEMP = ABCDEF
&TEMP1 = TRUNC(&TEMP,1)

JFT assigns the value A to the &TEMP1 variable and assigns the value BCDEF to
.TRAIL variable: See the TRUNC statement on page 40 for more information.

SYSD/IFT® ~ Release 6.4.2

the

Chapter 3 ~ Variables:

(_ User Variables

User variables are variables you define. You can assign values to them and change the
values during JFT execution. In the)INIT and)PROC sections, user variables must begin:
with an ampersand (&)..In:the)BODY section, user variables must not begin with.an:
ampersand; the ampersand is implied. User variable names must be between 1 and 8.
characters long. '

Caution> Do not begin a user variable name with a dollar sign. (8), the letter Z, or a period (.) because
these characters identify system, profile, or control variables.

Reference Manual) 25

26

SYSD/JFT® ~ Release 6.4.2

Chapter 4

Logic statements control the processing that occurs when a.user accesses a panel. You: can
specify logic statements in both the JINIT and)PROC sections. This chapter describes the
syntax rules for all the logic statements and the syntax for each:one.

Reference Manual 27

Chapter 4 ~ Logic Statements

Syntax Rules O
Logic statements must follow these syntax rules:.

¢+ A/* means the rest of the line is a comment: You.can specify an */ at the end of the
comment, but it is not required..

* You can continue parameters on the next line if they follow. the end of a parameter.
For example: '

VER (&TEST,NB,LIST,.
iteml,,
item2);

* You can continue quoted strings by specifying a plus sign (+) as the last character of
the line. The continuation line starts at the first non-blank character. For example, if

youspecify:

&TEST = *THIS IS LINE1 +
AND THIS IS LINE2!

JFT assigns the value of THIS IS LINE1: AND THIS IS LINE2 to the &TEST variable.

4 R
H
\\-r/)

28 SYSD/JFT® ~ Release 6.4.2

o,

Chapter 4' ~ Logic Statements

» Assignment Statement

The assignment statement evaluates an expression and assigns the value of the expression:
to a variable. The syntax of the assignment statement is:

variablel = variable2{literal|'literal'|function

This parameter

variable1

variable2'

literall

‘literal”

function

Concatenation Rules

Specifies

A variable name preceded by an.ampersand (&). The equal
sign (=) must follow the variable name. JFT assigns the
value of the expression on the right side of the equal sign to
this variable.

A variable name preceded by an ampersaﬁd (&). JET
assigns the value of this variable to variablet.

A literal you want to assign to variable1..

A literal containing substitutable variables. JFT assigns this
literal to variablet. See “Concatenation Rules” for more
information about specifying variables in a literal..

A TRANS or TRUNC logic statement. See the TRANS
statement on:page 38 and the TRUNC statement on page
40 for more information about their parameters.

The following concatenation rules apply to assignment statements::

‘

Reference Manual

A double ampersand (&&) represents a single ampersand (&). A single ampersand:
(&) followed by a blank also represents a.single ampersand (&)..

User variable names must begin with-an ampersand (&). Variable names are
delimited by any non-alphanumeric character.

JET ignores trailing blanks when doing a substitution..

For an apostrophe or a quote within a quote, use two apostrophes (") or quotes (“*)
to represent a single apostrophe (‘) or quote (“)..

Chapter 4 ~ Logic Statements

¢ A single period () following a variable name on the right side of an. equal sign’

concatenates the character string following the variable name with the variable. Two'

periods (..) following a variable name represent a single period (). For example, if

you:specify:
&CITY = BOISE
&ADDR = '&CITY. ID!

JET assigns BOISE ID to the &ADDR variable..

Note If you specify a period as part of a literal string, you only have to specify
m\ one period to represent a single period..

Examples

The following are several examples of the assignment statement.

Example 1

&FNAME = JODY

JFT assigns the value JODY, to the &FNAME variable.

Example 2

&LNAME = LANTZ

JET assigns the value LANTZ to the &LNAME variable.

Example 3

&LNAMEZ2 = &LNAME

JFT assigns the value of the &LNAME variable to the &LNAME2 variable. If JFT executed

the assignment statement from Example 2 before this statement, JRT assigns the value
LANTZ to the &LNAME2 variable. .

30 SYSD/JFT® ~ Release 6.4.2

Chapter 4 ~ Logic Statements.

i Example 4

&MNAME = 'M% .

JET assigns the value M to the &MNAME variable. The apostrophes are optional..

Example 5

&LNAME = LANTZ
&FNAME = JODY
&MNAME = M’
&FULLNAME = '&LNAME, &FNAME &MNAME..!

noaon

JFT assigns the value LANTZ, JODY. M. to the &FULENAME variable;

The two periods at the end of the last assignment statement result in only
one period after the middle initial. If a period follows a variable name, JFT
requires two periods to represent one period.

Example 6

e &LNAME = LANTZ

&LNAMEF3B = TRUNC(RLNAME,3)

JFT assigns the value LAN to the &LNAMEF3B'variable. JFT assigns the rest of the
characters, which are TZ, to the .TRAIL control variable.

Reference Manual 31

Chapter 4 ~ Logic Statements

FILESKEL Statement

The FILESKEL statement saves a member in a dataset using a skeleton member as a
model. The syntax of the FILESKEL statement is:

FILESKEL(DSN(variable_name | Literal), NAME (variable_name]|l iter‘ai Y,
SKEL(variable_name|literal),VOL(variable_name|literal),,
REPL |NOREPL [MOD)

This parameter

DSN

NAME

SKEL

VOL

REPL

NOREPL

MOD

32

Specifies.

The name of the dataset you want to save the member in.
You can specify either a literal or a variable name preceded.
by an ampersand (&)..

_The member name if the value of the DSN parameter is a

PDS. You can specify either a literal or a variable name
preceded by an ampersand (&). For a sequential dataset,
the member name is optional.

The member name of the skeleton file you want to use as a
model. You can specify either a literal or a variable name:
preceded by an ampersand (&)..

The volume serial number where the dataset resides. This
parameter is optional. You can specify either a literal or a
variable name preceded by an.ampersand (&).

Replace the member in the dataset if it already exists. This
is the default.

Terminate the save if the member already exists in the
dataset.

Add the data specified by the FILESKEL parameters to the
end of the dataset JFT writes. This parameter only supports
sequential datasets.. .

SYSD/JFT® ~ Release 6.4,2

C

Example 1

Chapter 4 ~ Logic Statements.

- FILESKEL(DSN(&HOLDDSN Y, NAME (MEMBER 1), SKEL (RSKELMEM))

JET saves the member called MEMBER1 in the dataset specified by the &HOLDDSN
variable using the skeleton:member specified by the &SKELMEM variable.

Example 2

FILESKEL(DSN(XYZ.ABC), NAME (MEMBER2), SKEL(MEM10),NOREPL)

If MEMBER2 does not already exist, JFT saves the member called MEMBER2 in the
dataset called XYZ.ABC using the skeleton member called MEM10.

Example 3

FILESKEL(DSN(JFT.TXN.FILE),SKEL(EMPREC),MOD)

The skeleton member EMPREC defines the record layout. JFT adds records to the end of
the file called JFTLTXN.FILE using the layout defined in EMPREC.

Reference Manual

33

Chapter 4 ~ Logic Statements

IF Statement

The IF statement evaluates an expression and, depending on if the expression is true or
false, executes a statement or group of statements. The syntax of the IF statement is:

IF{operand! operator operand2).

The parameter Specifies.

operand1: A user variable name preceded by an.ampersand (&) or a
* control, system, or profile variable..

operator The operator JFT uses to compare the values of operand1
and operand2. Valid operators are:

GT
GE
e
LE

operand2 A user, control, system, or profile variable name or a list of e
literals..

When used with IF statements, logic statements are sensitive to their column position. If
the condition of an IF statement is true, JFT executes the next statement after the IF
statement. If the IF statement is false, JFT executes the next statement that has a column
positionless than or equal to the column position of the IF statement.

Example 1

IF(&COND1 = &COND2).
STM1
STM2
STM3

If the condition in:the IF(&COND1 = &COND2) statement is true, JFT executes STM1,
STM2, and STM3. If the condition is false, JFT only executes STM3 because it has a:
column position:(column: 1) that is less than or equal to the IF(&COND1 = &COND?2)
statement (column:1)..

34 SYSD/JFT® ~ Release 6.4.2

Chapter 4 ~ Logic Statements

Example 2

IF(&CONDT =
IF(&COND3
STM1
STM2

STM3:

STM&

&COND2),
= YES,NO)

If the condition in the IF(&COND1 = &COND2) statement is true, JFT executes the next
IF statement. If the condition is false, JFT only executes STM4 because it has a column:
position: (column 1) that is less than or equal to the column-position of the IF(&COND] =
&COND?2) statement (column 1),

If the IF(&CONDS3 = YES,NO) statement is true, which also means the IF(&COND1 =
&COND?2) statement was true, JFT executes STM1, STM2, STM3, and STM4. If the
condition is false, JET only executes STM2, STM3, and STM4 because STM2 has a column.
position (column 3) that is less than or equal to the column position:of the IF(COND3 =
YES,NO) statement (column 3). '

Reference Manual 7 35

Chapter 4 ~ Logic Statements

LINK Statement

The LINK statement links from:the JFT panel toa CICS program. The syntax.of the LINK
statement is:: :

LINK(PGM(variable_name|literal)y

This parameter Specifies.
variable_name A variable name preceded by an ampersand (&). The value of
the variable must be the name of the CICS program you want
JET to link to.. '
literall The name of the CICS program you want JET to link to..
\mNaé \ A COMMAREA is not passed. If youneed to communicate between the JET

U panel and the CICS program, use the $CMVGET and $CMVPUT macros.
See “Communicating Between:Panels and CICS Ptograms” on page 54 for
more information.

