


BASIC
REFERENCE

MANUAL

JI\.
ATARI®

CIA Warner Communications Company

Every effort has been made to ensure that this manual accurately documents the operation of the ATARI 400 and the ATARI 800 com­
puter. However, due to the ongoing improvement and update of the computer software, Atari, Inc. cannot guarantee the accuracy of
printed material after the date of publication, nor can Atari accept responsibility for errors or omissions. Revised manuals and update
sheets will be published as needed and may be purchased by writing to:

Atari Software Support Group
P.O. Box 427
Sunnyvale, CA 94086

Printed in USA ©1980 ATARI, INC.





CONTENTS

PREFACE vii

1 GENERAL INFORMATION

Terminology 1
Special Notations Used In This Manual 3
Abbreviations Used In This Manual 4
Operating Modes 5
Special Function Keys 5
Arithmetic Operators 6
Operator Precedence 7
Built-In Functions 7
Graphics 8
Sound and Games 8
Wraparound and Keyboard Rollover 8
Error Messages 8

2 COMMANDS

BYE 9
CONT 9
END 9
LET 10
LIST 10
NEW 10
REM 10
RUN 11
STOP 11

3 EDIT FEATURES

Screen Editing 13
Control (CTRL) Key 13
Shift Key 13

Double Key Functions 14
Cursor Control Keys 14
Keys Used With CTRL Key 14
Keys Used With Shift Key 14

Special Function Keys 14
Break Key 14
Escape Key 14

4 PROGRAM STATEMENTS

FORINEXT/STEP 15
GOSUB/RETURN 16
GOTO 17
IF/THEN 18

Contents iii



ON/GOSUB 20
ON/GOTO 20
POP 20
RESTORE 21
TRAP 22

5 INPUT/OUTPUT COMMANDS

Input/Output Devices 23
CLOAD 24
CSAVE 24
DOS 25
ENTER 25
INPUT 25
LOAD 26
LPRINT 26
NOTE 26
OPEN/CLOSE 26
POINT 28
PRINT 28
PUT/GET 28
READ/DATA 28
SAVE 29
STATUS 29
XIO 30
Chaining Programs 30

6 FUNCTION LIBRARY

Arithmetic Functions 33
ABS 33
CLOG 33
EXP 33
INT 33
LOG 34
RND 34
SGN 34
SQR 34

Trigonometric Functions 34
ATN 34
COS 34
SIN 35
DEG/RAD 35

Special Purpose Functions 35
ADR 35
FRE 35
PEEK 35
POKE 35
USR 36

7 STRINGS

ASC 37
CHR$ 37

iv Contents



LEN 38
STR$ 38
VAL 38
String Manipulations 39

8 ARRAYS AND MATRICES

DIM 41
CLR 43

9 GRAPHICS MODES AND COMMANDS

GRAPHICS 45
Graphics Modes 45

Mode 0 46
Modes 1 and2 46
Modes 3, 5, and 7 47
Modes 4 and 6 48
Mode 8 47

COLOR 48
DRAWTO 48
LOCATE 48
PLOT 49
POSITION 49
PUT/GET 49
SETCOLOR 50
XIO eSpecial Fill Application) 54
Assigning Colors to Text Modes 54
Graphics Control Characters 56

10 SOUND AND GAME CONTROLLERS

SOUND 57
PADDLE 59
PTRIG 59
STICK 59
STRIG 60

11 ADVANCED PROGRAMMING TECHNIQUES

Memory Conservation 61
Programming In Machine Language 63

APPENDIX A BASIC RESERVED WORDS A-1

APPENDIX B ERROR MESSAGES B-1

APPENDIX C ATASCII CHARACTER SET
WITH DECIMAL/
HEXADECIMAL LOCATIONS C-1

APPENDIX D ATARI 400/800
MEMORY MAP D-1

Contents V



APPENDIX E DERIVED FUNCTIONS E-1

APPENDIX F PRINTED VERSIONS OF
CONTROL CHARACTERS F-1

APPENDIX G GLOSSARY G-1

APPENDIXH USER PROGRAMS H-1

APPENDIX I MEMORY LOCATIONS 1-1

INDEX 117

vi Contents



PREFACE

This manual assumes the user has read the Atari BASIC - A Self-Teaching
Guide or some other book on BASIC. This manual is not intended to "teach"
BASIC. It is a reference guide to the commands, statements, functions, and
special applications of Atari<!J BASIC.

The programs and partial programming examples used in this manual are
photostats oflistings printed on the Atari 82QTM Printer. Some of the special sym­
bols in the Atari character set do not appear the same on the printer; e.g., the
clear screen symbol "~" appears as a " }". The examples in the text were
chosen to illustrate a particular function - not necessarily "good" programming
techniques.

Each of the sections contains groups of commands, functions, or statements
dealing with a particular aspect of Atari BASIC. For instance, Section 9 contains
all the statements pertaining to Atari's unique graphics capabilities. The appen­
dices include quick references to terms, error messages, BASIC keywords,
memory locations, and the ATASCII character set.

As there is no one specified application for the Atari Personal Computer System,
this manual is directed at general applications and the general user. Appendix H
contains programs that illustrate a few of the Atari system's capabilities.

Prefaa vii





TERMINOLOGY

1

GENERAL
INFORMATION

This section explains BASIC terminology, special notations, and abbreviations
used in this manual, and the special keys on the ATARI 400™ and ATARI BOOTM
Personal Computer Systems keyboard. It also points to other sections where
BASIC commands deal with specific applications.

BASIC: Beginner's All-purpose Symbolic Instruction Code.

BASIC Keyword: Any reserved word "legal" in the BASIC language. May be
used in a statement, as a command, or for any other purpose. (See Appendix A
for a list of all "reserved words" or keywords in ATARI BASIC.)

BASIC Statement: Usually begins with a keyword, like LET, PRINT, or
RUN.

Constant: A constant is a value expressed as a number rather than represented
by a variable name. For example, in the statement X = 100, X is a variable and
100 is a constant. (See Variable.)

Command String: Multiple commands (or program statements) placed on the
same numbered line separated by colons.

Expression: An expression is any legal combination of variables, constants,
operators, and functions used together to compute a value. Expressions can be
either arithmetic, logical, or string.

Function: A function is a computation built into the computer so that it can be
called for by the user's program. A function is NOT a statement; it is part of an
expression. It is really a subroutine used to compute a value which is then
"returned" to the main program when the subroutine returns. COS (Cosine),
RND (random), FRE (unused memory space), and INT (integer) are examples of
functions. In many cases the value is simply assigned to a variable (stored in a
variable) for later use. In other cases it may be printed out on the screen im­
mediately. See Section 6 for more on functions. Examples of functions as they
might appear in programs are:

10 X=100+COS(45)

(print out the random
number returned)

(add the value re­
returned to 100 and
store the total in
variable X)

General Information 1



Logical Line: A logical line consists of one to three physical lines, and is ter­
minated either by a 1;!ijii!;!11 or automatically when the maximum logical line
limit is reached. Each numbered line in a BASIC program consists of one logical
line when displayed on the screen. When entering a line which is longer than
one physical line, the cursor will automatically go to the beginning of the next
physical line when the end of the current physical line is reached. Ifi;lijill;!llis
not entered, then both physical lines will be part of the same logical line.

Operator: Operators are used in expressions. Operators include addition (+),
subtraction ( -), multiplication ( * ), division (/), exponentiation (1\), greater than
(», less than « ), equal to ( =), greater than or equal to (> =), less than or equal to
(<. =), and not equal to « >). The logical keywords AND, NOT and OR are also
operators. The + and - operators can also be used as unary operators; e.g., - 3.
Do not put several unary operators in a row; e.g.,--3, as the computer will in­
terpret it incorrectly.

Physical Line: One line of characters as displayed on a television screen.

String: A string is a group of characters enclosed in quotation marks.
"ABRACADABRA" is a string. So are "ATARI MAKES GREAT COMPUTERS"
and "123456789". A string is much like a constant, as it too, may be stored in a
variable. A string variable is different, in that its name must end in the
character $. For example, the string "ATARI 800" may be assigned to a variable
called A$ using (optional) LET like this:

1ft LET A$="ATAF:I ::;~::10"

OR
10 A$=IIATAF:I :::00"

(note quotation marks)

(LET is optional; the
quotes are required.)

2 General Information

Quotation marks may not be used within a string. However, the closing quota­
tion can be omitted if it is the last character on a logical line. (See Section 7 ­
STRINGS).

Variable: A variable is the name for a numerical or other quantity which may
(or may not) change. Variable names may be up to 120 characters long.
However, a variable name must start with an alphabetic letter, and may contain
only capital letters and numerical digits. It is advisable not to use a keyword as a
variable name or as the first part ofa variable name as it may not be interpreted
correctly. Examples of storing a value in a variable:

LETC123DU8=1.234
LETUARIA8LEl12=267.543
LETA=l
LETF5TH=6.5
LETTHI~;t'iO =59. :::09

Note: LET is optional and may be omitted)

Variable Name Limit: ATARI BASIC limits the user to 128 variable names. To
bypass this problem, use individual elements of an array instead of having
separate variable names. BASIC keeps all references to a variable which has
been deleted from a program, and the name still remains in the variable name
table.



If the screen displays an ERROR-4 (Too Many Variables) message, use the follow­
ing procedure to make room for new variable names:

LIST f i 1espec

t£~J

ENTER f i 1e5pec

The LIST filespec writes the untokenized version of the program onto a disk or
cassette. NEW clears the program and the table areas. The program is then re­
entered, re-tokenized, and a new variable table is built. (The tokenized version
is Atari BASIC's internal format. The untokenized versions in ATASCII
which is the version displayed on the screen).

Arrays and Array Variables: An array is a list of places where data can be
filed for future use. Each ofthese places is called an element, and the whole array
or any element is an array variable. For example, define "Array A" as having 6
elements. These elements are referred to by the use of subscripted variables
such as A(2), A(3), A(4), etc. A number can be stored in each element. This
may be accomplished element by element (using the LET statemenO, or as a part
of a FOR/NEXT loop (see Chapter 8).

Note: Never leave blanks between the element number in parentheses and the
name of the array.

Correct

A(23)
ARRAY(3)
X123(38)

Incorrect

A
ARRAY
X123

(23)
(3)
(38)

SPECIAL
NOTATIONS
USED IN THIS
MANUAL

Line Format: The format of a line in a BASIC program includes a line number
(abbreviated to lineno) at the beginning of the line, followed by a statement
keyword, followed by the body of the statement and ending with a line ter­
minator command (Iiiiiiii;!ilkey). In an actual program, the four elements might
look like this:

STATEMENT

Line Number
100

'Keyword
PRINT

A

Body
A/X * (Z + 4.567)

Terminator
Im!Im

Several statements can be typed on the same line provided they are separated by
colons (:). See IF/THEN in Section 5, and Section 11.

Capital Letters: In this book, denote keywords to be typed by the user in up­
per case form exactly as they are printed in this text. Reverse-video characters
will not work except in the case of the RUN command. Here are a few ex­
amples:

PRINT INPUT LIST END GOTO GOSUB FOR NEXT IF

Lower Case Letters: In this manual, lower case letters are used to denote the
various classes of items which may be used in a program, such as variables
(var), expressions (exp), and the like. The abbreviations used for these classes of
items are shown in Table 1.1.

General Information 3



ABBREVIATIONS
USED IN THIS
MANUAL

Items in Brackets: Brackets, [ ], contain optional items which may be used,
but are not required. If the item enclosed in brackets is followed by three dots
[exp, •••], it means that any number ofexpressions may be entered, but none are
required.

Items stacked vertically in braces: Items stacked vertically in braces indicate
that anyone of the stacked items may be used, but that only one at a time is per­
missible. In the example below, type either the GOTO or the GOSUB.

{
GOTO}100 GOSUB 2000

Command abbreviations in headings: If a command or statement has an ab­
breviation associated with it, the abbreviation is placed following the full name
of the command in the heading; e.g., LET (L.).

The following table explains the abbreviations used throughout this manual:

TABLE 1.1 ABBREVIATIONS

4 General Information

avar

svar

mvar

var

aop

lop

aexp

lexp

Arithmetic Variable: A location where a numeric value is
stored. Variable names may be from 1 to 120 alphanumeric
characters, but must start with an alphabetic character, and all
alpha characters must be unreversed and upper case.

String Variable: A location where a string ofcharacters may be
stored. The same name rules as avar apply, except that the last
character in the variable name must be a $. String variables may
be subscripted. See Section 7, STRINGS.

Matrix Variable: Also called a Subscripted Variable. An ele­
ment of an array or matrix. The variable name for the array or
matrix as a whole may be any legal variable name such as A, X,
Y, ZIP, or K. The subscripted variable (name for the particular
element) starts with the matrix variable, and then uses a number,
variable, or expression in parentheses immediately following the
array or matrix variable. For example, A(ROW), A(1), A(X + 1).

Variable: Any variable. May be mvar, avar, or svar.

Arithmetic operator.

Logical operator.

Arithmetic Expression: Generally composed of a variable,
function, constant, or two arithmetic expressions separated by an
arithmetic operator.

Logical Expression: Generally composed of two arithmetic or
string expressions separated by a logical operator. Such an ex­
pression evaluates to either a 1 (logical true) or a a (logical false).

For example, the expression 1<2 evaluates to the value 1 (true)
while the expression "LEMON" = "ORANGE" evaluates to a zero
(false) as the two strings are not equal.



sexp

exp

lineno

adata

filespec

String Expression: Can consist ofa string variable, string literal
(constant), or a function that returns a string value.

Any expression, whether sexp or aexp.

Line Number: A constant that identifies a particular program
line in a deferred mode BASIC program. Must be any integer
from 0 through 32767. Line numbering determines the order of
program execution.

ATASCII Data: Any ATASCII character excluding commas and
carriage returns. (See Appendix C.)

File Specification: A string expression that refers to a device
such as the keyboard or to a disk file. It contains information on
the type of I/O device, its number, a colon, an optional file name,
and an optional filename extender. (See OPEN, Section 5.)

Example filespec: "D1:NATALIE.ED"

OPERATING
MODES

Direct Mode: Uses no line numbers and executes instruction immediately after
';Ijil';I:' key is pressed.

Deferred Mode: Uses line numbers and delays execution ofinstruction(s) until
the RUN command is entered.

Execute Mode: Sometimes called Run mode. After RUN command is entered,
each program line is processed and executed.

Memo Pad Mode: A non-programmable mode that allows the user to experi­
ment with the keyboard or to leave messages on the screen. Nothing written
while in Memo Pad mode affects the RAM-resident program.

SPECIAL
FUNCTION
KEYS

II Reverse (Inverse) Video key, or "ATARI LOGO KEY". Press­
ing this key causes the text to be reversed on the screen (dark
text on light background). Press key a second time to return to
normal text.

'Ul'-ll!oMiM Lower Case key: Pressing this key shifts the screen characters
from upper case (capitals) to lower case. To restore the characters
to upper case, press the W1:114- key and the '.,.,if-ll!oMiM key
Simultaneously.

Escape key: Pressing this key causes a command to be entered
into a program for later execution.

Example: To clear the screen, you would enter:

10 PRINT" 1m Gi3 IUO;I"

and press ml!mI.

Escape is also used in conjunction with other keys to print special
graphic control characters. See AppendiX F and back cover for
the specific keys and their screen-character representations.

General Information 5



ARITHMETIC
OPERATORS

LOGICAL
OPERATORS

6 General Information

Break key: Pressing this key during program execution causes
execution to stop. Execution may be resumed by typing CONT
followed by pressing Iil3i!m .

System Reset key: Similar to EE!I in that pressing this key
stops program execution. Also returns the screen display to
Graphics mode 0, clears the screen, and returns margins and
other variables to their default values.

Tab key: Press kiWi- and theI Md31;ill'keys simultaneously to
set a tab. To clear a tab, press the Gi3 and kU"1;ill' keys
simultaneously. Used alone, thektid31;ill'advances the cursor to
the next tab position. In Deferred mode, set and clear tabs by
preceding the above with a line number, the command PRINT, a
quotation mark, and press the IB key.

Examples:
100 PRINT" IB EilM kUi3Uf.i;' "
200 PRINT" IB Gi3 kiU 31i5n' "

Default tab settings are placed at columns 7, 15, 23, 31, and 39.

IIIEMi" Insert key: Press the Ki:U;;- and mm keys simultaneously to
insert a line. To insert a single character, press the Gi3 and
mm keys simultaneously.

M1#ij:f.S3¥i Delete key: Press the Ki:U;;- and I:mmJ keys simultaneously
to delete a line. To delete a single character, press Gi3 and
EDIiJ simultaneously.

Hlhij;f.i3¥i Back Space key: Pressing this key replaces the character to the
left of the cursor with a space and moves cursor back one space.

W3F'i' Clear key: Pressing this key while holding down the BID or
Gi3 key blanks the screen and puts the cursor in the upper left
corner.

cmm Return key: Terminator to indicate and end of a line of BASIC.
Pressing this key causes a numbered line to be interpreted and
added to a BASIC program RAM. An unnumbered line (in Direct
mode) is interpreted and executed immediately. Any variables
are placed in a variable table.

The Atari Personal Computer System uses five arithmetic operators:

+ addition (also unary plus; e.g., + 5)
- subtraction (also unary minus; e.g., - 5)
* multiplication
/ division
A exponentiation

The logical operators consists of two types: unary and binary. The unary
operator is NOT. The binary operators are:



AND
OR

Logical AND
Logical OR

Examples:

10 IF A=12 AND T=0 THEN PRnn "GOOD If

10 A=(C>1) AND (N<1)

10 A =(C+1) OR (N-1)

If; A =NOT( C+1)

The rest of the binary operators are relational.

Both expressions must
be true before GOOD is
printed.

if both expressions
true, A = +1; otherwise
A=O.

if either expression
true, A = + 1; otherwise
A=O.

if expression is false,
A = +1; otherwise A =0.

OPERATOR
PRECEDENCE

< The first expression is less than the second expression.
> The first expression is greater than the second.
- The expressions are equal to each other.

< = The first expression is less than or equal to the second.
> = The first expression is greater than or equal to the second.
< > The two expressions are not equal to each other.

These operators are most frequently used in IF/THEN statements and logical
arithmetic.

Operations within the innermost set ofparentheses are performed first and pro­
ceed out to the next level. When sets of parentheses are enclosed in another set,
they are said to be "nested". Operations on the same nesting level are performed
in the following order:

* , /

Highest <, >,=,< =, >=,<->
precedence

+, -

Lowest
precedence

NOT
AND
OR

Relational operators used in string expres­
sions. Have same precedence and are per­
formed from left to right.
Unary minus
Exponentiation.
Multiplication and division have the same
precedence level and are performed from left
to right.
Addition and subtraction have the same
precedence level and are performed from left
to right.
Relational operations in numeric expressions
have the same precedence level from left to
right.
Unary operator
Logical AND
Logical OR

Gener'al Information 7



BUILT-IN
FUNCTIONS

GRAPHICS

SOUND AND
GAMES
CONTROLLERS

WRAPAROUND
AND KEYBOARD
ROLLOVER

ERROR
MESSAGES

8 General Information

The section titled FUNCTION LIBRARY explains the arithmetic and special
functions incorporated into Atari BASIC.

Atari graphics include 9 graphics modes. The commands have been designed
to allow maximum flexibility in color choice and pattern variety. Section 9 ex­
plains each command and gives examples of the many ways to use each.

The Atari Personal Computer is capable of emitting a large variety of sounds.
including simulated explosions, electronic music, and "raspberries." Section 10
defines the commands for using the SOUND function and for controlling pad­
dle, joystick, and keyboard controllers.

The ATARI Personal Computer System has screen wraparound thus allowing
greater flexibility. It also allows the user to type one key ahead. If the user
presses and holds any key, it will begin repeating after 112 second.

If a data entry error is made, the screen display shows the line reprinted preced­
ed by the message ERROR- and the offending character is highlighted. After
correcting the character in the original line, delete the line containing the
ERROR- before pressing 1i:Ili!Im. Appendix B contains a list of all the error
messages and their definitions.



2

COMMANDS

•
Whenever the cursor (D) is displayed on the screen, the computer is ready to ac-
cept input. Type the command (in either Direct or Deferred mode), and press
1iIll!IiI3. This section describes the commands used to clear computer memory
and other useful control commands:

The commands explained in this section are the following:

BYE (B.) Format:
Example:

BYE
BYE

BYE
CONT
END
LET
LIST

NEW
REM
RUN
STOP

The current function of the BYE command is to exit BASIC and put the com­
puter in Memo Pad mode. This allows the user to experiment with the keyboard
or to leave messages on the screen without disturbing any BASIC program in
memory. To return to BASIC, press "i1MMlj@Ji .

CaNT (CON.) Format:
Example:

CaNT
CaNT

Typing this command followed by a mmm causes program execution to
resume. If a 1m1D, STOP, or END is encountered, the program will stop until
CaNT li!ih'!;!:1 is entered. Execution resumes at the next sequential line number
following the statement at which the program stopped.

Note: If the statement at which the program is halted has other commands on
the same numbered line which were not executed at the time of the 1Jm:I,
STOP, or END, they will not be executed. On CaNT, execution resumes at the
next numbered line. A loop may be incorrectly executed if. the program is
halted before the loop completes execution.

This command has no effect in a Deferred mode program.

END Format:
Example:

END
1000 END

This command terminates program execution and is used in Deferred mode. In
Atari BASIC, an END is not required at the end of a program. When the end of
the program is reached, Atari BASIC automatically closes all files and turns off
sounds (if any). END may also be used in Direct mode to close files and turn off
sounds.

Commands 9



LET (LE.) Format:
Example:

[LET] var = exp
LET X = 3.142 * 16
LET X = 2

This statement is optional in defining variables. It can just as easily be left out of
the statement. It may be used, however, to set a variable name equal to a value.

LIST (L.) Format:

Examples:

LIST [lineno [ , lineno] ]
LIST [filespec [ ,lineno [ ,lineno] ] ]

LIST
LIST 10
LIST) 10) 100
LIST liP. ") 20) 100

LIST IIp"
LIST "0: DEt10 .LST II

This command causes the computer to display the source version ofall lines cur­
rently in memory if the command is entered without line number(s), or to
display a specified line or lines. For example, LIST 10,100 IiIl1!Im displays lines
10 through 100 on the screen. If the user has not typed the lines into the com­
puter in numerical order, a LIST will automatically place them in order.

Typing L."p will print the RAM-resident program on the printer.

LIST can be used in Deferred mode as part of an error trapping routine (See
TRAP in Section 4).

The LIST command is also used in recording programs on cassette tape. The sec­
ond format is used and a filespec is entered. (See Section 5 for more details on
peripheral devices.) If the entire program is to be listed on tape, no line numbers
need be specified.

Example: LIST "C1"
1000 LIST "C1"

NEW Format:
Example:

NEW
NEW

This command erases the program stored in RAM. Therefore, before typing
NEW, either SAVE or CSAVE any programs to be recovered and used later.
NEW clears BASIC's internal symbol table so that no arrays (See Section 8) or
strings (See Section 7) are defined. Used in Direct mode.

REM (R. or
.BmJ)

Format:
Example:

REM text
10 REM ROUTINE TO CALCULATE X

10 Commands

This command and the text following it are for the user's information only. It is
ignored by the computer. However, it is included in a LIST along with the other
numbered lines. Any statement on the same numbered line which occurs after a
REM statement will be ignored.



RUN (RUJ Format: RUN [filespec]
Examples: RUN

RUN "D:MENU"

This command causes the computer to begin executing a program. Ifno filespec
is specified, the current RAM-resident program begins execution. If a filespec is
included, the computer retrieves the specified, tokenized program from the
specified file and executes it.

All variables are set to zero and all open files and peripherals are closed. All ar­
rays, strings, and matrices are eliminated and all sounds are turned off. Unless
the TRAP command is used, an error message is displayed if any error is
detected during execution and the program halts.

RUN can be used in Deferred mode.

Examples: 1e F'R1NT IIOI"lER At{) OtlER AGHm. II

2e R~

Type RUN and press Iimm. To end, press':IMi:'.

To begin program execution at a point other than the first line number, type
GOTO followed by the specific line number, then presslimm.

STOP (STO.) Format:
Example:

STOP
100 STOP

When the STOP command is executed in a program, BASIC displays the
message STOPPED AT LINE , terminates program execution, and
returns to Direct mode. The STOP command does not close files or turn off
sounds, so the program can be resumed by typing CaNT rmm .

Commands 11



NOTES

12 Notes



SCREEN
EDITING

3

EDIT
FEATURES

In addition to the special function keys described in Section 1, there are cursor
control keys that allow immediate editing capabilities. These keys are used in
conjunction with the 4iW;- or BiD keys.

The following key functions are described in this section:

BiD BiD 11~~14;il BiD 1

41: 11$- BiD I!EiJ BiD 2

BiD D 41: 11$- liH~ia;il BiD 3

BiD 0 41:1'i- mma I;I;I,.'M

BiD ~ 41'lIi- '9"li',I'4i- ..
BiD c

The keyboard and display are logically combined for a mode of operation
known as screen editlng. Each time a change is completed on the screen, the
Ij'M'WI key must be pressed. Otherwise, the change is not made to the program
in RAM.

To delete line 20 from the program, type the line number and press the l;liiil!;!11
key. Merely deleting the line from the screen display does not delete it from the
program.

The screen and keyboard as I/O devices are described in Section 5.

Control key. Striking this key in conjunction with
the arrow keys produces the cursor control functions
that allow the user to move the cursor anywhere on
the screen without changing any characters already
on the screen. Other key combinations control the
setting and clearing of tabs, halting and restarting
program lists, and the graphics control symbols.
Striking a key while holding the mIl key will pro­
duce the upper-left symbol on those keys having
three functions.

Shift key: This key is used in conjunction with the
numeric keys to display the symbols shown on the
upper half of those keys. It is also used in conjunction

Edit Features 13



DOUBLE-KEY
FUNCTIONS

mIJ D

with other keys to insert and delete lines, return to a
normal, upper case letter display, and to display the
function symbols above the subtraction, equals, addi­
tion, and multiplication operators as well as the
brackets, [J, and question mark,?

Cursor Control Keys

Moves cursor up one physical line without changing
the program or display.

Moves cursor one space to the right without disturb­
ing the program or display.

Moves cursor down one physical line without chang­
ing the program or display.

Moves cursor one space to the left without disturbing
the program or display.

Like the other keys on the Atari keyboard, holding the cursor control keys for
more than 1h second causes the keys to repeat.

Keys Used With

14 Edit FeatUT'es

mIJ 2

mIJ 3

W1:lIjM EEImI

Inserts one character space.

Deletes one character or space.

Stops temporarily and restarts screen display
without "breaking out" of the program.

Rings buzzer.

Indicates end-of-file.

Keys Used With 411iii'M

Inserts one physical line.

Deletes one physical line.

Returns screen display to upper-case alphabetic
characters.

Special Function Keys

Stops program execution or program list, prints a
READY on the screen, and displays cursor.

Allows commands normally used in Direct mode to
be placed in Deferred mode; e.g., In Direct mode,
mIJ 'g,U' clears the screen display. To clear the
screen in Deferred mode, type the following after the
program line number. Press" then press EI3
and 'g,U' together.

PRINT" .. EI3 'gE'i' "



4

PROGRAM
STATEMENTS

This section explains the commands associated with loops, conditional and un­
conditional branches, error traps, and subroutines and their retrieval. It also ex­
plains the means of accessing data and the optional command used for defining
variables.

The following commands are described in this section:

FOR,TO,STEP/NEXT
GOSUB/RETURN
GOTO

IF/THEN
ON,GOSUB
ON,GOTO

POP
RESTORE
TRAP

FOR (F.), TO,
STEP/NEXT (N.)

Format: FOR avar = aexpl TO aexp2 [STEP aexp3]
NEXT avar

Examples: FOR X = 1 TO 10
NEXT X
FOR Y = 10 TO 20 STEP 2
NEXTY
FOR INDEX = Z TO 100 * Z
NEXT INDEX

This command sets up a loop and determines how many times the loop is exe­
cuted. The loop variable (avar) is initialized to the value of aexp1. Each time the
NEXT avar statement is encountered, the loop variable is incremented by the
aexp3 in the STEP statement. The aexp3 can be positive or negative integers,
decimals, or fractional numbers. If there is no STEP aexp3 command, the loop
increments by one. When the loop completes the limit as defined by aexp2, it
stops and the program proceeds to the statement immediately following the
NEXT statement; it may be on the same line or on the next sequential line.

Loops can be nested, one within another. In this case, the innermost loop is com­
pleted before returning to the outer loop. The following example illustrates a
nested loop program.

1(1 FOF.~ ::<= 1 TO 3
:::1::1 PPItH "0UTEP LOOP!'
30 2=0
40 2=2+2
50 FO~~ 1/=1 TO 5 STEP Z
6~1 F'~~ It·iT H Ir·i~·~E~~ LOOP Ii

7(1 t·E<T 'r'
:::~1 t·~E::-::T >=:

90 am

Figure 4-1. Nested Loop Program

Progr'am Statements 15



GOSUB (GOS.)
RETURN (RET.)

16 Program Statements

In Figure 4-1, the outer loop will complete three passes (X = 1 to 3 ). However,
before this first loop reaches its NEXT X statement, the program gives control to
the inner loop. Note that the NEXT statement for the inner loop must precede
the NEXT statement for the outer loop. In the example, the inner loop's number
of passes is determined by the STEP statement (STEP Z). In this case, Z has
been defined as 0, then redefined as Z+2. Using this data, the computer must
complete three passes through the inner loop before returning to the outer loop.
The aexp3 in the step statement could also have been defined as the numerical
value 2.

The program run is illustrated in Figure 4-2.

ClUTEP LOOF'
I t·it·jEF.: LOOF'
I t·it·jEP LOOP
I t·it·jEF.: LOOP

(IUTEP LOOP
I t·it·jEP LOOP
! t'i~'iH: LOOF'
I t·it·iEF.: LOOP

OUTEF.: LOOP
It·it·iEP LOOF
I ~·~t·~EP LOOP
I t'~f'~E~~ LOOF!

Figure 4-2. Nested Loop Execution

The return address for the loops are placed in a special group of memory ad­
dresses referred to as a stack. The information is "pushed" on the stack and
when used, the information is "popped" off the stack (see POP.)

Format: GOSUB lineno
lineno
RETURN

Example: 100 GOSUB 2000
2000 PRINT "SUBROUTINE"
2010 RETURN

A subroutine* is a program or routine used to compute a certain value, etc. It is
generally used when an operation must be replaced several times within a pro­
gram sequence using the same or different values. This command allows the
user to "call" the subroutine!, if necessary. The last line of the subroutine must
contain a RETURN statement. The RETURN statement goes back to the physical
line following the GOSUB statement.

Like the preceding FOR/NEXT command, the GOSUB/RETURN command
uses a stack for its return address. If the subroutine is not allowed to complete
normally; e.g., a GOTO lineno before a RETURN, the GOSUB address must be
"popped" off the stack (see POP) or it could cause future errors.

• Generally, a subroutine can do anything that can be done in a program. It is used to save memory
and program-entering time, and to make programs easier to read and debug.



To prevent accidental triggering of a subroutine (which normally follows the
main program), place an END statement preceding the subroutine. The follow­
ing program demonstrates the use of subroutines.

10 F'Flr'~T If} H

2[1 F:Ei-l E>::Ar-1FLE U~;E (IF Gij~:;UB./~~ETti~:f·~

30 >::=1[10
4~:1 CO~:;UE 10[10
50 ::<=120
611 l:;O::;UE: lOuD
7t1 >::=5f1
;::~J GO::;UE; 1~:r;')[1

90 Er·m
1~1[1~) '/=3::;::>::
ltl1li ::<=>::+\'
1!~12£1 FF.: I ~'~T :":." '/
1030 PET1JF.:~~

(Clear screen)

GOTO (G.)

Figure 4-3. GOSUB/RETURN Program Listing

In the above program, the subroutine, beginning at line 1000, is called three
times to compute and print out different values ofX and Y. Figure 4-4 illustrates
the results of executing this program.

400 300
480 360
2t1'a 150

Figure 4-4. GOSUB/RETURN Program Run

Format: {GO TO} aexp
GOTO

Examples: 100 GOTO 50
500 GOTO (X + Y)

The GOTO command is an unconditional branch statement just like the GOSUB
command. They both immediately transfer program control to a target line
number or arbitrary expression. However, using anything other than a con­
stant will make renumbering the program difficult. If the target line number is
non-existent, an error results. Any GOTO statement that branches to a
preceding line may result in an "endless" loop. Statements following a GOTO
statement will not be executed. Note that a conditional branching statement (see
IFITHEN)can be used to break out of a GOTO loop. The following program il­
lustrates two uses of the GOTO command.

Program Statements 17



10 pF.~nH

20 pF.:nH :PF:UH "ot-iE"
30 PR IHT "T~·~Y'
40 ppnn IITHF.~EE"

50 PF.: rt-H II FOUP II

60 PF:HH "FH.!P
65 GOTD 10~)

70 F'RltH "$$$$$$$$$$$$$$$$$"
:::0 PP Ir'~T II ~.~~.~~.~~.~~.~~.~~.~~.~~.~~.~~.~~.~~.~~.~~.~~.~~.~fI

90 F'~: It'~T II ??'????????????'?-?? I!

95 EtiD
1(11-) PRWT !I~:;I::<"

110 PRH-H 1I~:;E!...Hrl

12'f1 FtF.~ It'~T if EIi~HT I!

13~i FtF.~Ir'~T ft NIt·iE H

14(1 FI~~Ir'iT !lTEf,r'
150 GOTO 70

Figure 4-5. GOTO Program Listing

Upon execution, the numbers in the above listing will be listed first followed by
the three rows of symbols. The symbols listed on lines 70, 80, and 90 are ignored
temporarily while the program executes the GOTO 100 command. It proceeds
with the printing of the numbers "SIX" through "TEN", then executes the se­
cond GOTO statement which transfers program control back to line 70. (This is
just an example. This program could be rewritten so that no GOTO statements
were used.) The program, when executed, looks like the following:

Ot·£
Tm
Tl-f.:EE
FOUR
FH.lE

~;EJ...IEt·~

EIGHT
t·HNE
THl
$$$$$$$$$$$$$$$$$

'-;:.'-;:"-;"'-;"'::"-;"'7-"-;"'::";"-;"''{o'::''::''-::''::''-::'.................

IF/THEN

18 Program Statements

Format:

Examples:

Figure 4-6. GOTO Program Run

IF aexp THEN { lineno }
statement [:statement...]

IF X = 100 THEN 150
IF A$ = "ATARI" THEN 200
IF AA = 145 and BB = 1 THEN PRINT AA, BB
IF X = 100 THEN X = 0



The IFtTHEN statement is a conditional branch statement. This type of branch
occurs only if certain conditions are met. These conditions may be either
arithmetical or logical. If the aexp following the IF statement is true (non-zero),
the program executes the THEN part of the statement. If, however, the aexp is
false (a logical'O), the rest ofthe statement is ignored and program control passes
to the next numbered line.

In the format, IF aexp THEN lineno, lineno must be a constant, not an expression
and specifies the line number to go to if the expression is true. If several
statements occur after the THEN, separated by colons, then they will be ex­
ecuted if and only if the expression is true. Several IF statements may be nested
on the same line. For example:

1(1[1 IF ::0::=5 THEt·~ IF 1/=3 THEt·~ P=9: GOTC200

The statements R =9: GOTO 100 will be executed only if X =5 and Y=3. The
statement Y= 3 will be executed if X = 5.

The following program demonstrates the IFtTHEN statement.

5 GF:APHIC; 0:? :'{ II IF DH10 11

10? :'? IIEtHER All j : Hf'UT A
20 IF A= 1 THEJ~ 40: F.H1 t'1ULTI PLE ~:;TATEt'1EJH

S HEF.~E l'J ILL t·fl)EF.~ BE E::<ECUTEO! !
30 ? :? IIA I~:; t·KIT 1. E:-=:ECUTION CmiTIt·UE
S HEF.E L,JHEr·i THE E:>::PPE::;::; I ON IS FAL:3E . II
4~3 IF A=l THEt·j ? :? IIA=l":? "'y'E~:;., IT IS
REAL.L 'y' 1. II : F:Ef'1 t1ULTI PLE :::;TATEr-1Et-H:3 HEF.~E

~,J!LL BE E>::ECUTED OHL'y' IF A=l! !
50 ? :? U E:z:EC:UT IOt·~ COt'4T! t'~UE~; HERE IF A< >­
1 OR AFTEF: I \E;., IT 1:3 F.~EALL'r' l' IS DISP
LA'r'ED. II

6(1 !~OTO 10

Figure 4-7. IF/THEN Program

Et-HEF.~ A (entered 2)
A IS t·iOT 1. E>::ECUT IOt-~ COtH It'~UE:3 HEF.~E ~J!-I

Et·j THE E::<PRESSIOt·~ IS FAL:3E.
E:>~ECUTI m·~ Cm-iT mUE:; HERE IF A< >1 OF: AFTE
R 'YES, IT IS REALLY l' IS DISPLAYED.
EtHER A (entered 1)

A=l
'lES} IT IS PEALL\' 1.
E>::ECUT Im·j COt·iT It'~UE:3 HEF.:E IF A< >- 1 OR AFTE
R 'YES. IT IS REALLY I' IS DISPLAYED.
HHEF: A

Figure 4-8. IF/THEN Program Execution.

Program Statements 19



ONIGOSUBI
RETURN
ONIGOTO

Format:

Examples:

ON aexp {GOTO} lineno [ ,lineno.. .J
GOSUB

100 ON X GOTO 200,300,400
100 ON A GOSUB 1000, 2000
100 ON SQR(X) GOTO 30, 10, 100

POP

20 Progmm Statements

Note: GOSUB and GOTO may not be abbreviated.

These two statements are also conditional branch statements like the IFITHEN
statement. However, these two are more powerful. The aexp must evaluate to a
positive number which is then rounded to the nearest positive integer (whole
number) value up to 255. If the resulting number is 1, then program control
passes to the first lineno in the list following the GOSUB or GOTO. If the
resulting number is 2, program control passes to the second lineno in the list,
and so on. If the resulting number is aor is greater than the number of linenos
in the list, the conditions are not met and program control passes to the next
statement which mayor may not be located on the same line. With ON/GOSUB,
the selected subroutine is executed and then control passes to the next state­
ment.

The following routine demonstrates the ON/GOTO statement:

10 >~=:)::+1

~~ ON X GOTa 100,200,300;400}500
313 IF ::<>5 TI1'Et-~ F'RIt·n IICor·1PLETE. II :H~
40 GOTO 10
50 END
100 PPHn "t·n·J l·JOF.~f:::mG AT LIt·iE 100 11

: GOTO
10

200 PPIt-iT IIt·[ll·j l·JOPK It·iG AT LIt'iE 200" :GOTO
10

3f10 F'RIt·n I!t·[ll·J l·JOPf::: I t·iG AT LIt·iE 30f1" :GOTO
10

400 PRlt·n "t'~]l'J l·JOF.~K It·iG AT LIt·iE 4fuj" :GOTO
10

5(1(1 PRIt·n liNC!L,~ l,JORK It·iG AT LIt·iE 500" :GOTO
1f1

Figure 4-9 ON/GOTO Program Listing

When the program is executed, it looks like the following:

t·iOt,J ~'JO~~K ING AT LINE 10(1

t·im·J l·JORf::: I t·~~ AT LIt'iE 2(10
HmJ l'JOF.~K It·iG AT LINE 30(1
t·ml·J l·JOF:K It·iG AT LIt·iE 400
t·imJ l·JORK It·iG ·"T LHiE 5fl~=1HI

Cor'lPLETE .

Figure 4-10 ON/GOTO Program Execution

Format: POP
Example: 1000 POP



In the description of the FORINEXT statement, the stack was defined as a group
of memory addresses reserved for return addresses. The top entry in the stack
controls the number of loops to be executed and the RETURN target line for a
GOSUB. If a subroutine is not terminated by a RETURN statement, the top
memory location of the stack is still loaded with some numbers. If another
GOSUB is executed, that top location needs to be cleared. To prepare the stack
for a new GOSUB, use a POP to clear the data from the top location in the stack.

The POP command must be used according to the following rules:

1. It must be in the execution path of the program.
2. It must follow the execution of any GOSUB statement that is not brought

back to the main program by a RETURN statement.

The following example demonstrates the use of the POP command with a
GOSUB when the RETURN is not executed:

10 GO:3UB 1000
15 PEt'l LI t·lE 20 l·U LL t·lOT BE D::ECUTED
20 PPWT IIt'[IPr-1AL F.~ETUF.:t·l PF.:HHS THE; t'1ES
AGE. !i

30 F'F~ Ir·4T II ABt'~C;~~t'1AL ~:ET!JF~H FI~~I t'iT~:; THI ~:; r'1E
%AGE."
40 POP
999 END
1(10~~1 P~~! [-iT II t'~O~tj E::-:;ECiJT If'~G SUE:~~OUT It·~E. !I

1010 GOTO 30
102(1 ~~ETURti

Figure 4-11. GOSUB Statement With POP

RESTORE (RES.) Format:
Example:

RESTORE [aexp]
100 RESTORE

The Atari Personal Computer System contains an internal "pointer" that
keeps track of the DATA statementitem to be read next. Used without the op­
tional aexp, the RESTORE statement resets that pointer to the first DATA item
in the program. Used with the optional aexp, the RESTORE statement sets the
pointer to the first DATA item on the line specifed by the value of the aexp. This
statement permits repetitive use of the same data.

if) FOR ~i=l TO 2
20 READ A
30 RESTORE
40 READ B
50 t'l=A+B
60 PRWT II TOTAL EQUAL~; II j M
70 NE:>~T N
Be END
9fj DATA 30J15

Figure 4-12. Restore Program Listing

On the first pass through the loop, A will be 30 and B will be 30 so the total line
50 will print SUM TOTAL EQUALS 60, but on the second pass, A will equal 15

Program Statements 21



and B, because of the RESTORE statement, will still equal 30. Therefore, the
PRINT statement in line 50 will display SUM TOTAL EQUALS 45.

TRAP (T.) Format:
Example:

TRAP aexp
100 TRAP 120

22 Program Statements

The TRAP statement is used to direct the program to a specified line number if
an error is detected. Without a TRAP statement, the program stops executing
when an error is encountered and displays an error message on the screen.

The TRAP statement works on any error that may occur after it has been ex­
ecuted, but once an error has been detected and trapped, it is necessary to reset
the trap with another TRAP command. This TRAP command may be placed at
the beginning of the section of code that handles input from the keyboard so
that the TRAP is reset after each error. PEEK(195) will give you an error
message (see Appendix B). 256*PEEK(187) +PEEK(186) will give you the number
ofthe line where the error occurred. The TRAP may be cleared by executing a
TRAP statement with an aexp whose value is from 32767 to 65535 (e.g., 40000).



5

INPUT/OUTPUT
COMMANDS AND DEVICES

This section describes the input/output devices and how data is moved between
them. The commands explained in this section are those that allow access to the
input/output devices. The input commands are those associated with getting
data into the RAM and the devices geared for accepting input. The output com­
mands are those associated with retrieving data from RAM and the devices
geared for generating output.

The commands described in this section are:

The hardware configuration of each ofthe following devices is illustrated in the
individual manuals furnished with each. The Central Input/Output (CIa) sub­
system provides the user with a single interface to access all of the system
peripheral devices in a (largely) independent manner. This means there is a
single entry point and a device-independent calling sequence. Each device has a
symbolic device name used to identify it; e.g., K: for the keyboard. Each device
must be opened before access and each must be assigned to an Input/Output Con­
trol Block (IOCB). From then on, the device is referred to by its IOCB number.

INPUT/OUTPUT
DEVICES

CLOAD
CSAVE
DOS
ENTER

INPUT
LOAD
LPRINT
NOTE

OPEN/CLOSE
POINT
PRINT
PUT/GET

READ/DATA
SAVE
STATUS
XIO

ATARI BASIC contains B blocks in RAM which identifies to the Operating
System the information it needs to perform an I/O operation. This information
includes the command, buffer length, buffer address, and two auxiliary control
variables. ATARI BASIC sets up the IOCB's, but the user must specify which
IOCB to use. BASIC reserves IOCB ,t,t0 for I/O to the Screen Editor, therefore the
user may not request IOCB ,t,t0. The GRAPHICS statement (see Section 9) opens
IOCB ,t,t6 for input and output to the screen. (This is the graphics window S:).
IOCB #7 is used by BASIC for the LPRINT, CLOAD, and CSAVE commands. The
IOCB number may also be referred to as the device (or file) number. IOCB's 1
through 5 are used in opening the other devices for input/output operations. If
IOCB ,t,t7 is in use, it will prevent LPRINT or some of the other BASIC I/O
statements from being performed.

Keyboard: (K:) Input only device. The keyboard allows the user to read the
converted (ATASCII) keyboard data as each key is pressed.

Line Printer: (P:) Output only device. The line printer prints ATASCII
characters, a line at a time. It recognizes no control characters.

Program Recorder: (C:) Input and Output device. The recorder is a read/write
device which can be used as either, but never as both simultaneously. The
cassette has two tracks for sound and program recording purposes. The audio
track cannot be recorded from the ATARI system, but may be played back
through the television speaker.

I/O Command.s and Devices 23



Disk Drives: (01:, 02:, 03:, 04:) Input and Output devices. If16K of RAM is
installed, the ATARI can use from one to four disk drives. Ifonly one disk drive
is attached, there is no need to add a number after the symbolic device code D.

Screen Editor: (E:) Input and Output device. This device uses the keyboard
and display (see TV Monitor) to simulate a screen editing terminal. Writing to
this device causes data to appear on the display starting at the current cursor
position. Reading from this device activates the screen editing process and
allows the user to enter and edit data. Whenever the mm key is pressed, the
entire logical line within which the cursor resides is selected as the current
record to be transferred by CIO to the user program. (See Section 9).

TV Monitor: (S:) Input and Output device. This device allows the user to read
characters from and write characters to the display, using the cursor as the
screen addressing mechanism. Both text and graphics operations are supported.
See Section 9 for a complete description of the graphics modes.

Interface, RS-232: (R:) The RS-232 device enables the ATARI system to inter­
face with RS-232-compatible devices such as printers, terminals, and plotters. It
contains a parallel port to which the 80-column printer (ATARI 825™) can be at­
tached.

CLOAD (CLOA.) Format: CLOAD
Examples: CLOAD

100 CLOAD

This command can be used in either Direct or Deferred mode to load a program
from cassette tape into RAM for execution. On entering CLOAD, one bell rings
to indicate that the PLAY button needs to be pressed followed by mm .
However, do not press PLAY until after the tape has been positioned. Specific in­
structions for CLOADing a program are contained in the ATARI 410 Program
Recorder Manual. Steps for loading oversized programs are included in the
paragraphs under CHAINING PROGRAMS at the end of this section.

CSAVE (CS.) Format:
Examples:

CSAVE
CSAVE
100 CSAVE
100 CS.

24 I/O Commands and Devices

This command is usually used in Direct mode to save a RAM-resident program
onto cassette tape. CSAVE saves the tokenized version ofthe program. On enter­
ing CSAVE two bells ring to indicate that the PLAY and RECORD buttons must
be pressed followed by mm. Do not, however, press these buttons until the
tape has been positioned. It is faster to save a program using this command
rather than a SAVE "c" (see SAVE) because short inter-record gaps are used.

Notes: Tapes saved using the two commands, SAVE and CSAVE, are not com­
patible

It may be necessary to enter an LPRINT (see LPRINT) before using
CSAVE. Otherwise, CSAVE may not work properly.

For specific instructions on how to connect and operate the hardware,
cue the tape, etc., see the ATARI 410 Program Recorder Manual.



DOS (DO.) Format:
Example:

DOS
DOS

ENTER(E.)

INPUT (1.)

The DOS command is used to go from BASIC to the Disk Operating System
(DOS). If the Disk Operating System has not been booted into memory, the com­
puter will go into Memo Pad mode and the user must press hiiW1j!!1ii to return
to Direct mode. If the Disk Operating System has been booted, the DOS Menu is
displayed. To clear the DOS Menu from the screen, press hUiM1jlM§ii. Control
then passes to BASIC. Control can also be returned to BASIC by selecting B (Run
Cartridge) on the DOS Menu.

The DOS command is usually used in Direct mode; however, it may be used in a
program. For more details on this, see the Atari DOS Manual.

Format: ENTER filespec
Examples: ENTER "c

ENTER "D:DEMOPR.INS"

This statement causes a cassette tape to play back a program originally recorded
using LIST (see Section 2, LIST). The program is entered in unprocessed (un­
tokenized) form, and is interpreted as the data is received. When the loading is
complete, it may be run in the normal way. The ENTER command may also be
used with the disk drive. Note that both LOAD and CLOAD (see Section 2) clear
the old program from memory before loading the new one. ENTER merges the
old and new programs. This ENTER statement is usually used in Direct mode.

Format: INPUT [Haexp { ; } ] { ~~:~} [, { ~~~~} .,. ]
Examples: 100 INPUT X

100 INPUT N$
100 PRINT "ENTER THE VALUE OF X"
110 INPUT X

This statement requests keyboard data from the user. In execution, the com­
puter displays a ? prompt when the program encounters an INPUT statement. It
is usually preceded by a PRINT statement that prompts the user as to the type of
information being requested.

String variables are allowed only if they are not subscripted. Matrix variables
are not allowed.

The Haexp is optional and is used to specify the file or device number from
which the data is to be input (see Input/Output Devices). Ifno Haexp is specified,
then input is from the screen editor (E:).

If several strings are to be input from the screen editor, type one string, press
tImm, type the next string, tImm , etc. Arithmetic numbers can be typed on
the same line separated by commas.

10 PRWT liB-HER 5 t'~Ut'18EP~:; TO BE SUt·1t'1ED II

20 FOR ['4=1 TO 5
30 I [·4PUT ::-::
40 C=C+>::
50 t·4D::T t·4
60 PF.: I t·n II THE SUt·, OF 'y·OUF.: t·~Ur·'8EF.:~:; I~; II j C
70 am

Figure 5-1 Input Program Listing

I/O Commands and Devices 25



LOAD (LO.) Format:
Example:

LOAD filespec
LOAD "Dl:]ANINE.BRY"

This command is similar to CLOAD except the full file name system can be used.
LOAD uses long inter-record gaps on the tape (see CLOAD) and uses the token­
ized version ofthe program. When using only one disk drive, it is not necessary
to specify a number after the "D" because the default is disk drive //1.

LPRINT (LP.) Format:
Example:

LPRINT [exPJ[ { :} exp.. .]
LPRINT "PROGRAM TO CALCULATE X"
100 LPRINT X;" ";Y;" ";Z

This statement causes the computer to print data on the line printer rather than
on the screen. It can be used in either Direct or Deferred modes. It requires no
device specifier and no OPEN or CLOSE statement. (BASIC uses IOCB //7.)

The above program listing illustrates a program that will add 5 numbers
entered by the user. To print a program listing on the line printer, see LIST.

NOTE (NO.) Format:
Example:

NOTE //aexp, avar, avar
100 NOTE //1, X, Y

OPEN (0.)
CLOSE (CL.)

26 I/O Commands and Devices

This command is used to store the current disk sector number in the first avar
and the current byte number within the sector in the second avar. This is the
current read or write position in the specified file where the next byte to be
read or written is located. This NOTE command is used when writing data to a
disk file (see POINT). The information in the NOTE command is written into a
second file which is then used as an index into the first file.

Formats: OPEN //aexp,aexpl,aexp2, filespec
CLOSE //aexp

Examples: 100 OPEN //2,8,0,"Dl:ATARIBOO.BAS"
100 A$ = "Dl:ATARI800.BAS"
110 OPEN //2,8,0,A$
150 CLOSE //2

Before a device can be accessed, it must be opened. This "opening" process links
a specific IOCB to the appropriate device handler, initializes any CIO-related con­
trol variables, and passes any device-specific options to the device handler. The
parameters for the OPEN command are defined as follows:

// Mandatory character that must be entered by the
user.

aexp Reference IOCB or file number to same parameters
for future use (as in CLOSE command). Number
may be 1 through 7.



aexp1 Code number to determine input or output opera­
tion.

Code 4
8

12
6

9

input operation
output operation
input and output operation
disk directory input operation
(In this case, the filespec is the search specifica­
tion.)
end-of-file append (output) operation. Append is
also used for a special screen editor input mode.
This mode allows a program to input the next
line from E: without waiting for the user to press
tm!Im.

aexp2

filespec

Device-dependent auxiliary code. An 83 in this
parameter indicates sideways printing on a printer
(see appropriate manuals for control codes).

Specific file designation. Must be enclosed in quota­
tion marks. The format for the filespec parameter
is shown in Figure 5-2.

"D 1 : A TAR I 8 0 0 . BAS"

____'_1.... v .J~Device ..:J_

Code
Device
Number
(optional)

Required --------1
Colon

File name -------------'
(up to 8
characters-
must begin
with alphabetic
character)

Period required------------~
as separator if
extender is used.

Extender ~

(optional)-
Includes
0-3 characters

Figure 5-2 Filename Breakdown

Note: Filenames are
not used with
the program
recorder.