Example 1

LINK(PGM(&PGMLINKY Y.

JET links to the CICS program name specified as the value of the &PGMLINK variable.

Example 2

LINK(PGM{CICSPGM))

JFT links to the CICS program called CICSPGM.

36) SYSD/JFT® ~ Release 6.4.2

Chapter 4 ~ Logic Statements

(_J SUBSKEL Statement

The SUBSKEL statement submits a skeleton member to the internal reader. The syntax.of
the SUBSKEL statement is: :

SUBSKEL (variable_name|literal)

This parameter Specifies.

variable_name: A variable name preceded by an ampersand (&). The value of
the variable must be the name of the skeleton member you
want JET to submit to the internal reader.

literal! The name of the skeleton member you want JFT to submit to
the internal reader.

Note \ JET uses the SYSD DCT entry to submit the JCL to the internal reader..

1
<anmesm |

b Example' 1

SUBSKEL (&SKELNM),

JFT submits the skeleton member specified as the value of the &SKELNM variable..

Example 2

SUBSKEL(MEMBER1)

JFT submits the skeleton member called MEMBERT...

Reference Manual 37

Chapter 4 ~ Logic Statements.

TRANS Statement

38

The TRANS statement compares a variable to'a value and assigns a corresponding value
to another variable. The TRANS statement is used in an assignment statement. The syntax:
of the TRANS statement is::

result=TRANS(variable_name,value,new_value,...,value, new_value)

This parameter Specifies

variable_name: A variable name preceded by an.ampersand.(&). This
parameter must be specified first.

value The value you want to compare variable_name to..
new_value: The value you want to assign to the result variable.
result The variable the new value will be assigned to..

The parameters that follow variable_name must be paired values. If you specify value; you
must also specify new_value:.

JET compares variable_name to each value: If the two values are equal, JET assigns
new_value to result.

An “anything else” condition occurs if variable_name does not match any of the value
values. You can define an “anything else” condition by specifying an asterisk (‘*’) for
value'in the last set of paired values. If you also specify ‘** for new_value; JFT stores the
variable being assigned untranslated. If you do not specify ‘** for new_value, JFT stores
the value as specified..

Example 1

&ABC = TRANS(&DEF,1,0NE,2,TW0,3, THREE, " ',/ !, '*" NONE)

If &DEF contains 2, &ABC contains TWO. If &DEF contains a blank; &ABC contains a.
blank: If &DEF contains 5, &ABC contains NONE.

SYSD/IFT® ~ Release 6.4.2

Chapter 4 ~ Logic Statements.

Example 2

RABC = TRANS(RDEF,1,O0NE,2,TWO,3,THREE, ! ¥, 1 1, 1%¥ 141y

Everything in Example 1 is also true for this example, except if &DEF contains 5, &ABC
contains 5..

Reference Manual 39

Chapter 4 ~ Logic Statements:

TRUNC Statement

The TRUNC statement truncates a variable at a specific position or character. The syntax:
of the TRUNC statement is:

o N

TRUNC(variable_name column| character)

This parameter Spéciﬁes

variable_name: A variable name preceded by an ampersand (&). This
parameter must be specified first.

column; The column position where you want to truncate the variable.

character The character where you want the variable truncated. The
truncation occurs where this character appears first in the
variable..

After JFT truncates variable._name, it assigns any remaining characters to the . TRAIL

control variable. If you truncate variable_name based on column: position, JFT assigns the

rest of the characters to .TRAIL. If you truncate variable: name based on a.character, JET f
assigns all the characters after the truncation character to .TRAIL and drops the truncate \
character.

Example 1

&ABC = TRUNC(&DEF,8)

Assume &DEF contains ABCDE:GHIJ. After JFT executes the assignment statement, &ABC
contains ABCDE:GH, &DEF does not change, and .TRAIL contains I}..

Example 2

&ABC = TRUNC(&DEF,':')

Assume &DEF contains ABCDE:GHIJi After JET executes the assignment statement, &ABC
contains ABCDE, &DEF does not change, and .TRAIL contains GHIJ, JFT drops the
character you specified as the truncate character, which in this example is a colon (:)..

40 SYSD/JFT® ~ Release 6.4.2

Chapter 4 ~ ogic Statements

Example 3

The TRUNC command can be used to parse a string. For example::

&FULLNAME = JODY M. LANTZ
&FNAME = TRUNC(&FULLNAME,' *)
&TEMP = .TRAIL

&INITIAL = TRUNC(RTEMP,' 1)
&LNAME = .TRAIL

The first assignment statement assigns JODY ‘M. LANTZ to the &FULLNAME variable..

The second statement assigns JODY to the &FNAME variable and assigns M. LANTZ to
the .TRAIL control variable. The third statement assigns the value of the .TRAIL control
variable, which is now M. LANTZ, to the &TEMP variable. The fourth statement assigns

M. to the &INITIAL variable. The last statement assigns LANTZ to the &LNAME variable..

Reference Manual

41

Chapter 4~ Logic Statements:

VER Statement

The VER statement verifies the value of a variable. The syntax of the VER statement is:
VER(variable_name,NB, function,parameters ,MS,Gémessage__i dy)
This parameter. Specifies
variable_name: The variable name you want to verify..
NB The value of the variable name cannot be blank: If specified,.
NB:must follow variable.name: You can use this parameter
with all the functions of the VER statement.
function; The type of information variable: name can contain.
parameters. One or more values JFT uses to verify variablename:
message_id' The ID of the message you want to display if the VER:
statement fails its test. This parameter must be the last item.on
the list.
‘ ;
The following sections describe the syntax for the functions of the VER statement.
Ca uti‘on> The NB parameter has the highest priority in a VER statement. If the NB -parameter is not
specified, the variable can have a blank or empty value regardless of the type of verification
being done.
VER ALPHA
VER(variable_name A!.PHA).
The variable_name must be alphabetic.
Ry

42 V SYSDJJFT® ~ Release 6:4.2

Chapter 4 ~ Logic Statements

VER BIT

VER(variable_name BIT)

The variable_name must only contain 0s or 1s..

VER DSNAME

VER(variable_name DSNAME)

The variable_name must be a valid dataset name. All dataset qualifiers must begin with:
an alphabetic character and must be between 1 and 8 characters long.

VER HEX

VER(variable_name HEX)

The variable_name must contain hexadecimal numbers (0-9, A-F).

VER LIST

VER(variable_name LIST valuel, value2, value3 ...)

The variable_name must be equal to one of the listed values..

VER NAME

VER(variable_name NAME)

The variable_name must be a valid member name: You can:specify numeric characters,
but the first character must be alphabetic. The length of the name must be at least 1
character and not more than 8 characters.

Reference Manual . 43

Chapter 4 ~ Logic Statements

VER NB

VER(variable_name NB):

The variable_name must not be blank.

Youcan use NB:with all the functions of the VER statement. If NB'is
specified, it must follow the variable_name..

VER NUM

VER(variable_name NUMY

The variable__name must be numeric (0-9).

VER PICT

VER(variable_name PICT 'pifcturé string®)

The variable_name must match the corresponding type of character in ‘picture string’.
Valid ‘picture string’ characters are:.

This character Specifies.

C Any character.

A Any alphabetic character (A-Z, #, $, @)..
N Any numeric character (0-9).

9 Any numeric :;haracter 0-9).

X Any hex character (0-9; A-F)..

Any other character represents itself.

44 ' SYSD/JFT® ~ Release 6.4.2

Chapter 4 ~ Logic Statements

VER RANGE

VER(variable_name RANGE n n)

The variable_name must be within the range of the two numbers specified.

Reference Manual 45

46

SYSD/JFT® ~ Release 6.4.2

Chapter 5

Skeleton and Message Files

Reference Manual

JFT panels can access skeleton and message files to perform additional tasks. Skeleton:
files contain models or skeleton JCL members JET can.submit. Skeleton files can also

contain model or skeleton record layouts JFT can use to update sequential files or PDS.

members. Message files contain messages of up to 80 characters JFT can display on the
panel.

47

Chapter 5 ~ Skeleton and Message Files-

Skeleton Filés

Skeleton files are PDS members or sequential files that contain skeleton JCL, control
statements, or other data that require changing before they are saved to disk or submitted.

JFT retrieves the skeleton based on the dataset or member name specified in a FILESKEL
or SUBSKEL statement. JFT scans records within the skeleton for variable names that. are
indicated by an ampersand (&). Any variables names that are found are replaced by the
contents of the variable. Updated records that are blank after the subsitution are not
written. The updated file is either saved to disk (FILESKEL) or submitted (SUBSKEL).