The CLOSE command simply closes files that have been previously opened with
an OPEN command. Note in the example that the aexp following the mandatory
It character must be the same as the aexp reference number in the OPEN state­
ment.

I/O Commands and Devices 27



POINT (Pol Format:
Example:

POINT Haexp, avar, avar
100 POINT H2, A,B

Format:
Examples:

PRINT (PR or ?)

PUT(PU.)/
GET(GEol

READ (REA.)
DATA (D.)

28 I/O Commands and Devices

This command is used when reading a file into RAM. The first avar specifies the
sector number and the second avar specifies the byte within that sector where
the next byte will be read or written. Essentially, it moves a software-controlled
pointer to the specified location in the file. This gives the user "random" access
to the data stored on a disk file. The POINT and NOTE commands are discussed
in more detail in the DOS Manual.

PRINT [Haexp] { :} [exp] [,exp...]
PRINT X, Y, Z, A$
100 PRINT "THE VALUE OF X IS ";X
100 PRINT "COMMAS", "CAUSE", "COLUMN", "SPACING"
100 PRINT H3, A$

A PRINT command can be used in either Direct or Deferred mode. In Direct
mode, this command prints whatever information is contained between the
quotation marks exactly as it appears. In the first example, PRINT X,Y,Z,A$, the
screen will display the current values of X,Y,Z, and A$ as they appear in the
RAM-resident program. In the last example, PRINT H3,A$, the H3 is the file
specifier (may be any number between 1 and 7) that controls to which device
the value of A$ will be printed. (See Input/Output Devices.)

A comma causes tabbing to the next tab location. Several commas in a row cause
several tab jumps. A semicolon causes the next aexp or sexp to be placed im­
mediately after the preceding expression with no spacing. Therefore, in the
second example a space is placed before the ending quotation mark so the value
of X will not be placed immediately after the word "IS". If no comma or
semicolon is used at the end of a PRINT statement, then a Em is output and
the next PRINT will start on the following line.

Format: PUT uaexp, aexp
GET Uaexp,

Examples: 100 PUT H6, ASC("A")
200 GET Hl,X

The PUT and GET are opposites. The PUT command,outputs a single byte from
0-255 to the file specified by uaexp. (u is a mandatory character in both these
commands). The GET command reads one byte from 0-255 (using uaexp to
designate the file, etc. on diskette or elsewhere) and then stores the byte in the
variable avar.

Formats: READ val' [ , var...]
DATA adata [ , adata...]

Examples: 100 READ A,B,C,D,E
110 DATA 12,13,14,15,16
100 READ A$,B$,C$,D$,E$
110 DATA EMBEE, EVELYN, CARLA, CORINNE, BARBARA

These two commands are always used together and the DATA statement is
always used in Deferred model. The DATA statement can be located anywhere

'A Direct mode READ will only read data ira DATA statement was executed in the program.



in the program, but must contain as many pieces of data as there are defined in
the READ statement. Otherwise, an "out of data" error is displayed on the
screen.

String variables used in READ statements must be dimensioned and cannot be
subscripted. (See STRINGS Section). Neither may array variables may be used in
a READ statement.

The DATA statement holds a number of string data for access by the READ
statement. It cannot include arithmetical operations, functions, etc. Further­
more, the data type in the DATA statement must match the variable type de­
fined in the corresponding READ statement.

Th~ following program totals a list of numbers in a DATA statement:

10 FO~: t'4=1 TO 5
2~1 PEAD D
30 t'1=M+D
40 t·4E:;::T t·i
50 PFJ t-H II :3Uf1 TOTAL EQUALS "; t1
60 EHD
70 DATA 30.> 15.> 106 .. 17.>:37

Figure 5-3 Read/Data Program Listing

The program, when executed, will print the statement:

SUM TOTAL EQUALS 255.

SAVE (S.) Format:
Example:

SAVE filespec
SAVE "D1:YVONNE.PAT"

The SA VE command is similar to the CSAVE command except that the full file
name system can be used. The device code number is optional when using only
one disk drive. The default is to disk drive #1. SAVE, like LOAD, uses long inter­
record gaps on the cassette (see CSAVE) and the tokenized form of the program.

STATUS (ST.) Format:
Example:

STATUS #aexp,avar
350 STATUS #1,2

The STATUS command calls the STATUS routine for the specified device (aexp).
The status ofthe STATUS command (see ERROR MESSAGES, Appendix B) is
stored in the specified variable (avar). This may be useful for future devices such
as the RS-232 interface.

XIO (X.) Format:
Example:

XIO cmdno, #aexp, aexp1, aexp2, filespec
XIO 18,#6,0,0,"S:"

The XIO command is a general input/output statement used for special opera­
tions. One example is its use to fill an area on the screen between plotted points

I/O Commands and Devices 29



and lines with a color (see Section 9). The parameters for this command are de­
fined as follows:

cmdno Number that stands for the particular command to
be performed.

cmdno OPERATION

3 OPEN
5 GET RECORD
7 GET CHARACTERS
9 PUT RECORD
11 PUT CHARACTERS
12 CLOSE
13 STATUS REQUEST
17 DRAW LINE
18 FILL
32 RENAME
33 DELETE
35 LOCK FILE
36 UNLOCK FILE
37 POINT
38 NOTE
254 FORMAT

EXAMPLE

Same as BASIC OPEN
These 4 commands are similar to
BASIC INPUT GET, PRINT, and PUT

respectively.
Same as BASIC CLOSE
Same as BASIC STATUS
Same as BASIC DRAWTO
See Section 9
XIO 32,#1,0,0,"D:TEMP.CAROL"
XIO 33,#1,0,0,"D:TEMP.BAS"
XIO 35,#1,0,0,"D:TEMP.BAS"
XIO 36,#1,0,0,"D:TEMP.BAS"
Same as BASIC POINT
Same as BASIC NOTE
XIO 254,#1,0,0,"D2:"

aexp

aexp1
aexp2

filespec

Device number (same as in OPEN). Most of the time
it is ignored, but must be preceded by #.

Two auxiliary control bytes. Their usage
depends on the particular device and command. In
most cases, they are unused and are set to 0.

String expression that specifies the device. Must be
enclosed in quotation marks. Although some com­
mands, like Fill (Section 9), do not look at the
filespec, it must still be included in the statement.

CHAINING
PROGRAMS

30 I/O Commantis and Devices

If a program requires more memory than is available, use the following steps to
string programs ofless than the maximum memory available into one program.

1. Type in the first part of the program in the normal way.
2. The last line of the first part of the. program should contain only the line

number and the command RUN"C:"
3. Cue the tape to the blank section. Write down the program counter number

for later RUN purposes. Press PLAY and RECORD buttons on the deck so that
both remain down.

4. Type SAVE"C:" and press tImil3.
5. When the beeping sound occurs, press tImil3 again.
6. When the screen displays "READY", do not move tape. Type NEW tImil3.
7. Repeat the above instructions for the second part of the program.
8. As the second part of the program is essentially a totally new program, it is

possible to re-use the line numbers used in the first part of the program.
9. Ifthere is a third part of the program, make sure the last line ofthe second

part is a RUN"C:" command.



MODIFYING A
BASIC PROGRAM
ON DISK

To execute a "chained" program, use the following steps:

1. Cue the tape to the beginning of part 1 of the program.
2. Press PLAY button on the recorder.
3. Type RUN"C:" Ii1Il!m .
4. When the "beep" sounds, press Ii1Il!m again.

The computer automatically loads the first part of the program, runs it, and
sounds a "beep" to indicate when to hit the space bar or Ii1Il!m to trigger the
tape motor for the second LOAD/RUN. The loading takes a few seconds.

Note: A one-part program can be recorded and reloaded in the same way or
CSAVE and CLOAD can be used.

Note: Remember to boot DOS before typing in your program.

The procedure for modifying an existing BASIC program stored on a diskette is
demonstrated in the following steps:

1. Turn off ATARI console and insert BASIC cartridge.
2. Connect disk drive and turn it on - without inserting diskette.
3. Wait for Busy Light to go out and for the drive to stop. Open disk drive door.
4. Insert diskette (with DOS) and close door.
5. Turn on console. DOS should boot in and the screen show READY.
6. To I"oad program from disk, type

LOAD "D:filename.ext
7. Modify program (or type in new program).
B. To save program on disk, type

SAVE "D:filename.ext
9. Always wait for the Busy light to go out before removing diskette.
10. To get a Directory listing, do not remove diskette and type

DOS
Upon 1i1Il!m, the DOS Menu will be displayed. Select command letter A,
type it, and press Ii1Il!m twice to list the directory on the screen; or type A
followed by pressing Ii1Il!m then P: Ii1Il!m to list directory on the printer.

11. To return to BASIC, type B Ii1Il!m or press HtiWViMii .

I/O Commands and Devices 31



NOTES

32 Notes



6

FUNCTION
LIBRARY

This section describes the arithmetic, trigonometric, and special purpose func­
tions incorporated into the ATARI BASIC. A function performs a computation
and returns the result (usually a number) for either a print-out or additional
computational use. Included in the trigonometric functions are two statements,
radians (RAD) and degrees (DEG), that are frequently used with trigonometric
functions. Each function described in this section may be used in either Direct
or Deferred mode. Multiple functions are perfectly legal.

The following functions and statements are described in this section:

ARITHMETIC
FUNCTIONS

ABS

ABS
CLOG
EXP
INT
LOG
RND
SGN
SQR

Format:
Example:

ATN
COS
SIN
DEG/RAD

ABS(aexp)
100 AB = ABS (- 190)

ADR
FRE
PEEK
POKE
USR

Returns the absolute value of a number without regard to whether it is positive
or negative. The returned value is always positive.

CLOG Format:
Example:

CLOG (aexp)
100 C = CLOG(83)

Returns the logarithm to the base 10 of the variable or expression in paren­
theses. CLOG(O) should give an error and CLOG(1) should be o.

EXP Format:
Example:

EXP (aexp)
100 PRINT EXP(3)

Returns the value of e (approximately 2.71828283), raised to the power specified
by the expression in parentheses. In the example given above, the number
returned is 20.0855365. In some cases, EXP is accurate only to six significant
digits.

INT Format: INT (aexp)
Examples: 100 I = INT(3.445)

100 X = INT( -14.66778)
(3 would be stored in I)
(-15 would be stored in X)

Function Library 33



Returns the greatest integer less than or equal to the value of the expression.
This is true whether the expression evaluates to a positive or negative number.
Thus, in our first example above, I is used to store the number 3. In the second
example, X is used to store the number - 15 (the first whole number that is less
than or equal to - 14.66778). This INT function should not be confused with the
function used on calculators that simply truncates (cuts off) all decimal places.

LOG Format:
Example:

LOG(aexp)
100 L =LOG(67.89/2.57)

Returns the natural logarithm of the number or expression in parentheses.
LOG(O) should give an error and LOG(l) should be O.

RND Format:
Example:

RND(aexp)
10 A=RND (0)

Returns a hardware-generated random number between a and 1, but never
returns 1. The variable or expression in parentheses following RND is a dummy
and has no effect on the numbers returned. However, the dummy variable must
be used. Generally, the RND function is used in combination with other BASIC
statements or functions to return a number for games, decision making, and the
like. Here's a simple routine that returns a random number between a and 999.

10 :~~=RHD( 0)
23 P:x:= I t-n(1000:~~:~~ )
30 F'R I NT R>!.

(0 is dummy variable)

SGN Format:
Example:

SGN(aexp)
100 X = SGN(-199) (-1 would be returned)

Returns a -1 if aexp evaluates to a negative number; a a ifaexp evaluates to 0, or a
1 if aexp evaluates to a positive number.

SQJ{ Format:
Example:

SQR(aexp)
100 PRINT SQR(100) (10 would be printed)

Returns the square root of the aexp which must be positive.

TRIGONOMETRIC
FUNCTIONS

ATN Format:
Example:

ATN(aexp)
100 X = ATN(65)

Returns the arctangent of the variable or expression in parentheses.

COS Format:
Example:

COS(aexp)
100 C = COS(X+Y+Z)

34 Function Library

Note: Presumes X, Y, Z previously defined!

Returns the trigonometric cosine of the expression in parentheses.



Note: Presumes Y previously defined.

SIN Format:
Example:

SIN(aexp)
100 X = SIN(Y)

\.

L_.

/
._ .,2'}

/\

------

DEG/RAD

SPECIAL
PURPOSE
FUNCTIONS

Returns the trigonometric sine of the expression in parentheses.

Format: DEG
RAD

Example: 100 DEG
100 RAD

These two statements allow the programmer to specify degrees or radians for
trigonometric function computations. The computer defaults to radians unless
DEG is specified. Once the DEG statement has been executed, RAD must be used
to return to radians.

See Appendix E for the additional trigonometric functions that can be derived.

ADR Format:
Example:

ADR(svar)
ADR(A$)

FRE

PEEK

POKE

Returns the decimal memory address of the string specified by the expression in
parentheses. Knowing the address enables the programmer to pass the informa­
tion to USR routines, etc. (See USR and Appendix D)

Format: FRE(aexp)
Examples: PRINT FRE (0)

100 IF FRE (0) < 1000 THEN PRINT "MEMORY CRITICAL"

This function returns the number ofbytes ofuser RAM left. Its primary use is in
Direct mode with a dummy variable (0) to inform the programmer how much
memory space remains for completion of a program. Of course FRE can also be
used within a BASIC program in Deferred mode.

Format: PEEK(aexp)
Examples: 1000 IF PEEK (4000) = 255 THEN PRINT "255"

100 PRINT "LEFT MARGIN IS"; PEEK (82)

Returns the contents ofa specified memory address location (aexp). The address
specified must be an integer or an arithmetic expression that evaluates to an in­
teger between a and 65535 and represents the memory address in decimal nota­
tion (not hexadecimal). The number returned will also be a decimal integer with
a range from a to 255. This function allows the user to examine either RAM or
ROM locations. In the first example above, the PEEK is used to determine
whether location 4000 (decimal) contains the number 255. In the second exam­
ple, the PEEK function is used to examine the left margin.

Format: POKE aexpl, aexp2
Examples: POKE 82, 10

100 POKE 82, 20

Function Library 35



Although this is not a function, it is included in this section because it is closely
associated with the PEEK function. This POKE command inserts data into the
memory location or modifies data already stored there. In the above format,
aexpl is the decimal address of the location to be poked and aexp2 is the data to
be poked. Note that this number is a decimal number between a and 255. POKE
cannot be used to alter ROM locations. In gaining familiarity with this command
it is advisable to look at the memory location with a PEEK and write down the
contents of the location. Then, if the POKE doesn't work as anticipated, the
original contents can be poked into the location.

The above Direct mode example changes the left screen margin from its default
position of 2 to a new position of 10. In other words, the new margin will be 8
spaces to the right. To restore the margin to its normal default position, press

tt;ii3~I;I*1in.

USR Format:
Example:

USR (aexpl [, aexp2][, aexp3 ...D
100 RESULT = USR (ADD1,A *2)

This function returns the results ofa machine-language subroutine. The first ex­
pression, aexpl, must be an integer or arithmetic expression that evaluates to an
integer that represents the decimal memory address of the machine language
routine to be performed. The input arguments aexp2, aexp3, etc., are optional.
These should be arithmetic expressions within a decimal range of a through
65535. A non-integer value may be used; however, it will be rounded to the
nearest integer.

These values will be converted from BASIC's Binary Coded Decimal (BCD)
floating point number format to a two-byte binary number, then pushed onto
the hardware stack, composed of a group of RAM memory locations under
direct control of the 6502 microprocessor chip. Figure 6-1 illustrates the struc­
ture of the hardware stack.

(Number of arguments on the stack-may be 0)
(High byte of argument X)
(Low byte of argument X)
(High byte of argument Y)
(Low byte of argument Y)
(High byte of argument Z)
(Low byte of argument Z)

36 Function Library

(Low byte of return address)
(High byte of return address)

Figure 6-1. Hardware Stack Definition

Note: X is the argument following the address ofthe routine, Y is the
second, Z is the third, etc. There are N pairs of bytes.

See Section 11 for a description of the USR function in machine language pro­
gramming. AppendiX D defines the bytes in RAM available for machine
language programming.



ASC

CHR$

7

STRINGS

This section describes strings and the functions associated with string handling.
Each string must be dimensioned (see DIM statement, Section 8) and each string
variable must end with a $. A string itself is a group of characters "strung"
together. The individual characters may be letters, numbers, or symbols
(including the Atari special keyboard symbols.) A substring is a part of a longer
string and any substring is accessible in Atari BASIC if the string has been pro­
perly dimensioned (see end of section). The characters in a string are indexed
from 1 to the current string length, which is less than or equal to the dimen­
sioned length of the string.

The string functions described in this section are:
ASC STR$
CHR$ VAL
LEN

Format: ASC(sexp)
Examples: 100A = ASC(A$)

This function returns the ATASCII code number for the first character of the
string expression (sexp). This function can be used in either Direct or Deferred
mode. Figure 7-1 is a short program illustrating the ASC function.

10 [1m A$(3)
2(1 A$:IIEII
30 A=A~;C( A$ )
40 PF.Jt-n A

Figure 7-1. ASC Function Program

When executed, this program prints a 69 which is the ATASCII code for the let­
ter "E". Note that when the string itself is used, it must be enclosed in quotation
marks.

Format: CHR$ (aexp)
Examples: 100 PRINT CHR$ (65)

100 A$ = CHR$ (65)

This character string function returns the character, in string format,
represented by the ATASCII code number(s) in parentheses. Only one character
is returned. In the above examples, the letter A is returned. Using the ASC and
CHR$ functions, the following program prints the upper case and lower case let­
ters of the alphabet.

Strings 37



10 FOR 1=0 TO 25
20 FIRIt·iT CHF~$( ASC( n AH )+ I ).1 C:HF:$( [::1::;(\ !f a If )+
1)

30 t'~E>::T I

Figure 7-2. ASC and CHR$ Program Example

Note: There can be only one STR$ and only one CHR$ in a logical comparison.

LEN Format:
Example:

LEN (sexp)
100 PRINT LEN(A$)

This function returns the length in bytes of the designated string. This informa­
tion may then be printed or used later in a program. The length of a string
variable is simply the index for the character which is currently at the end of
the string. Strings have a length ofa until characters have been stored in them.
It is possible to store into the middle of the string by using subscripting.
However, the beginning of the string will contain garbage unless something
was stored (using STO) there previously.

The following routine illustrates one use of the LEN function:

1(1 Dlt'1 A$( 1~=1 >
20 A$="ATA~:I Ii

3(1 tiP I f'~T LEt·~( A! )

Figure 7-3. LEN Function Example

The result of running the above program would be 5.

STR$ Format:
Example:

STR$ (aexp)
A$ = STR$(65)

This string from number function returns the string form of the number in
parentheses. The above example would return the actual number 65, but it
would be recognized by the computer as a string.

Note: There can only be one STR$ and only one CHR$ in a logical comparison.
For example, A = STR$(1) > STR$(2) is not valid and will not work correctly.

VAL Format:
Example:

VAL(sexp)
100 A = VAL(A$)

38 Strings

This function returns a number of the same value as the number stored as a
string. This is the opposite ofa STR$ function. Using this function, the computer
can perform arithmetic operations on strings as shown in the following exam­
ple program:

10 DHl 8$( 5)
20 8$=1110000 11
30 8=SQR(UAL(8$»
40 F'R n-H II THE ~;QUAF.:E F.~OOT OF II.; 8$.; II I~; II

iB

Figure 7-4. VAL Function Program



Upon execution, the screen displays THE SQUARE ROOT OF B$ IS 100.

It is not possible to use the VAL function with a string that does not start with a
number, or that cannot be interpreted by the computer as a number. It can,
however, intrepret floating point numbers; e.g.,VAL("lE9")would return the
number 1,000,000,000.

STRING Strings can be manipulated in a variety ofways. They can be split, concatenated,
MANIPULATIONS rearranged, and sorted. The following paragraphs describe the different

manipulations.

String Concatenation

Concatenation means putting two or more strings together to form one large
string. Each string to be included in a larger string is called a substring. Each
substring must be dimensioned (see DIM). In Atari BASIC, a substring can con­
tain up to 99 characters (including spaces). After concatenation, the substrings
can be stored in another string variable, printed, or used in later sections ofthe
program. Figure 7-5 is a sample program demonstrating string concatenation.
In this program, A$, B$, and C$ are concatenated and placed in A$.

10 DIM A$( HJ0), B:f.( W0)., C$( 1(10)
2.'ff A$= II 3Tr;: It·jG; :~.: SU8::;TR I ~·jG::; ARE DISCU:;SE
D II

30 8$= II Hi ! ATAR I SA::; IC--A SELF-TEACHHJG
GUIDE I II
4~3 C$=II---CHAPTH: 9. II

50 A$(LEN(A$)+1)=8$
6(1 A$( LEt·j( A$ )+ 1)=C$
70 F'k:WT A$

Figure 7-5. String Concatenation Example

String Splitting

The format of a subscript string variable is as follows:

svarname(aexp1[ ,aexp2])

The svarname is used to indicate the unsubscripted string variable name (with
$). aexpl indicates the starting location of the substring and aexp2 (if used) in­
dicates the ending location ofthe substring. Ifno aexp2 is specified, then the end
of the substring is the current end ofthe string. The starting location cannot be
greater than the current length of the string. The two example programs in
Figure 7-6 illustrate a split string with no end location indicated and a split
string with an ending location indicated.

10 OHl ::;$( 5)
2.'0 S$= II ABCO# II
30 PRWT S$( 2)
40 HiD

Result is BCD.
(without ending location)

10 Dlt'1 3$( 20)
20 S$=IIATARI 800 8A:;IC II

30 PR It·n S:f.( 7., 9)
40 Et·jO

Result is 800.
(with ending location)

Figure 7-6. Split String Examples

Strings 39



40 Strings

String Comparisons and Sorts

In string comparisons, the logical operators are used exactly the way they are
with numbers. The second program in Appendix H is a simple example ofbub­
ble sort.

In using logical operators, remember that each letter, number, and symbol is
assigned an ATASCII code number. A few general rules apply to these codes:

1. ATASCII codes for numbers are sized in order of the numbers' real
values and are always lower than the codes for letters (see Appendix C).

2. Upper case letters have lower numerical values than the lower case let­
ters. To obtain the ATASCII code for a lower case letter if you know the
upper case value, add 32 to the upper case code.

Note: Atari BASIC's memory management system moves strings around in
memory to make room for new statements. This causes the string address to
vary if a program is modified or Direct mode is used.



8

ARRAYS AND
MATRICES

An array is a one-dimensional list of numbers assigned to subscripted variables;
e.g., A(O), A(1), A(2). Subscripts range from °to the dimensioned value. Figure
8-1 illustrates a 7-element array.

A(O)
A(1)
A(2)
A(3)
A(4)
A(5)
A(6)

Figure 8-1. Example ofan Array

A matrix, in this context, is a two-dimensional table containing rows and col­
umns. Rows run horizontally and columns run vertically. Matrix elements are
stored by BASIC in row-major order. This means that all the elements of the
first row are stored first, followed by all the elements of the second row, etc.
Figure 8-2 illustrates a 7 x 4 matrix.

Columns

M(O,O) M(O,l) M(O,2) M(O,3)
M(l,O) M(1,l) M(1,2) M(1,3)
M(2,O) M(2,1) M(2,2) M(2,3)

M(3,O) M(3,1) M(3,2) M(3,3)
M(4,O) M(4,1) M(4,2) M(4,3)

M(5,O) M(5,1) M(5,2) M(5,3)
M(6,O) M(6,1) M(6,2) M(6,3)

Figure 8-2. Example ofa Matrix

This section describes the two commands associated with arrays, matrices, and
strings, and how to load both arrays and matrices. The commands in this sec­
tion are:

DIM
CLK

DIM (DI.) Format:
{

svar(aexp) }
DIM mvar(aexp[ ,aexpD

fJ{ ,svar(aexp) }ll
~ ,mvar(aexp[ ,aexp ... ] U

Examples: DIM A(100)
DIM M(6,3)
DIM B$(20) used with STRINGS

Arrays and Matrices 41



42 Arrays and Matrices

A DIM statement is used to reserve a certain number oflocations in memory for
a string, array, or matrix. A character in a string takes one byte in memory and
a number in an array takes six bytes. The first example reserves 101 locations
for an array designated A. The second example reserves 7 rows by 4 columns
for a two-dimensional array (matrix) designated M. The third example reserves
20 bytes designated B$. All strings, arrays, and matrices must be dimen­
sioned. It is a good habit to put all DIM statements at the beginning of the pro­
gram. Notice in Figure 8-1 that although the array is dimensioned as DIM A(6),
there are actually 7 elements in the array because of the a element. Although
Figure 8-2 is dimensioned as DIM M(6,3), 28 locations are reserved.

Note: The ATARI Personal Computer does not automatically initialize array or
matrix variables to a at the start of program execution. To initialize array or
matrix elements to 0, use the following program steps:

25£1 OIt·, A( 10(1 >
30f1 FOR E=0 TO 100
310 A( 3 )=0
32(1 t·E·::T E

Arrays and matrices are "filled" with data by using FORINEXT statements,
READIDATA statements and INPUT commands. Figure 8-3 illustrates the
"building" ofpart ofan array using the FORINEXT loop and Figure 8-4 builds an
array using the READ/DATA statements.

10 DH1 A( we::.
20 >::=10
30 FOR E=l TO 90
40 :=-::=>::+ 1
5(1 A(E::<::
60 t·E::T E
70 FOR E=l TO 90
80 FI~:Ir'ii E.. A( E::'
90 t'~E:<T E

Figure 8-3. Use ofFOR/NEXT to Build An Array

10 DIt1 A( 3::'
20 FOR E=l TO 3
30 PEAO ::<
40 A(E)=>::
50 PPIHT A( E) ..
60 HE>::T E
70 Et·m
100 DATA 33 .. 45., 12

FigUloe 8-4. Use ofREAD/DATA to Build An Array



Figure 8-5 shows an example of building a 6 x 3 matrix.

10 DH1 t'K 6.. :3 >
20 FOR ROW=0 TO 6
30 FOR COL=l TO :3
40 I'K Rm·J .. COL )=I t-n(H~D( 0 )::;:: ll1~30 )
5£1 t·iE:'::T COL: t'~D::T ~:moJ

6[1 FOF.~ PiJtoJ=O TO 6
70 FOR COL=l TO 3
:30 F'R Ir-H t'1o:: F.:O~·j .. COL >
90 t'~E::::T COL: PRun :t'~E::::T Rm,J

Figure 8-5. Building A Matrix

Note that the words ROWand COLUMN are not BASIC commands, statements,
functions, or keywords. They are simply variable names used here to designate
which loop function is first. The program could just as easily have been written
with X and Y as the variable names.