You can.add control statements in a skeleton to help control the file-tailoring process. A
control statement consists of a.control character followed by a keyword. The control
character must be.in column 1 followed immediately by the keyword. If JET does not
recognize the keyword, it considers the line to be a comment. If the control character is
followed by a blank, JET considers the line to be a.control statement.

Control Statements:

)JBLANK

The)BLANK statement inserts a specific number of blank lines in the output skeleton. fﬂe _)
The syntax of the BLANK statementis:.

YBLANK nn|&variable_name

This parameter Specifies

nn The number of blank lines you want to insert. The default is 1.
If you specify a number greater than 99, the defaultis 99:

&variable_name A variable name. The value of the variable must be the'
number of blank lines you want to insert.

)ICM

The)CM statement is treated as a.comment and ignored. The syntax of the CM statement
ist:

W

48) SYSD/JFT® ~ Release 6.4.2

C

-

)JDEFAULT

The)DEFAULT statement changes the default control character, which is a right
parenthesis, to a different character. For example, if you specify:

Chapter 5 ~ Skeleton and Message Files

JDEFAULT #

JET changes the default control character to a pound sign.(#).. All control statements that
-follow the)DEFAULT statement must start in column 1 and begin with a pound sign (#)

JIM

The)IM statement copies in the contents of a member from the skeleton library
concatenation. If you specify a variable name, the contents of the variable must be a
member name. The syntax of the)IM statement is:

¥IM member_name|&variable_name OPT NT

This parameter

member_name

&variable_name:

OPT

NT

)TB

The)TB statement sets tabs for the output in.a skeleton file. This statement is useful for
positioning data in a certain column of a record. The syntax.of the)TB'statement is::

Reference Manual

Specifies
The name of the member you want JFT to copy..

The name of a variable; The value of the variable must be the
name of the member you want JFT to copy..

Ignore the error and continue processing if JET does not find:
the member. This parameter is optional.

Copy the member. This parameter is optional. If this

parameter is specified, JFT does not perform any file tailoring..

YTB columnlAl ...

column([A]

49

Chapter 5 ~ Skeleton and Message Files

50

This parameter Specifies.
column, v The position in the record where you want to set the tab.
A The tab is absolute. This option must immediately foliow the

column number.

Example 1

Assume the following)TB'statement is in the skeleton file:

YTB 16A 57
&FNAME! &LNAME! &MI

The exclamation point (1) is the tab character. It tells JFT to tab before inserting the field..
As JFT moves data into the output area during file tailoring, it keeps track of where the

data is to be positioned..

Assume the following input values::

&FNAME = DON
&LNAME = DAHL
&M1 =d

If you had not specified tabs in the skeleton file, the result would be:

DONDAHLY

EERREAETTE ERTREPEPY CRPRF S SPusur iy S i S

Since you did specify tabs in the skeleton file, the result would be:

The word Don starts in column 1, the word Dahl starts in column:16, and the initial] starts

in.column.57..

SYSD/JFT® ~ Release 6.4.2

C

C

Chapter 5 ~ Skeleton and: Message Files

Example 2

Each time JFT finds an exclamation point (!), it advances to the next tab marker from the
current output marker. If the current output marker is pointing at a:tab; JFT jumps to the
next tab-unless the absolute (A) option is placed on:the tab the output marker is pointing
to..

Assume the following)TB statement is intheA skeleton:file::

YIB 10A 57A
&FNAME! &LNAME! &MI

Assume the foliowi‘ng» input values:

&FNAME = ELIZABETH
&LNAME = HARTE
M1 = A

JET puts the value of the &FNAME variable beginning in column 1. -

T A T T

ELIZABETH

The output marker is now at position:10. The next instruction to JET is to-tab: Since the
example has an absolute tab in column 10, JFT puts the value of the &LNAME variable
beginning in.column 10. The next instruction to JET is to tab. JET puts the value of the
&MI variable in column 57. The result would be: '

T s BT R . R A i Rkt TETRY TP TPy £

ELIZABETHHARTE A

If you had not specified the A option for the column 10 tab in the skeleton file, the result
would be:

Tl T e b SR R A . R R R

ELIZABETH HARTEA

Since no-additional tabs were defined in the skeleton, JET puts the value of the &MI
variable immediately after the value of the &LNAME variable.

Reference Mahua!) ' 51

Chapter 5 ~ Skeleton and-Message Files

Message Files

52

Message files contain message members. Message members contain messages of up to 80
characters. You can have JFT display these messages on the panel..

The member name consists of the message ID through the second digit. For example, if
you specify a message ID'of XYZOO1A, JFT searches for a message member name of XYZ00.

A message ID'can be 4 to 8 characters long. The first 1 to 5 characters must be a valid
member name. The rest of the characters, up to the maximum:of 8, can be alphanumeric.
For example, AB0OO; ABO0O1A, and ABCDEOO2 are valid message IDs..

Every message member contains at least two lines. The first line is the message ID-
beginning in column:1. The second line is the long message. You.can enclose the message
with apostrophes, but the apostrophes are not required. The message can contain
variables. JFT replaces any variables in the message with their values. The following are
examples of messages in:the PDS member called XYZ00:

XYZO01A.

‘User must specify the correct value.!
XY2002

The number '&NUM*" is not valid.

To have JFT display these messages on the panel, use the following panel statements::

.MSG = message_id:
.MSGF = message_id
VER (‘&FI'ELD,$NB,MS'G=message_i‘d)“

See the .MSG control variable on page 23, the MSGF control variable on page 24, and the
VER statement on: page 42 for more information.

SYSD/JFT® ~ Release 6.4.2

Chapter 6
Calling CICS Programs

This chapter explains how to call CICS programs from JFT panels. It also discusses how. to
access and update JFT variables from a CICS program.

Reference Manual » 53

Chapter 6 ~ Calling CICS Programs.

Communicating Between Panels and CICS
Programs

After the JFT LINK statement performs an EXEC CICS LINK command, the variables the
JFT panel uses may need to be read and updated. JFT variables are managed by the
CPMS/SYSD conversational manager and can only be updated using the $CMVGET and
$CMVPUT macros. The $CMVGET macro reads the JFT variables into storage and. the
$CMVPUT macro updates the JFT variables. You must use the $CMVGET and $CMVPUT
macros with Assembler in a SYSD-type program..

$CMVGET

The $CMVGET macro reads the JFT variables the program needs into storage. The syntax.
of the $CMVGET macro is:

$CMVGET (variable_name,length,location)

This parameter Specifies

variable_name: The 8-byte variable name you want the $CMVGET macro to
read. The variable name cannot include an ampersand. (&). If

the variable name is less than 8 bytes, it must be padded with:
blanks.

You can specify either a data name that points to a variable
name or the variable name itself enclosed with-apostrophes.

length: The length of the variable. You can specify either a literal
number or a number contained in a register.

location ‘ Where you want the $CMVGET macro to put the contents of
the variable. You can specify either the data name of a location.
inmemory or an actual address specified in a register.

Examples

$CMVGET (!'NAME ',21,SAVENAME).
$CMVGET (SAMPKYWD, (R2),(R4))

54) SYSD/JFT® ~ Release 6.4.2

$CMVPUT

The $CMVPUT macro updates JFT variables. The syntax of the $CMVPUT macro is:

- Chapter 6 ~ Calling CICS Frogramsﬂ

[$CMVPUT (vari ;bt e_name, length,location,'F!)

This parameter

variable_name:

iEngihn

location:

fFI‘

- Examples

Reference Manual

Specifies

The 8-byte variable name you want the $CMVPUT macro to
update: The variable name must not include an-ampersand (&).
If the variable name is less than 8 bytes, it must be padded with
blanks.

You can specify either a data name that points to a variable
name or the variable name itself enclosed with apostrophes..

The length of the variable. You can specify either a number or a.
number contained in a register.

Where you want the SCMVPUT macro to get the variable from.
You can specify either the data name of a location in'memory or
an actual address specified in a register..

The conversational manager defines variable_nameasa
functional variable. All JET variables are functional variables.
This parameter is required..

SCMVPUT ('NAME

v, 21,SAVENAME, 'F').
SCMVPUT (SAMPKYWD, (R2),(R4),'F*)

55

Chapter 6 ~ Calling CICS Programs:

Callihg CICS Programs from SYSD/JFT

This section provides an example of a JFT application called JFTADD that gets two
numbers from a JET panel. JFTADD shows how to get JET variables in your CICS
program, call subroutines in your CICS program, and returnvalues to JET from your
CICS program. The panel validates the input to make sure it is numeric. The JFT panel
validates the numbers and calls a CICS program:to add them. The CICS program then:
returns the sumback to JFT. JFT displays the sum on the panel for the user.

Appendix.C, JFTADD Program, provides the complete code for JFTADD.
The source is also in:the JET sample library. When you install SYSD/JFT, this
program is copied to your SYSD:SOURCE library and is called JETADD:..

You can copy JFTADD and change it to create your own CICS programs to perform other
functions. For example, you could have your CICS program read a VSAM file and return:
values back to JET for display. You can also pass the JFT variables back to your CICS
program and then update the VSAM file:

Calling the JFTADD Program

56

The following is the code for a panel that accepts and edits the input and then displays
the result:.

JATTR .
~ TYPE(QUTPUT) INTENSCHIGH)
JBODY

%ENTER Number 1 _NuM1 %
%ENTER. Number 2 _NuMz %
% : SEEmaEnoIoRESZZD=EXS

%#TOTAL) -SUM %
YINIT

.SYSDTTL = 'JFT Addition Link Program’
YPROC -

VER (&NUM1,NB,NUM}

VER (&NUM2,NB,NUM) .

IF (.MSG = &Z)

LINK(PGM{JFTADD))
YEND

JFT variables are stored in character (EBCDIC) format. As a result, JFTADD 'must convert
the data entered into the required format for processing. In this example, JFTADD'is
adding two numbers so the input must be converted to numeric values. To accomplish.
this, the VER statements verify that the fields are not blank:(NB option) and that the
characters entered in them are numeric (NUM option).

SYSD/JFT® ~ Release 6.4.2

Reference Manual

Chapter 6 ~ Calling CICS Programs

Then JFT checks the .MSG system variable to see if an error was found. JET only calls
JETADD when NUMI1 and NUMS2 are both numeric, which means an error was not found..

The LINK command tells JFT to call JFTADD:

Note The program JFT calls must be a CICS program and have a PPT table entry’
| defined. If you change the program being called, you must issue a
Newcopy command to CICS.

57

Chapter 6 ~ Calling CICS Programs

SYSD-like Programs

SYSD-like programs use the $PROC macro to-mark the beginning of the program and
subroutines. JFT calls these subroutines using assembly language call standards; that is,
JET passes the parameters using Register 1. The $PROC macro takes care of saving
register information from the calling program. The $END macro marks the end of a
program or subroutine and restores the registers for the calling program..

You can use the SRETURN macro in subroutines to set a return code. The format of the
$RETURN macro is:

$RETURN RC=0

The calling program or routine can then check Register 15 to find out what the return
code is. The panel cannot check the return:code of the program it linked to. To accomplish
this, you must define a JFT variable in your panel and use the $CMVPUT macro to set
that variable in your CICS program.

Storing Data in JFT-like Programs

58

You can define user storage areas in one of three areas depending on how: you will use
the data.

Constant Data

You can define constant data, like tables, after the $END macro. For example:

SEND RC=0
PI. DC PL3'3.14!

Local Variables

Local variables are only addressable within the routine being processed. They are defined.
and addressable between the $PROC and $END macros. You can use the $DCL macro to
define local variables. ‘

The $DCL macro lets you allocate data areas in two ways. First, you can define data areas
with individual $DCL macros for each variable: For example:

SYSD/JFT® ~ Release 6.4.2

Chapter 6 ~ Calling CICS Programs

! VALNUM: $PROC .

. $DCL NUMBEGN, FUL POINTER TO: PASSED VALUE
$DCL NUMLEN, FUL LENGTH OF THE FIELD PASSED
$DCL PADLEN, FUL LENGTH OF THE FIELD PASSED
$DCL WORKNUM,CHAR(10) WORK: FIELD

C

Second, you can define them in a group with the $DCL ON and $DCL OFF macro
parameters. For example::

&PGMNAME $PROC OPTIONS=(MAIN,COMMAND ,GEN)
$DCL ON
WPFLD1 DS PLS PACKED WORK AREA" FOR NUMBER 1
WPFLD2 DS PL5S PACKED WORK: AREA FOR. NUMBER 2
WPSUM' DS PLS PACKED WORK' AREA FOR NUMBER SUM
$DCL OFF

Global variables

Global variables can be used anywhere in the program: You can define them in the
program’s Dynamic Storage Area. The following example shows three variables used in
the JFTADD example: '

ATITLE t** COMMAND LEVEL DYNAMIC. STORAGE

o ° **
(!

/ * COMMAND LEVEL DYNAMIC STORAGE *
‘*ﬂ/ **
* AREA HEADER INFORMATION.

DFHEISTG- DSECT
DFHEISTG .
COMMBEGN EQU *
**% PLACE DYNAMIC STORAGE AREAS HERE.

EBACNUM1 DS CLS FIRST NUMBER TO ADD

NUMTLEN. EQU L'EBACNUMT LENGTH OF NUMBER 1

EBACNUMZ DS CLY SECOND. NUMBER' TO ADD

NUM2LEN EQU. L'EBACNUMZ2 LENGTH OF NUMBER 2

EBACSUM DS CL11 ’ RETURN. THE NUMBER BACK.
JFTADD Program

When JFT calls JFTADD, the first thing JETADD does is get the JFT variables it will:
process. This is done using the $CMVGET macro. For example::

*

GET THE NUMBERS TO ADD

SCMVGET ('NUM1 v,9,EBACNUMTY FIRST NUMBER
$CMVGET ('NUM2 ', 9,EBACNUM2). SECOND' NUMBER.

Reference Manual

59

Chapter 6 ~ Calling CICS Programs

60

The $CMVGET macro copies the data from the NUM1 and NUM2 JFT variables into.
JFTADD's memory. The EBACNUM1 and EBACNUMS2 variables are global variables in-
the program since they are stored in the Dynamic Storage Area, which means any routine’
in JFTADD:can access them:

JFTADD then converts the data in EBACNUM1 and EBACNUM?2 from character
(EBCDIC) format to packed-numeric format, left justifying the data in the field. To
convert the number, JFTADD calls the VALNUM routine to right justify and zero fill the
field. The $CALL macro builds a parameter list and points Register 1 to that list before
calling the VALNUM routine. After the VALNUM routine completes successfully, JFTADD:
adds the two numbers and converts EBACNUMI, EBACNUM?2, and EBACSUM back to
character (EBCDIC) format.

To display the result back to the user, JETADD uses the $CMVPUT macro to update the:
JET variables. For example:

SCMVPUT ('NUM1 ',9,EBACNUMT,'F*) PASS NUMBER1 TO JFT PANEL
$CMVPUT ('NUMZ ',9,EBACNUMZ, *Fv). PASS NUMBERZ2 TO JFT PANEL
$CMVPUT ('SUM ', A1,EBACSUM, . "FY) PASS SUM TO JFT PANEL

You may want to try commenting out the $CMVPUT lines for the NUM1
and NUM2 variables. These two lines cause JFT to display the zero-filled,
right-justified values to the user. If you.comment them out, JFT d:splays the
NUM1 and NUM2 variables as entered.

The $END'macro indicates the end of the program and returns control to JFT. In this
example, JFT ends processing and displays the results to the user. You can also continue
with JFT processing logic based on the results returned from the CICS program:.

SYSDJ/JFT® ~ Release 6.4.2

Appendix A |
CPMS/SYSD Menu System Variables

This appendix provides a list of the variables JFT can access from theCPMS/SYSD menu

system..

Option 0.0, General Parameter Definitions

Variable name Length Description
$ADDR1 29 Address line 1
$ADDR2 29 Address line 2
(__/ $ADDR3 29 Address line 3
$ADDR4 29 Address line 4
$DEPART 29 User’s department name
$NAME 29 - User’s name
$PSWD: 9 User’s password
$TITLE 29 User’s title
$USER 11 User ID
Option 0.1, JES/List Parameter Definitions.
Variable name' Length Description:
$CLASS - 1 Job class selected for display
$DESTID: 10 Destination:
$DSPSTCS 1 Display TSO/STC
\‘__/ $JOBCRD1 72 JOB:card 1

Reference Manual

61

Appendix A ~ CPMS/SYSD Menu System Variables

Variable name Length
$JOBCRD2 72
$JOBCRD3 72
$JOBCRD4 72
$PREFIX 8
$PRINTER: 4
$PRTPRTD' 1
$SYSINOK 1

Description

JOB'card 2

JOB:icard 3

JOBicard 4

Job prefix selected for display

Printer ID'

Printer display preference (CPMS or JES2)

View SYSIN JES datasets

Option 0.2, Program Function Key Definition:

Variable name Length
$CLEAR 8
$PAT 8
$PA2 8
$PA3 8
$PFO1 8
$PFO2 8
$PFO3. 8
$PF04 8
$PFO5 8
$PF06 8
$PFO7 8
$PFO8- 8
$PF09 8

~ $PRI10 8
$PF11 8

62

Description;

Clear key value
PAT key value

PA2 key valué ;
PA3 key value |
PF1 key value

PF2 key value

PF3 key'vaiue
PF4 key value

PF5 key value

PF6 key value |
PE7 key value

PF8 key value

PF9 key value
PF10 key value

PF11 key value

SYSD/IFT® ~ Release 6.4.2

C

Variable name

$PF12
$PF13
$PF14
$PF15
$PF16
$PF17
$PF18
$PF19
$PF20
$PR21
$PF22
$PF23

$PF24

Length

Appendix A ~ CPMS/SYSD Menu System Variables

Description:

PF12 key value:
PF13 key value
PF14 key value
PF15 key value
PF16 key value
PF17 key value
PF18 key value
PF19 key value
PF20 key value
PF21 key value
PF22 key value
PF23 key value

PF24 key value

Option 0.3, Job/File Tailfori'ng/ Panarﬁet‘ens,

Reference Manual

Variable name:

$JRTJESN

$JFTMSG1
$JFTMSG2
$JFTMSG3
$JFTMSG4
$JFTMSG5
$JRTPANT
$JETPAN2

$JETPAN3

Length

8

S S S N O S

Description

Initial JES JET panel name-
JFT message library concatenation - dataset 1
JET message library concatenation - dataset 2

JFT message library concatenation - dataset 3

JET message library concatenation - dataset 4

JET message library concatenation - dataset 5

JET panel library concatenation:- dataset 1
JET panel library concatenation - dataset 2

JET panel library concatenation - dataset 3

63

Appendix A ~ CPMS/SYSD Menu System Variables

Variable name Length Description,

$JFTPAN4 44 JET pénel‘ library concatenation - dataset 4
$JFTPANS 44 JFT panel library concatenation - dataset 5
$JFTPEXE 1 Execute any panel authorization flag
$JFTPNME 8 Initiél JET panel name

$JETSKL1 44 JFT skeleton library concatenation - dataset 1
$JFTSKL2 44 JFT skeleton library concatenation - dataset 2
$JFTSKL3 4“4 JET skeletonlibrary concatenation - dataset 3.
$JFTSKL4 44 JFT skeleton library concatenation - dataset 4
$JFTSKL5 44 JET skeleton library concatenation - dataset 5

Opt%fon- 0.4, GET/PUT TS Queue ldentifiers

Variable name Length Description:

$TSQSYOV 1 Queue and SYSID override retention
$TSQUEID 8 GET/PUT queue ID save area
$TSSYSID: 4 GET/PUT system ID save area

Option: 0.5, Utility Parameters

Variable name Length Description,
$PRTCLAS 1 - Print class
$PRTJCD1L 72 Print JOB:card 1
$PRTJCD2 72 Print JOB:card 2
$PRTJCD3 72 . Print JOB'card 3
$PRTJCD4 72 . Print JOB:card 4
$PRTLPGE 3 Print lines per page

64 , SYSD/JFT® ~ Release 6.4.2

C

Reference Manual

. Appendix A ~ CPMS/SYSD:Menu System Variables

Option U, User File Maintenance

Variable name Length:

$ADDR1
$ADDR2
$ADDR3
$ADDR4
$ADMIN
$CONTROL
$DEPART

$JESJSCA
$JESJSCB:
$JESJSDA
$JESJSDB
$JESJS]A

-$JESJSMA

$JESJSVA |
$NAME
$PRTCLMK
$PRTPRMK -

$PRTPRTA
$PRTPRTS

$PRTPRTV

29

29

29

29

11

11

29

40

40

32

Description,

Address line 1
Address line 2
Address line'3
Address line 4
Admin authority
Control authority
Department

List of classes the user is authorized to view (4,
1-byte fields) '

Second: list of classes the user is authorized to view
(4, 1-byte fields)

List of destinations the user is authorized to view
(4, 10-byte fields)

Second list of destinations the user is authorized to.
view (4, 10-byte fields) :

List of jobs the user is authorized to view (4, 8-byte
fields)

Miscellaneous field available for user definition:
and use

JES2 queue view authority

User’s name

CPMS printer selection mask (8, 1-byte fields)
CPMS destination selection mask: .

List of printers the user is authorized to view (8;.
8-byte fields)

If the user can change the criteria the hot
writers/JOE writers use to select jobs

Printer view authorization:

65

Appendix A ~ CPMS/SYSD Menu System Variables-

Variable name Length

$PSWD 9

$RECEIVE 11
$TITLE 29
$USER 11

Description

User’s password
Receive authority
User's title

User ID

Options 1, 2, and 3 (Edit, Browse, and Utility)

Name: ' Length:

$BRWBOTH 56

$BRWSLBI 8
$BRWSLB2 8
$BRWSLB3 8
$BRWSLB4 8
‘$BRWSPR~} 8
$BRWSTYP" 8
$EDITLBI 8
$EDITLB2 8
$EDITLB3 8
$EDITLB4 8
$EDITOTH 56
$EDITPR] 8
$EDITTYP’ 8
$UTILLB1 8
$UTILLB2 8
$UTILLB3 8
$UTILLB4 8

66

Description

Edit other dataset name
Browse library 1
Browse library 2
Browse library 3
Browse library 4
Browse project

Browse library type
Edit library 1

Edit library 2

- Editlibrary 3-

Edit library 4

Edit other dataset name
Edit project

Edit library type

Utility library 1

Utility library 2

Utility library 3

Utility library 4

SYSD/JFT® ~ Release 6.4.2

Reference Manual

Name

$UTILPR]

$UTILTYP

Length:

8:
8.

Appendix A ~ CPMS/SYSD Menu System Variables

Description,

Utility project
Utility library type

67

68

SYSD/JFT® ~ Release 6.4.2

C

Appendix B

Sample Panels

This appendix provides samples of some JFT panels and the code that generates them:

Note Hé&W is interested in seeing any additional examples you develop: Please
S| submit your samples to H&W for possible inclusion in our reference files.

Reference Manual

69

Appendix B ~ Sample Panels

Primary Menu |

The following panel shows an example of a primary menu for system utility functions:
17:08237 ~o--mmeommmaeaanns Example Job/File Tailoring ---=----vn- m———— [aVAD]
INPUT ==z> SCROLL: CSR
====> Enter Selection in Input Field Above:’ Panel. Name = SYSDOS.
1 = SYSTEM Utilities
X = EXIT

| |
| sYSD Option 0.3 sets the Default Panel to Execute upon entry to JFT.

I'f you desire your own Main Menu...Update 0.3 with the Name of the

Panel you wish to execute.
| |
Rt |

The following code generates this panel: N,

JATTR DEFAULT(%+_) .

- TYPE(TEXT) INTEN(LOWY
yBODY
-====> Enter Selection in Input Field Above:% -Panel Name = SYSDO08

%1-= SYSTEM Utilities%.
%X-= EXIT%

R |
~|#%sYsD-Option 0.3 sets the Default Panel to Execute upon entry to%dFT.- i
-~| If you desire your own Main Menu...Update 0.3 with the Name of the
—-| Panel you wish to execute.

70 SYSD/JFT® ~ Release 6.4.2

Appendix B ~ Sample Panels

YINIT B
.SYSDTTL = 'Example Job/File Tailoring!
YPROC ‘
&ZSEL=TRANS(TRUNC(&ZCMD 212,17, P PANEL (SYSUTIL)!,,
X, VEXITH,,
i o 1
Iy 1
* 194y

JEND

Reference Manual

71

Appendix B ~ Sample Panels

System Ultilities Panel

To view a menu listing the available system utilities, select Option 1 on the primary menu
shown on page 70. The following is an example of the System Utilities panel::

17:13:38 =remmmmemcinaaaann Example Job/File Tailoring ~----cceswcanncanan [QVADR
INPUT ===> SCROLL: CSR
====> ENTER SELECTION IN. INPUT FIELD ABOVE: PANEL NAME=SYSUTIL

1 = Submit IEBCOPY to éopy,member(s);cf a PDS

2 = Submit IEBGENER to copy a sequential file

3 = Submit IEBUPDTE to rename a member(s) of a PDS

X = Exit-

The following code generates this panel:

JATTR DEFAULT(%+_)
-~ TYPE(TEXT). INTEN(LOW)

YBODY
-====> ENTER SELECTION IN INPUT FIELD: ABOVE:%. V ~PANEL NAME=SYSUTIL
%1-= Submit%I1EBCOPY~to copy member(s) of a PDS%
%2-= Submit%IEBGENER-to copy a sequential file%
%3-= Submit%IEBUPDTE-to rename a member(s) of a PDS%
%X-= Exith%. ’
YPROC

&2ZSEL=TRANSCTRUNC(&ZCMD, 1),
1, 'PANEL (IEBCOPY)! .
2,'PANEL(1EBGENER)",,
3, 'PANEL(1EBUPDTE)",,
X, 'EXITY,.

LI S B
s
*':l’?,l)

'

JEND

72 SYSD/IFT® ~ Release 6.4.2

e

C

Submit IEBCOPY Panel

Appendix B~ Sample Panels

RO

To execute the IEBCOPY utility, select option 1 on the System Utilities panel shown on
page 72. The following is an example of the Submit IJEBCOPY panel:

17:17:53 = -cmmenmcmcncmcamccmnane Submit IEBCOPY ~=-~ewvecevooooccnoannon [GYADA
INPUT === SCROLL: CSR
Jobname: COPY
Job Class: A (Must be an 'A! or '8")
Msgclass: A . (Must be an 'A' or '8')
Typrun:: HOLD - (Must be 'RUNY,. 'HOLD',. or 'SCAN'Y;
Input Dataset:
Disp:: SHR
Qutput Dataset:
Disp:: SHR

Members to Copy:

as

Replace Member(s): N (Enter 'Y' to Replace Members)
Submit: N (Enter 'Y* to SUBMIT Job)

The user enters the data on the panel. The subroutine verifies the fields, reads a skeleton
file, substitutes the variables from:the panel, and submits the job to the internal reader..
The following code generates this panel::

JATTR DEFAULT(%+_)
- TYPE(TEXT) INTEN(LOW):
* TYPE(INPUT) INTEN(LOW)
i TYPECQUTPUT) INTEN(LOW)
YBODY
~Jobname:* JOBNAM-
-Job Class:*C-~ (Must be an 'AY or '8')%
-Msgclass:*M- (Must be an 'A! or '8'%
~Typrun:*TYPR- (Must be 'RUNY, “HOLD', or 'SCAN')%
~Input Dataset:*IDSN %
-Disp:*1DSP%
-Output Dataset:*ODSN %
-Dispt*0DSP%.
-Members to Copy:*M01 *MO2: *MO3 *M04 *MO5- %
-1 *M06 *MO7 *M08 *M09, *M10 %
-Replace Member{s):*R- (Enter 'Y' to Replace Members)%
~Submit:*S- (Enter 'Y' to SUBMIT Job)%
(continued)

Reference Manual 73

Appendix B~ Sample Panels.