CLR Format:
Example:

CLR
200 CLR

This command clears the memory ofall previously dimensioned strings, arrays,
and matrices so the memory and variable names can be used for other purposes.
It also clears the values stored in undimensioned variables. If a matrix, string, or
array is needed after a CLR command, it must be redimensioned with a DIM
command.

Arrays and Matrices 43



NOTES

44 Notes



9

GRAPHICS MODES
AND COMMANDS

This section describes the Atari BASIC commands and the different graphics
modes of the ATARI Personal Computer. Using these commands, it is possible to
create graphics for game, graphics, and patterns.

The commands to be described in this section are:

GRAPHICS
COLOR
DRAWTO

LOCATE
PLOT
POSITION

PUT/GET
SETCOLOR
XIO

The PUT/GET and XIO commands explained in this section are special applica­
tions of the same commands described in Section 5.

GRAPHICS (GR.) Format:
Example:

GRAPHICS aexp
GRAPHICS 2

This command is used to select one of the nine graphics modes. Table 9-1 sum­
marizes the nine modes and the characteristics of each. The GRAPHICS com­
mand automatically opens the '$creen, S:(the graphics window),as device 116. So
when printing text in the text window, it is not necessary to specify the device
code. The aexp must be positive, rounded to the nearest integer. Graphics mode
o is a full-screen display while modes 1 through 8 are split screen displays. To
override the split-screen, add the characters + 16 to the mode number (aexp) in
the GRAPHICS command. Adding 32 prevents the graphics command from
clearing the screen.

To return to graphics mode 0 in Direct mode, press HtiWlji'B#i or type GR.O
and press E!Il'I3

TABLE 9.1-TABLE OF MODES AND SCREEN FORMATS

SCREEN FORMAT

Vert. Vert. Number
Gr. Mode Horiz. (Col) (Col) Of RAM

Mode Type (Rows) Split Full Colors ReqUired
Screen Screen (Bytes)

0 TEXT 40 24 2 993
1 TEXT 20 20 24 5 513
2 TEXT 20 10 12 5 261
3 GRAPHICS 40 20 24 4 273
4 GRAPHICS 80 40 48 2 537
5 GRAPHICS 80 40 48 4 1017
6 GRAPHICS 160 80 96 2 2025
7 GRAPHICS 160 80 96 4 3945
8 GRAPHICS 320 160 192 1/2 7900

The following paragraphs describe the nine graphics modes.

Graphic Modes and Commands 45



Puts cursor at location
specified by aexp1 and aexp2.

GRAPHICS
MODED

This mode is the i-color, 2-luminance (brightness) default mode for the ATARI
Personal Computer. It contains a 24 by 40 character screen matrix. The default
margin settings at 2 and 39 allow 38 characters per line. Margins may be chang­
ed by poking LMARGN and RMARGN (82 and 83). See Appendix 1. Some systems
have different margin default settings. The color ofthe characters is determined
by the background color. Only the luminance ofthe characters can be different.
This full-screen display has a blue display area bordered in black (unless the
border is specified to be another color). To display characters at a specified loca­
tion, use one of the following two methods.

Method 1.
lineno POSITION aexp1, aexp2
lineno PRINT sexp

Method 2
lineno GR. a
lineno POKE 752,1
lineno COLOR ASC(sexp)

lineno PLOT aexp1,aexp2

lineno GOTO lineno

Specifies graphics mode.
Suppresses cursor.
Specifies character to be
printed.
Specifies where to print
character.
Start loop to prevent READY
from being printed. (COTO
same lineno.]

Press aD to terminate
loop.

GRAPHICS
MODES
1AND2

GRAPHICS a is also used as a clear screen command either in Direct mode or
Deferred mode. It terminates any previously selected graphics mode and
returns the screen to the default mode (GRAPHICS 0).

As defined in Table 9-1, these two 5-color modes are Text modes. However, they
are both split-screen (see Figure 9-1) modes. Characters printed in Graphics
mode 1 are twice the width of those printed in Graphics 0, but are the same
height. Characters printed in Graphics mode 2 are twice the width and height
of those in Graphics mode O. In the split-screen mode, a PRINT command is used
to display characters in either the text window or the graphics window. To
print characters in the graphics window, specify device 116 after the PRINT com­
mand.

Example: 100 GR. 1
110 PRINTII6;"ATARI"

The default colors depend on the type of character input. Table 9-2 defines the
default color and color register used for each type.

Table 9-2. Default Colors for Specific Input Types

Note: See SETCOLOR to change character colors.

Character Type

Upper case alphabetical
Lower case alphabetical
Inverse upper case alphabetical
Inverse lower case alphabetical
Numbers
Inverse numbers

Color Register

a
1
2
3
a
2

Default Color

Orange
Light Green
Dark Blue

Red
Orange

Dark Blue

46 Graphic Modes and Commands



Unless otherwise specified, all characters are displayed in upper case non­
inverse form. To print lower case letters and graphics characters, use a POKE
756,226. To return to upper case, use POKE 756,224.

In graphics modes 1 and 2, there is no inverse video, but it is possible to get all
the rest of the characters in four different colors (see end of section).

(x=O)
(y=O)

E:
Text 'Villdow
(4 lines)

s:
Graphics 'Vinelo\\'
(graphics or text)

\ X-('oordinl.ttc

\
~ -f--f-

-I-

"'-
~

border (sIze
depends on
individual
TV's overs(:an)

Figure 9-1. Split-Screen Display For Graphics Modes 1 and 2

The X and Y coordinates start at a (upper left of screen). The maximum values
are the numbers of rows and columns minus 1 (see Table 9-1).

This split-screen configuration can be changed to a full screen display by adding
the characters + 16 to the mode number.

Example: GRAPHICS 1 + 16

GRAPHICS
MODES
3,5, AND 7

These three 4-color graphics modes are also split-screen displays in their default
state, but may be changed to full screen by adding + 16 to the mode number.
Modes 3, 5, and 7 are alike except that modes 5 and 7 use more points (pixels) in
plotting, drawing, and positioning the cursor; the points are smaller, thereby
giving a much higher resolution.

GRAPHICS
MODES
4 AND 6

These two 2-color graphics modes are split-screen displays and can display in
only two colors while the other modes can display 4 and 5 colors. The advantage
of a two-color mode is that it requires less RAM space (see Table 9-1). Therefore,
it is used when only two colors are needed and RAM is getting crowded. These
two modes also have a higher resolution which means smaller points than
Graphics mode 3.

GRAPHICS
MODE 8

This graphics mode gives the highest resolution of all the other modes. As it
takes a lot of RAM to obtain this kind of resolution, it can only accomodate a
maximum of one color and two different luminances.

Graphic Modes and Commands 47



COLOR (C.) Format: COLOR aexp
Examples: 110 COLOR ASC("A")

110 COLOR 3

The value of the expression in the COLOR statement determines the data to be
stored in the display memory for all subsequent PLOT and DRAWTO com­
mands until the next COLOR statement is executed. The value must be positive
and is usually an integer from a through 255. Non-integers are rounded to the
nearest integer. The graphics display hardware interprets this data in different
ways in the different graphics modes. In text modes a through 2, the number
can be from a through 255 (8 bits) and determines the character to be displayed
and its color. (The two most significant bits determine the color. This is why on­
ly 64 different characters are available in these modes instead of the full
256-character set.)

Tables 9-6 and 9-7 at the end of this section illustrate the internal character set
and the characterlcolor assignment. Table 9-2 is a simplified table which allows
easy generation of some of the colors. For example, COLOR ASC("A"): PLOT
5,5 will display an orange A character in graphics modes 1 or 2 at location 5,5.

Graphics modes 3 through 8 are not text modes, so the data stored in the display
RAM simply determines the color of each pixel. Two-color or two-luminance
modes require either a or 1 (l-bit) and four-color modes require 0,1,2, or 3. (The
expression in the COLOR statement may have a value greater than 3, but only
one or two bits will be used.) The actual color which is displayed depends on the
value in the color register which corresponds to the data of 0, 1, 2, or 3 in the
particular graphics mode being used. This may be determined by looking in
Table 9-5, which gives the default colors and the corresponding register
numbers. Colors may be changed by using SETCOLOR.

Note that when BASIC is first powered up, the color data is 0, and when a
GRAPHICS command (without + 32) is executed, all of the pixels are set to O.
Therefore, nothing seems to happen to PLOT and DRAWTO in GRAPHICS 3
through 7 when no COLOR statement has been executed. Correct by doing a
COLOR 1 first.

DRAWTO (DR.) Format:
Example:

DRAWTO aexpl, aexp2
100 DRAWTO 10, 8

This statement causes a line to be drawn from the last point displayed by a PLOT
(see PLOT) to the location specified by aexpl and aexp2. The first expression
represents the X coordinate and the second represents the V-coordinate (see
Figure 9-1). The color ofthe line is the same color as the point displayed by the
PLOT.

LOCATE (LaC.) Format:
Example:

LOCATE aexpl, aexp2, var
150 LOCATE 12, 15, X

This command positions the invisible graphics cursor at the specified location in
the graphics window, retrieves the data at that pixel, and stores it in the
specified arithmetic variable. This gives a number from a to 255 for Graphics
modes a through 2; aor 1 for the 2-color graphics modes; and 0, 1,2, or 3 for the
4-color modes. The two arithmetic expressions specify the X and Y coordinates
of the point. LOCATE is equivalent to:

POSITION aexpl, aexp2:GET #6,avar

48 Graphic Modes and Commu"ds



Doing a PRINT after a LOCATE or GET from the screen may cause the data in
the pixel which was examined to be modified. This problem is avoided by
repositioning the cursor and putting the data that was read, back into the pixel
before doing the PRINT. The following program illustrates the use of the
LOCATE command.

10 GF.:APHI C:; 3+16
2(1 COLOF.: 1
30 ~:;ETCOLOF.: 2., 1(1 J :::

40 PLOT 1~3., 15
50 DPAl,nO 15.. 15
6(1 LOCATE 12.> 15 .. ::<
70 PF.: HiT ::-::

Figure 9-2. Example Program Using LOCATE

On execution, the program prints the data (1) determined by the COLOR state­
ment which was stored in pixel 12, 15.

PLOT (PL.) Format:
Example:

PLOT aexp1, aexp2
100 PLOT 5,5

The PLOT command is used in graphics modes 3 through 8 to display a point in
the graphics window. The aexp1 specifies the X-coordinate and the aexp2 the
V-coordinate. The color of the plotted point is determined by the hue and
luminance in the color register from the last COLOR statement executed. To
change this color register, and the color of the plotted point, use SET­
COLOR. Points that can be plotted on the screen are dependent on the graphics
mode being used. The range of points begins at 1 and extends to one less than
the total number of rows (X-coordinate) or columns (Y-coordinate) shown in
Table 9-1.

POSITION (POS.) Format:
Example:

POSITION aexp1, aexp2
100 POSITION 8, 12

PUT/GET
(PU.lGE.)

The POSITION statement is used to place the invisible graphics window cursor
at a specified location on the screen (usually precedes a PRINT statement). This
statement can be used in all modes. Note that the cursor does not actually move
until an 1/0 command which involves the screen is issued.

Formats: PUT lIaexp, aexp
GET lIaexp, avar

Examples: 100 PUT 116, ASC("A")
200 GET 111, X

In graphics work, PUT is used to output data to the screen display. This state­
ment works hand-in-hand with the POSITION statement. After a PUT (or GET),
the cursor is moved to the next location on the screen. Doing a PUT to device 116
causes the one-byte input (second aexp) to be displayed at the cursor position.
The byte is either an ATASCII code byte for a particular character (modes 0-2) or
the color data (modes 3-8).

GET is used to input the code byte of the character displayed at the cursor posi­
tion, into the specified arithmetic variable. The values used in PUT and GET cor­
respond to the values in the COLOR statement. (PRINT and INPUT may also be
used.)

Graphic Modes and Commands 49



Note: Doing a PRINT after a LOCATE or GET from the screen may cause the
data in the pixel which was examined to be modified. To avoid this problem,
reposition the cursor and put the data that was read, back into the pixel before
doing the PRINT.

SETCOLOR (SE.) Format:
Example:

SETCOLOR aexpl, aexp2, aexp3
100 SETCOLOR 0, 1, 4

This statement is used to choose the particular hue and luminance to be stored
in the specified color register. The parameters of the SETCOLOR statement are
defined below:

aexpl
aexp2
aexp3

= Color register (0-4 depending on graphics mode)
= Color hue number (0-15. See Table 9-3)

Color luminance (must be an even number between a and 14; the
higher the number, the brighter the display. 14 is almost pure
white.)

TABLE 9.3-THE ATARI HUE (SETCOLOR COMMAND)
NUMBERS AND COLORS

COLORS

GRAY
LIGHT ORANGE (GOLD)
ORANGE
RED-ORANGE
PINK
PURPLE-BLUE
BLUE
BLUE
LIGHT BLUE
TURQUOISE
GREEN-BLUE
GREEN
YELLOW-GREEN
ORANGE-GREEN
LIGHT ORANGE

SETCOLOR (aexp2) NUMBERS

a
1
2
3
4
6
7
8
9
10
11
12
13
14
15

Note: Colors will vary with type and adjustment of TV or monitor used.

The ATARI display hardware contains five color registers, numbered
from a through 4. The Operating System (OS) has five RAM locations (COLORa
through COLOR4, see Appendix I - Memory Locations) where it keeps track of
the current colors. The SETCOLOR statement is used to change the values in
these RAM locations. (The OS transfers these values to the hardware registers
every television frame.) The SETCOLOR statement requires a value from a to 4
to specify a color register. The COLOR statement uses different numbers
because it specifies data which only indirectly corresponds to a color register.
This can be confusing, so careful experimentation and study of the various
tables in this section is advised.

No SETCOLOR commands are needed if the default set of five colors is used.
Although 128 different color-luminance combinations are possible, not more
than five can be displayed at anyone time. The purpose of the color registers
and SETCOLOR statement is to specify these five colors.

50 Graphic Modes and Commands



TABLE 9.4-TABLE OF SETCOLOR "DEFAULT" COLORS*

Setcolor Defaults To Luminance Actual Color
(Color Register) Color

a 2 8 ORANGE
1 12 10 GREEN
2 9 4 DARK BLUE
3 4 6 PINK OR RED
4 a a BLACK

*"DEFA ULT" occurs if not SETCOLOR statement is used.

Note: Colors may vary depending upon the television monitor type, condition,
and adjustment.

A program illustrating Graphics mode 3 and the commands explained so far in
this section is shown below:

10 GRAPHIC:: :3
;::'£1 ~:;ETCOLO~' l1! 2.. ::: :COLO~: 1
30 PLOT 17., 1:DPAl-HO 17.. 1[1 : DRAl·nO 9.' 1::;
40 PLOT 19., 1 :DRAt,nO 19, 1:::
50 PLOT 20, 1:D~:Al.nO 20 .. 1::;
60 PLOT 22, 1: ORAL·nO 22,10: ORAl·nO 30,18
70 POKE 752.. 1
8(1 PP ! r·n :PR Ir·~T" ATA~: I FEF~::;Ot·jAL COi'1F
UTEF.:::;"

The SETCOLOR and COLOR statements set the color of the points to be plotted
(see Table 9.5). The SETCOLOR command loads color register a with hue 2
(orange) and a luminance of 8 ("normal"). The next 4 lines plot the points to be
displayed. Line 90 suppresses the cursor and line 100 prints the string expres­
sion ATARI PERSONAL COMPUTERS in the text window (6 spaces in).

Note that the background color was never set because the default is the desired
color (black).

If the program is executed, it will print the Atari logo in the graphics window
and the string expression in the text window as in Figure 9-3.

Graphic Modes and Commands 51



X-AXIS POINTS (COLUMNS)

Figure 9-3. Atari Logo Program Execution

{j
I::

~
E
(3
"'3
I::
<j

~
~
.~
-I::
0-
Eo

CIl
l!'l

DEVICE CODE "S."
Screen

(Graphics or Text)

(GRAPHICS WINDOW)

/ (TEXT WINDOW)

Editor
DEVICE CODE "E."

(Text Only)

.....

o 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839
I

5

o
1

2

3

4

6

7

8

9

10

11

12

13
14
15

16
17
18
19

1

2

3

4

~

~o
F5
~z...o
~

rr.,...
~

~...



C'l

~
;:!"
Fi"

~
~.,
;:l
~

~
;:l
g
;:l

~

'"(,0)

TABLE 9.5-MODE, SETCOLOR, COLOR TABLE

SETCOLOR
(aexp1)

Default Mode or Color Color
Colors Condition Register No. (aexp) DESCRIPTION AND COMMENTS

a COLOR data -
LIGHT BLUE MODE a and 1 actually Character luminance (same color as background)
DARK BLUE ALL TEXT 2 determines Background

WINDOWS 3 character to -
BLACK 4 be plotted Border

ORANGE a COLOR data Character
LIGHT GREEN MODES 1 1 actually determines Character

DARK BLUE and 2 character to be Character
RED 2 3 plotted Character

BLACK (Text Modes) 4 Background, Border

ORANGE a 1 Graphics point
LIGHT GREEN MODES 3,5, 1 2 Graphics point

DARK BLUE and 7 2 3 Graphics point
(Four-color 3 - -

BLACK Modes) 4 a Graphics point (background default), Border

ORANGE MODES 4 a 1 Graphics point
and 6 1 - -

(Two-color 2 - -
Modes) 3 - -

BLACK 4 a Graphics point (background default), Border

LIGHT GREEN a - -
DARK BLUE 1 1 Graphics point luminance (same color as background)

MODE 8 2 a Graphics point (background default)
(1 Color 3 - -

BLACK 2 Luminances) 4 - Border



TABLE OF MODES
AND SCREEN FORMATS
1~

)

Vert. (Rows) Vert. (Rows) RAM
Gr. Mode Horiz. Split Full

HOf Required
Mode Type (Columns)

Screen Screen
Colors (Bytes)

0 TEXT 40 - 24 2 993

1 TEXT 20 20 24 5 513

2 TEXT 20 10 12 5 261

3 GRAPHICS 40 20 24 4 273

4 GRAPHICS 80 40 48 2 537

5 GRAPHICS 80 40 48 4 1017-
6 GRAPHICS 160 80 96 2 2025

7 GRAPHICS 160 80 96 4 3945

8 GRAPHICS 320 160 192 1/2 7900

MODE, SET COLOR, COLOR TABLE

SETCOLOR
(aexpl)

Default Mode or Color Color
Colors Condition Register No. (aexp) DESCRIPTION AND COMMENTS

a COLOR data -
LIGHT BLUE MODE a and 1 actually Character luminance (same color as background)
DARK BLUE ALL TEXT 2 determines Background

WINDOWS 3 character to -

BLACK 4 be plotted Border

ORANGE a COLOR data Character
LIGHT GREEN MODES 1 1 actually determines Character

DARK BLUE and 2 character to be Character
RED 2 3 plotted Character

BLACK (Text Modes) 4 Background, Border

ORANGE a 1 Graphics point
LIGHT GREEN MODES 3, 5, 1 2 GI-aphics point

DARK BLUE and 7 2 3 Graphics point
(Four-color 3 -

BLACK Modes) 4 a Graphics point (background default), Border

ORANGE MODES 4 a 1 Graphics point
and 6 1 -

(Two-color 2 -
Modes) 3 -

BLACK 4 a Graphics point (background defaulll, Border

LIGHT GREEN a -

DARK BLUE 1 1 Graphics point luminance (same color as background)
MODE 8 2 0 Graphics point (background defaulll
(l Color 3 -

BLACK 2 Luminances) 4 Border



XIO (x.)
SPECIAL FILL
APPLICATION

Format:
Example:

XIO 18, Paexp, aexp1, aexp2, filespec
100 XIO 18, P6, 0, 0, "S:"

This special application of the XIO statement fills an area on the screen between
plotted points and lines with a non-zero color value. Dummy variables (0) are
used for aexp1 and aexp2.

The following steps illustrate the fill process:

1. PLOT bottom right corner (point 1).
2. DRAWTO upper right corner (point 2). This outlines the right edge of the

area to be filled.
3. DRAWTO upper left corner (point 3).
4. POSITION cursor at lower left corner (point 4).
5. POKE address 765 with the fill color data (1, 2, or 3).
6. This method is used to fill each horizontal line from top to bottom of the spe­

cified area. The fill starts at the left and proceeds across the line to the right
until it reaches a pixel which contains non-zero data (will wraparound if
necessary). This means that fill cannot be used to change an area which has
been filled in with a non-zero value, as the fill will stop. The fill command
will go into an infinite loop if a fill with zero (0) data is attempted on a line
which has no non-zero pixels. ':IMI. or fWiW';!i!M. can be used to stop the
fill if this happens.

The following program creates a shape and fills it with a data (color) of 3. Note
that the XIO command draws in the lines of the left and bottom of the figure.

10 GRAPHICS 5+16
~'0 COLOF-' 3
30 PLOT 7[1; 45
40 D~:A~.nC! 5f:i., 1rl
:-0 [1~:A~,JTO 30.11f1
6(1 POSITlmi H3A5
70 POKE 765.,::3
8f1 ::-::10 1::; .. #6., 0.. 0.: ":3: II

90 GOTO 90

Figure 9-4. Example "FILL" Program

Assigning Colors To Characters In Text Modes 1 and 2

This procedure describes the method of assigning colors to the Atari character
set. First, look up the character number in Table 9-6. Then, see Table 9-7 to get
the conversion of that number required to assign a color register to it.

Example: Assign SETCOLOR a to lower case "r" in mode 2
whose color is determined by register O.

1. In Table 9-6, find the column and number for "r" (114-column 4).
2. Using Table 9-7, locate column 4. Conversion is the character number minus

32 (114 - 32 = 82).

54 Graphic Modes and Commands



CJ
i3

'l:l
;:r­e;.

f.,
;:l
>:>..

g
;:l
;:l.,
;:l

~

(n
(n

Table 9.6-INTERNAL CHARACTER SET

Column 1 Column 2 Column 3 Column 4

It CHR It CHR It CHR It CHR It CHR It CHR It CHR It CHR

0 Space 16 0 32 @ 48 P 64 C 80 g 96 C 112 P

1 ! 17 1 33 A 49 Q 65 G 81 ~ 97 a 113 q

2 " 18 2 34 B 50 R 66 Il 82 = 98 b 114 r

3 It 19 3 35 C 51 S 67 g 83 C 99 c 115 s

4 $ 20 4 36 D 52 T 68 a 84 C 100 d 116 t

5 % 21 5 37 E 53 U 69 ~ 85 ~ 101 e 117 u

6 & 22 6 38 F 54 V 70 ~ 86 ~ 102 f 118 v

7 , 23 7 39 G 55 W 71 ~ 87 ~ 103 g 119 w

8 ( 24 8 40 H 56 X 72 ~ 88 ~ 104 h 120 x

9 ) 25 9 41 I 57 y 73 ~ 89 [I 105 1 121 Y

10 * 26 42 J 58 Z 74 ~ 90 1:1 106 j 122 z

[ ~ <D~ k 123 D11 + 27 , 43 K 59 75 91 107

12 , 28 < 44 L 60 \ 76 III 92 0 108 1 124 I

] ~ 0 <D ...13 - 29 - 45 M 61 77 93 109 m 125

~ CI <D~14 - 30 > 46 N 62 1\ 78 94 110 n 126

~ C <D~15 / 31 ? 47 a 63 - 79 95 111 a 127

1. In mode 0 these characters must be preceded with an escape, CHR$(27), to be printed.



Table 9.7-CHARACTER/COLOR ASSIGNMENT

Conversion t Conversion 2 Conversion 3 Conversion 4

MODE 0 2SETCOLOR 2 #+32 #+32 #-32 NONE

POKE 756,224 POKE 756,226

MODEt SETCOLOR 0 -$32 #+32 #-32 #-32

OR SETCOLOR 1 NONE #+64 #-64 NONE

MODE 2 SETCOLOR 2 #+160 #+160 #+96 #+96

SETCOLOR 3 #+128 #+192 #+64 #+128

2. Luminance controlled by SETCOLOR 1, 0, LUM.

3. POKE the Character Base Address (CHBAS) with 226 to specify lower case let­
ters or special graphics characters; e.g.,

POKE 756,226
or

CHBAS = 756
POKE CHBAS, 226

To return to upper case letters, numbers, and punctuation marks, POKE CHBAS
with 224.

4. A PRINT statement using the converted number (82) assigns the lower case
"r" to SETCOLOR 0 in mode 2 (see Table 9-5).

Graphic Control Characters

These characters are produced when the Gi3 key is pressed with the
alphabetic keys shown on back cover. These characters can be used to draw
design, pictures, etc., in mode 0 and in modes 1 and 2 if CHBAS is changed.

56 Graphic Modes and Commands



10

SOUNDS AND GAME
CONTROLLERS

This section describes the statement used to generate musical notes and sounds
through the audio system of the television monitor. Up to four different sounds
can be "played" simultaneously creating harmony. This SOUND statement can
also be used to simulate explosions, whistles, and other interesting sound ef­
fects. The other commands described in this section deal with the functions
used to manipulate the keyboard, joystick, and paddle controllers. These func­
tions allow these controllers to be plugged in and used in BASIC programs for
games, etc.

The command and functions covered in this section are:

SOUND (SO.)

SOUND

Format:
Example:

PADDLE
PTRIG

SOUND aexpl, aexp2, aexp3, aexp4
100 SOUND 2, 204, 10, 12

STICK
STRIG

The SOUND statement causes the specified note to begin playing as soon as the
statement is executed. The note will continue playing until the program en­
counters another SOUND statement with the same aexpl or an END statement.
This command can be used in either Direct or Deferred modes.

The SOUND parameters are described as follows:

aexpl = Voice. Can be 0-3, but each voice requires a separate SOUND state­
ment.

aexp2 Pitch. Can be any number between 0-255. The larger the number,
the lower the pitch. Table 10-1 defines the pitch numbers for the
various musical notes ranging from two octaves above middle C to
one octave below middle C.

aexp3 Distortion. Can be even numbers between 0-14. Used in creating
sound effects. A 10 is used to created a "pure" tone whereas a 12

- gives an interesting buzzer sound. A buzzing sound (like engines at
a race track) can be produced using two separate SOUND commands
with the distortion value (aexp3) alternating between 0 and 1. A
value of 1 is used to force output to the speaker using the specified
volume (see aexp4). The rest of the numbers are used for other
speCial effects, noise generation, and experimental use.

aexp4 Volume control. Can be between 1 and 15. Using a 1 creates a sound
barely audible whereas a 15 is loud. A value of 8 is considered nor­
mal. If more than 1 sound statement is being used, the total volume
should not exceed 32. This will create an unpleasant "clipped" tone.