74

YINIT

.SYSDTTL = 'Submit IEBCOPY!
&JOBNAM = COPY

&C = A

&M = A

&TYPR = HOLD

&IDSP = SHR

&ODSP = SHR.

&R = N

&5 = N

YPROC

&OMO1 = &2

&OMO2 = &2

&OMO3 = &2

&OMO4 = &2

&OMO5 = &2

&OMO6- = &2

ROMO7 = &2

&OMO8 = &2

ROMO9 = &2

&OM10 = &2

VER (&JOBNAM, NB)
VER(&C,NB,LIST,A,8)
VER(&M,NB,LIST,A,8)
VER(&TYPR,LIST, 'RUN. ', HOLD, SCANY;
VER(&IDSN,NB,DSN)
VER(&ODSN,NB,DSN)

IF (&IDSN = 1yt)

&IDSN = '&$USER..JCL.SOURCE?

IF (&0ODSN. = "4y

&ODSN. = '&$USER..JCL.SOURCE!

IF (&IDSN. = 'DAS')
&IDSN. = 'SYSD.PTFA.SOURCE!
IF (&ODSN. = 'DAS!')
&ODSN. = 'SYSD.PTFA.SOURCE!®
IF (&IDSN. = 'DBS')
&IDSN. = 'SYSD.PTFB.SOURCE®
IF (&ODSN. = DBS')
&ODSN = 'SYSD.PTFB.SOURCE®
IF (RIDSN. = fDBL')

&IDSN =. 'SYSD.PTFBMVS.LOADLIB'

IF (R0DSN = 'DBL")

&ODSN. = "SYSD.PTFBMVS.LOADLIB'

VER(EMO1,NAME)
VER(&MO2,NAME)
VER(&ZMO3,NAME)
VER(&MO4 NAME Y
VER(&MO5 ,NAME)
VER(&MOG, NAME),
VER(&MO7, NAME)
VER(&MOS, NAME)
VER(&MO9, NAME)
VER(&M10,NAME).
VER(&R,NB,LIST,Y,N)

/* set title line */
/* set defaults for variables */

/* initialize to nulls */

/% jobname must be entered */

/* class must be an 'A' or 8% */
/* msgclass must be an 'A' or '8 %/
/¥ typrun must be run,, hold,, or scan
/* verify i/o dataset names

/* are valid */

/* create short dataset names

/* like DSNOO3 */

/* verify all member names
/* are valid */

/* replace option must be Y or N */

SYSD/JFT® ~ Release 6.4.2

Appendix/B ~ Sample Panels-

'S M=RMO1' /* attach 's m=' to the front

/ N 1IF(&MO1 —= &Z) &OMO1 =
(\nff IF(&M02 -= &Z) &OMO2 = 'S M=8M02" /* of each member */
IF(&MO3 = &Z) &OMO3 = 'S M=&MO3"
IF(BM04 —= &Z) &OMO4 = 'S M=&MO4!
IF(&MO5 —= &Z) &OMO5 = 'S M=&MO5!
[F(&MO6 ~= &Z). &OMO& = 'S M=&M06’
[F(&MO7 —= &Z), GOMO7 = 'S M=&MO71-
. IF(&MO8 -= &Z). &OM08 = 'S M=&M08!
IF(&MO9 ~= &Z) ROMO9 = 'S M=EMO9"
IF(&M10 -= &ZY) &OM10 = 'S M=&M10*
IF(&R = N} , /* build: NO: REPLACE control. stm */
&CONTROL = 'COPY INDD=ING1,0UTDD=0UTO01"
IF(&R = Y) /* build REPLACE control stm */
&CONTROL = 'COPY’ INDD=((INO1,R)),0UTDD=0UTO1?
I1F¢&S = Y /* submit the job when ready.
IF(.MSG = &2) . /* don't submit if errors
SUBSKEL (IEBCOPY): /* using the skeleton member
&S=N. /* 1EBCOPY and: turn submit flag off*/
JEND

The following is an example of the skeleton file used for the IEBCOPY panel:

//8SUSERRJOBNAM JOB 'XSNAME',.
1/ MSGCLASS=&M, CLASS=&C, TYPRUN=&TYPR
/*ROUTE PRINT &$DESTID
//1EBCOPY- EXEC PGM=I1EBCOPY
//SYSPRINT DD SYSOUT=*
/7INO1 DD D1SP=&IDSP,DSN=&IDSN
L | #70UTO1 DD DISP=&0ODSP,DSN=&0DSN
s J/SYSIN. DD *
(_,/ &CONTROL
: &OMOD1
&0M02
&0MO3
&OMO4
&0OMO5
&OMO6
&OMO7
ROMO8
20M09.
OM10
/*
/7

Reference Manual ‘ 75

76

SYSD/JFT® ~ Release 6.4.2

Appendix C
JFTADD Program

This appendix provides the complete code for the JFTADD program.

*ASM' CICS(NOPROLOG NOEPILOG) COMMAND LEVEL TRANSLATOR
COPY SYSDGBLS
SETSSI
LINKCTL COMMAND
&PGMNAME SETC 'JFTADD!
ATITLE 'JFTADD - EXEC CICS LINK JET EXAMPLE!, *
TYPE=TOPIC
*PROGRAM'
* JETADD - EXEC CICS LINK JFT EXAMPLE
*COPYRIGHT
> (CYCOPYRIGHT 1997, H & W COMPUTER SYSTEMS, INC.
P *PROGRAMMER
Q&_,} * PETER J. PAPE
*DATE WRITTEN _
* AUGUST 21, 1997
*PURPOSE
* THIS PROGRAM' ADDS TWO NUMBERS ENTERED FROM A JFT
* PANEL. THE PANEL ASSIGN AND VERIFY JFT VARIABLE
* NAMES NUM1 AND NUM2. NUM1 AND NUM2 MUST BE NUMERIC.
*®
* THE $PROC AND $END ARE REQUIRED. THE FIRST $PROC MUST
* HAVE OPTIONS OF MAIN AND COMMAND. BY SPECIFYING. GEN,
* ALL MACROS WILL BE EXPANDED. ADDITIONAL $PROC AND SEND
* MACROS MAY BE USED AND INVOKED WITH A $CALL MACRO.
* EACH $PROC AND SEND ARE THE BEGINNING AND ENDING OF A.
* CSECT. THE $PROC THAT HAS THE OPTIONS OF MAIN. IS THE
* CSECT THAT GETS CONTROL WHEN LINKED. TO.
*
* FOR FURTHER EXAMPLES, REFER TO SYSD.SOURCE. IF THE
* MACRO. EXPANSIONS ARE NECESSARY, OPTION 'LIST! MUST
* BE USED WHEN ASSEMBLING.
*
*MATNTENANCE LOG
MODID
* PUT 06.4.0
* PJ 08/21/97 CREATED.
*INPUT
* VARIABLES FROM' THE FUNCTION PODL.

Reference Manual 77

Appendix C ~ JFTADD Program

*QUTPUT
* UPDATED: VARIABLES FROM THE FUNCTION. POOL.
*0S/VS MACROS USED

PRINT OFF

COPY DFHCSADS

COPY DFHTCADS

DFHBFTCA OPTION=BASIC

PRINT ON.

SYSDTWA
TWAEND EQU * END OF TWA
TWALGHT EQU TWAEND- TWASTART LENGTH OF TWA

ATITLE '** COMMAND LEVEL DYNAMIC STORAGE **!
Hedk ek desk ek s ke sk e s ke de ek e Ak e ok 9 9ol ek ok o o ok ek ok o o

* COMMAND LEVEL DYNAMIC STORAGE *
* . AREA HEADER INFORMATION.
DFHEISTG DSECT

DFHEISTG. ,

COMMBEGN. EQU™ *
**% PLACE DYNAMIC STORAGE AREAS HERE.