Sounds and Game Controllers 57



Using the note values in Table 10-1, the following example demonstrates how to
write a program that will "play" the C scale.

TABLE 10.1. TABLE OF PITCH VALUES FOR THE MUSICAL
NOTES

HIGH
NOTES

MIDDLE C

LOW NOTES

C 29
B 31
A# or B~ 33
A 35
G# or A~ 37
G 40
F# or G~ 42
F 45
E 47
D# or E 50
D 53
C# or D~ 57
C 60
B 64
A# or B 68
A 72
G# or Ab 76
G 81
F# or G~ 85
F 91
E 96
D# or E~ 102
D 108
C# or D~ 114
C 121
B 128
A# or B~ 136
A 144
G# or A~ 153
G 162
F# G~ 173
F 182
D 193
D# or I~ 204

~
D 217
C# or Db 230
C 243

10 PEAD A
20 IF A=256 THHi aiD
30 ~:;OUt'i[f ~).: A,I 1f1.r 1~)

40 FOF.~ l'~=l TO 4(1(1: r'~E::-::T ~IJ

50 F'RIf·n A
60 GOTO 10
7(1 EHD
80 DATA 29 .. 31 .. 35 .. 40., 45, 47 .. 53, 60.' 64 J 72 .. ::: 1
J 91 "96.: 1~)S.: 121
9~1 [rATA 12:::.1144.: 162.11:::2.: 193.:217.,243.:256

Figure 10-1. Musical Scale Program

Note that the DATA statement in line 80 ends with a 256, which is outside ofthe
designated range. The 256 is used as an end-of-data marker.

58 Sounds and Game Controllers



GAME
CONTROLLER
FUNCTIONS

Figure 10-2 is an illustration of the three controllers used with the Atari Per­
sonal Computers. The controllers can be attached directly to the Atari Per­
sonal Computer or to external mechanical devices so that outside events can be
fed directly to the computer for processing and control purposes.

PADDLE Format:
Example:

Figure 10-2. Game Controllers

PADDLE(aexp)
PRINT PADDLE(3)

This function returns the status ofa particular numbered controller. The paddle
controllers are numbered 0-7 from left to right. This function can be used with
other functions or commands to "cause" further actions like sound, graphics
controls, etc. For example, the statement IF P ADDLE(3) = 14 THEN PRINT
"PADDLE ACTIVE." Note that the PADDLE function returns a number bet­
ween 1 and 228, with the number increasing in size as the knob on the con­
troller is rotated counterclockwise (turned to the left).

PTRIG Format:
Example:

PTRIG(aexp)
100 IF PTRIG(4)=0 THEN PRINT "MISSILES FIRED!"

The PTRIG function returns a status of 0 ifthe trigger button of the designated
controller is pressed. Otherwise, it returns a value of 1. The aexp must be a
number between 0 and 7 as it designates the controller.

STICK Format:
Example:

STICK(aexp)
100 PRINT STICK(3)

This function works exactly the same way as the PADDLE command, but can be
used with the joystick controller. The joystick controllers are numbered from
0-3 from left to right.

Controller 1 =

Controller 2
Controller 3
Controller 4

STICK(O)
STICK(1)
STICK(2)
STICK(3)

Figure 10-3 shows the numbers that will be returned when the joystick con­
troller is moved in any direction.

Sounds and Game Controllers 59



10

11 ....-----1

9

14

13

6

1----... 7

5

STRIG Format:
Example:

Figure 10-3. Joystick Controller Movement

STRIG(aexp)
100 IF STRIG(3) = a THEN PRINT "FIRE TORPEDO"

The STRIG function works the same way as the PTRIG function. It can be used
with both the joystick and keyboard controllers.

60 Sounds and Game Controllers



MEMORY
CONSERVATION

11

ADVANCED PROGRAMMING
TECHNIQUES

This section includes hints on increasing programming efficiency, conserving
memory, and combining machine language programs with Atari BASIC pro­
grams. This section does not include an instruction set for the 6502 micro­
processor chip nor does it give instructions on programming in machine
language. An additional purchase of the Atari Assembler Editor cartridge* and
a careful study of Atari's Assembler Editor Manual are strongly recommended.

These hints give ways ofconserving memory. Some ofthese methods make pro­
grams less readable and harder to modify, but there are cases where this is
necessary due to memory limitations.

1. In many small computers, eliminating blank spaces between words and
characters as they are typed into the keyboard will save memory. This is not
true of the ATARI Personal Computer System, which removes extra spaces.
Statements are always displayed the same regardless of how many spaces
were used on program entry. Spaces should be used (just as in typing on a
conventional typewriter) between successive keywords and between
keywords and variable names. Here is an example:

10 IF A 5 THEN PRINT A

Note the space between IF and A and between THEN and PRINT. In most
cases, a statement will be interpreted correctly by the computer even if all
spaces are left out, but this is not always true. Use conventional spacing.

2. Each new line number represents the beginning of what is called a new
"logical line". Each logical line takes 6 bytes of "overhead", whether it is
used to full capacity or not. Adding an additional BASIC statement by using a
colon (:) to separate each pair of statements on the same line takes only 3
bytes.

*Available late 19BO.

Advanced Programming Techniques 61



If you need to save memory, avoid programs like this:

10 >{='"l+1
20 ·....=)'+1
30 Z=:~+li

40 PRHH 2
50 GOTO 50

and consolidate lines like this:

10 >::=:'{+1 :''(='/+1 :2=>::+'l:PRHn 2:GOTO 10

This consolidation saves 12 bytes.

3. Variables and constants should be "managed" for savings, too. Each time a
constant (4,5,16,3.14159, etc.) is used, it takes 7 bytes. Defining a new
variable requires 8 bytes plus the length ofthe variable name (in characters).
But each time it is used after being defined, it takes only 1 byte, regardless of
its length. Thus, if a constant (such as 3.14159) is used more than once or
twice in a program, it should be defined as a variable, and the variable name
used throughout the program. For example:

10 PI=3.14159
20 PRIt-H IIAF~EA OF A CIRCLE I:; THE ~~AD IUS

SQUARED TIt1ES II j PI

4. Literal strings require 2 bytes overhead and 1 byte for each character
(including all spaces) in the string.

5. String variables take 9 bytes each plus the length of the variable name
(including spaces) plus the space eaten up by the DIM statement plus the size
of the string itself(1 byte per character, including spaces) when it is defined.
Obviously, the use of string variables is very costly in terms of RAM.

6. Definition of a new matrix requires 15 bytes plus the length of the matrix
variable name plus the space needed for the DIM statement plus 6 times the
size of the matrix (product of the number of rows and the number of col­
umns). Thus, a 25 row by 4 column matrix would require 15 + approxi­
mately 3 (for variable name) + approximately 10 (for the DIM statement) + 6
times 100 (the matrix size), or about 630 bytes.

62 Advanced Programming Techniques



PROGRAMMING
IN MACHINE
LANGUAGE

7. Each character after REM takes one byte of memory. Remarks are helpful to
people trying to understand a program, but sometimes it is necessary to
remove remark statements to save memory.

8. Subroutines can save memory because one subroutine and several short calls
take less memory than duplicating the code several times. On the other
hand, a subroutine that is only called once takes extra bytes for the GOSUB
and RETURN statements.

9. Parentheses take one byte each. Extra parentheses are a good idea in some
cases if they make an expression more understandable to the programmer.
However, removing unnecessary parentheses and relying on operator
precedence will same a few bytes.

Machine language is written entirely in binary code. The ATARI Personal Com­
puter contains a 6502 microprocessor and it is possible to call 6502 machine code
subroutines from BASIC using the USR function. Short routines may then be
entered into a program by hand assembly (if necessary).

Before it returns to BASIC, the assembly language routine must do a pull ac­
cumulator (PLA) instruction to remove the number (N) of input arguments off
the stack. If this number is not 0, then all of the input arguments must be pop­
ped off the stack also using PLA. (See Figure 6-1).

The subroutine should end by placing the low byte of its result in location 212
(decimal), and then return to BASIC using an RTS (Return from Subroutine) in­
struction. The BASIC interpreter will convert the 2-byte binary number stored
in locations 212 and 213 into an integer between 0 and 65535 in floating-point
format to obtain the value returned by the USR function.

The ADR function may be used to pass data that is stored in arrays or strings to a
subroutine in machine language. Use the ADR function to get the address of the
array or string, and then use this address as one of the USR input arguments.

The following program, Hexcode Loader, provides the means of entering hexa­
decimal codes, converting each hexadecimal number to decimal, and storing the
decimal number into an array. The array is then executed as an assembly
language subroutine. (An array is used to allocate space in memory for the
routine.)

Advanced Programming Techniques 63



1. To use this program, first enter it. After entering it, save this program on
disk or cassette for future use.

10 GRAPHICS 0: PRINT III-E:~COOE LOADER PROG
RAt1" :PR ItH
20 REM STORES DECIMAL EQUIVALENTS IN ARR
AY AI OUTPUTS IN PRINTED 100TA STAT8'~NT

S' AT
21 REM LI~E NUMBER 1500.
3e REM USER TI-EN PlACES CURSOR ON PRI t·HE
o OUTPUT LI~E, HITS llRETURNJI I tl{) ENTERS

31 REM REST OF BASIC PROGRAt'l INCLUDING U
SR STATEt1ENT.
40 DIM A(50),HEX$(5)
50 ~'EM IWUT, COt-MERS ION) ~:;TOF.:AGE OF DATA.

6e ~~=0: PRIHT II Et·HER 1 11£:-:: CODE. IF LAST
ONE IS IN) Et~TEF.: ' DOt·tE I . II j

70 INPUT ,.£::<$
se IF HE:>{$=ItDOt-~E" THEN t'~=999: GOTO 130
90 FOR 1=1 TO LEN(HE:~$)

100 IF HE:;~( L 1)(="9" THEN ~~=t·t:~16+UAL( HE
:~( I ) I ) ) :GOTO 120
110 N=N::n6+ASU HEx:$( L I ) )-ASC( II AII )+10
120 NE:~T I
130 F~INT N:C=C+l
140 A<C )=N
150 IF ~K >999 THH~ GOTO be
190 ~1 PRINT OUT DATA LINE AT 1500
200 GRAPHICS 0: PF.~INT 111500 DATA";
210 C=0
22e C=C+1
230 IF A(C)=999 THH~ PRHH "999 11

: STOP
240 PRINT A( C) j II ) II j

250 A<C)=0
260 GOTO 220
30e PRI~H IIPUT CORRECT I'lJt1BER OF HE>:: B'lT
ES INLIt·E l000. II :STOP :F.~Etl TRAP LWE
999 ~ :~t E:>::ECUT I ON MODULE >,::::;::

1000 CLR :BYTES=0
1910 TRAP 30e:DIM E$( 1»)E( INT(B'lTES/6)+1
)

1930 FOR 1=1 TO BYTES
1040 READ A: IF A>255 Tf£t·~ GOTO 1060
1050 POKE AOR(E$)+I/A
1960 NE:~T I
1070 REM BASIC PART OF USER'S PROGRAM FO
LLm~S

Figure 11-1. Hexcode Loader Input Program

64 Advanced Programming Techniques



2. Now add the BASIC language part of your program starting at line 1080 in­
cluding the USR function that calls the machine language subroutine. (See
example below.)

3. Count the total number of hex codes to be entered and enter this number on
line 1000 when requested. If another number is already entered, simply
replace it.

4. Run the program and enter the hexadecimal codes of the machine level
subroutine pressing mmJ after each entry. After the last entry, type
DONE and press mmJ .

5. Now the DATA line (1500) displays on the screen. It will not be entered into
the program until the cursor is moved to the DATA line and mmJ is
pressed.

6. Add a program line 5 GOTO 1000 to bypass the hexcode loader (or delete the
hexcode loader through line 260). Now save the completed program by
using CSAVE or SAVE. It is important to do this before executing the part of
the program containing the USR call. A mistake in a machine language
routine may cause the system to crash. If the system does hang up, press
HUWV@U. If the system doesn't respond, turn power off and on again,
reload the program, and correct it.

Note: This method only works with relocatable machine language routines.

The following two sample programs can each be entered into the Hexcode
Loader program. The first program prints NOTHING IS MOVING while the
machine program changes the colors. The second sample program displays a
BASIC graphics design, then changes colors.

1080 GRAPHICS 1+16
1090 FO~~ 1=1 TO 6
1100 PRIt-H #6; lIt1oth.in~ is Ir.ol.)in~ III

1110 F'R It-H #6 j II t~OTHHe IS t101.)n~G ! II
1120 PRIt-H #6.; II nothin9 is movin~! II
1130 PRINT #6.; IINOTHWG IS t10Un~G! II
1140 NE:>::T I
1150 Q=USR( ADR( E$ )+1)
1160 FOR 1=1 TO 25:~£XT I:GOTO 1150

After entering this program, check that line 1000 reads:

1000 CLR:BYTES = 21

Type RUN mmJ.

Advanced Programming Techniques 65



Now enter the hexadecimal codes as shown column by column.

68
A2
o

AC
C4
2

BD
C5
2

9D
C4

2
E8
EO
3

90
F5
8C
C7
2

60
BYTES = 21

When completed, type DONE and press 1iImiI3. Now place the cursor after the
last entry (999) on the DATA line and pressliImiI3.

Now run the program by typing GOTO 1000 and pressing 1iImiI3, or if line 5
has been added, type RUN 1iImiI3. Press mm to stop program and delete line
5.

The second program, which follows, should be entered in place of the
NOTHING IS MOVING program. Be sure to check the BYTES = __ count in
line 1000. Follow steps 2 through 6.

1080 GRAPHICS 7+16
1090 SETCOLOP 0J 9J4
1100 SETCOLO~~ L 9 .. 8
111(1 SETCOLOR 2J 9) 4
112f1 CR=l
1130 FOR ::-::=0 TO 159
114f1 COLOR It·H( CR)
115f1 PLOT 80) (1
1160 ~A~·JTO :>:: .• 95
117f1 CR=CR+0. 125
1180 IF CR=4 THEt·~ CR= 1
1190 NE:":T :~
120f1 :~=USR( AD~~( E$ )+ 1)
1210 FOF~ I=1 TO 15: t·E:-::T I
122(1 GOTO 1200

Type RUN IiImiI3

Enter the hexadecimal codes for this program column by column.

66 Advanced Programming Techniques

68
A2
o

AC
C4
2

BD
C5
2

9D
C4

2
E8
EO
2

90
F5
8C
C6
2

60
BYTES = 21



When completed, type DONE and press mg. Now place the cursor after the
last entry (999) on the DATA line and press mg.

Now run the program by typing GOTO 1000 and pressing mg,or add line 5
GOTO 1000 and type RUN mg. Press IJm:tI to stop program and delete line
5.

Figure 11-2 illustrates an assembler subroutine used to rotate colors which
might prove useful. It is included here for the information of the user.

Assembler Subroutine to Rotate Colors..

Address Object Line Label Mnemonic Data
Code No.

0100 Routine to rotate COLOR data
0110 From one register to another.
0120 4 colors are rotated.

0130
0140 Operating system address

02C4 0150 COLOR 0 = $02C4

02C5 0160 COLOR 1 = $02C5

02C6 0170 COLOR 2 = $02C6

02C7 0175 COLOR 3 = $02C7

0180
0190 • = $6000 Machine program starting address'

6000 68 0200 PLA Pop stack (See Chapter 4)

6001 A200 0210 LDX PO Zero the X register

6003 ACC402 0220 LDY COLORO Save COLOR 0

6006 BDC502 0230 LOOP LDA COLOR1,X

6009 9DC402 0240 STA COLORO,X

600C E8 0250 INX Increment the X re.e;ister (add one)

600D E002 0260 CPX P3 Compare contents of X register
with 2

600F 90F5 0270 BCC LOOP Loop if X register contents are
less than 2

6011 8CC602 0280 STY COLOR3 Save COLOR 0 in COLOR 3

6014 60 0290 RTS Return from machine level sub-
routine

Assembler
Prints This

This Portion is Source Information Programmer Enters
Using Atari Assembler Cartridge

P Indicates data (source)

• Routine is relocatable
$ Indicates a hexadecimal number

Figure 11-2. Assembler Subroutine To Rotate Colors

Advanced Programming Techniques 67



NOTES

68 Notes



APPENDIX A

ALPHABETICAL DIRECTORY
OF BASIC RESERVED WORDS

Note: The period is mandatory after all abbreviated keywords.

RESERVED
WORD:

ABS

ADR

AND

ASC

ATN

BYE

CLOAD

CURS

CLOG

CLOSE

CLR

COLOR

COM

CONT

COS

CSAVE

ABBREVIATION:

B.

CLOA.

CL.

C.

CON.

BRIEF SUMMARY
OF BASIC STATEMENT

Function returns absolute value (unsigned) of the
variable or expression.

Function returns memory address of a string.

Logical operator: Expression is true only ifboth subex­
pressions joined by AND are true.

String function returns the numeric value of a single
string character.

Function returns the arctangent of a number or expres­
sion in radians or degrees.

Exit from BASIC and return to the resident operating
system or console processor.

Loads data from Program Recorder into RAM.

String function returns a single string byte equivalent
to a numeric value between 0 and 255 in ATASCII code.

Function returns the base 10 logarithm of an expres­
sion.

I/O statement used to close a file at the conclusion of I/O
operations.

The opposite of DIM: Undimensions all strings;
matrices.

Chooses color register to be used in color graphics
work.

Same as DIM.

Continue. Causes a program to restart execution on the
next line following use of the ':1;"". key or encounter­
ing a STOP.

Function returns the cosine of the variable or expres­
sion (degrees or radians).

Outputs data from RAM to the Program Recorder for
tape storage.

Appendix A-1



RESERVED
WORD:

DATA

DEG

DIM

DOS

DRAWTO

END

ENTER

EXP

FOR

FRE

GET

GOSUB

GOTO

GRAPHICS

IF

INPUT

INT

LEN

A-2 Appendix

ABBREVIATION:

D.

DE.

DJ.

DO.

DR.

E.

F.

GE.

GOS.

G.

GR.

I.

BRIEF SUMMARY
OF BASIC STATEMENT

Part ofREAD/DATA combination. Used to identify the
succeeding items (which must be separated by commas)
as individual data items.

Statement DEG tells computer to perform
trigonometric functions in degrees instead of radians.
(Default in radians.)

Reserves the specified amount of memory for matrix,
array, or string. All string variables, arrays, matrices
must be dimensioned with a DIM statement.

Reserved word for disk operators. Causes the menu to
be displayed. (See DOS Manual.)

Draws a straight line between a plotted point and
specified point.

Stops program execution; closes files; turns off sounds.
Program may be restarted using CONT. (Note: END
may be used more than once in a program.)

I/O command used to st:::>re data or programs in un­
tokenized (source) form.

Function returns e (2.7182818) raised to the specified
power.

Used with NEXT to establish FOR/NEXT loops. In­
troduces the range that the loop variable will operate in
during the execution of loop.

Function returns the amount of remaining user
memory (in bytes).

Used mostly with disk operations to input a single byte
of data.

Branch to a subroutine beginning at the specified line
number.

Unconditional branch to a specified line number.

Specifies which of the eight graphics modes is to be
used. GR.O may be used to clear screen.

Used to cause conditional branching or to execute
another statement on the same line (only if the first ex­
pression is true).

Causes computer to ask for input from keyboard. Ex­
ecution continues only when ImJmI key is pressed after
inputting data.

Function returns the next lowest whole integer below
the specified value. Rounding is always downward,
even when number is negative.

String function returns the length of the specified str­
ing in bytes or characters (1 byte contains 1 character).



RESERVED
WORD:

LET

LIST

LOAD

LOCATE

LOG

LPRINT

NEW

NEXT

NOT

NOTE

ON

OPEN

OR

PADDLE

PEEK

PLOT

POINT

POKE

POP

POSITION

PRINT

ABBREVIATION:

LE.

L.

LO.

LOC.

LP.

N.

NO.

O.

PL.

P.

POK.

POS.

PRo or?

BRIEF SUMMARY
OF BASIC STATEMENT

Assigns a value to a specific variable name. LET is op­
tional in Atari BASIC, and may be simply omitted.

Display or otherwise output the program list.

Input from disk, etc. into the computer.

Graphics: Stores, in a specified variable, the value that
controls a specified graphics point.

Function returns the natural logarithm of a number.

Command to line printer to print the specified message.

Erases all contents of user RAM.

Causes a FORINEXT loop to terminate or continue
defending on the particular variables or expressions.
Al loops are executed at least once.

A "1" is returned only ifthe expression is NOT true. If
it is true, a "0" is returned.

See DOS/FMS Manual...used only in disk operations.

Used with GOTO or GOSUB for branching purposes.
Multiple branches to different line numbers are possible
depending on the value of the ON variable or expres­
sion.

Opens the specified file for input of output operations.

Logical operator used between two expressions. If
either one is true, a "1" is evaluated. A "0' results only
if both are false.

Function returns position ofthe paddle game controller.

Function returns decimal form of contents of specified
memory location (RAM or ROM).

Causes a single point to be plotted at the X,Y location
specified.

Used with disk operations only.

Insert the specified byte into the specified memory loca­
tion. May be used only with RAM. Don't try to POKE
ROM or you'll get an error.

Removes the loop variable from the GOSUB stack. Used
when departure from the loop is made in other than
normal manner.

Sets the cursor to the specified screen position.

1/0 command causes output from the computer to the
specified output device.

Appendix A-3



RESERVED
WORD:

PTRIG

PUT

RAD

READ

REM

RESTORE

RETURN

RND

RUN

SAVE

SETCOLOR

SGN

SIN

SOUND

SQR

STATUS

STEP

STICK

STRIG

STOP

A-4 Appendix

ABBREVIATION:

PU.

REA.

R.or. EmJ

RES.

RET.

RU.

S.

SE.

SO.

ST.

STO.

BRIEF SUMMARY
OF BASIC STATEMENT

Function returns status of the trigger button on game
controllers.

Causes output ofa single byte ofdata from the computer
to the specified device.

Specifies that information is in radians rather than
degrees when using the trigonometric functions.
Default is to RAD. (See DEG.)

Read the next items in the DATA list and assign to
specified variables.

Remarks. This statement does nothing, but comments
may be printed within the program list for future
reference by the programmer. Statements on a line that
starts with REM are not executed.

Allows DATA to be read more than once.

RETURN from subroutine to the statement immediate­
ly following the one in which GOSUB appeared.

Function returns a random number between 0 and 1,
but never 1.

Execute the program. Sets normal variables to 0, un­
dims arrays and string.

I/O statement causes data or/rogram to be recorded on
disk under filespec provide with SAVE.

Store hue and luminance color data in a particular color
register.

Function returns + 1 if value is positive, 0 if zero, -1 if
negative.

Function returns trigonometric sine of given value
(DEG or RAD).

Controls register, sound pitch, distortion, and volume of
a tone or note.

Function returns the square root of the specified value.

Calls status routine for specified device.

Used with FOR/NEXT. Determines quality to be
skipped between each pair of loop variable values.

Function returns position of stick game controller.

Function returns 1 if stick trigger button not pressed, 0
if pressed.

Causes execution to stop, but does not close files or turn
off sounds.



RESERVED
WORD:

STR$

THEN

TO

TRAP

USR

VAL

XIO

ABBREVIATION:

T.

X.

BRIEF SUMMARY
OF BASIC STATEMENT

Function returns a character string equal to numeric
value given. For example: STR$(65) returns 65 as a
string.

Used with IF: If expression is true, the THEN
statements are executed. If the expression is false, con­
trol passes to next line.

Used with FOR as in "FOR X = 1 TO 10". Separates the
loop range expressions.

Takes control of program in case of an INPUT error
and directs execution to a specified line number.

Function returns results of a machine-language
subroutine.

Function returns the equivalent numeric value of a
string.

General 1/0 statement used with disk operations (see
DOS/FMS Manual) and in graphics work (Fill).

Appendix A-5



NOTES

Notes



ERROR
CODE NO.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

APPENDIX B

ERROR
MESSAGES

ERROR CODE MESSAGE

Memory insufficient to store the statement or the new variable name or to DIM a
new string variable.

Value Error: A value expected to be a positive integer is negative, a value ex­
pected to be within a specific range is not.

Too Many Variables: A maximum of 128 different variable names is allowed.
(See Variable Name Limit.)

String Length Error: Attempted to store beyond the DIMensioned string length.

Out of Data Error: READ statement requires more data items than supplied by
DATA statement(s).

Number greater than 32767: Value is not a positive integer or is greater than
32767.

Input Statement Error: Attempted to INPUT a non-numeric value into a
numeric variable.

Array or String DIM Error: DIM size is greater than 32767 or an array/martix
reference is out of the range of the dimensioned size, or the array/matrix or string
has been already DIMensioned, or a reference has been made to an undimensioned
array or string.

Argument Stack Overflow: There are too many GOSUBs or too large an expres­
sion.

Floating Point Overflow/Underflow Error: Attempted to divide by zero or
refer to a number larger than 1 x 1098 or smaller than 1 x 10 - 99.

Line Not Found: A GOSUB, GOTO, or THEN referenced a non-existent line
number.

No Matching FOR Statement: A NEXT was encountered without a previous
FOR, or nested FOR/NEXT statements do not match properly. (Error is reported at
the NEXT statement, not at FOR).

Line Too Long Error: The statement is too complex or too long for BASIC to
handle.

GOSUB or FOR Line Deleted: A NEXT or RETURN statement was encountered
and the corresponding FOR or GOSUB has been deleted since the last RUN.

Appendix B-1



ERROR
CODE NO.

16

17

18

Note:

19

20

21

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

ERROR CODE MESSAGE

RETURN Error: A RETURN was encountered without a matching GOSUB.

Garbage Error: Execution of "garbage" (bad RAM bits) was attempted. This error
code may indicate a hardware problem, but may also be the result of faulty use of
POKE. Try typing NEW or powering down, then re-enter the program without
any POKE commands.

Invalid String Character: String does not start with a valid character, or string
in VAL statement is not a numeric string.

The following are INPUT/OUTPUT errors that result during the use ofdisk
drives, printers, or other accessory devices. Further information is pro­
vided with the auxiliary hardware.

LOAD program Too Long: Insufficient memory remains to complete LOAD.

Device Number Larger than 7 or Equal to O.

LOAD File Error: Attempted to LOAD a non-LOAD file.

BREAK Abort: User hit ilIi1iJ3I key during I/O operation.

IOCB1 already open.

Nonexistent Device specified.

IOCB Write Only. READ command to a write-only device (Printer).

Invalid Command: The command is invalid for this device.

Device or File not Open: No OPEN specified for the device.

Bad IOCB Number: Illegal device number.

IOCB Read Only Error: WRITE command to a read-only device.