EBACNUMT DS CL9 FIRST NUMBER TO ADD
NUMILEN EQU. L'EBACNUMY LENGTH OF NUMBER. 1
EBACNUMZ DS CL9 SECOND NUMBER TO: ADD
NUM2LEN. EQU L'EBACNUM2 LENGTH OF NUMBER 2
EBACSUM' DS CL11 RETURN. THE NUMBER BACK.
* AREA TRAILER INFORMATION.
COMMLGTH EQU *-COMMBEGN. LENGTH OF AREA

ATITLE '#* EQUATES %%t

REGEQU
SAVER EQU R8 . REGISTER SAVE AREA POINTER
BASER EQU R9 PROGRAM' BASE REGISTER

ATITLE ' ** PROGRAM MAIN. PROCEDURE **!
Sk e ekl ok ok ke ok e ek ks ke e okt o o s ko ek ok ok o o ok

* PROGRAM' MAIN. PROCEDURE *

**********'k***‘k******'&*******'k***

&PGMNAME SPROC OPTIONS=(MAIN,COMMAND,GEN)

$DCL ON.
WPFLDT DS PLS PACKED WORK AREA FOR. NUMBER 1
WPFLD2 DS PL5 PACKED WORK: AREA FOR NUMBER 2
WPsSUM' Ds PLE PACKED WORK AREA FOR. NUMBER SUM
$DCL OFF
*
* GET THE NUMBERS TO ADD
%*
SCMVGET (*NUM1 v, 9,EBACNUMT) FIRST NUMBER
$CMVGET ('NUM2 1,9,EBACNUM2): SECOND NUMBER

*

CONVERT THE DATA. TO PACK. NUMBERS

$CALL V(VALNUMY, (EBACNUMT,NUMILEN)
PACK. WPFLD1,EBACNUM1 PACK: THE FIRST NUMBER

SCALL V(VALNUMY, (EBACNUM2,NUM2LEN)
PACK. WPFLD2,EBACNUM2 PACK: THE SECOND NUMBER

*

NOW WE ADD THEM

ZAP WPSUM,WPFLD1 MOVE FIRST NUMBER TO THE SUM FLD
AP WPSUM, WPFLD2 ADD SECOND NUMBER. TO' THE FIRST

78 SYSD/IFT® ~ Release 6.4.2

Appendix C ~ JFTADD: Program

*

*

CONVERT TO DISPLAY

UNPK. EBACNUM1,WPFLD1 UNPACK THE NUMBER

0l EBACNUMT+(L*EBACNUM1-1),X'FO!

UNPK. EBACNUMZ2,WPFLD2 UNPACK. THE NUMBER

ol EBACNUM2+ (L 'EBACNUM2-1),X'FO!

UNPK' EBACSUM,WPSUNM UNPACK. THE NUMBER

or EBACSUM+(L 'EBACSUM-1) X'FO!

PASS THE NUMBERS BACK TO: JFT

SCMVPUT ('NUM1 !,9,EBACNUMT, "F'). PASS NUMBER%Y TO: JFT PANEL
$CMVPUT ('NUM2 ',9,EBACNUM2,'F') PASS NUMBER2 TO JFT PANEL
$CMVPUT ('SUM: ',11,EBACSUM, 'F*) PASS SUM TO JFT PANEL
$SEND. RC=0

ATITLE ' VALIDATE NUMERIC FIELD *

% g e g ke e 2k e e 3k vk vk v v vk ke e ko e e e 3k v vk vk o o ok 3k e ok ol v ke e ke e v e de sk e e o ok e ke ke e e e e o g ek e ke e ok ke ke o

VALNUM' - VALIDATE NUMERIC FIELD:

INPUT

QUTPUT
RETURNS ZERO - UPDATES MEMORY

*
*
*
*
*
*
*
*
*
*
*
*

KEAKRRAKEAAREA IR AT R IR LRI TR REIRRRERRRRRAR Ik dhddrdh ok doddrdkdhkddkk

VALNUM $PROC.
$DCL NUMBEGN, FUL
$DCL NUMLEN,FUL
$DCL PADLEN, FUL
$DCL WORKNUM,CHAR(10)
LN R2,R3,0(R1Y;
LA R3,0(,R3):
ST R2,NUMBEGN
ST R3, NUMLEN.
* .

* DETERMINE HOW MANY ZEROS NEED
¥
VALNUM10 DS OH

c R3, =X*00000000"

BL VALNUMZ20

CL1 0(R2),X140!

BE VALNUM20

LA R2,1(¢,R2)

BCT R3,VALNUM1D
VALNUM20 DS OH

ST R3,PADLEN

THIS ROUTINE TAKES THE INPUT NUMBER AND LENGTH FIELD AND
RIGHT JUSTIFIES THE NUMBER AND FILLS ZEROS TO THE LEFT
TO. MAKE THE NUMBER. VALID FOR PACK. INSTRUCTION.

CHARACTER FIELD: TO BE CONVERTED TO NUMERIC DATA
LENGTH OF THE FIELD TO:BE CONVERTED

LOCATION OF VALUE PASSED

* % % % ¥ % ¥ ¥ ¥ ¥ X ¥

POINTER TO PASSED: VALUE
LENGTH OF THE FIELD PASSED
LENGTH OF THE FIELD PASSED
WORK. FIELD

GET THE PARM DATA

CLEAR THE HIGH ORDER BIT
SAVE POINTER TO VALUE PASSED
SAVE LENGTH OF VALUE PASSED

TO BE INSERTED

WHILE R3 > ZERO
1F R3 > ZERO
STOP THE LOOP
IF CHAR = SPACES
STOP THE LOOP
ELSE
POINT TO THE NEXT CHARACTER
DECREMENT LENGTH COUNTER(R3):
ENDWHILE
SAVE NUMBER OF BYTES TO PAD

Reference Manual

79

Appendix C ~ JFTADD Program

80

*

ZERO PAD AND RIGHT JUSTIFY

L R2, NUMBEGN. POINT TO THE INPUT NUMBER
LA R3,0 SET R3 TO ZERO:
LA R&,WORKNUM' POINT TO.THE WORK NUMBER
VALNUM30 DS OH
c R3, NUMLEN WHILE R3 < LENGTH OF NUM' FLD
BL VALNUM3S ’ CONTINUE
B VALNUM60 ELSE STOP THE LOOP
VALNUM3S DS OH
c R3,PADLEN. IF R3 > OR EQUAL PAD LENGTH
BL VALNUM4O
MVC 0(1,R4),0(R2): MOVE THE NUMBER IN
LA R2,1(,R2) POINT TO'NEXT INPUT BYTE
B VALNUMS0
VALNUM4O DS OH © ELSE
MVI O(R4),X'FOV MOVE ZERO IN FOR PAD
VALNUMS0 DS OH ENDIF
LA R4, 1(,RG) POINT TO NEXT OUTPUT BYTE
LA R3,1(,R3) ADD ONE TO THE NUMBER OF BYTES
B VALNUM30
VALNUMG0 DS OH ENDWHILE
*
* MOVE THE DATA TO THE WORK FIELD TO THE PASSED FIELD
*
L R2, NUMBEGN POINT TO FIRST BYTE
L R1, NUMLEN GET LENGTH TO MOVE
BCTR R1,0 DECREASE LENGTH BY 1 FOR MVC
EX R1,MOVEDATA GO DO THE MOVE
$END RC=D

MOVEDATA MVC O(*-* R2), WORKNUM
ATITLE ' ** AUTOMATIC SUBROUTINE GENERATION. **!
e de ke e e e e e e ek v e ok ok ok ok e e e ok e e R o ok ok o ke o e ko e ok ot o ek ok ke e

* AUTOMATIC SUBROUTINE GENERATION *

$SBRTNG.
ATITLE ' ** AUTOMATIC DSECT GENERATION **+

* AUTOMATIC DSECT GENERATION : *

$DSECTG
ATITLE ' ** COMMAND LEVEL CLEAN UP **:

* ‘ COMMAND LEVEL CLEAN UP *
et e ek e de e o e e ok ek e ok e ok e ek e ot e ok 3ok ko o ko o e ok sk ok e o e o e e ok o e
&PGMNAME CSECT

PRINT GEN

DFHEISTG

DFHEIEND

END

SYSD/JFT® ~ Release 6.4.2

Index

!