EOF: End of File read has been reached. (NOTE: This message may occur when
using cassette files.)

Truncated Record: Attempt to read a record longer than 256 characters.

Device Timeout. Device doesn't respond.

Device NAK: Garbage at serial port or bad disk drive.

Serial bus input framing error.

Cursor out of range for particular mode.

Serial bus data frame overrun.

1IOCB refers to Input/Output Control Block. The device number is the same as the IOCB number.

B-2 Appendix



ERROR
CODE NO.

143

144

145

146

147

160

161

162

163

164

165

166

167

168

169

170

171

ERROR CODE MESSAGE

Serial bus data frame checksum error.

Device done error (invalid "done" byte): Attempt to write on a write-protected
diskette.

Read after write compare error (disk handler) or bad screen mode handler.

Function not implemented in handler.

Insufficient RAM for operating selected graphics mode.

Drive number error.

Too many OPEN files (no sector buffer available).

Disk full (no free sectors).

Unrecoverable system data I/O error.

File number mismatch: Links on disk are messed up.

File name error.

POINT data length error.

File locked.

Command invalid (special operation code).

Directory full (64 files).

File not found.

POINT invalid.

Appendix B-3





APPENDIX C

ATASCII
CHARACTER SET

~ ~v ~
o~ ,(,.v~ o~ v~

~v
o~ ,(,.v~

~ ,,~~v ~c ,,~~v v~ ,,~~v ~c
o~~v +~vo ~ o~~v +~vo ~~ o~~v +~vo ~

~~vo ~v v~ ~o ~v v~ ~~vo ~v v~

0 0 C 13 D ,.
26 1A g

1 1 G 14 E ~ 27 1B ~

2 2 III 15 F ~ 28 1C 0
3 3 1:1 16 10 g 29 1D 0
4 4 g 17 11 ~ 30 1E C
5 5 CI 18 12 = 31 iF =
6 6 ~ 19 13 ~ 32 20 Space

7 7 ~ 20 14 C 33 21

8 8 ~ 21 15 ~ 34 22 "

9 9 rI 22 16 ~ 35 23 #

10 A ~ 23 17 ~ 36 24 $

11 B iii 24 18 ~ 37 25 %

12 C ~ 25 19 (J 38 26

Appendix C-1



39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

C-2 Appendix

27

28

29

2A

2B

2C

2D

2E

2F

30

31

32

33

34

35

36

(

*

+

/

o

1

2

3

4

5

6

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

37

38

39

3A

3B

3C

3D

3E

3F

40

41

42

43

44

45

46

7

8

9

<

>

?

@

A

B

C

D

E

F

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

47

48

49

4A

4B

4C

4D

4E

4F

50

51

52

53

54

55

56

G

H

I

J

K

L

M

N

o

p

Q

R

s

T

u

v



~ ~ ~

~
o~ ,,-"v+ ~ ~+ o~ ,,-"v+

~V~"v ~C> ~ fro>(J fro> (,'" ~V~"v ~C>
O+,~"v +~(,o ~ O~~"v +~(,o~ ~~ +~(,o ~

~v(,o ~"v (,~ ~"v (J ~"v (,~

87 57 W 103 67 g 119 77 w

88 58 X 104 68 h 120 78 x

89 59 y 105 69 i 121 79 Y

90 5A Z 106 6A J 122 7A z

91 5B [ 107 6B k 123 7B D
92 5C \ 108 6C 1 124 7C

93 5D ] 109 6D ill 125 7D IJ
94 5E A 110 6E n 126 7E [J

95 5F 111 6F a 127 7F (]

96 60 C 112 70 P 128 80

97 61 a 113 71 q 129 81

98 62 b 114 72 r 130 82

99 63 c 115 73 s 131 83

100 64 d 116 74 t 132 84

101 65 e 117 75 u 133 85

102 66 f 118 76 v 134 86

Appendix C-3



135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

C-4 Appendix

87

88

89

8A

8B

8C

8D

8E

8F

90

91

92

93

94

95

96

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

97

98

99

9A

9B

9C

9D

9E

9F

AO

A1

A2

A3

A4

A5

A6

(EOL)

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

A7

A8

A9

AA

AB

AC

AD

AE

AF

BO

B1

B2

B3

B4

B5

B6



~ ~
:V~

~
o~ ~~~ o~ o~ ~~~

~ ~~~~ ~(, ~~~~
6 ~~~~ ~(,

o+'~~ +~,p ~ +~vo ~ +~vo ~
~~vo ~~ v~ ~~ v~ ~~ v~

183 B7 199 C7 215 D7

184 B8 200 C8 216 D8

185 B9 201 C9 217 D9

186 BA 202 CA 218 DA

187 BB 203 CB 219 DB

188 BC 204 CC 220 DC

189 BD 205 CD 221 DD

190 BE 206 CE 222 DE

191 BF 207 CF 223 DF

192 CO 208 DO 224 EO

193 C1 209 D1 225 E1

194 C2 210 D2 226 E2

195 C3 211 D3 227 E3

196 C4 212 D4 228 E4

197 C5 213 D5 229 E5

198 C6 214 D6 230 E6

Appendix C-5



~ ~ ~
o~ ~~ o~ ~~ o~ ~~~

~
~

~ ~<f)~~ ~6 ~~<f)~~ ~" ~<f)~~ ~"
o~~~ +~"o ~ o~~~ +~ ,,0 ~ o~~~ +~"o ~

~<f) ,,0 ~~ & ~v"o ~~ & ~v"o ~~ ,,~

231 E7 240 FO 249 F9

232 E8 241 F1 250 FA

233 E9 242 F2 251 FB

234 EA 243 F3 252 Fe

235 EB 244 F4 253 FD 1 ... 1 (Buzzer)

236 EC 245 F5 254 FE [I] (Delete
cham£ter)

237 ED 246 F6 255 FF [I] (Insert
character)

238 EE 247 F7

239 EF 248 F8

See Appendix H for a user program that performs decimallhexadecimal conversion.

Notes:

1. ATASCII stands for "ATARI ASCII". Letters and numbers have the same values as those in ASCII, but
some of the special characters are different.

2. Except as shown, characters from 128-255 are reverse colors of 1 to 127.

3. Add 32 to upper case code to get lower case code for same letter.

4. To get ATASCII code, tell computer (direct mode) to PRINT ASC (" ") Fill blank with letter,
character, or number of code. Must use the quotes!

5. On pages C-1 and C-3, the normal display keycaps are shown as white sym­
bols on a black background; on pages C-4 and C-6 inverse keycap symbols
are shown as black on a white background.

C-6 Appendix



APPENDIX D

ATARI 400/800
MEMORY MAP

ADDRESS
Decimal Hexadecimal

CONTENTS

65535 FFFF
57344 EDOO

57343 DFFF
55296 D800

55295 D7FF
53248 DOOO

53247 CFFF
49152 COOO

49151 BFFF

40960 AOOO

40959 9FFF

32768 8000

32767 7FFF

OPERATING SYSTEM ROM

FLOATING POINT ROM

HARDWARE REGISTERS

NOT USED

CARTRIDGE SLOT A
(may be RAM if no A or B cartridge)

CARTRIDGE SLOT B

(may be RAM if no B cartridg~ RAMTOP (MSB) I

(7FFF if 32K system)
DISPLAY DATA (size varies)

31755 7CIF
DISPLAY LIST (size varies)

(7C1F if 32K system, (GRAPHICS~ OS MEMTOP I
FREE RAM

(size varies) ~ BASIC MEMTOP I

OSMEMLO

BASIC LOMEM

BASIC program, buffers, tables, run-time stack.
(2A80 if DOS, may vary)

2A8010880

10879

9856

2A7F

2680

DISK OPERATING SYSTEM (2A7F-700)
DISK I/O BUFFERS (current DOS)

9855
4864

267F
1300

DISK OPERATING SYSTEM RAM (current DOS)

Appendix D-1



ADDRESS CONTENTS

Decimal Hexadecimal

4863 12FF
FILE MANAGEMENT SYSTEM RAM (current DOS)

1792 700

1791 6FF
FREE RAM

1536 600

1535 5FF
FLOATING POINT (used by BASIC)

1406 57E

1405 57D
BASIC CARTRIDGE

1152 480

1151 47F ] OPERATING SYSTEM RAM (47F-2OO)

1021 3FD
CASSETTE BUFFER

1020 3FC
RESERVED

1000 3E8

999 3E7
PRINTER BUFFER

960 3CO

959 3BF ] 10CB's
832 340

831 33F ] MISCELLANEOUS OS VARIABLES
512 200

511 lFF
HARDWARE STACK

256 100

255 FF PAGE ZERO
FLOATING POINT (used by BASIC)

212 D4

211 D3
BASIC or CARTRIDGE PROGRAM

210 D2

209 Dl
208 DO

FREE BASIC RAM

207 CF
FREE BASIC AND ASSEMBLER RAM

203 CB

202 CA
FREE ASSEMBLER RAM )176 BO BASIC

128 80 ASSEMBLER ZERO PAGE
ZERO PAGE

127 7F
OPERATING SYSTEM RAM

0 0

As the addresses for the top of RAM, OS, and BASIC and the ends of OS and BASIC vary according to the
amount of memory, these addresses are indicated by pointers. The pointer addresses for each are defined
in Appendix I.

D-2 Appendix



APPENDIX E

DERIVED
FUNCTIONS

Derived Functions

Secant

Cosecant

Inverse Sine

Inverse Cosine

Inverse Secant

Inverse Cosecant

Inverse Cotangent

Hyperbolic Sine

Hyperbolic Cosine

Hyperbolic Tangent

Hyperbolic Secant

Hyperbolic Cosecant

Hyperbolic Cotangent

Inverse Hyperbolic Sine

Inverse Hyperbolic Cosine

Inverse Hyperbolic Tangent

Inverse Hyperbolic Secant

Inverse Hyperbolic Cosecant

Inverse Hyperbolic Cotangent

Notes:

Derived Functions in Terms of Atari Functions

SEC(X) = 1/COS(X)

CSC(X) = 1/SIN(X)

ARCSIN(X) =ATN(X/SQR(-X*X + 1))

ARCCOS(X) = - A TN(XlSQR( - X*X + 1) +CONSTANT

ARSEC(X) = A TN(SQR(X*X-1)) + (SGN(X-1)*CONSTANT

ARCCSC(X) = A TN(1/SQR(X*X-1)) + (SGN(X-1) *CONSTANT

ARCCOT(X) = A TN(X) +CONSTANT

SINH(X) =(EXP(X)-EXP(-X))/2

COSH(X) = (EXP(X) + EXP(-X))/2

TANH(X) =-EXP(-X)/(EXP(X) + EXP(-X))* 2 + 1

SECH(X) =2/(EXP(X) + EXP(-X))

CSCH(X) =2/(EXP(X)-EXP(-X))

COTH(X) =EXP(-X)/(EXP(X)-EXP(-X)) *2 + 1

ARCSINH(X) = LOG(X +SQR(X*X + 1))

ARCCOSH(X) +LOG(X +SQR(X*X-1))

ARCTANH(X) = LOG((1 + X)/(1-X))/2

ARCSECH(X) = LOG((SQR(-X*X + 1) + 1)/X)

ARCCSCH(X) =LOG((SGN(X)*SQR(X*X + 1) + 1)/X)

ARCCOTH(X) = LOG((X + 1)/(X-1))/2

1. If in RAD (default) mode, constant = 1.57079633
If in DEG mode, constant = 90.

2. In this chart, the variable X in parentheses represents the value or expression to be evaluated by the
derived function. Obviously, any variable name is permissible, as long as it represents the number or
expression to be evaluated.

Appendix E-l



NOTES

Notes



APPENDIX F

PRINTED VERSIONS
OF CONTROL CHARACTERS

The cursor and screen control characters can be placed in a string in a program or used as a Direct mode
statement by pressing the" key before entering the character from the keyboard. This causes the
special symbols which are shown below to be displayed. (Refer to Section 1 - .. Key.)

SEE THIS

PRESS PRESS

• •• •• •PRESS AND
PRESS HOLD PRESS

• iii III• iii &I• iii II• iii II
OR • iii •• • •
• iii •• iii •• • •• • •• iii •• • •• iii •

Appendix F-l



NOTES

Notes



Alphanumeric:

Array:

ATASCII:

BASIC:

Binary:

Bit:

Branch:

Bug:

Byte:

Central Processing
Unit (CPU):

Code:

Command:

APPENDIX G

GLOSSARY

The alphabetic letters A-Z, the numbers 0-9, and some symbols. (No
punctuation marks or graphics symbols).

A list of numerical values stored in a series of memory locations
preceded by a DIM statement. May be referred to by use of an array
variable, and its individual elements are referred to by subscripted
variable names.

Stands for Atari American Standard Code for Information Inter­
change.

High level programming language. Acronym for Beginner's All­
purpose Symbolic Intruction Code. BASIC is always written using all
capital letters. Developed by Mssrs. Kemeny and Kurtz at Dartmouth
College in 1963.

A number system using the base two. Thus the only possible digits
are a and 1, which may be used in a computer to represent true and
false, on and off, etc.

Short for Binary Digit. A bit can be thought ofas representing true or
false, whether a circuit is on or off, or any other type of two­
possibility concept. A bit is the smallest unit of data with which a
computer can work.

Atari BASIC executes a program in order of line numbers. This ex­
ecution sequence can be altered by the programmer, and the pro­
gram can be told to skip over a certain number oflines or return to a
line earlier in the program. This contrived change in execution se­
quence is called "branching".

A mistake or error usually in the program or "software".

Usually eight bits (enough to represent the decimal number 255 or
11111111 in binary notation). A byte of data can be used to represent
an ATASCII character or a number in the range of a to 255.

In microcomputers such as the Atari systems, these are also called
microprocessors or MPU. At one time, the CPU was that portion of
any computer that controlled the memory and peripherals. Now the
CPU or MPU is usually found on a single integrated circuit or "chip"
(in Atari's case a 6502 microprocessor chip).

Instructions written in a language understood by a computer.

An instruction to the computer that is executed immediately. A good
example is the BASIC command RUN. (See Statement.)

Appendix G-1



Computer:

Concatenation:

Control Characters:

CRT:

Cursor:

Data:

Debug:

Default:

Digital:

Diskette:

DOS:

Editing:

Execute:

Expression:

Format:

Hard Copy:

G-2 Appendix

Any device that can receive and then follow instructions to
manipulate information. Both the instructions and the information
may be varied from moment to moment. The distinction between a
computer and a programmable calculator lies in the computer's abili­
ty to manipulate text as well as numbers. Most calculators can only
handle numbers.

The process of joining two or more strings together to form one
longer string.

Characters produced by holding down the key labeled EmI while
simultaneously pressing another key.

Abbreviation for "cathrode ray tube" (the tube used in a TV set). In
practice, this is often used to describe the television receiver used to
display computer output. Also called a "monitor".

A square displayed on the TV monitor that shows where the next
typed character will be displayed.

Information of any kind.

The process of locating and correcting mistakes and errors in a pro­
gram.

A mode or condition "assumed" by the computer until it is told to do
something else. For example, it will "default" to screen and keyboard
unless told to use other 1/0 devices.

Information that can be represented by a collection of bits. Virtually
all modern computers, especially microcomputers, use the digital ap­
proach.

A small disk. A record/playback medium like tape, but made in the
shape ofa flat disk that is placed inside a stiff envelope for protection.
The advantage of the disk over cassette or other tape for memory
storage is that access to any part of the disk is virtually immediate.
The Atari 800 Personal Computer System can control up to 4 diskette
drive peripherals simultaneously. In this manual, disk and diskette
are used interchangeably.

Abbreviation for "disk operating system". The software or pro­
grams which facilitate use of a disk-drive system. DOS is pronounced
either "dee oh ess" or "doss".

Making corrections or changes in a program or data.

To do what a command or program specifies. To RUN a program or
portion thereof.

A combination of variables, numbers, and operators (like +, -, etc.)
that can be evaluated to a single quantity. The quantity may be a
string or a number.

To specify the form in which something is to appear.

Printed output as opposed to temporary TV monitor display.



Hardware:

Increment:

Initialize:

Input:

Interactive:

Interface:

IOCB

I/O:

K:

Keyword:

Language:

Memory:

Menu:

Microcomputer:

Monitor:

Null String:

os:

Output:

Parallel:

Peripheral:

The physical apparatus and electronics that make up a computer.

Increase in value (usually) by adding one. Used a lot for counting (as
in counting the number of repetitions through a loop).

Set to an initial or starting value. In Atari BASIC, all non-array
variables are initialized to zero when the command RUN is given. Ar­
ray and string elements are not initialized.

Information transfer to the computer. Output is information transfer
away from the computer. In this manual, input and output are
always in relation to the computer.

A system that responds quickly to the user, usually within a second
or two. All personal computer systems are interactive.

The electronics used to allow two devices to communicate.

Input/Output Control Block. A block of data in RAM that tells the
Operating System the information it needs to know for an I/O opera­
tion.

Short for input/output, I/O devices include the keyboard, TV
monitor, program recorder, printer, and disk drives.

Stands for "kilo" meaning "times 1000". Thus 1 KByte is (approx­
imately) 1000 bytes. (Actually 1024 bytes.) Also, the device type code
for the Keyboard.

A word that has meaning as an instruction or command in a com­
puter language, and thus must not be used as a variable name or at
the beginning of a variable name.

A set of conventions specifying how to tell a computer what to do.

The part of a computer (usually RAM or ROM) that stores data or in­
formation.

A list of options from which the user may choose.

A computer based on a microprocessor chip; in Atari's case, the 6502.

The television receiver used to display computer output.

A string consisting of no characters whatever.

Abbreviation for Operating System. This is actually a collection of
programs to aid the user in controlling the computer. Pronounced
"oh ess".

See I/O.

Two or more things happening simultaneously. A parallel interface,
for example, controls a number of distinct electrical signals at the
same time. Opposite of serial.

An I/O device. See I/O.

Appendix G-3



Pixel:

Precedence:

Program:

Prompt:

RAM:

Random Number
Generator:

Reserved Word:

ROM:

Save:

Screen:

Serial:

Software:

Special Character:

Statement:

String:

Subroutine:

Variable:

Window:

G-4 Appendix

Picture Element. One point on the screen display. Size depends on
graphics mode being used.

Rules that determine the priority in which operations are conducted,
especially with regard to the arithmeticall10gical operators.

A sequence of instructions that describes a process. A program must
be in the language that the particular computer can understand.

A symbol that appears on the monitor screen that indicates the com­
puter is ready to accept keyboard input. In Atari BASIC, this takes the
form of the word "READY". A "?" is also used to prompt a user to
enter (input) information or take other appropriate action.

Random Access Memory. The main memory in most computers.
RAM is used to store both programs and data.

May be hardware (as is Atari's) or a program that provides a num­
ber whose value is difficult to predict. Used primarily for decision­
making in game programs, etc.

See Keyword.

Read Only Memory. In this type of solid-state electronic memory, in­
formation is stored by the manufacturer and it cannot be changed by
the user. Programs such as the BASIC interpreter and other car­
tridges used with the Atari systems use ROM.

To copy a program or data into some location other than RAM (for ex­
ample, diskette or tape).

The TV screen. In Atari BASIC, a particular 1/0 device codes "S:"

The opposite of parallel. Things happening only one at a time in se­
quence. Example: A serial interface.

As opposed to Hardware. Refers to programs and data.

A character that can be displayed by a computer but is neither a let­
ter nor a numeral. The Atari graphics symbols are special characters.
So are punctuation marks, etc.

An instruction to the computer. See also Command. While all com­
mands may be considered statements, all statements are certainly not
commands. A statement contains a line number (deferred mode), a
keyword, the value to be operated on, and the IMiii!;!:' command.

A sequence of letters, numerals, and other characters. May be stored
in a string variable. The string variable's name must end with a $.

A part of a program that can be executed by a special statement
(GOSUB) in BASIC: This effectively gives a single statement the power
of a whole program. The subroutine is a very powerful construct.

A variable may be thought of as a box in which a value may be
stored. Such values are typically numbers and strings.

A portion of the TV display devoted to a specific purpose such as for
graphics or text.



CHECKBOOK
BALANCER

APPENDIX H

USER
PROGRAMS

This appendix contains programs and routines that demonstrate the diverse
capabilities of the Atari Personal Computer System. Included in this appendix is
a Decimal/Hexadecimal program for those users who write programs that re­
quire this type of conversion.

This is one of the "traditional" programs that every beginning computerist
writes. It allows entry of outstanding checks and uncredited deposits as well as
cleared checks and credited deposits.

10 0I ~1 A$( 30)., r1SG$( 40 )., r'1SG 1$( 30 ) .' t'lSG2$( 3
o)J MSG3$( 30 ) J r'1SG4$( 30 ) .' t'1SG5$( 30 ) .. rt3G6$( 3
0)
20 OUTSTAt'~D=0

30 GF.~APH I CS 0:? :'{ II CHECKBOOK BALAt·i
CERII :?
40 ? lI'lou Irla~ luake correct.i'Jns at. an::.i t.i
lue b~ enter' i n9 a ne9at.il.,'e do 11 ar '"Ia1ue .
II

50 t'1SGl$="0LO CHECK -- STILL OUT::;TAt'~DIt-1G
II

60 t'lSG2$= IIOLD DEPO::; I T -- t·iOT CREO I TED
II
70 t'1SG3$="0LD CHECK -- .jUST CLEAF.~EO
II

80 t1SG4$= II OLD DEPC6 IT -- .jUST CREO ITED
II

90 t1SG5$=!1 t·iEJoJ CHECK (OR ::ERU ICE CHAPGE)
II

100 t'1SG6$=II~£W DEPOSIT (OR HHEREST)
II

150 TRAP 150:? "Enter' be9innin9 ba lance
f r·UII. ~our' check book" .; : I t·iPUT 'lOUPBAL
160 TRAP 160:? "Enter' be9innin9 balance
fr·o..... ~out·· bank~ta.te"llent" ,; : It·iPUT BAt·WEAL
165 TRAP 40000
170 GOTO 190
180 CLOSE #1:? IIPF~It-nER IS HOT OPEF~ATIOt·~

AL."
185 ? IIPLEA:3E CHECK COt·it·iECiORS. II
190 PEF.~t·1=0

200 ? II ~Jou1d ~ou 1ike a pennanent r·ecor·d
Ot... the F'r i nter· 1I

j : WPUT A$
210 IF LEN(A$)=0 THEN 200

.Appendix H-1



H-2 Appendix

220 IF A$( 1) 1)= II t·r l THEt·j 4(1(1
230 IF A$( 1.1 1)< )fI\'!I THEt·i 20g
2413 TRAP 180
250 LPF.~ It·n :F.~H1 TE~;T PP Ir··ITEP
2613 PERt'1=1
2813 LPR UH "'-(OUR BEG Hltm~G EALAt·iCE IS $ I!

j VOU~~E:AL

290 LPRI t·n II E:At·W: :3TATH1Et-H BEG I ri~·j I ~'iG BAL
ANCE IS $".; BAt'il<:E:AL :LPR I t·iT
41313 TF.:AP 40~):? :? II Choose one clf the f.:> 1
lowln::-:!1
4113 '{ II ( 1) !I j t1SG 1$
415 ? II( 2) If j tt:;1:;2$
420 O{ U( 3) n.i t1SG3$
425 ? "(4) ";MSG4$
430 ? "( 5) II j M:3G5$
435 ..? II( 6) II j tt3G6$
440 ? II( 7) 00t·1EII
4913 '{'
5013 INPUT ~i: IF ~i':::1 OR t·r>7 THEt-i 400
505 TRAP 400[10
510 ON NGOSU8 10130,213130,3000,43130,5000)
613013, 70~30
520 t1SG$="t·£L,J CHECKBOOK BALAt·1CE I:;
II :Atl0Ut-H='lOUF.~BAL :GO~;U8 :3fjf10
530 t1SG$=''t-1EJ.J BAt-it::: STATH1EtH BALAt·1CE IS
II:AMOUNT=BANK8AL:GOSU88000
5413 r·lSG$="OUT::;TAt·iOHiG CHEelS-DEPOSIT:::>
" :AMOUt~T=OUTSTAt-iD: GOSU8 :::000
545 IF PERt'1 THEt·l LPR I t-H
550 GOTI] 4013
10013 RHl OLD CHECK -- ~:;TILL DUT::;TAt'[IHiG
11310 MSG$=~~G1$:GOSU8 8100
10213 OUTSTAt'iO=OUTSTAt'iO+A~10UtH

10313 RETURt·i
~'OOfj REt1 OLD OEPOS IT -- ST ILL HOT CRED IT
ED
2010 MSG$=MSG2$:GOSU8 8100
20213 OUT~:;TANO=OUTSTAt·iD-At·10Ut·n

20313 RETURN
30013 RE~l OLD CHECK -- ,JIJ':;T CLEAF.:EO
3010 MSG$=MSG3$:GOSU8 8100
30213 BA~WBAL =8AHKBAL·-At·10Ut·H
30313 RETURt·~

4000 REM OLD DEPOSIT -- ,JUST CREDITED
40113 MSG$=t1SG4$:GOSU8 8100
40213 BAHK8AL=BAt'~K8AL +At·10Ut·H
40313 RETURN
5000 REtl ~inJ CHECK (O~: ::;E~:!.) I CE CHAPGE::' ­
- JUST CLEA~~EO

50113 MSG$=MSG5$:GOSU8 8100
50213 YOUR8AL=YOUR8AL-~'~NT



5030 ? II I~; t'~Bl CHECK STILL OUT:3TAt·iDHiG".;
: INPUT A$
5040 IF LHK A$ )=0 THH~ 5f130
505£1 IF A$( 1) 1)( )IIW THEH $360
5055 E:At'~KBAL =8At'~KE:AL -At·10Ut·H
5057 IF PERt'1 THH~ LPF.:nn IICHECK HA::; CLEA
RED. II
5058 RETURN
5060 IF A$( 1, 1)( >11'"1'11 THH~ 5(130
5070 OUTST~'ID=OUTSTA~ID+AMOUNT

5075 IF PERt1 THEt-~ LPRItiT IICHECK 1:3 ::;TILL
OUTSTAt'~DH~:;. II

5080 F~ETURt·~

6000 REM NEW DEPOSIT (~: INTEREST) -- JU
5T CREDITED
6010 r~G$=t~G6$:GOSU8 8100
6020 YOU~:8AL=·"I·OUF.:8AL +At'f,JUt-n
6030 ? II HA:3 '/OUP NHl OEPOS IT 8EEr'~ CREDI T
EDII j : n~F'UT A$
6040 IF LHK A$ )=0 THHi 6030
6050 IF A$( 1.' 1)( >II '"I' II THEt-~ 606~:1

6052 E:AHK8AL=8At'iK8AL+At·10Ut·ij
6053 IF PEF:t'1 THHi LP~:mT '!(IEFO:3IT HA::; BE
Et·~ CRED I TEO. II

6055 RETURN
6060 IF A$(l.,l)<>lIt·i ll

THH~ 6030
6070 OUTSTAt'~D=OUT::;TAt'iD-At10Ur'H

6075 IF PERt'1 THHi LPR I t·n II DEPOS IT HAS t·iO
T BEEt·i CREDITEO. II

6000 F.~ETUF:t·i

7000 F.H1 DOt·iE
7010 ? 118At'~K I S BALAt·iCE t·m·~us (OUr3TAt·iDHi
G CHECKS-DEPOSITS) S~JULD NOW EQUAL
YOURCHECKBOOK BALAt·iCE. II
7020 DIF=YOURBAL-( BAt'~KBAL-OUT:::TAt'iD)
7030 IF OIF< >0 THEri 7~34~)

7035 ? II IS $" j BAt·~K8AL.; II THE niDWG BALAt·j
CE Ot-~ '"i'OUF.: BAt·iK STATH1Et·n 1I .; : I t·~F'UT At
7036 IF LEN(A$)=0 THEN 7035
7037 IF A$( 1.: 1)= 11'-( II THH~ ? II Cot-t:;P~1 TULATI
ONS: YOU~~ CHECKBOOK BALAr·iC:E::; ! II : Et-iD

7038 GOTD 7060
7040 IF OIF)(1 THHi ? lI'lOUR CHECK800K TOT
AL IS $11 i DIF j II OLiEF: '"i'OUR BAt·it::: I:; TOTAL. II
:GOTO 7060
7050 ? ll'lOUP CHECKBOOK TOTAL IS $11 j -DIF j

II Ut·.[lEF~ YOUF.: 8At'~K I S TOTAL. !!