$CALL macro 60
$CMVGET macro 54
$CMVPUT macro 55
$DCI. macro 58-59
$END macro 58-59
$PROC macro 58-59
$RETURN macro 58
&$DEPART profile variable 22
&S$DESTID profile variable 22
&$NAME profile variable 22
&S$TITLE profile variable 22
&$USER profile variable 22
&Z system variable 20
&ZCMD system variable 20
&ZCSR system.variable 20
&ZDATE system variable 20
&ZDAY system variable 20
&ZJDATE system variable 20
&ZJ4DATE system variable 21
&ZJDATEST system variable 20
&ZMONTH systemvariable 21
&ZSEL system variable 21
&ZSTD system variable 21
&ZTIME system variable 21
&ZYEAR system variable 21
JATTR section. 8-9
JBLANK control statement 48
)BODY section. 10-11
variables 19-25
JCM control statement 48
YDEFAULT control statement. 49
JEND section. 17
JIM control statement 49
)INIT section 12-13
logic statements 27-45
variables 19-25
YPROC section: 14-16

invoking new panel after processing 21

‘logic statements 27-45

Reference Manual

variables 1925
YTBicontrol statement: 49
.CURSOR control variable 23
.CURSOREF control variable 23
.MSG control variable 23-24
.MSGF control variable 24
.SYSDTTL control variable 24
.TRAIL control variable 24

A

Accessing
system information. 20-21
variables from CICS programs 54
Allocating data areas 58-59
Assigning values to variables 29-31, 38-39
Assignment statement 29-31
comparing variables tovalues 38-39:
concatenation rules 29-30
defining title line 24
invoking new panel after processing)PROC section:
21
Atiribute characters
defaults 9
defining 8-9
overriding defaults 9

B
Blank lines

)JBODY section. 10

inserting in output skeleton files 48
Building parameter lists 60

81

Index:

C

Calling CICS programs 53-60

example of 56-57
Changing

default control statement character 49

library concatenations dynamically 4
Checking return codes from subroutines 58
CICS programs

calling 53-60

example of calling 56-57

linking to- 36

reading variables into storage 54

updating variables from 55
Comments

)BODY section: 10:

logic statements 28

skeletons 48
Comparing variables

to values 38-39

using &Z system variable 20
Components 2-3
Concatenating panel, skeleton, and message libraries

4

Concatenation rules, assignment statement 29-30
Conditionally executing statements 34-35
Constant.data 58
Continuing

parameters on logic statements 28

quoted strings on logic statements 28
Control statement character, changing default. 49
Control statements 48-51

JBLANK 48

JCM 48

)DEFAULT 49

JIM' 49

)TB 49-51
Control variables 23-24
Conventions, syntax. ix
Copying members to output.skeleton files 49
Cursor position.

getting for Input field: 20

overriding previous 23
Cursor, positioning in-fields 23’
Customizing

messages 3

panels for groups of users 2

D

Data
constant. 58

82

getting from Input field: 20
positioning in.output skeleton files 49:51
storing in JFT-like programs 58-59
Data areas, allocating 58-59.
Date, system. 20-21
Default attribute characters 9
overriding 9 ‘
Default control statement character, changing 49
Default messages, overriding 3
Default.panel 2
Defining
attribute characters 8-9°
panel appearance 10-11
user storage areas 58-59

‘Department name, getting from user file 22

Destination, getting from Option 0.1 22 ‘
Dynamic Storage Area, defining global variables 59
Dynamically changing library concatenations 4

E

Evaluating expressions 29-31, 34-35:
Executing panels 6:
Expressions
assigning to variables 29-31
evaluating 29-31,.34-35

F

Fields, panel
intensity 8-9
positioning cursor in: 23
type 8
Files.
message 52
skeleton. 48-51
FILESKEL statement 32-33
substituting variables in output skeleton files 48-51

G

Global variables 59

IEBCOPY utility, sample panel 73-75
IF statement. 34-35 :

SYSD/IFT® ~ Release 6.4.2

Index

using &Z system variable for compare 20
Initializing

panels 12-13)

variables using &Z system variable 20.
Input data, getting from Input field: 20
Input field

getting cursor position.of 20

getting data from. 20
Input fields, defining 8
Inserting blank lines in output skeleton files 48
Intensity of panel fields, defining 8-9
Internal reader, submitting skeletons to 37

Invoking new.panel after processing)PROC section.

21

J

JFT-like programs
defining user storage areas 58-59
storing data in. 58-59
JETADD program:
complete code 77-80
example of calling 56-57
example of getting variables 59-60
Julian date 20

K

Keyboard conventions ix

L
Libraries
concatenating 4
copying concatenations- 49
dynamically changing concatenations 4
LINK statement 36
Linking to CICS programs 36
Local variables 58-59
Logic statements 27-45
assignment 29-31
comments 28
continuing parameters 28
continuing quoted strings 28
FILESKEL 32-33
IF 34-35
LINK 36
SUBSKEL 37
syntax rules- 28

Reference Manual

TRANS 38-39
TRUNC 40-41
VER 42-45

M
Macros
$CALL 60
$CMVGET 54
$CMVPUT 55
$DCL 58-59
$END: 58-59
$PROC 58-59'
$RETURN 58
Manual organization. viii
Marking
beginning of programs and:subroutines 58-59
end.of programs and'subroutines 58-59
Members, saving using skeletons 32-33
Menu system variables 61-67
Messages
concatenating libraries 4
customizing 3
definition: 3
displaying on panels 52
dynamically changing library concatenations 4
files 52
overriding default 3
overriding previous 24
setting 23-24
storing. 4 v

N

Name, getting from user file 22

0]

Organization.of manual viii
Output fields, defining 8
Output skeleton files
copying members to: 49
inserting blanklines 48
setting tabs in. 49-51.
substituting variables in. 48
Overriding
default attribute characters 9
default messages 3
previous cursor positioning 23

83

Index

previous message 24
- Overview 1-6:

P

Panel sections -7-17
JATTR: 8-9
)BODY 10-11
JEND: 17
JINIT 12-13
JPROC 14-16
Panels
appearance 10-11
attribute characters 8-9
calling CICS programs 53-60
concatenating libraries 4
customizing for groups of users 2
default 2
default attribute characters 9
defining title line 24
definition 2
displaying messages 52
dynamically changing library concatenations 4
executing 6
field intensity 8-9
field types 8
initializing 12-13 ‘
invoking new-after processing)PROC section. 21
linking to CICS programs 36
logic statements 27-45
message files 52
overriding default attribute characters 9
processing 14-16-
samples 69-75
skeleton files 48-51
storing. 4
testing 6
variables 19-25
Parameters
building lists 60
continuing on logic statements 28
using Register 1 to pass 58
Passing parameters using Register 1 58
Position-of cursor
getting for Input field 20
overriding previous 23
Positioning
cursor in fields 23
data in output skeleton files 49-51
Primary menu, sample panel 70-71
Processing panels 14-16
Profile variables 22

84

Programs, CICS
calling 53-60
example of calling 56-57
reading variables into storage 54
updating variables from: 55

Programs, JFT-like
defining user storage areas 58-59-
storing data in. 58-59.

Programs, SYSD-like 58-60
checking return:codes 58
marking beginning of 58-59:
marking end of 58-59
restoring registers atend 58-59
saving registers 58-59°
setting return codes 58

Protected text fields, defining 8

Publications, related. x.

Q

Quoted strings, continuing on logic statements 28

R

Reading variables into storage 54
Register 1
passing parameters 58
pointing to parameter lists 60
Register 15;.checking 58
Registers
restoring at end of programs and subroutines 58-59
saving from calling programs 58-59°
Related publications x
Resetting
cursor positioning 23
‘messages 24
Restoring registers at end of programs and:
subroutines 58-59
Return codes, setting in subroutines 58

S

Sample panels 69-75
Ptimary Menu: 70-71
Submit IEBCOPY 73-75
System Utilities 72
Saving
members using skeleton 32-33
registers from calling programs 58-59

SYSD/JFT® ~ Release 6.4.2

Index

Setting
cursor position:to fields 23
messages 23-24
return codes in subroutines 58
tabs for output skeleton files 49-51
Skeleton:output files
copying members to- 49-
inserting blank lines in 48
setting tabs for 49-51
substituting variables in. 48
‘Skeletons 48-51
changing default control character 49
comments 48)
concatenating libraries 4
control statements 48-51
definition 2
dynamically changing library concatenations 4
storing 4
submitting to internal reader 37
using to save members 32-33
Storage areas, defining user 58-59
Storing
data in JFT-like programs 58-59
messages 4
panels 4
skeletons 4
Strings, continuing quoted. 28
Submit IEBCOPY panel, sample 73-75
Submitting skeletons to internal reader 37
Subroutines
checking return codes 58
marking beginning of 58-59
marking end of 58-59
restoring registers at end. 58-59
setting return codes 58
SUBSKEL statement. 37
substituting variables in output skeleton files 48-51
Symbol conventions ix.
Syntax.conventions ix.
Syntax rules
JBODY section 10
logic statements 28
SYSD user file, getting information from 22
SYSD-like programs 58-60
checking return.codes 58
marking beginning of 58-59
marking end of 58-59
restoring registers at end. 58-59
saving registers 58-59
setting return.codes 58
System date 20-21
System information, accessing 20-21
System time 21
System Utilities panel, sample 72

Reference Manual

System variables 20-21
SYSUTIL panel, sample 72

T

Tabs for skeleton output files, setting 49:51
Testing panels 6
Text conventions ix
Text fields, defining 8
Time, system: 21
Title line, panel 24
Title, getting from user file 22
TRANS statement. 38-39
TRUNC statement 40-41
Truncating variables 40-41
assigning leftover characters to .TRAIL 24

U

Updating variables from CICS programs 55
User file, getting information from. 22

User ID, getting from:user file 22

User storage areas, defining 58-59

User variables 25

Vv
Variables 19-25
accessing from CICS programs 54
assigning values 29-31, 38-39
comparing to values 38-39
control 23-24
global 59
local 58-59
menu system: 61-67
overview. 5
profile 22
reading into storage from.CICS programs 54
skeleton files 48
substituting in.message files 52
substituting in.output skeleton files 48
system. 20-21
truncating 40-41
updating from CICS programs 55
user 25
using &Z system variable to compare 20
using &Z system variable to initialize 20
verifying values 42-45
VER statement. 42-45

85

positioning cursor in:fields 23
setting messages 23-24
Verifying values of variables 42-45

86 SYSD/JFT® ~ Release 6.4.2