7060 ? II~~OULD \'OU LIKE TO t'1AKE CORPECTIO
NS?II
7070 ? IlRH1Et18EF.~) YOU CAt'i EHTEP A t'~EGATI

UE DOLLAR VALUE TO MAKE A CORRECTION.
II

Appendix B-3



H-4 Appendix

7080 ? IIHHEP 'y' OF.: t·~11 i : HiFUT A:t
7090 1F LHK A$ )=0 THHi HiD
710~) IF A$( L 1)="'l" THEt·i PETU~t'i

7110 EHD
7999 RHI r'1SG PF.:HHH·iG F.:OUTINE
8000 ? t1SC$.; II $11 i At10Ut-H
80 H:1 IF PEF:t-1=1 THHi LPF.: U.:T t·EC$.: II $".: At10
UNT
8020 RETU~l~

810£1 ~~Et'1 r'lSG F'F.~I t·iT t It·iPtJT ROiJT It"iE
8110 TRAP :31 W:? IIEtHER At·10Ut·iT FOF.: II .dt:;G
$; : 1HPUT At'10Ut-n
8120 TRAP 4~X100

8130 IF F'ERt'l=l THHj LPF.:It·H t·EG$.: l! $".; At'10
um
8140 F.:ETURt·i



BUBBLE SORT This program uses the string comparison operator "<=" that orders strings ac­
cording to the ATASCII values of the various characters. Since Atari BASIC does
not have arrays of strings, all the strings used in this program are actually
substrings of one large string. A bubble sort, though relatively slow ifthere are
a lot of items to be stored, is easy to write, fairly short, and simpler to under­
stand than more complex sorts.

10 DIt1 8$( 1)
20 GRAPH1CS 0:? :? II STF.~HiG :30
RT" :?
30 TF~AP 30:? :'r II Ent.er· iila;{1iill...liil str' 1ns 1e
flsth II ; : HiPUT ~::LH4: SLHH =:3LH4-1
35 IF :3LHi< 1 OR It·m: ;:;LEt-i ){ >SLEt·i THEt·i ? II

PLEA:3E EtHER A PO:; IT11')E It-iTEGEF.: :> 0. II : GO
TO 30
40 TRAP 4(j:? :? II Ent.er· lila;.::.i illiAii, nUii,ber' of
erlt.r· les . II

41 l' !I ( Entt-·1es l}jh 1d-, ar'e shod.er· t.han th
e ma;<1iiIUiil IJ.ll11 be eadded I,V 1t.h bhnks, )
II

42 INPUT ENTRIES
45 1F HHF-:1E:::< 2 OP Il··m: Et-HP IE::; >< >HUP IE::;

THEt-i ? II PLEASE EtHER A POS ITIlJE I tiTEGER
> 1.":GOTO 40

47 TF~AP 40(1~Xl

50 0I t1 A$( :;LEr·r;::Er·iT~~ I E~:; ) ,I TEi'1F'$( ~:::""Et-~ )
60 l' :? II Ent.er' strinss one at a t.illie. If

70 l' II Ent.er' E:iilf't.::'i str' ins !J.ihen done .:: just.
hi tRETUF.li) . II

75 .? :? "PLEASE STAf'~ 8:/ ~'JHILE THE :;TRli'~

GS AF~E 8E Ir,iG CLEAF-ED. . . !I .;

80 FOR 1=1 TO :3LEt-t:;::anFIES: At::: I., I >=11 !I: t'i
E::-::T I
85°? :"7
90 1=1
100 FOF.: .J=1 TO EmRIE::;
110? "#";J;" "; : INPUT TEMPt
120 IF LEt-K TEt-1Pt )=0 THEH Efn~: I£:3=..1-1 :GOT
o 190
130 A$( I,. I+:3LHil )=TEt-1P$
140 I=I+::;LEt·i
150 t·iE:,::T J
190 l' :? :? "PLEA::;E ::;TAr'~D B'r' ~,JH ILE THE ;:;
TRH4GS ARE BEHiG ::;OF.~TEO. , . II.;

200 GOSUB 1000: F~Et'l CALL SOF~T ~:OUT HiE
202 ? :?
205 1=1
210 FOR K=l TO ENTRIES
22€1 ..? "#" ,i Ki II !I i At':: I., I+:::LEt-H )
225 I=I+~;LEt'i
230 NE:~::T K
240 TRAP 300:? :? II WOULD YOU LIKE A PRHi

Appendix H-5



H-6 Appendix

TED COP'"!'" i : WPUT B$
250 IF B$( 1} 1)=11''1'11 THa~ 40(1
300 END
400 1=1: LPR1HT :FOF.: K=l TO EtHF.:IE::;
420 LPRnH "#".; Ki" ".; A$( L I+3LErH )
430 I =I+:;LEt·~ : ~~E::'~T K: Et-~D

1000 REt-1 STRHiG BUBBLE ::;OPT RDUTIHE
1010 REt'1 WPUT: A:L SLEt-L Ef-nF.~!E::;

1015 REt-1 TEt-1P$ t'1U:3T HAl..IE A Dmat; IOt·~ OF
SLEH.
1020 :;La~1=:3La~-1 : r·1A::·::=::;LHi::;::( DHPIE::;-1 )+1

1040 FOR 1=1 TO t'1A::-:: 3TEF SLEt·~

1050 DOt·iE=1
1060 FOR K=1 TO t'1A>::- I -::LHH STEP ::;LH~

1070 KSLEt-H=I<+3LEt·H: KSLHi=K+::;LEr·i: f::SLH6L
EN1=K:3LEH+SLEt-il
1080 IF A$( K., KSLEt·~ 1>{=A$( KSLEr·i .. f:5LEt6LEt·i
1) THEN GOTO 1110
1090 DOt'~E=0
1100 TEt1P$=A$( K., KSLEr·il ): A$( K., f::SLHil )=A$(
~::SLE~4 }KSLEt·SLEt·i1) :A$( t<SLEt·i.1 KSLEt"iSLEt-i1)=T
EMP$
1110 ~iE:~::T K
1120 IF DOt'~E THEt·i RETUH~

1130 t'iE:~::T I
1140 RETURt·~



TEXT MODES
CHARACTER
PRINT

This program prints the Atari characters in their default colors for text modes
0, 1, and 2. In entering this program, remember that the clear screen symbol
"~" is printed as " } ".

1 DIM A$( 1)
5 ? II} II :REt"1 CLEAR SCREEt·4
10 '1 "G~~AF'HIC:; 0J 1J A~[j 2 (TE>::T t'10DE~:;)"

20 ';" "DEt·1Ot·I~;TRATIO~4. II

30 ';" IIDISPLA'y'S CHAF~ACTER ~;ET::; FOF.~ EACH t1
ODE. II
60 l·JA IT=100~1 :F.H1 ::;U8POUT It'1E LI t·lE t·iUME:ER
70 CHBA:::=756 :F.H1 CHARACTEP BASE AOOF.~E:;::;

80 UPPEP=224: F.H1 DEFAULT FO~: CH8A:;
90 LOWER=226:REM LOWER CASE LETTERS &GR
APHICS
95 GOSU8 ~~A IT
100 FOR L=0 TO 2
112 F.H1 U:3E E: FOP GRAPH ICS 0
115 IF L=0 THEt-4 OPHi #1.. :::., 0J liE: II :GOTD 11

116 REM USE S: FOR GRAPHICS 1 ~~ 2
117 OPEN #lJ8JO,IIS:11
118 GRAPHICS L
120 FF.~ HH II GF.:APH IC::; ".; L
130 FOP .j=0 TO 7: REi'1 :3 LI t·iE
140 FOR 1=0 TO 31 :RH1 32 CHAP:;;.····L.WE
150 K=32l.J+ I
155 REr"1 DOt~ I T OISPLA'y' !ICLEA~~ SCF~EErr OR
II RETURN II
160 IF K=ASC( "} ") OR K=155 THa~ 1:::(1
165 IF L=0 THEt·j PUT #1.. A:::;C\ II 1I): REt·, ESCA
PE
170 PUT #l,K:REM DISPLAY CHARS
180 t'~E>::T I
190 PRUiT IL II ": F£t'1 Em OF LH-iE
200 IF L< >2 OR J< >3 THai 240
210 REt1 :;CREEr·i FULL
220 GOSUB l·lA I T
230 PRUiT #1; II}!I : F.B"1 CLEAR SCPEEf-l
240 NE:>=:T .J
25f1 GOSUB l·IA I T
265 FRUiT IILO~~ER CASE At·1D GPAPHICS"
270 IF L< >0 THEt-i POf:::E CHE:A:::;.> LOl·EF.~: GO:::;U8
WAIT
275 CLO::;E #1
280 ~~E::-::T L
300 GRAPHICS 0: H10
1000 RH1 l·~AIT FOR IIRETU~t'i"

1010 PRH-H IlHIT PETUpr·i TO CmHHiUP.;
1020 HiPUT A$
103~) RETURti

Appendix H-7



LIGHT SHOW

H-8 Appendix

This program demonstrates another aspect of Atari graphics. It uses graphics
mode 7 for high resolution and the PLOT and DRAWTO statements to draw the
lines. In line 20, the title will be more effective if it is entered in inverse video
(use the Atari logo key).

10 FOR 8T=1 TO 8:GRAPHICS 7
15 POKE 752.11
20 ? :"? II Atar l's Sr='ecla1 Li9ht. Sh)I.•,1

II: SETCOLOR 2J £1 .. £1
30 SETCOLOR 1J2zSTJ8:COLOR 2
40 FOR DR=0 TO 80 STEP ST
50 PLOT £1J0:0RAWTO 100JOR
60 HE:>;T OR: FOR H=1 TO :::~Xl: t'iE::<T N: HE;:'::T 5T

70 FOR ~4=1 TO 2£100: r'~E::-::T N: GOTO 10



UNITED STATES
FLAG

This program involves switching colors to set up the stripes. It uses graphics
mode 7 plus 16 so that the display appears as a full-screen. Note the cor­
respondence of the COLOR statements with the SETCOLOR statements. For fun
and experimentation purposes, add a SOUND statement and use a READIDATA
combination to add "The Star Spangled Banner" after line 470. (Refer to Section
10.)

10 REM DRAW THE UNITED STATES FLAG
20 F.:Et1 HIGH RESOLUTIOf-i 4-COLOR GRAPHICS)

NO TE:>::T ~.J I t·lom·j
30 GRAPHIC; 7+16
40 RHl ~;ETCOLOP (j COPPE~:;pOt'lD::; TO COLOP 1

50 SETCOLOP 014,4:PED=1
60 REM SETCOLOP 1 CORRESPONDS TO COlOP 2

70 SETCOLOR L (j .. 14 :L·JH ITE=2
80 F.:H1 :;ETCOLOF.: 2 CORRESF'Ot'~DS TO COLOR 3

90 BLUE=3:REM DEFAULTS TO BLUE
10€f F~H1 DF.:AL,J 13 F.:ED :~: ~·JH I TE ::;TR I PE~:;
110 C=RED
120 FOR 1=0 TO 12
130 COLO~: C
140 F.Hl EACH ~;TP IFE HAS ~:;El')ERAL HOF.: I20tH
Al LI t'lE~:;

150 FOR J=O TO 6
160 PLOT 0,It7+J
170 DRAWTO 159,I*7+J
180 t·lE>::T J
190 RHl :::L,nTCH COLOPS
200 C=C+1:IF C>WHITE THEN C=REO
210 HE:,::T I
300 F.Ul DRAL·J BLUE ~:ECTAi"1GLE

310 COLOF.: BLUE
320 FOR 1=0 TO 48
331-3 PLOT 0, I
340 DRAL·HO 79, I
350 t·lE::<T !
360 RHl DRAL'J 9 ROL·JS OF L·JH I TE ';TAF.S
370 COLOR L,JH I TE
380 K=0:R81 STAPT WITH ROW OF 6 STARS
390 FOR 1=0 TO 8
395 Y=4+ I ::;::5
40€f FOF.: J=O TO 4: pal 5 ~:;TARS I r·l A ~:01,J

410 X=K+5+Jt14:GOSU8 1000
420 ~4D::T J
430 IF K<>0 THEN K=0:GOiO 470
440 REt'l ADD 6TH ~;TAP EUEP'/ OTHER LIt·iE
450 :>::=5+5::;(14: GOSUB 1(100
460 K=7
470 ~lE::<T I
500 REt-1 IF KE'y' HIT THEr·l STOP

Appendix 8-9



8-10 Appendix

510 IF PEEK( 764 >=255 THHi 5W
515 F.H1 OPEN TE":T ~·JUiOO~·J ~·HTHOUi CLEARH~

G SCREEt~

520 GRAPHICS 7+32
525 REt1 CHAt·4GE COLOP::; BACK
530 SETCOLOR 0J4J4:SETCOLOR 1,0J14
550 STOP
1000 R81 ORAH 1 STAR CEt-UERED AT i·L·....
1010 PLOT :;::-L '"i':DRA~lTO >::+L'l
1020 PLOT XJY-l:PLOT XJY+l
103(1 RETURN



SEAGULL OVER
OCEAN

This program combines graphics and sounds. The sounds are not "pure"
sounds, but simulate the roar ofthe ocean and the gull's "tweet". The graphics
symbols used to simulate the gull could not be printed on the line printer. Enter
the following characters in line 20.

20 BIRD$ = " V -- "

To get these symbols, use GlDG, GlDF, GID R, GID R.

10 DIt1 8IRD$( 4)
20 BIPO$=" "
30 FLAG=1:ROW=10:COL=10
40 GRAPHICS l:POKE 756;226:POKE 752; 1
:.e SETCOLOR (1., 0.• 0 ::3ETCOLOR 1.. ;3., 14
60 PRHH #6.;" the ,:ocean II

70 R=It-H( R~O:: 0 \:;::11 )
80 POSITIOt·i 17; 17
9f) FOR T=0 TO 10
100 SOUND 0,T,8,4
110 FOR A=l TO 50: t·iE::::T A
120 IF RND(0»0.8 THEN FOR 0=10 TO 5 STE
P -1: SOUt·iD 1; 0; 1(1 .• I t-n( F.:f·~O( 0 ):~:: 10 ) :t'iE::<T D:
sou~m 1.,0.. 0, (1
130 GO:3UB 20~J

140 ~iE>::T T
150 FOR T=10 TO 0 STEP -1
160 SOUND 0,T;8;4
170 FOR A=l TO 50:NEXT A
175 IF F:t·iO( 0 )>0 .:3 THEti FOR 0=10 TO 5 STE
P -1 :::;OUt·iD 1.. 0; 10;8:t·iE::-::T O:SOUHO 1.. 13 .. 0.• (1

18(1 FOF.: H=l TO 10: t'iE::<T H
185 GOSUE: 200
190 t·E<T T
195 GOTO 70
200 GO::ti8 30(1
210 POSI TI or·~ COL F~m.J

22(1 pF.~Hn #6.; E:IRD$( FLAG .. FLAG+l )
230 FLAG=FLAG+2: IF FLAG=5 THEr-1 FLAG=l
240 RETURH
300 IF Rr·m.:: 0 )>0. 5 THEr-~ F:ETUPi·j
310 POSITION COL;ROW
320 pF.~nH #6.i II II

330 A=I t·H':: F.:~D:: (1 \:;:::3 )-1
340 8=I t·m: Rr·iD( f1 /::=:3 )-1
350 Rm,J=Rm·J+A
3W IF Rm·J=(1 THH~ F.:m,l= 1
370 IF ~:OL,J=2ti THai F.~m·J= 19
380 COL=COL+8
39(1 IF COL=0 THHi COL=l
400 IF COL>l:; THEt·i COL=18
410 F:ETURr·i

Appendix H-11



VIDEO
GRAFFITTI

H-12 Appendix

This program requires a Joystick Controller for each player. Each joystick has
one color associated with it. By maneuvering the joystick, different patterns are
created on the screen. Note the use of the STICK and STRIG commands.

1 GRAPHIC; 0
2 ? "UIDEO GRAFFITI"
5 REt1 :>=:&\' ARRA''l'S HOLD COORD It·iATE:;
6 REtl FOR UP TO 4 F'LA'y'EP::;' PO::; ITIm·E .
7 REM COLF~ A~RA'r' HOLDS COLO~~S.

10 DIM A$(1)JX(3»)Y(3))COLR(3)
128 "/ IIIJSE JO'lSTICKS TO [I~~A~,~ F'ICTiJF:E;;;"
129 ~, II PRE~;::: BUTTOt·t; TO C:HAr'~i~E COLCj~~::; II

130 "i "HHTIAL COLOR;: II
131 '{ ".JO'y':;TI CK 1 I:::; REO II

132 7 ".JOYSTICK 2 IS ~·~HITEH

133 '{ "JOYSTI CK :3 I:; BLUE"
134 "7' " JOYSTI CK 4 IS BLACK (BACKGROUND)i'

135 '( "BLACK LOCATIOi·i I::; INDICATED B\' A
BRIEFFLASH OF ~ID. II
136 ? "Hi GRAPHICS 8., ",!O'·t;TICKS 1 AtE!:3
ARE l4HITE At·iD 4 IS BLUE."
138 PRHH IIHmJ r·lAt·fl F'LA'lEF~S (1-4)" j

139 INPUT A$: IF LEt-KA$)=0 THD'~ A$="1 H

140 ,JO'y't·lA::·::=I.,JAU At )-1
145 IF .JOfl~1A::«0 O~~ .JO'yl1A::<>=4 THEt·~ 138
147 PF~It'~T !l1~~:APHICS 3 (40:=-::24); 5 (:::0>::48)
"J

150 FIRI t'~T II 7 (16~):=-::96)., OR ::: (320:;·::192 )!I ;

152 INPUT A$: IF LEt-K At >=0 THa~ A$= II ]il
153 A=UAL( A$ >
154 IF A=:3 THEH >::r1A>~=4l1: 'yl1A::-:;=24: GOTO 159

155 IF A=5 THH~ ::·::r-1A>::=~:~j: 'rl1A::-:;=4:::: GOrO 159

156 IF A=7 THH~ ::-:;MA>::=160: 'y'jAiA>::=96: ;::;OTO 15
9
157 IF A=8 THEN XMAX=320:YMAx=192:GOTO 1
59
158 GOTO 147:REM A NOT vALID
159 GRAPHICS A+16
160 FOR 1=0 TO .JO\'t'lA::·::: ::-:;r:: I )=::·::t'1A>:;.··..2+ I: 'y'( I )
='·a-1A>::/2+ I :HE}:T I: RHl STA~~T HEAP CHiTER 0
F SC~~EEt·~

161 IF A< >8 THEt-~ 166
162 FOR 1=0 TO 2:COLR(I)=1:NEXT I
163 SETCOLOP 1~9)14:REM LT. BLUE
165 GOTD 1:30
166 FOR I=0 TO 2: COL~\ I )= I+1:t·E-::T I
167 SETCOLOR 0J4J6:REM REO
168 :;ETCOLO~~ 1) 0 ~ 14 :PEn ~·jH ITE
180 COLF.\ 3 )=~J

295 FO~~ .J=0 TO 3



300 FOR I=0 TO .JO\'t'lA::<: ~H1 CHECk .JO\':3TICK
,....
.j

305 F.:EM CHECK TP I C!~E~~
310 IF ::;TRIG( I) THal 321
311 IF A<>8 THEN 320
312 COLF~( I )=I:OL~\ I )+1 : IF COLP( I )=2 THEr'~

COlP( I )=f1 : PH1 2-COU:!~: i'10DE
313 GOTO 321
320 COlF\! )=COL~:< 1)+1: IF COL~\ 1»=4 THEt-l

COLR(!)=0:REM 4-COLOR MODE
321 IF .J>0 THEr·i COLCJP C:OLP( I): GOTe, 325
322 IF COlF\ I )=0 THHi COLO~: 1: GOTO 325
323 COlOF~ (1: F.H1 8L I t·iK CUF:FHH :30UAF.:E Of1
At·[j OFF
J25 PLOT >::( I )., 'y'( I )
330 JO'y' I t'~=ST Icr.::( I ): F.H1 F.:EAD JrJ(3T ICK
34€1 IF .JO'y'It·i=15 THa~ 530: F.Bl [,10 i·1Ol...H1E~,n

Ot·i
344 F'lor >::( I ») 'y'( I )
350 IF JO'lUf::·=8 THal 3S{1
360 :;~( I )=;:.::( 1>+1: FH1 f·1O!.)E RIGHT
365 PHi IF OUT OF PAl·1CE THEt·i l·~F.:AF'Ar::'OUt·iD

370 IF ::-::( I )>=>=l1A>:: THEt·~ ::« I )=(1
380 GOTO 43~)

390 IF .JO'y'W>=12 THEr-i 430
400 ::« I )=:>:;< I )-1 :REi'1 j·10'..JE LEFT
410 IF ::.::( I )( ~:::1 THEr·i ::« I )=>:J1A::<-1
430 IF .JO\Jlt·~< >5 Ht'in .JC\II r{::: >9 Al·ifi .JOllIr·~<:>

13 THEt·j 47£1
440 '-c\! )=1/( I )+1: IF '/( I )>=I/j'1A>:: THE}~ l"l( I )=

o:F:Et'l i'101')E D(ii,kj
460 Goro 50~)

470 IF .J:]'lI t+< >6 Ai··~D .Jo\'rt·~·::: >1£1 Hr·iD .JO'/It·i<
>14 THH~ 500
480 'y'( I )=''1\ I )-1 : IF .....( I )<£1 THH~ '....( I )='r'i'lA::<
-1 :PEM t·10

'
..JE UP

5€10 PLOT >::< I ).1 'yl( I ::­
530 t·iE::<T I
535 t·E<T .J
540 GOTO 295

Appendix H-13



KEYBOARD
CONTROLLER

H-14 Appendix

This program alters registers on a chip called a PIA. To set these back to the
default values in order to do further va, hit "i1MMi;iiWii or POKE PACTL,60. If
this program is to be loaded from disk, use LOA]), not RUN and wait for the
busy light on the disk drive to go out. Do not execute the program before this
light goes out, otherwise the disk will continue to spin.

1 GRAPHIC; 0
5 PR I~H :P~~ I t·H II KE\'80APD cor·n~~OLLER

[EMO II

10 OIM Rm·J( 3),1$( 13),. 6'UTTm~$( 1)
30 GOSUE: 600f1
40 FOR CNT=l TO 4
60 pas ITI m·~ 2, Ct·H:f2+5 :PF.~HH II COt'H~~OLLER

# l i CNTi": ll i
70 NE:~T Ct-IT
80 FOR Ct·n=1 TO 4: GOSUB 70(10: PO:; ITIGt-i 19
, C~H+CNT+5: PF.: Ic·H 8UTTOt·i$ j : ND::T Ct'~T

120 GOTO :30
6000 REf1 l~; ~:;ET UP FOR COt·HROLLERS l:\;
6010 POF.~TA=54(H6: F'OF.:TE:=54017: PACTL=54ma
:PBCTL=54019
6020 POKE PACTL;48:POKE PORTA,255:Pru(E P
ACTL,52:POKE PORTA,221
60'25 POKE PBCTL, 4::: :POKE POF.:T8, 255 :POKE P
BCTL,52:POKE PORTB,221
6030 Rm·K 0)=23:3 :F.:m·J( 1)=221 :Rm·J( 2)=1f:7 :F.:O
W<3 )=119
6040 1$=11 1234567:39:Wilf

6050 RETUF.l~

7000 F..'EJl :~;* PETU~:r'i 8UTTOt-i$ ~~ ITH CHAPACTE
R FOR 8UTTOI'~ ~·JHICH HA~3 8EEt'i PRES::;ED OH C
ONTROLLER CNT (1-4). **
7001 REr'1 ::;;~; NOTE: A 1 ~HLL BE RETURHED I
F NO COt-iT~:OLLE~: n CO!·~r·iECTED. ::;;:~

7002 RH' :~;:\; A SPACE l·J I LL 8E F.:ETUf?iiED IF
THE COt'HROLLE~~ I::; COf·ij·iECTED BUT r·iO KE'r' H
AS 8EEt·~ PRE:3:::ED. ::;;:¥.
7003 PORT=PORTA: IF Ct-H>2 THEc'i PORT=POPTB

7005 P=l
700:3 PAD=OH+Cf'H-2
7010 FO~~ J=O TO 3
70'20 POKE PORT,ROW(J)
7030 FOR 1=1 TO 10: c'iE::-::T I
7050 IF PADOLE(PAO+l»10 THEN P=J+J+J+2:
GOTO 7090
7060 IF F'ADDLE( PAD »10 THai P=J+J+J+3: GO
TO 7090
7070 IF STRIG(CtH-l )=0 THEt-i P=J+.J+.J+4:GO
TO 7090
7080 HE::-:;j J
7090 BUTTCH.f,= 1$( F' .' P)
7095 P£TURH



TYPE-A-TUNE This program assigns musical note values to the keys on the top row of the
keyboard. Press only one key at a time.

KEY

lUMMi"
'9'!'h+

a
9
8
7
6
5
4
3
2
1

MUSICAL VALUE

B
B~ (or A#)

A
A~ (or G#)

G
F# (or G~')

F
E

B ~ (or D#)
D

D~ (or Cd)
C

10 OIM CHORO(37)!TUNE(12)
~'0 GRAPHI C:3 0:? :? II T'lPE-A-TUt·iE
PROGRAt'1"
25 ? :? II PRE:;:; KE'lS 1-9) 0) <)> TO PRODUCE

NOTES. II;
27 ? IIRELEA:3E OHE KE'y' BEFORE F'RE::;::;H~~ TH
E NE>{T. II

28 ? 1I0THERl·JE;E THERE i1A'y' BE A DELA'l. II

30 FOR ::.::=1 TO 37: ~~EA[: A: CHORDa:: ::< )=A: t·iE::-::T
'>~..
40 FOR ;:.::=1 TO 12: F.~EAO A: rUt·iE( ::-:: )=A : t·iE::-::r :":

50 OPEt-i #L 4., 0J 111<: II

55 OLDCHP=-1
6e A=PEEK( 764): IF A=255 THEf-~ 60
63 IF A=OLDCHR THEN 100
6.5 OLDCHF.:=A
70 FOF.: ;:.::=1 TO 12: IF TUt·iF ::-:; )=A THEH %Ut'~D

0) CHORD( ;:':: )., lO; 8: GOTO 100
80 NE:>::T :x:
100 I=mFPEEK(53775)'··-'4): IF (I.··..2)=HH( 1/
2) THEt·i 60
110 POKE 764! 255 : :30UHD (1.' (1) 0., 0 :OLDCHR=-1
:GOTO 60
'-00 DATA 243.,230.1217.1204" 193.1 1~::2.l 173.1 162
.. 153) 144.1 136.· 128; 121 .. 114.11(18,1102.:.96.,91.,::;
5J81 .. 76 .. 72,.68.,64j60
210 DATA 57.153) 5(1.: 47.: 45; 42.: 4(1,1 37,1 35.133;:3
1 ?Q,_...
220 [lATA 31;30J26,124.129,,27.r51 .. 53J48.f5(1;5
4)55

To play "Mary Had A Little Lamb" press the following keys:

5, 3, 1, 3, 5, 5, 5 3, 3, 3 5, 8, 8 5, 3, 1, 3, 5, 5 5, 5, 3, 3, 5, 3, 1

Appendix H-15



Cl)t-1PUTEF.~ BLUE

COMPUTER
BLUES

This program generates random musical notes to "write" some very interesting
melodies for the programmed bass.

1 GRAPHI CS O:? :'f II

811 :?
2 PTF.~=l

3 THt·KIT=l
5 CHOF.D=l
6 PR I t-n II BA~:;::; TEt'1PO (1 =FA3T ) II j

7 It'~PUT TH1F'O
8 GRAPHICS 2+16:GOSUB 2000
10 DIt1 BA::;E( 3 .. 4)
20 [ilt'1 Ll)~,J( 3)
25 DU1 LHJE< 16)
26 [I It·, JAr'1( 3.1 7 )
30 FO~~ >::= 1 TO 3
40 FOR '/=1 TO 4
5f1 ~~EAD A: BA::;E( >::) Ir' )=A
60 t·iE::<T Y
70 t'~E::-::T >::
80 FOR X=l TO 3:REAO A:LOW(X)=A
90 t'~E::<T ::.::
95 F(I~~ ::<=1 TO 16: ~~EAfj A: LI ~'~E( ::.:: >=A : f'~E::<T ::.::

96 FOR ::<=1 TO 3
97 FOR 'y'=l TO 7
98 ~~EA[1 A: JAt'1( >::) Jr' )=A : t'~E::'::T ''{: t'~E>::T ::<
100 GOSUE: 5f10
110 T=T+1
115 GO~;UB 20(1
120 GOTO 100
200 REM PROCESS HIGH STUFF
205 IF Rt·jO( (1 )(0.25 THHi RETURt·i
210 IF pr·D:: 0 >(0.5 THEt-i 250
220 t·iT=r·n+1
230 IF t-iT>7 THH~ t-H=7
240 GOTO 26~1

250 t·H=t·n-1
255 IF t-n<l THEr·i m=l

H-16 Appendix

26£1
2:30
5011
510
521-)
530
!:"""i
..).j!

54f1
550
700
71£1
720

~;OUf'iO 2...JAt·1( CHO~~O " t'~T )) 1(1 J t·iT::;(2
F.:ETU~~r·j

F.H1 PROCE::;:; BASE ~:;TUFF

IF 8A:;:;=1 THEt·i 7(10
E:DU}?=BDU~~+ 1
IF E:[;UR< >TEj'1F'i] THEt·i
8A~;~3= 1:BDi)~~:=~)
S:jU:'~[l [1: LCi~,J( CHO~~ri ).1 1~1.r 4
;:;OU;··~::~ 1) BA~;E( CHO~~D.I THt··~CiT ).1 10.: 4
~:ETtH~~I·~

~:;OUt'iD 0.. (1 .. 0.. 0
~:;OUt·~r) 1; a.; (1.: (1
E;DUF~=BD~J~~+ 1



!
',..=:.!:l~2:~

In111
:3

.....0
0

'..1)
C

I"I
cr"

I::;)
#

::
('J

(•.J
"':t-

~
.

~
".1

-'
'1

1
r"-'r"-,u-.

''';t-
..,...:.

r"':,
r"~1

-,+~::t
::-;

-.,.:'
:.

~t::
':l:

I
~

1..:&.1
r".'

U
..

:::
-..:r

-..:r
l.-)

..
Q

"....
",

'..0
.~..)

('.J
('•.J

r·,·
:#

"',..
"':t-

1.0
-.

~
-.

~
.
_
-

r·,·
If")

"':\":z:
-.:j-

-r.t'
I.J

)
••~

...
...

...
0

::
I:i:'

':::~I
(
(
I

C
L

:::
If')

If)
'.J)

......
"
0

"
,

.
.

,
\".1)

I.L'
'.J)

'..l)
-s,

.~~,.......
;#

:
#

.#
.#

:
1•.0

1••0
(1

)
:~~:

~
-

I--
1-.-

~
-
-

0:::
·:r

·::r<r
:~~:z::z::z.::::­

~
-
-
.

1--
1-.-

•.••
.....

.....
.....

.....­
<3:

<3:
<3:

f~::
ct::

("~~
0

::
Ll.I

C
l

0
0

(L
C

L.
0...

(J..
l::t::

('.J
('.J

1·.0
...

_
_

of
(I.J

lS
I

.......
.....

'~"J
(

•.J
t
~

T'"
r")

~
-.

(0
T'"

l:::=t
-.

T-.
.......

-
-.

T-.
.......

(I.J
-.

......
T'"

-.
..

.."..
(I,J

.."..
T'"

(
•.J

-.'..0
r·')
....

I::;:'
t:;':'
(
I)

I
~
~
)

(~;;:,

(
(
I

T·.II
(.t::

_
~

t-
..:._

u
.

.•'..
LcJ

..''''.
LL!

:t:
~.;:

C
t::

:r.,:,)T-.
~
-

W
I--

":t"
('J

.......
~
-

II
....

:r:
L

L
":t"

':0
~

"r~4
:~::~:t~~

~~~
~-

lAJ
..-~~

1
.,0

...~
~

:::::::g
~j~

~::
:+.4

~~
;~S

::~~
(~:~

t.~~
-~

L:t:::
..

"'M.-:-:)
or....

Cot:
II

__J
......

,.....
(".J

....
::'

':>.)
II

::;::
II

~
-

Lt::
II:::

,::r',
C

J
'I

~
-
:
:
r
:
:
~
.
-

C
t.

I--
C

J
C

t:
-:::r:

-.
':I

·:I
ro

G
~

!~2
I--

~;~
J'.,

C
t.

Q
:=,

~:-.::f.'1:"-1:"'.
l.Lc.:::E

l.L
::E
~

l.L
~

t;:jc:S
..-~

~:S
~:S

.......ro
~
_
.

.......
I--

0...
.......'=-:'

Lt::
(
(
I

-::;:-.=;;:.
1
~
1

.:s::.
I::~I.:s:.

,:S:t
.::;:-

IJ-:r
1••0

.:S)
.:S

:I
0
~
Q
G
~
Q
~
~
Q
Q
~

...~
~
J
M
~
~
G
~
G
~
M

M
~
~
~
~
~
O
O
m
G
~
~
r
o
~

Q
~
Q
~
O
~
~
Q

~
~
~
~
~
~
~
~
r
o

.......ro"""''''''''''''''''''''''''''''''''''''N
N

N
N

N



DECIMAL/
HEXADECIMAL
CONVERSION
PROGRAM

H-18 Appendix

This program can be typed in and used to convert hexadecimal numbers to
decimal numbers and vice versa.

10 DH1 A$::: 9)" AD$( 1>
20 r:;~:AFH I c~:; e:? :? II

ER::; Im·i::: l! :?
3(1 ? :? II Ent.er· I DI f m-· DEC t.o HE;:':: con;.)er·
5 i on . II :? !IEnter' I H! f Ot-· HE::-=: to DEC con;...'e
r·s.ion. II : HiPUT A$
40 IF Lav A$ >=0 THEJ~ 30
50 IF A$="H!I THa·~ 300
60 IF A$< ) "[1 !I THEr~ 30
90 T~:AP 9J
100 ? :? II HHEF.: A DEC I t"1AL t·iUi·1E:EF.: FPOt'1 [1
TH~~OUGH 9999999999. !I
110 ? "0EC: II.; : HiPUT t'i
120 IF t'~<0 Jj~~ N>=lE+l~) THEN GOre! 1(10
13(1 1=9
140 TEi·1F=t·i; t·i= IiH( t·i/16 ;.
150 TEMP=TEMP-Nt16
160 IF TH1P< 1(1 THEJi Afr:: I .. I )=3TP$( TEt·1F >:G
OTO 1:3(1
170 A$(! .. I )=CHR!\ TEr'1F-l ~]+r::6U: \I Ait ) )

1:3(1 ! F t·i< >0 THEt·i I=I-1 :GOTO 14~)

19f1 "? "HE::<: II ,j A$( I.r 9::::?
2(1(1 GelTO 11 (1
3011 T~:AF 30[1
310 .-;:, :? "ENTE~~ A HE>:: f·~ur·1E~EF F~~Ot'1 [1 TH~~O

UGH FFFFFFFF. II

32f1 .-;:- II HE>:: : !I j : It·iPUi A$
330 t·i=0
34~) FO~: I=1 TO LEt-ir:: A$ )
345 AD$=Al\ I .. I;': IF AD$< 1I~j" THai 30(1
350 IF A$( I .' I ::. ::: =II 9II THai f·i=t·i::;:: 16+1...!AL( AD$ ::.
:GOTe, 37(1
355 IF AD!< II A!I THai 3[1(1
357 IF AD$>IIFlI THai 300
360 t·i=t·i::;:: 16+~:c:;C( AD! )-A3C( If Ai! )+ 1(1

370 r'iE::<T I
380 ? II DEC: ".; t·j ;?
390 GOTI] 32~)

400 Er'~O



APPENDIX I

MEMORY
LOCATIONS

Note: Many of these locations are of primary interest to expert programmers and are included here as a
convenience. The labels given are used by Atari programmers to make programs more readable.

LABEL

APPMHI

RTCLOK

SOUNDR

DECIMAL
LOCATION

14,15

18,19,20

65

77

HEXADECIMAL
LOCATION COMMENTS AND DESCRIPTION

DE Highest location used by BASIC (LSB, MSB)

12,13,14 TV frame counter (1/60 sec.) (LSB, NSB, MSB)

41 Noisy I/O Flag (0 = quiet)

Attract Mode Flag (128 = Attract mode)

LMARGIN,
RMARGIN

ROWCRS

COLCRS

OLDROW

OLDCOL

NEWROW

NEWCOL

RAMTOP

LOMEM

MEMTOP

STOPLN

ERRSAV

PTABW

FRO

82,83

84

85,86

90

91,92

93

96

97,98

106

128,129

144,145

186,187

195

201

212,213

52,53

54

55,56

5A

5B

5C

60

61,62

6A

80,81

90,91

BA,BB

C3

C9

D4,D5

Left, Right Margin (Defaults 2, 39)

Current cursor row (graphics window).

Current cursor column (graphics window).

Previous cursor row (graphics window).

Previous cursor column (graphics window).

Data under cursor (graphics window unless mode
0).

Cursor row to which DRAWTO will go.

Cursor column to which DRAWTO goes.

Actual top of memory (number of pages).

BASIC low memory pointer.

BASIC top of memory pointer.

Line number at which STOP or TRAP occurred
(2-byte binary number).

Error number.

Print tab width (defaults to 10)

Low and high bytes of value to be returned to
BASIC from USR function.

Appendix 1-1



LABEL

RADFLG

LPENH

LPENV

TXTROW

TXTCOL

COLORa

COLOR1

COLOR2

COLOR3

COLOR4

MEMTOP

MEMLO

CRSINH

CHACT

CHBAS

ATACHR

CH

FILDAT

DSPFLG

SSFLAG

HATABS

10CB

DECIMAL
LOCATION

251

564

565

656

657,658

708

709

710

711

712

741,742

743,744

752

755

756

763

764

765

766

767

794

832

HEXADECIMAL
LOCATION COMMENTS AND DESCRIPTIONS

FB RAD/DEG flag (0 =radians, 6 =degrees).

234 Light Pen' Horizontal value.

235 Light Pen' Vertical value.

290 Cursor row (text window)

291,292 Cursor column (text window)

2C4 Color Register a

2C5 Color Register 1

2C6 Color Register 2

2C7 Color Register 3

2C8 Color Register 4

2E5,2E6 OS top of available user memory pointer (LSB,
MSB)

2E7,2E8 OS low memory pointer

2FO Cursor inhibit (0 = cursor on, 1 = cursor off)

2F3 Character mode register (4 = vertical reflect; 2 =

normal; 1 = blank)

2F4 Character base register (defaults to 224) (224 = up­
per case, 226 = lower case characters)

2FB Last ATASCII character.

2FC Last keyboard key pressed; internal code; (255
clears character).

2FD Fill data for graphics Fill (XIO).

2FE Display Flag (1 = display control character).

2FF Start/Stop flag for paging (0 = normal listing) Set by
Ei31.

31A Handler address table (3 byteslhandler)

340 I/O control blocks (16 byteslIOCB)

CONSOL

• Future product.

1-2 Appendix

1664-1791

53279

680-6FE

D01F

Spare RAM

Console switches (bit 2 = Option; bit 1 = Select; bit
a = Start. POKE 53279, a before reading. a =

switch pressed.)



DECIMAL HEXADECIMAL
LABEL LOCATION LOCATION COMMENTS AND DESCRIPTIONS

PORTA 54016 D300 PIA Port A Controller Jack I/O ports.
PORTB 54017 D301 PIA Port B Initialized to hex 3C.

PACTL 54018 D302 Port A Control Register (on Program Recorder 52
= ON, 60 = OFF).

PBCTL 54019 D303 Port B control register.

SKCTL 53775 D20F Serial Port control register. Bit 2 = 0 (last key still
pressed).

Appendix 1-3



Notes



A

B

c

Abbreviations, 4-5
Commands in headings, 4

ABS, 33
adata,5
ADR, 35,63
aexp, 4
aop, 4
Array, 3-4, 41
ASC, 37
ATASCII, 5,40, C-1 through C-6
ATN,34
Audio track of cassette, 23
avar, 4

BASIC, 1
Blanks (see Spaces)
Booting DOS, 25
Braces, 4
Brackets, 4
Branching,

Conditional Statements, 19
Unconditional Statements, 17

Brightness (see Luminance)
Bubble Sort Program, H-5
Buzzer, 14

Deferred Mode, F-1
Direct Mode, 14

BYE, 9

C-Scale Program, 58
Central Input/Output Subsystem, 23
Character

Assigning Color to, 54
ATASCII, C-1 through C-6
Display at specified locations, 46, 47
Set, internal, 55
Sizes in Text modes, 46

Chaining Programs, 30
Checkbook Balancer Program, H-1 through H-4
CHR$,58
CIO (see Central Input/Output Subsystem) 6
CLEAR key, 6
Clear Screen,

Deferred mode, 5, 14, 46
Direct mode, 6, .46

CLOAD,24
CLOG,33
CLOSE,27
CLR, 43
Codes,

Device, 23-24
Colons, 3, 61
COLOR,48

INDEX

Color
Assigning, 54
Changing, 50
Default, 46, 51
Registers, 50

COM (see DIM)
Computer Blues Program, H-16
cmdno,30
Comma, 26, 27
Command Strings, 1
Commands

BYE,9
CONT, 9
END,9
LET,10
LIST, 10
NEW, 10
REM,10
RUN,11
STOP, 11

Conservation,
Memory, 61

Constant, 2
CONT,9
Controllers,

Game, 59
COS, 34
CSAVE,24
Cursor, 9

Graphics, 49
Inhibit, 46

D DecimallHexadecimal Conversion Program, H-18
Default

colors, 46
disk drive, 24, 29
margins in Mode 0, 46
tab settings, 6

Deferred mode, 5
DEG,35
Devices, 23-24
Delete line, 13
DIM,41
Direct mode, 5
Disk Drive

Default number, 24, 29
Requirements (see ATARI DOS Manual)

Disk file
Modification of BASIC program, 31

Display, split-screen override, 45, 47
Distortion, 57
DOS, 25
DRAWTO,48

Index 117



E Editing, screen, 13 GOTO,17
Editor, Screen, 24 with conditional branching, 17
END,9 GRAPHICS, 45

before subroutine, 7 Graphics
End of file, 14 Modes, 46-47
Error messages, B-1 through B-3 Statements, 48
Escape key, 5 COLOR,48

with Control Graphics Symbols, F-1 DRAWTO,49
EXP, 33 GET,45
exp, 5 GRAPHICS, 48
Exponentiation symbol, 6 LOCATE,48
Expression, 1 PLOT,49

Arithmetic (see aexp) POSITION, 49
Logical (see lexp) PUT, 49
String (see sexp) SETCOLOR, 50

F filename, breakdown, 27
XIO (Fill), 54

Graphics Control Characters, 56
filespec,S

Usage, 26, 27 H Harmony, 57
Fill (XIO), 54 Hexadecimal
FORINEXT, 15 /Decimal Conversion Program, H-18
building arrays and matrices, 42 Hexcode Loader program, 64

with STEP, 15
Iwithout STEP, 15 INPUT,25

FRE, 35 Input/Output Commands, 23

Function, 1 CLOAD,24

Arithmetic CLOSE,27

ABS, 33 CSAVE,24

CLOG,33 DATA, 28

EXP, 33 DOS, 25

INT, 33 ENTER,25

LOG,34 GET, 28

RND,34 INPUT, 25

SGN,34 LOAD,26

SQR,34 LPRINT,26

Built-in, 7 NOTE,26

Derived, £-1 OPEN,26

Library, 33 POINT,28

Special Purpose, 35 PRINT, 3, 5, 14, 26

ADR,35 PUT, 28

FRE, 35 READ,28

PEEK, 35 SAVE, 29

POKE,35 STATUS, 29

USR, 36 XIO, 29

Trigonometric, 34 Input/Output Devices

ATN,34 Disk Drives (D:), 24

COS, 34 Keyboard (K:), 23

DEG,35 Line Printer (L:), 23

RAD,35 Program Recorder (C:), 23

SIN,35 RS-232 Interface (R:), 24
Screen Editor (E:), 24

G Game controllers TV Monitor (S:), 24
Keyboard, 59 INT, 33

Joystick, 59 Internal pointer for DATA, 21
Paddle, 59 Input/Output Control Block, 23
Video Graffitti program, H-12 through H-13 Inverse Key,S

Game controller commands Invisible graphics cursor, 48-49
PADDLE,59 IOCB (see Input/Output Control Block)
PTRIG,59
STICK,59 J Joystick Controller, 59
STRIG,60

GET, 28, 49 K Keyboard (K:), 23
GOSUB/RETURN, 16, 21 Keyboard Controllers, 59

118 Index



Keyboard Controller Program, H-14
Keys

Special Function
ATARI,5
BACK SPACE, 6
BREAK, 6
CAPS!LOWR, 5
CLEAR, 6
DELETE,6
ESCAPE,S
INSERT, 6
RETURN, 6
SYSTEM RESET, 6
TAB,6

Editing
CTRL (Control) Key, 13
SHIFT key, 13

Cursor Control, 14
Down arrow, 14
Left arrow, 14
Right arrow, 14
Up arrow, 14

Keywords
BASIC, A-1 through A-5

L LEN,38
LET,2, 3,10
Letters

Capital (upper case), 3
Lower case, 3, 47

lexp,4
Light Show Program, H-8
Line

Format, 3
Logical,2
Numbers, 3
Physical, 2

lineno, 5
LIST, 10
LOAD, 26
Load program from cassette tape, 24
LOCATE,48
LOG,34
Loops

Endless, 17
Nested, 15

lop, 4
LPRINT,26

before CSAVE, 24
Luminance, 50

M Mandatory # symbol, 26, 27
Margins

Changing, 36, 46
Default in mode 0, 46

Matrix, 41-42
Variable, 4

Memory Map, D-1 through D-2
Modes, graphics, 46, 47
Modes, operating

Deferred,S
Direct,S
Execute,S
Memo Pad, 5, 25

Modes, text, 46
Override split-screen, 47

Multiple commands (see
Command Strings)

mvar, 4

N NEW, 10
Notations

floating point, 39
in manual, 3

o ON/GOSUB, 20
ON/GOTO,20
OPEN, 26-28
Operators, 2

Arithmetic, 4, 6
Binary, 6, 7
Logical, 4, 6
Relational, 7
Unary, 6

Output devices, 23
Oversized programs (see Chaining Programs)

P Paddle Controller, 59
Parentheses,

Usage, 7, 63
PEEK, 35
Peripheral devices (see Input/Output Devices)
Pitch

Definition, 57
Values, 58

Pixel, 48
Size in modes, 47

PLA,63
PLOT,49
POINT, 28
POKE, 35
POP, 20-21
POSITION, 49
Precedence, operator, 7
PRINT, 3, 5, 14,26
Printer listing, 10
Program continuation, 11
Programs,

Machine language, 67
User, Appendix H
with Hexcode Loader, 65, 66

PUT, 49

Q Question mark as prompt, 25
Quotation marks, 2

R RAD,35
RAM (Random Access Memory), 23
Random Access to disk file, 28
READ,28

Direct mode, 28
REM, 10
RESTORE,21
RETURN Key, 6
Return, AbnQrmal (see POP)
Rollover,

Keyboard, 8
RND,34

Index 119



s

RS-232(R:), 24
RTS, 63
RUN,11

SAVE,29
Save programs on cassette tape, 24
Screen Display (see TV Monitor)
Screen Editor (E:), 24
Seagull Over Ocean Program, H-11
Semicolon, 28
SETCOLOR, 50-53
sexp, 5
SGN,34
SIN, 35
SOUND,57

terminating, 9, 57
Spaces, 61
SQR, 34
Stack, 16

GOSUB,16
Hardware, 36
loop addresses, 16, 21
POP, 20

Statement,
Program, 15
FOR,15
GOSUB, 16, 21
GOTO,17
IF, 18
ONiGOSUB, 20
ON/GOTO, 20
POP, 20
RESTORE,21
RETURN,16
STEP, 15
THEN,18
TO, 15
TRAP, 22

STEP, 15
STOP, 11
String

Comparison, 40
Concatenation, 39
Dimensioning, 37
Functions

ASC, 37
CHR$,37
LEN,38
STR$,38
VAL, 38

Manipulation, 39
Sort, 40
Splitting, 39
Variable, 4

STR$,38
Subroutine

Definition, 16
GOSUB,16
Usage, 16

svar, 4

Text Modes Characters Program, H-7
Tokenized version, 3, 24
Tone, clipped, 57
TRAP, 22
Type-A-Tune Program, H-15

U Untokenized version, 3

V var, 4
Variable, 2

avoiding name limit, 2
Video Graffitti Program, H-12
Volume control, 57
Voice, 57

W Window
Graphics, 47
Text, 47

Wraparound, 8

X X-coordinate, 47
XIO, 29
XIO (Fill). 54

Y Y-coordinate, 47

Z Zero
as Dummy Variable, 30, 34

T Terminology, 1
Text modes, 46

120 Index



ERROR CODES

ERROR
CODE ERROR CODE MESSAGE

2 Memory Insufficient
3 Value Error
4 Too Many Variables
5 String Length Error
6 Out of Data Error
7 Number greater than 32767
8 Input Statement Error
9 Array or String DIM Error

10 Argument Stack Overflow
11 Floating Point Overflow/

Underflow Error
12 Line Not Found
13 No Matching FOR Statement
14 Line Too Long Error
15 GOSUB or FOR Line Deleted
16 RETURN Error
17 Garbage Error
18 Invalid String Character

Note: The following are INPUT/OUTPUT er­
rors that result during the use of disk drives,
printers, or other accessory devices. Further in­
formation is provided with the auxiliary hard­
ware.

19 LOAD program Too Long
20 Device Number Larger
21 LOAD File Error

128 BREAK Abort
129 10CB
130 Nonexistent Device
131 10CB Write Only
132 Invalid Command
133 Device or File not Open
134 BAD 10CB Number
135 10CB Read Only Error
136 EOF
137 Truncated Record
138 Device Timeout
139 Device NAK
140 Serial Bus
141 Cursor Out of Range

ERROR
CODE ERROR CODE MESSAGE

142 Serial Bus Data Frame Overrun
143 Serial bus data frame checksum error
144 Device done error
145 Read after write compare error
146 Function not implemented
147 Insufficient RAM
160 Drive number error
161 Too many OPEN files
162 Disk full
163 Unrecoverable system data I/O error
164 File number mismatch
165 File name error
166 POINT data length error
167 File locked
168 Command invalid
169 Directory full
170 File not found
171 POINT invalid

For explanation of Error Messages see Appendix B.




	Cover

	Contents

	1 - General Information

	2 - Commands
	3 - Edit Features

	4 - Program Statements
	5 - Input/Output Commands and Devices
	6 - Function Library

	7 - Strings

	8 - Arrays and Matrices

	9 - Graphics Modes and Commands
	10 - Sounds and Game Controllers

	11 - Advanced Programming Techniques

	A - Alphabetical Directory of BASIC Reserved Words

	B
- Error Messages 
	C
- ATASCII Character Set 
	D - Atari 400/800 Memory Map

	E - Derived Functions

	F - Printed Versions of Control Characters

	G - Glossary

	H - User Programs

	I - Memory Locations

	Index

	Error Codes
	Control Graphics Keyboard (Back Cover)




